SlideShare ist ein Scribd-Unternehmen logo
1 von 26
Downloaden Sie, um offline zu lesen
Multiple representations and visual mental
imagery in artificial cognitive systems
David Peebles
Reader in Cognitive Science
Department of Psychology
March 21, 2018
Outline of the talk
Part 1
Multi-representation cognition
Visual mental imagery
Part 2
Cognitive architectures & the Common Model of Cognition
Multiple representations in cognitive architectures
A bit of context and a caveat. . .
PhD, Uni. Birmingham
Experimental psychology,
connectionist modelling
Postdoc, Uni. Nottingham
Diagrammatic Reasoning
(Peter Cheng & Nigel
Shadbolt), ACT-R
University of Huddersfield
Cognitive modelling
ACT-R cognitive
architecture
Reasoning with external
representations
This talk relates to ongoing
‘multi-representation
cognition’ project with Peter
Cheng (Sussex)
Paper at recent AAAI
workshop ‘A Standard
Model of the Mind’ (Peebles
& Cheng, 2017)
Still a work in progress and
my thinking is not fully
developed
Multi-representation cognition
Modern human cognition is multi-representational
External (task environment) representations:
Languages (natural and formal)
Diagrams
Maps
Tables
Menus and tool bars in computer applications
Control panels
Specialised abstract notation systems in academic and
technical domains
Internal mental representations
Abstract, ‘amodal’, descriptive propositional representations
Depictive representations grounded in perception
Preserve explicitly information about topological and geometric
relations among problem components.
Information format, operators, information indexing methods,
heuristics and goal structures can differ considerably with
alternative representations (Larkin & Simon, 1987).
An example
Imagine a square with sides of one unit. At opposite corners of
the square add circles with radii 2
3 of a unit centred on the
corners. Do the two circles:
1. overlap?
2. just touch?
3. not touch?
Mathematics-based solution
1. “According to Pythagoras’ theorem, the length of the diagonal
between the two opposite corners is the square root of 2”.
2. “That’s about 1.4 units so if we divide that by 2, the centre of
the square is about 0.7 units from each corner”.
3. “The radius of each circle is about 0.66 units, so neither
circle’s perimeter will reach the centre of the square”.
4. “Therefore the circles do not touch”.
Imagery-based solution
1. “I’m imagining a square and I can
see that circles with unit radius will
definitely overlap; in fact they
intersect each other at the other
corners of the square”.
2. “Now I’m imagining circles of 1
2 unit
and I can see that they clearly
don’t meet. In fact the circles cross
the mid-point of each side of the
square and curve away from the
centre”.
3. “Now I’m thinking of circles with
radii of 2
3 . It’s hard to be certain
how big they should be, but they
seem to just touch each other”.
Visual mental imagery and visual working memory
Two solutions rely upon different mental representations
Declarative and mathematical
Visuo-spatial and exploiting imagery in the mind’s eye.
Visual Mental Imagery (VMI). “Representations that produce
the experience of seeing in the absence of visual input”
“Imagery debate”
Pylyshyn All thoughts, including VMI, are propositional.
Kosslyn VMI is an internal, non-perceptual visual experience
caused either by recollecting or conceptualising something.
VMI are structurally analogous to visual representations, and
are caused, at least in part, by psychological processes
shared with the visual system.
VMI has a functional role in planning, (e.g., simulating actions,
particularly when potential costs of error are high).
Processes involved in using visual mental imagery
Generation (from knowledge in LTM)
Maintenance (attention)
Inspection, scanning (attention)
Transformation and manipulation
Translation
Rotation
Scaling, zooming
Restructuring and reinterpretation
Synthesis
Composition (e.g., intersection, union, subtraction)
Key question
What form of internal representation allows these
computational processes to be carried out efficiently?
Symbolic/numerical or array-based?
More general questions
How can information from different senses, at different levels
of abstraction, be fluidly used in decision making?
What functional role does specialised spatial and visual
processing play in cognition?
How are spatial, visual and abstract symbolic representations
and processes integrated?
What forms of representation are required (necessary and
sufficient) to support human-level capabilities and
performance?
Do visual and spatial cognition (and visual imagery) demand
non-symbolic, depictive representational formats and
operators?
Cognitive architectures
Originated in 1950s but active research programme in 1980s.
Cognitive science – differs from mainstream “narrow” AI and
traditional “divide and conquer” approach of experimental
cognitive psychology
Theories of the core, immutable structures and processes of
the human cognitive system.
Aim: general, human level intelligence modelling human
cognition and performance – broad applicability to wide range
of tasks.
Addresses fundamental question of how cognitive, perceptual,
and motor processes interact and integrate to produce
complex, real-world behaviour.
Not simply theoretical constructs but actual running software
systems, often with vision and motor control.
An emerging standard model
Several cognitive architectures in existence (20–30)
Two dominant: ACT-R and Soar (both approx. 30 years old).
Much consolidation and convergence over last decade.
‘Common Model of Cognition’ (Laird, Lebiere & Rosenbloom,
2017)
Perception Action
Task
Environment
Learning
Procedural
Perceptual
Learning
Learning
Declarative
Selection
Action
Short−term memory
Long−term memory
Procedural
Long−term memory
Declarative
Symbolic approaches to spatial reasoning
Architectures come from traditional symbolic AI tradition
Often ad hoc mechanisms not intrinsic to the architecture
Most use only descriptive representations
CogSketch (Forbus, Usher, Lovett, Lockwood & Wetzel, 2011)
Diagram Representation System (DRS) (Chandrasekaran,
Kurup, Banerjee, Josephson & Winkler, 2004)
ACT-R (Peebles, 2013; Peebles & Cheng, 2003)
Quebec Mississippi
0
10
20
30
40
50
60
70
80
90
100
q q
q
q
Plant CO2 Uptake as a function of Plant Type and Treatment
PlantCO2Uptake
Plant Type
Treatment
Chilled
Non−chilled
Attempts at array-based representations
Some architectures have explored non-symbolic, array-based
representations.
Computation with Multiple Representations (CaMeRa) model
(Tabachneck-Schijf, Leonardo & Simon, 1997)
Retinotopic Reasoning (R2) architecture
Aims to model the computational properties of mental imagery
(Kunda, McGreggor & Goel, 2013).
Based, in large part, on array based (non-symbolic)
representations and operators.
Successfully applied to: (a) Raven’s Progressive Matrices
test, (b) Embedded Figures test, (c) Block Design test, and (d)
Paper Folding test.
Retinotopic Reasoning (R2) architecture
Similar to CaMeRa (Tabachneck-Schijf et al., 1997)
Soar/SVS
Soar/SVS (Spatial Visual System) (Lathrop, Wintermute &
Laird, 2011; Wintermute, 2012)
Soar/SVS
Soar/SVS (Spatial Visual System) (Lathrop et al., 2011;
Wintermute, 2012)
Similarities in these non-symbolic approaches
Employ representations consisting of two-dimensional arrays
of pixels.
Operators to manipulate array objects.
Forward and backward connections to higher-level (numerical,
symbolic) representations (CaMeRa, Soar/SVS)
Important in that they allow cognitive modelling of processes
akin to those used in visual mental imagery.
None explicitly address the issue of multiple representation
cognition
Processes involved in using multiple representations
Initial selection of representations
Coordination of simultaneous representations
Switching asynchronously between representations
Distribution of task information between representations,
across task sub-goals and time
Understanding computational costs of each representation
Potential for cognitive off-loading
User’s familiarity with each representation
Compatibility of different representations
Metacognitive knowledge and processes
Monitoring and control processes to handle the selection and
monitoring of, transitions between, and integration of different
representations.
Meta-level information about the characteristics of different
representational formats (e.g., level of precision afforded,
ease of computation, suitability for a given problem etc.).
Use–and be able to choose between–alternative
representations within the same modality (e.g., different types
of diagram).
ACT-R
ACT-R (Anderson, 2007) purely symbolic
Visual/Spatial information represented as numbers and
symbols.
Insufficent to model visual mental imagery
Array module currently under development
Visual
Module
ACT−R Buffers
Environment
Pattern
Matching
Execution
Production
Module
Motor
Problem
State
Declarative
Memory
Procedural
Memory
Control
State
Implications for cognitive models and artificial
human-like agents
1. Models must incorporate alternative problem representations.
2. Must incorporate some form of meta-cognitive monitoring and
control processes to handle the selection and monitoring of,
transitions between, and integration of different
representations.
3. Must be able to incorporate meta-level information about the
characteristics of different representational formats (e.g., level
of precision afforded, ease of computation, suitability for a
given problem etc.).
4. Must also be able to incorporate–and be able to choose
betweenalternative representations within the same modality.
References I
Anderson, J. R. (2007). How can the human mind occur in the
physical universe? New York, NY: Oxford University Press.
Chandrasekaran, B., Kurup, U., Banerjee, B., Josephson, J. R. &
Winkler, R. (2004). An architecture for problem solving with
diagrams [Lecture notes in artificial intelligence 2980]. In A.
Blackwell, K. Marriott & A. Shimojima (Eds.), Diagrammatic
representation and inference (pp. 235–256). Berlin:
Springer-Verlag.
Forbus, K., Usher, J., Lovett, A., Lockwood, K. & Wetzel, J. (2011).
CogSketch: Sketch understanding for cognitive science
research and for education. Topics in Cognitive Science,
3(4), 648–666.
Kunda, M., McGreggor, K. & Goel, A. K. (2013). A computational
model for solving problems from the Raven’s Progressive
Matrices intelligence test using iconic visual representations.
Cognitive Systems Research, 22, 47–66.
References II
Laird, J. E., Lebiere, C. & Rosenbloom, P. S. (2017). A standard
model of the mind: Toward a common computational
framework across artificial intelligence, cognitive science,
neuroscience, and robotics. AI Magazine. 38(4).
Larkin, J. H. & Simon, H. A. (1987). Why a diagram is (sometimes)
worth ten thousand words. Cognitive Science, 11, 65–100.
Lathrop, S. D., Wintermute, S. & Laird, J. E. (2011). Exploring the
functional advantages of spatial and visual cognition from an
architectural perspective. Topics in Cognitive Science, 3(4),
796–818.
Peebles, D. (2013). Strategy and pattern recognition in expert
comprehension of 2×2 interaction graphs. Cognitive
Systems Research, 24, 43–51.
Peebles, D. & Cheng, P. C.-H. (2003). Modeling the effect of task
and graphical representation on response latency in a graph
reading task. Human Factors, 45, 28–45.
References III
Peebles, D. & Cheng, P. C.-H. (2017, September 11). Multiple
representations in cognitive architectures. In AAAI Fall
Symposium 2017: ‘‘A Standard Model of the Mind”.
FS-17-01–FS-17-05. American Association for the
Advancement of Artificial Intelligence. Washington, VA.
Tabachneck-Schijf, H. J. M., Leonardo, A. M. & Simon, H. A.
(1997). CaMeRa: A computational model of multiple
representations. Cognitive Science, 21, 305–350.
Wintermute, S. (2012). Imagery in cognitive architecture:
Representation and control at multiple levels of abstraction.
Cognitive Systems Research, 19, 1–29.

Weitere ähnliche Inhalte

Was ist angesagt?

Extending the knowledge level of cognitive architectures with Conceptual Spac...
Extending the knowledge level of cognitive architectures with Conceptual Spac...Extending the knowledge level of cognitive architectures with Conceptual Spac...
Extending the knowledge level of cognitive architectures with Conceptual Spac...Antonio Lieto
 
Heterogeneous Proxytypes as a Unifying Cognitive Framework for Conceptual Rep...
Heterogeneous Proxytypes as a Unifying Cognitive Framework for Conceptual Rep...Heterogeneous Proxytypes as a Unifying Cognitive Framework for Conceptual Rep...
Heterogeneous Proxytypes as a Unifying Cognitive Framework for Conceptual Rep...Antonio Lieto
 
Cognitive Agents with Commonsense - Invited Talk at Istituto Italiano di Tecn...
Cognitive Agents with Commonsense - Invited Talk at Istituto Italiano di Tecn...Cognitive Agents with Commonsense - Invited Talk at Istituto Italiano di Tecn...
Cognitive Agents with Commonsense - Invited Talk at Istituto Italiano di Tecn...Antonio Lieto
 
IRJET- Facial Emotion Detection using Convolutional Neural Network
IRJET- Facial Emotion Detection using Convolutional Neural NetworkIRJET- Facial Emotion Detection using Convolutional Neural Network
IRJET- Facial Emotion Detection using Convolutional Neural NetworkIRJET Journal
 
UTS workshop talk
UTS workshop talkUTS workshop talk
UTS workshop talkLei Wang
 
Study on Different Human Emotions Using Back Propagation Method
Study on Different Human Emotions Using Back Propagation MethodStudy on Different Human Emotions Using Back Propagation Method
Study on Different Human Emotions Using Back Propagation Methodijiert bestjournal
 
Functional and Structural Models of Commonsense Reasoning in Cognitive Archit...
Functional and Structural Models of Commonsense Reasoning in Cognitive Archit...Functional and Structural Models of Commonsense Reasoning in Cognitive Archit...
Functional and Structural Models of Commonsense Reasoning in Cognitive Archit...Antonio Lieto
 
Revised bloomshandout
Revised bloomshandoutRevised bloomshandout
Revised bloomshandoutGreggfay8
 
A Survey of Image Segmentation based on Artificial Intelligence and Evolution...
A Survey of Image Segmentation based on Artificial Intelligence and Evolution...A Survey of Image Segmentation based on Artificial Intelligence and Evolution...
A Survey of Image Segmentation based on Artificial Intelligence and Evolution...IOSR Journals
 
Object recognition with cortex like mechanisms pami-07
Object recognition with cortex like mechanisms pami-07Object recognition with cortex like mechanisms pami-07
Object recognition with cortex like mechanisms pami-07dingggthu
 
A myth or a vision for interoperability: can systems communicate like humans do?
A myth or a vision for interoperability: can systems communicate like humans do?A myth or a vision for interoperability: can systems communicate like humans do?
A myth or a vision for interoperability: can systems communicate like humans do?Milan Zdravković
 
Snips and snails and puppy dog tails: the need to preserve complexity in math...
Snips and snails and puppy dog tails: the need to preserve complexity in math...Snips and snails and puppy dog tails: the need to preserve complexity in math...
Snips and snails and puppy dog tails: the need to preserve complexity in math...Universidade de Lisboa
 
Cognitive Architectures - Amr Kamel - 2015
Cognitive Architectures - Amr Kamel - 2015Cognitive Architectures - Amr Kamel - 2015
Cognitive Architectures - Amr Kamel - 2015Amr Kamel Deklel
 

Was ist angesagt? (20)

Extending the knowledge level of cognitive architectures with Conceptual Spac...
Extending the knowledge level of cognitive architectures with Conceptual Spac...Extending the knowledge level of cognitive architectures with Conceptual Spac...
Extending the knowledge level of cognitive architectures with Conceptual Spac...
 
Heterogeneous Proxytypes as a Unifying Cognitive Framework for Conceptual Rep...
Heterogeneous Proxytypes as a Unifying Cognitive Framework for Conceptual Rep...Heterogeneous Proxytypes as a Unifying Cognitive Framework for Conceptual Rep...
Heterogeneous Proxytypes as a Unifying Cognitive Framework for Conceptual Rep...
 
Cognitive Agents with Commonsense - Invited Talk at Istituto Italiano di Tecn...
Cognitive Agents with Commonsense - Invited Talk at Istituto Italiano di Tecn...Cognitive Agents with Commonsense - Invited Talk at Istituto Italiano di Tecn...
Cognitive Agents with Commonsense - Invited Talk at Istituto Italiano di Tecn...
 
IRJET- Facial Emotion Detection using Convolutional Neural Network
IRJET- Facial Emotion Detection using Convolutional Neural NetworkIRJET- Facial Emotion Detection using Convolutional Neural Network
IRJET- Facial Emotion Detection using Convolutional Neural Network
 
UTS workshop talk
UTS workshop talkUTS workshop talk
UTS workshop talk
 
Study on Different Human Emotions Using Back Propagation Method
Study on Different Human Emotions Using Back Propagation MethodStudy on Different Human Emotions Using Back Propagation Method
Study on Different Human Emotions Using Back Propagation Method
 
Chapter3
Chapter3Chapter3
Chapter3
 
Seminar CCC
Seminar CCCSeminar CCC
Seminar CCC
 
Goutham2
Goutham2Goutham2
Goutham2
 
280 284
280 284280 284
280 284
 
Functional and Structural Models of Commonsense Reasoning in Cognitive Archit...
Functional and Structural Models of Commonsense Reasoning in Cognitive Archit...Functional and Structural Models of Commonsense Reasoning in Cognitive Archit...
Functional and Structural Models of Commonsense Reasoning in Cognitive Archit...
 
A Model of Learning Objectives
A Model of Learning ObjectivesA Model of Learning Objectives
A Model of Learning Objectives
 
Revised bloomshandout
Revised bloomshandoutRevised bloomshandout
Revised bloomshandout
 
Arai thesis
Arai thesisArai thesis
Arai thesis
 
A Survey of Image Segmentation based on Artificial Intelligence and Evolution...
A Survey of Image Segmentation based on Artificial Intelligence and Evolution...A Survey of Image Segmentation based on Artificial Intelligence and Evolution...
A Survey of Image Segmentation based on Artificial Intelligence and Evolution...
 
Object recognition with cortex like mechanisms pami-07
Object recognition with cortex like mechanisms pami-07Object recognition with cortex like mechanisms pami-07
Object recognition with cortex like mechanisms pami-07
 
A myth or a vision for interoperability: can systems communicate like humans do?
A myth or a vision for interoperability: can systems communicate like humans do?A myth or a vision for interoperability: can systems communicate like humans do?
A myth or a vision for interoperability: can systems communicate like humans do?
 
Snips and snails and puppy dog tails: the need to preserve complexity in math...
Snips and snails and puppy dog tails: the need to preserve complexity in math...Snips and snails and puppy dog tails: the need to preserve complexity in math...
Snips and snails and puppy dog tails: the need to preserve complexity in math...
 
Cognitive Architectures - Amr Kamel - 2015
Cognitive Architectures - Amr Kamel - 2015Cognitive Architectures - Amr Kamel - 2015
Cognitive Architectures - Amr Kamel - 2015
 
Where is my mind?
Where is my mind?Where is my mind?
Where is my mind?
 

Ähnlich wie Robert Gordon talk, 21 March 2018

ChemnitzDec2014.key.compressed
ChemnitzDec2014.key.compressedChemnitzDec2014.key.compressed
ChemnitzDec2014.key.compressedBrian Fisher
 
Experimental categorization and deep visualization
 Experimental categorization and deep visualization Experimental categorization and deep visualization
Experimental categorization and deep visualizationEverardo Reyes-García
 
Vertical integration of computational architectures - the mediator problem
Vertical integration of computational architectures - the mediator problemVertical integration of computational architectures - the mediator problem
Vertical integration of computational architectures - the mediator problemYehor Churilov
 
Cognitive Paradigm in AI - Invited Lecture - Kyiv/Kyev - Lieto
Cognitive Paradigm in AI - Invited Lecture - Kyiv/Kyev - LietoCognitive Paradigm in AI - Invited Lecture - Kyiv/Kyev - Lieto
Cognitive Paradigm in AI - Invited Lecture - Kyiv/Kyev - LietoAntonio Lieto
 
Computational Explanation in Biologically Inspired Cognitive Architectures/Sy...
Computational Explanation in Biologically Inspired Cognitive Architectures/Sy...Computational Explanation in Biologically Inspired Cognitive Architectures/Sy...
Computational Explanation in Biologically Inspired Cognitive Architectures/Sy...Antonio Lieto
 
KMD 1001 Design Brief and Ontology Task
KMD 1001 Design Brief and Ontology TaskKMD 1001 Design Brief and Ontology Task
KMD 1001 Design Brief and Ontology TaskStian Håklev
 
Bioinspired Character Animations: A Mechanistic and Cognitive View
Bioinspired Character Animations: A Mechanistic and Cognitive ViewBioinspired Character Animations: A Mechanistic and Cognitive View
Bioinspired Character Animations: A Mechanistic and Cognitive ViewSimpson Count
 
Year 1 of research - presentation
Year 1 of research - presentationYear 1 of research - presentation
Year 1 of research - presentationserena pollastri
 
An ontology for semantic modelling of virtual world
An ontology for semantic modelling of virtual worldAn ontology for semantic modelling of virtual world
An ontology for semantic modelling of virtual worldijaia
 
Visualization Methods Overview Presentation Cambridge University Eppler Septe...
Visualization Methods Overview Presentation Cambridge University Eppler Septe...Visualization Methods Overview Presentation Cambridge University Eppler Septe...
Visualization Methods Overview Presentation Cambridge University Eppler Septe...epplerm
 
Invited Tutorial - Cognitive Design for Artificial Minds AI*IA 2022
Invited Tutorial - Cognitive Design for Artificial Minds AI*IA 2022Invited Tutorial - Cognitive Design for Artificial Minds AI*IA 2022
Invited Tutorial - Cognitive Design for Artificial Minds AI*IA 2022Antonio Lieto
 
Bio-Inspired Animated Characters A Mechanistic & Cognitive View
Bio-Inspired Animated Characters A Mechanistic & Cognitive ViewBio-Inspired Animated Characters A Mechanistic & Cognitive View
Bio-Inspired Animated Characters A Mechanistic & Cognitive ViewSimpson Count
 
Face Emotion Analysis Using Gabor Features In Image Database for Crime Invest...
Face Emotion Analysis Using Gabor Features In Image Database for Crime Invest...Face Emotion Analysis Using Gabor Features In Image Database for Crime Invest...
Face Emotion Analysis Using Gabor Features In Image Database for Crime Invest...Waqas Tariq
 
Bridging the gap between AI and UI - DSI Vienna - full version
Bridging the gap between AI and UI - DSI Vienna - full versionBridging the gap between AI and UI - DSI Vienna - full version
Bridging the gap between AI and UI - DSI Vienna - full versionLiad Magen
 
Cognitive Architectures Comparision based on perceptual processing
Cognitive Architectures Comparision based on perceptual processingCognitive Architectures Comparision based on perceptual processing
Cognitive Architectures Comparision based on perceptual processingSumitava Mukherjee
 
Grounded Neuroaesthetics. Point and line to cognition
Grounded Neuroaesthetics. Point and line to cognitionGrounded Neuroaesthetics. Point and line to cognition
Grounded Neuroaesthetics. Point and line to cognitionJeanna Leaves
 
Artificial Cognition for Human-robot Interaction
Artificial Cognition for Human-robot InteractionArtificial Cognition for Human-robot Interaction
Artificial Cognition for Human-robot InteractionSubmissionResearchpa
 

Ähnlich wie Robert Gordon talk, 21 March 2018 (20)

Cognitive modeling
Cognitive modelingCognitive modeling
Cognitive modeling
 
ChemnitzDec2014.key.compressed
ChemnitzDec2014.key.compressedChemnitzDec2014.key.compressed
ChemnitzDec2014.key.compressed
 
Chemnitz dec2014
Chemnitz dec2014Chemnitz dec2014
Chemnitz dec2014
 
Experimental categorization and deep visualization
 Experimental categorization and deep visualization Experimental categorization and deep visualization
Experimental categorization and deep visualization
 
Vertical integration of computational architectures - the mediator problem
Vertical integration of computational architectures - the mediator problemVertical integration of computational architectures - the mediator problem
Vertical integration of computational architectures - the mediator problem
 
Cognitive Paradigm in AI - Invited Lecture - Kyiv/Kyev - Lieto
Cognitive Paradigm in AI - Invited Lecture - Kyiv/Kyev - LietoCognitive Paradigm in AI - Invited Lecture - Kyiv/Kyev - Lieto
Cognitive Paradigm in AI - Invited Lecture - Kyiv/Kyev - Lieto
 
Computational Explanation in Biologically Inspired Cognitive Architectures/Sy...
Computational Explanation in Biologically Inspired Cognitive Architectures/Sy...Computational Explanation in Biologically Inspired Cognitive Architectures/Sy...
Computational Explanation in Biologically Inspired Cognitive Architectures/Sy...
 
KMD 1001 Design Brief and Ontology Task
KMD 1001 Design Brief and Ontology TaskKMD 1001 Design Brief and Ontology Task
KMD 1001 Design Brief and Ontology Task
 
Bioinspired Character Animations: A Mechanistic and Cognitive View
Bioinspired Character Animations: A Mechanistic and Cognitive ViewBioinspired Character Animations: A Mechanistic and Cognitive View
Bioinspired Character Animations: A Mechanistic and Cognitive View
 
Diagrams Preso
Diagrams PresoDiagrams Preso
Diagrams Preso
 
Year 1 of research - presentation
Year 1 of research - presentationYear 1 of research - presentation
Year 1 of research - presentation
 
An ontology for semantic modelling of virtual world
An ontology for semantic modelling of virtual worldAn ontology for semantic modelling of virtual world
An ontology for semantic modelling of virtual world
 
Visualization Methods Overview Presentation Cambridge University Eppler Septe...
Visualization Methods Overview Presentation Cambridge University Eppler Septe...Visualization Methods Overview Presentation Cambridge University Eppler Septe...
Visualization Methods Overview Presentation Cambridge University Eppler Septe...
 
Invited Tutorial - Cognitive Design for Artificial Minds AI*IA 2022
Invited Tutorial - Cognitive Design for Artificial Minds AI*IA 2022Invited Tutorial - Cognitive Design for Artificial Minds AI*IA 2022
Invited Tutorial - Cognitive Design for Artificial Minds AI*IA 2022
 
Bio-Inspired Animated Characters A Mechanistic & Cognitive View
Bio-Inspired Animated Characters A Mechanistic & Cognitive ViewBio-Inspired Animated Characters A Mechanistic & Cognitive View
Bio-Inspired Animated Characters A Mechanistic & Cognitive View
 
Face Emotion Analysis Using Gabor Features In Image Database for Crime Invest...
Face Emotion Analysis Using Gabor Features In Image Database for Crime Invest...Face Emotion Analysis Using Gabor Features In Image Database for Crime Invest...
Face Emotion Analysis Using Gabor Features In Image Database for Crime Invest...
 
Bridging the gap between AI and UI - DSI Vienna - full version
Bridging the gap between AI and UI - DSI Vienna - full versionBridging the gap between AI and UI - DSI Vienna - full version
Bridging the gap between AI and UI - DSI Vienna - full version
 
Cognitive Architectures Comparision based on perceptual processing
Cognitive Architectures Comparision based on perceptual processingCognitive Architectures Comparision based on perceptual processing
Cognitive Architectures Comparision based on perceptual processing
 
Grounded Neuroaesthetics. Point and line to cognition
Grounded Neuroaesthetics. Point and line to cognitionGrounded Neuroaesthetics. Point and line to cognition
Grounded Neuroaesthetics. Point and line to cognition
 
Artificial Cognition for Human-robot Interaction
Artificial Cognition for Human-robot InteractionArtificial Cognition for Human-robot Interaction
Artificial Cognition for Human-robot Interaction
 

Mehr von University of Huddersfield

Modelling alternative strategies for mental rotation
Modelling alternative strategies for mental rotationModelling alternative strategies for mental rotation
Modelling alternative strategies for mental rotationUniversity of Huddersfield
 
Multiple representations and visual mental imagery in artificial cognitive sy...
Multiple representations and visual mental imagery in artificial cognitive sy...Multiple representations and visual mental imagery in artificial cognitive sy...
Multiple representations and visual mental imagery in artificial cognitive sy...University of Huddersfield
 
Two methods for optimising cognitive model parameters
Two methods for optimising cognitive model parametersTwo methods for optimising cognitive model parameters
Two methods for optimising cognitive model parametersUniversity of Huddersfield
 
Machine Learning, Artificial General Intelligence, and Robots with Human Minds
Machine Learning, Artificial General Intelligence, and Robots with Human MindsMachine Learning, Artificial General Intelligence, and Robots with Human Minds
Machine Learning, Artificial General Intelligence, and Robots with Human MindsUniversity of Huddersfield
 
Graph comprehension model talk, Birkbeck and Toulouse Le Mirail, February 2012
Graph comprehension model talk, Birkbeck and Toulouse Le Mirail, February 2012Graph comprehension model talk, Birkbeck and Toulouse Le Mirail, February 2012
Graph comprehension model talk, Birkbeck and Toulouse Le Mirail, February 2012University of Huddersfield
 
Diagrammatic Cognition: Discovery and Design workshop, Humboldt University, B...
Diagrammatic Cognition: Discovery and Design workshop, Humboldt University, B...Diagrammatic Cognition: Discovery and Design workshop, Humboldt University, B...
Diagrammatic Cognition: Discovery and Design workshop, Humboldt University, B...University of Huddersfield
 
A cognitive architecture-based modelling approach to understanding biases in ...
A cognitive architecture-based modelling approach to understanding biases in ...A cognitive architecture-based modelling approach to understanding biases in ...
A cognitive architecture-based modelling approach to understanding biases in ...University of Huddersfield
 

Mehr von University of Huddersfield (10)

Multiple processes in graph-based reasoning
Multiple processes in graph-based reasoningMultiple processes in graph-based reasoning
Multiple processes in graph-based reasoning
 
Modelling alternative strategies for mental rotation
Modelling alternative strategies for mental rotationModelling alternative strategies for mental rotation
Modelling alternative strategies for mental rotation
 
Multiple representations and visual mental imagery in artificial cognitive sy...
Multiple representations and visual mental imagery in artificial cognitive sy...Multiple representations and visual mental imagery in artificial cognitive sy...
Multiple representations and visual mental imagery in artificial cognitive sy...
 
Two methods for optimising cognitive model parameters
Two methods for optimising cognitive model parametersTwo methods for optimising cognitive model parameters
Two methods for optimising cognitive model parameters
 
Machine Learning, Artificial General Intelligence, and Robots with Human Minds
Machine Learning, Artificial General Intelligence, and Robots with Human MindsMachine Learning, Artificial General Intelligence, and Robots with Human Minds
Machine Learning, Artificial General Intelligence, and Robots with Human Minds
 
Cardiff map-based orientation talk
Cardiff map-based orientation talkCardiff map-based orientation talk
Cardiff map-based orientation talk
 
Graph comprehension model talk, Birkbeck and Toulouse Le Mirail, February 2012
Graph comprehension model talk, Birkbeck and Toulouse Le Mirail, February 2012Graph comprehension model talk, Birkbeck and Toulouse Le Mirail, February 2012
Graph comprehension model talk, Birkbeck and Toulouse Le Mirail, February 2012
 
Diagrammatic Cognition: Discovery and Design workshop, Humboldt University, B...
Diagrammatic Cognition: Discovery and Design workshop, Humboldt University, B...Diagrammatic Cognition: Discovery and Design workshop, Humboldt University, B...
Diagrammatic Cognition: Discovery and Design workshop, Humboldt University, B...
 
A cognitive architecture-based modelling approach to understanding biases in ...
A cognitive architecture-based modelling approach to understanding biases in ...A cognitive architecture-based modelling approach to understanding biases in ...
A cognitive architecture-based modelling approach to understanding biases in ...
 
DECISIVe workshop introduction
DECISIVe workshop introductionDECISIVe workshop introduction
DECISIVe workshop introduction
 

Kürzlich hochgeladen

Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxpradhanghanshyam7136
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfSwapnil Therkar
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxAArockiyaNisha
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptMAESTRELLAMesa2
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
Caco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorptionCaco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorptionPriyansha Singh
 

Kürzlich hochgeladen (20)

Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptx
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.ppt
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
Caco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorptionCaco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorption
 

Robert Gordon talk, 21 March 2018

  • 1. Multiple representations and visual mental imagery in artificial cognitive systems David Peebles Reader in Cognitive Science Department of Psychology March 21, 2018
  • 2. Outline of the talk Part 1 Multi-representation cognition Visual mental imagery Part 2 Cognitive architectures & the Common Model of Cognition Multiple representations in cognitive architectures
  • 3. A bit of context and a caveat. . . PhD, Uni. Birmingham Experimental psychology, connectionist modelling Postdoc, Uni. Nottingham Diagrammatic Reasoning (Peter Cheng & Nigel Shadbolt), ACT-R University of Huddersfield Cognitive modelling ACT-R cognitive architecture Reasoning with external representations This talk relates to ongoing ‘multi-representation cognition’ project with Peter Cheng (Sussex) Paper at recent AAAI workshop ‘A Standard Model of the Mind’ (Peebles & Cheng, 2017) Still a work in progress and my thinking is not fully developed
  • 4. Multi-representation cognition Modern human cognition is multi-representational External (task environment) representations: Languages (natural and formal) Diagrams Maps Tables Menus and tool bars in computer applications Control panels Specialised abstract notation systems in academic and technical domains
  • 5. Internal mental representations Abstract, ‘amodal’, descriptive propositional representations Depictive representations grounded in perception Preserve explicitly information about topological and geometric relations among problem components. Information format, operators, information indexing methods, heuristics and goal structures can differ considerably with alternative representations (Larkin & Simon, 1987). An example Imagine a square with sides of one unit. At opposite corners of the square add circles with radii 2 3 of a unit centred on the corners. Do the two circles: 1. overlap? 2. just touch? 3. not touch?
  • 6. Mathematics-based solution 1. “According to Pythagoras’ theorem, the length of the diagonal between the two opposite corners is the square root of 2”. 2. “That’s about 1.4 units so if we divide that by 2, the centre of the square is about 0.7 units from each corner”. 3. “The radius of each circle is about 0.66 units, so neither circle’s perimeter will reach the centre of the square”. 4. “Therefore the circles do not touch”.
  • 7. Imagery-based solution 1. “I’m imagining a square and I can see that circles with unit radius will definitely overlap; in fact they intersect each other at the other corners of the square”. 2. “Now I’m imagining circles of 1 2 unit and I can see that they clearly don’t meet. In fact the circles cross the mid-point of each side of the square and curve away from the centre”. 3. “Now I’m thinking of circles with radii of 2 3 . It’s hard to be certain how big they should be, but they seem to just touch each other”.
  • 8. Visual mental imagery and visual working memory Two solutions rely upon different mental representations Declarative and mathematical Visuo-spatial and exploiting imagery in the mind’s eye. Visual Mental Imagery (VMI). “Representations that produce the experience of seeing in the absence of visual input” “Imagery debate” Pylyshyn All thoughts, including VMI, are propositional. Kosslyn VMI is an internal, non-perceptual visual experience caused either by recollecting or conceptualising something. VMI are structurally analogous to visual representations, and are caused, at least in part, by psychological processes shared with the visual system. VMI has a functional role in planning, (e.g., simulating actions, particularly when potential costs of error are high).
  • 9. Processes involved in using visual mental imagery Generation (from knowledge in LTM) Maintenance (attention) Inspection, scanning (attention) Transformation and manipulation Translation Rotation Scaling, zooming Restructuring and reinterpretation Synthesis Composition (e.g., intersection, union, subtraction) Key question What form of internal representation allows these computational processes to be carried out efficiently? Symbolic/numerical or array-based?
  • 10. More general questions How can information from different senses, at different levels of abstraction, be fluidly used in decision making? What functional role does specialised spatial and visual processing play in cognition? How are spatial, visual and abstract symbolic representations and processes integrated? What forms of representation are required (necessary and sufficient) to support human-level capabilities and performance? Do visual and spatial cognition (and visual imagery) demand non-symbolic, depictive representational formats and operators?
  • 11. Cognitive architectures Originated in 1950s but active research programme in 1980s. Cognitive science – differs from mainstream “narrow” AI and traditional “divide and conquer” approach of experimental cognitive psychology Theories of the core, immutable structures and processes of the human cognitive system. Aim: general, human level intelligence modelling human cognition and performance – broad applicability to wide range of tasks. Addresses fundamental question of how cognitive, perceptual, and motor processes interact and integrate to produce complex, real-world behaviour. Not simply theoretical constructs but actual running software systems, often with vision and motor control.
  • 12. An emerging standard model Several cognitive architectures in existence (20–30) Two dominant: ACT-R and Soar (both approx. 30 years old). Much consolidation and convergence over last decade. ‘Common Model of Cognition’ (Laird, Lebiere & Rosenbloom, 2017) Perception Action Task Environment Learning Procedural Perceptual Learning Learning Declarative Selection Action Short−term memory Long−term memory Procedural Long−term memory Declarative
  • 13. Symbolic approaches to spatial reasoning Architectures come from traditional symbolic AI tradition Often ad hoc mechanisms not intrinsic to the architecture Most use only descriptive representations CogSketch (Forbus, Usher, Lovett, Lockwood & Wetzel, 2011) Diagram Representation System (DRS) (Chandrasekaran, Kurup, Banerjee, Josephson & Winkler, 2004) ACT-R (Peebles, 2013; Peebles & Cheng, 2003) Quebec Mississippi 0 10 20 30 40 50 60 70 80 90 100 q q q q Plant CO2 Uptake as a function of Plant Type and Treatment PlantCO2Uptake Plant Type Treatment Chilled Non−chilled
  • 14. Attempts at array-based representations Some architectures have explored non-symbolic, array-based representations. Computation with Multiple Representations (CaMeRa) model (Tabachneck-Schijf, Leonardo & Simon, 1997)
  • 15. Retinotopic Reasoning (R2) architecture Aims to model the computational properties of mental imagery (Kunda, McGreggor & Goel, 2013). Based, in large part, on array based (non-symbolic) representations and operators. Successfully applied to: (a) Raven’s Progressive Matrices test, (b) Embedded Figures test, (c) Block Design test, and (d) Paper Folding test.
  • 16. Retinotopic Reasoning (R2) architecture Similar to CaMeRa (Tabachneck-Schijf et al., 1997)
  • 17. Soar/SVS Soar/SVS (Spatial Visual System) (Lathrop, Wintermute & Laird, 2011; Wintermute, 2012)
  • 18. Soar/SVS Soar/SVS (Spatial Visual System) (Lathrop et al., 2011; Wintermute, 2012)
  • 19. Similarities in these non-symbolic approaches Employ representations consisting of two-dimensional arrays of pixels. Operators to manipulate array objects. Forward and backward connections to higher-level (numerical, symbolic) representations (CaMeRa, Soar/SVS) Important in that they allow cognitive modelling of processes akin to those used in visual mental imagery. None explicitly address the issue of multiple representation cognition
  • 20. Processes involved in using multiple representations Initial selection of representations Coordination of simultaneous representations Switching asynchronously between representations Distribution of task information between representations, across task sub-goals and time Understanding computational costs of each representation Potential for cognitive off-loading User’s familiarity with each representation Compatibility of different representations
  • 21. Metacognitive knowledge and processes Monitoring and control processes to handle the selection and monitoring of, transitions between, and integration of different representations. Meta-level information about the characteristics of different representational formats (e.g., level of precision afforded, ease of computation, suitability for a given problem etc.). Use–and be able to choose between–alternative representations within the same modality (e.g., different types of diagram).
  • 22. ACT-R ACT-R (Anderson, 2007) purely symbolic Visual/Spatial information represented as numbers and symbols. Insufficent to model visual mental imagery Array module currently under development Visual Module ACT−R Buffers Environment Pattern Matching Execution Production Module Motor Problem State Declarative Memory Procedural Memory Control State
  • 23. Implications for cognitive models and artificial human-like agents 1. Models must incorporate alternative problem representations. 2. Must incorporate some form of meta-cognitive monitoring and control processes to handle the selection and monitoring of, transitions between, and integration of different representations. 3. Must be able to incorporate meta-level information about the characteristics of different representational formats (e.g., level of precision afforded, ease of computation, suitability for a given problem etc.). 4. Must also be able to incorporate–and be able to choose betweenalternative representations within the same modality.
  • 24. References I Anderson, J. R. (2007). How can the human mind occur in the physical universe? New York, NY: Oxford University Press. Chandrasekaran, B., Kurup, U., Banerjee, B., Josephson, J. R. & Winkler, R. (2004). An architecture for problem solving with diagrams [Lecture notes in artificial intelligence 2980]. In A. Blackwell, K. Marriott & A. Shimojima (Eds.), Diagrammatic representation and inference (pp. 235–256). Berlin: Springer-Verlag. Forbus, K., Usher, J., Lovett, A., Lockwood, K. & Wetzel, J. (2011). CogSketch: Sketch understanding for cognitive science research and for education. Topics in Cognitive Science, 3(4), 648–666. Kunda, M., McGreggor, K. & Goel, A. K. (2013). A computational model for solving problems from the Raven’s Progressive Matrices intelligence test using iconic visual representations. Cognitive Systems Research, 22, 47–66.
  • 25. References II Laird, J. E., Lebiere, C. & Rosenbloom, P. S. (2017). A standard model of the mind: Toward a common computational framework across artificial intelligence, cognitive science, neuroscience, and robotics. AI Magazine. 38(4). Larkin, J. H. & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11, 65–100. Lathrop, S. D., Wintermute, S. & Laird, J. E. (2011). Exploring the functional advantages of spatial and visual cognition from an architectural perspective. Topics in Cognitive Science, 3(4), 796–818. Peebles, D. (2013). Strategy and pattern recognition in expert comprehension of 2×2 interaction graphs. Cognitive Systems Research, 24, 43–51. Peebles, D. & Cheng, P. C.-H. (2003). Modeling the effect of task and graphical representation on response latency in a graph reading task. Human Factors, 45, 28–45.
  • 26. References III Peebles, D. & Cheng, P. C.-H. (2017, September 11). Multiple representations in cognitive architectures. In AAAI Fall Symposium 2017: ‘‘A Standard Model of the Mind”. FS-17-01–FS-17-05. American Association for the Advancement of Artificial Intelligence. Washington, VA. Tabachneck-Schijf, H. J. M., Leonardo, A. M. & Simon, H. A. (1997). CaMeRa: A computational model of multiple representations. Cognitive Science, 21, 305–350. Wintermute, S. (2012). Imagery in cognitive architecture: Representation and control at multiple levels of abstraction. Cognitive Systems Research, 19, 1–29.