Wir haben unsere Datenschutzbestimmungen aktualisiert. Klicke hier, um dir die _Einzelheiten anzusehen. Tippe hier, um dir die Einzelheiten anzusehen.
Aktiviere deine kostenlose 30-tägige Testversion, um unbegrenzt zu lesen.
Erstelle deine kostenlose 30-tägige Testversion, um weiterzulesen.
Herunterladen, um offline zu lesen
Running SELECT COUNT(DISTINCT) on your database is all too common. In applications, it’s typical to have some analytics dashboard highlighting the number of unique items such as unique users or unique visits. While traditional SELECT COUNT(DISTINCT) queries works well in single machine setups, it is a difficult problem to solve in distributed systems. When you have this type of query, you cannot just push query to the workers and add up results, because most likely there will be overlapping records in different workers.
In this talk, we will focus on HyperLogLog(HLL) algorithm and its PostgreSQL extension postgresql-hll. HLL can provide approximate answers to COUNT(DISTINCT) queries in mathematically provable error bounds. It is not only fast and memory-efficient but also has very interesting properties which especially shine in distributed environment. During the talk, first, we’ll look at the internals of the HLL to understand why HLL algorithm is useful to solve distinct count problem in scalable way, then how it can be applied in a distributed fashion. Finally we will see some examples of HLL usage.
Running SELECT COUNT(DISTINCT) on your database is all too common. In applications, it’s typical to have some analytics dashboard highlighting the number of unique items such as unique users or unique visits. While traditional SELECT COUNT(DISTINCT) queries works well in single machine setups, it is a difficult problem to solve in distributed systems. When you have this type of query, you cannot just push query to the workers and add up results, because most likely there will be overlapping records in different workers.
In this talk, we will focus on HyperLogLog(HLL) algorithm and its PostgreSQL extension postgresql-hll. HLL can provide approximate answers to COUNT(DISTINCT) queries in mathematically provable error bounds. It is not only fast and memory-efficient but also has very interesting properties which especially shine in distributed environment. During the talk, first, we’ll look at the internals of the HLL to understand why HLL algorithm is useful to solve distinct count problem in scalable way, then how it can be applied in a distributed fashion. Finally we will see some examples of HLL usage.
Sie haben diese Folie bereits ins Clipboard „“ geclippt.
Sie haben Ihre erste Folie geclippt!
Durch Clippen können Sie wichtige Folien sammeln, die Sie später noch einmal ansehen möchten. Passen Sie den Namen des Clipboards an, um Ihre Clips zu speichern.Die SlideShare-Familie hat sich gerade vergrößert. Genießen Sie nun Zugriff auf Millionen eBooks, Bücher, Hörbücher, Zeitschriften und mehr von Scribd.
Jederzeit kündbar.Unbegrenztes Lesevergnügen
Lerne schneller und intelligenter von Spitzenfachleuten
Unbegrenzte Downloads
Lade es dir zum Lernen offline und unterwegs herunter
Außerdem erhältst du auch kostenlosen Zugang zu Scribd!
Sofortiger Zugriff auf Millionen von E-Books, Hörbüchern, Zeitschriften, Podcasts und mehr.
Lese und höre offline mit jedem Gerät.
Kostenloser Zugang zu Premium-Diensten wie TuneIn, Mubi und mehr.
Wir haben unsere Datenschutzbestimmungen aktualisiert, um den neuen globalen Regeln zum Thema Datenschutzbestimmungen gerecht zu werden und dir einen Einblick in die begrenzten Möglichkeiten zu geben, wie wir deine Daten nutzen.
Die Einzelheiten findest du unten. Indem du sie akzeptierst, erklärst du dich mit den aktualisierten Datenschutzbestimmungen einverstanden.
Vielen Dank!