SlideShare ist ein Scribd-Unternehmen logo
1 von 28
Downloaden Sie, um offline zu lesen
Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios
Quantile estimation
and optimal portfolios
Arthur Charpentier & Abder Oulidi
ENSAI-ENSAE-CREST & IMA Angers
JournƩe SFdS, Mai 2007
1
Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios
Portfolio management and optimal allocations
Idea: allocating capital among a set of assets to maximize return and minimize
risk.
If diversiļ¬cation eļ¬€ects were intuited early, and Markowitz (1952) proposed a
mathematical model.
ā€¢ return is measured by the expected value of the portfolio return,
ā€¢ risk is quantiļ¬ed by the variance of this return.
Agenda
1. statistical issue in the mean-variance framework
2. portfolio optimization with general risk measures
2
Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios
Portfolio optimization (parametric framework)
Consider a risk measure R (variance or Value-at-Risk). Solve
Ļ‰āˆ—
=
ļ£±
ļ£²
ļ£³
argmin{R(Ļ‰t
X)},
u.c. Ļ‰t
1 = 1 and E(Ļ‰t
X) ā‰„ Ī·,
where X āˆ¼ L(Īø), Īø unknown.
Īø is unknown but can be estimated using a sample {X1, . . . , Xn}.
ā€œThe parameters governing the central tendency and dispersion of returns are
usually not known, however; and are often estimated or guessed at using
observed returns and other available data. In empirical applications, the
estimated parameters are used as if they were the true valueā€ (Coles
& Loewenstein (1988)).
If Ļ‰āˆ—
= Ļˆ(Īø) (e.g. mean-variance)
Ļ‰āˆ—
= Ļˆ(Īø).
3
Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios
Optimization of standard deviation (or variance)
Allocation
in
the
first asset
Allocation in the second asset
Standard deviation of the portfolio
āˆ’200 āˆ’100 0 100 200
āˆ’200āˆ’1000100200 Allocation in the first asset
Allocationinthesecondasset
Figure 1: Portfolio variance optimization problem.
4
Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios
Portfolio optimization (parametric framework)
In the case of no explicit expression of the optimum, solve (numerically)
Ļ‰āˆ—
=
ļ£±
ļ£²
ļ£³
argminR(Ļ‰t
X),
u.c.Ļ‰ āˆˆ {(Ļ‰k)kāˆˆ{1,...,m}}
where X āˆ¼ L(Īø).
The idea is to generate samples Xiā€™s,
ā€¢ either from a parametric distribution L(Īø),
ā€¢ or from a nonparametric distribution (bootstrap approach).
5
Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios
Optimization of Value-at-Risk
VaR of the portfolio
āˆ’4 āˆ’2 0 2 4 6
āˆ’2āˆ’1012345
āˆ’4
āˆ’2
0
2
4
6
VaR of the portfolio
āˆ’4 āˆ’2 0 2 4 6
012345
āˆ’4
āˆ’2
0
2
4
6
Figure 2: Optimization in the mean-VaR framework.
6
Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios
Classical mean-variance allocation problem
Consider d risky assets, with weekly returns X = (X1, . . . , Xd). Denote
Āµ = E(X) and Ī£ = var(X).
Let Ļ‰ = (Ļ‰1, . . . , Ļ‰d) āˆˆ Rd
denote the weights in all risky assets.
ā€¢ the expected return of the portfolio is E(Ļ‰t
X) = Ļ‰t
Āµ,
ā€¢ the variance of the portfolio is var(Ļ‰t
X) = Ļ‰t
Ī£Ļ‰.
ļ£±
ļ£²
ļ£³
Ļ‰āˆ—
āˆˆ argmin{Ļ‰t
Ī£Ļ‰}
u.c. Ļ‰t
Āµ ā‰„ Ī· and Ļ‰t
1 = 1
convex
ā‡ā‡’
ļ£±
ļ£²
ļ£³
Ļ‰āˆ—
āˆˆ argmax{Ļ‰t
Āµ}
u.c. Ļ‰t
Ī£Ļ‰ ā‰¤ Ī· and Ļ‰t
1 = 1
7
Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios
Classical mean-variance allocation problem
The solution can be given explicitly (see Markowitz (1952)) as
Ļ‰āˆ—
= Ļˆ(Āµ, Ī£) = p + Ī·q
where Āµ = E(X), Ī£ = var(X),
p =
1
d
bĪ£āˆ’1
1 āˆ’ aĪ£āˆ’1
Āµ and q =
1
d
cĪ£āˆ’1
Āµ āˆ’ aĪ£āˆ’1
1 ,
and a = 1t
Ī£āˆ’1
Āµ, b = Āµt
Ī£āˆ’1
Āµ, c = 1t
Ī£āˆ’1
1, d = bc āˆ’ a2
.
Note that p is an allocation, and q indicates how the original portfolio should
be modiļ¬ed.
8
Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios
Eļ¬ƒcient frontier
first asset
āˆ’0.2 0.0 0.2 0.4 āˆ’0.4 0.0 0.4
āˆ’0.20.00.2
āˆ’0.20.00.20.4
second asset
third asset
āˆ’0.20.20.6
āˆ’0.2 0.0 0.2
āˆ’0.40.00.4
āˆ’0.2 0.2 0.6
fourth asset
Portfolio with 4assets
0.010 0.015 0.020 0.025 0.030
0.0000.0010.0020.0030.0040.0050.006
Efficient Frontier
Standard deviation
Expectedvalue
Figure 3: Solving a variance optimization problem.
9
Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios
Inference issues
In practice, Āµ = [Āµi] and Ī£ = [Ī£i,j] are unknown, and should be estimated.
A natural idea is to deļ¬ne
Āµi =
1
n
n
t=1
Xi,t et Ī£i,j =
1
n āˆ’ 1
n
t=1
(Xi,t āˆ’ Āµi)(Xj,t āˆ’ Āµj).
Given n observed observed returns,
Āµ|Ī£ āˆ¼ N Āµ,
Ī£
n
and nĪ£|Ī£ āˆ¼ W (n āˆ’ 1, Ī£) .
where the two random variables Āµ and Ī£ are independent, given Ī£.
10
Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios
0.05 0.10 0.15 0.20 0.25
0.000.050.100.150.200.25
Efficient Frontier, with 250 past observations
Standard deviation
Expectedvalue
0.05 0.10 0.15 0.20 0.25
0.000.050.100.150.200.25
Efficient Frontier, with 1000 past observations
Standard deviation
Expectedvalue
Figure 4: Eļ¬ƒcient frontiers and estimation.
11
Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios
Parametric bootstrap
Assume that X āˆ¼ L(Īø). estimate Īø by Īøn. The procedure is the following
1. generate n returns X1, . . . , Xn from L(Īøn);
2. estimate Āµ and Ī£, i.e. Āµn and Ī£n,
3. solve the minimization problem, i.e.
Ļ‰āˆ—
=
1
d
bĪ£
āˆ’1
1 āˆ’ aĪ£
āˆ’1
Āµ + Ī·
1
d
cĪ£
āˆ’1
Āµ āˆ’ aĪ£
āˆ’1
1 ,
Using several simulations, the distribution of the Ļ‰āˆ—
k and vark(Ļ‰āˆ—
k
t
X) can be
obtained.
12
Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios
Nonparametric bootstrap
A nonparametric procedure can also be considered. Consider a n sample
{X1, . . . , Xn}
1. generate a bootstrap sample from {X1, . . . , Xn}
2. estimate Āµ and Ī£, i.e. Āµn and Ī£n,
3. solve the minimization problem, i.e.
Ļ‰āˆ—
=
1
d
bĪ£
āˆ’1
1 āˆ’ aĪ£
āˆ’1
Āµ + Ī·
1
d
cĪ£
āˆ’1
Āµ āˆ’ aĪ£
āˆ’1
1 ,
Using several simulations, the distribution of the Ļ‰āˆ—
k and vark(Ļ‰āˆ—
k
t
X) can be
obtained.
13
Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios
0.4 0.6 0.8 1.0
012345
Allocation in the first asset
Allocation weight
Density
0.0 0.2 0.4
012345
Allocation in the second asset
Allocation weight
Density
āˆ’0.3 āˆ’0.1 0.0 0.1
02468
Allocation in the third asset
Allocation weight
Density
0.05 0.15 0.25
0246810
Allocation in the fourth asset
Allocation weightDensity
Figure 5: Distributions of optimal allocations Ļ‰āˆ—
kā€™s.
14
Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios
āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0
āˆ’0.20.00.20.40.60.81.0
Allocation in the first asset
Allocationinsecondasset
Joint distribution of optimal allocations (1āˆ’2)
āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0
āˆ’0.20.00.20.40.60.81.0
Allocation in the first asset
Allocationinthirdasset
Joint distribution of optimal allocations (1āˆ’3)
āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0
āˆ’0.20.00.20.40.60.81.0
Allocation in the first asset
Allocationinfourthasset
Joint distribution of optimal allocations (1āˆ’4)
āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0
āˆ’0.20.00.20.40.60.81.0
Allocation in the second asset
Allocationinfourthasset
Joint distribution of optimal allocations (2āˆ’4)
āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0
āˆ’0.20.00.20.40.60.81.0
Allocation in the second asset
Allocationinthirdasset
Joint distribution of optimal allocations (2āˆ’3)
āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0
āˆ’0.20.00.20.40.60.81.0
Allocation in the third asset
Allocationinfourthasset
Joint distribution of optimal allocations (3āˆ’4)
Figure 6: Joint distributions of optimal allocations Ļ‰āˆ—
kā€™s.
15
Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios
0.05 0.06 0.07 0.08 0.09 0.10 0.11
020406080100
Density of estimated optimal standard deviation
Optimal standard deviation
Density
Figure 7: Distribution of vark(Ļ‰āˆ—
k
t
X)
16
Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios
Value-at-Risk minimization
With V aR(X, p) = Fāˆ’1
(p) = sup{x, F(x) < p}, the program is
ļ£±
ļ£²
ļ£³
Ļ‰āˆ—
āˆˆ argmin{VaR(Ļ‰t
X, Ī±)}
u.c. E(Ļ‰t
X) ā‰„ Ī·,Ļ‰t
1 = 1
nonconvex
ļ£±
ļ£²
ļ£³
Ļ‰āˆ—
āˆˆ argmax{E(Ļ‰t
X)}
u.c. {VaR(Ļ‰t
X, Ī±)} ā‰¤ Ī· ,Ļ‰t
1 = 1
In the previous framework (mean-variance), it could be done easily since
ā€¢ there are only a few estimates of the variance
ā€¢ there exists an analytical expression of the optimal allocation,
In the case of Value-at- Risk minimization,
ā€¢ there are several estimators of quantiles (see Charpentier & Oulidi
(2007)),
ā€¢ numerical optimization should be considered.
17
Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios
Quantile estimation
ā€¢ raw estimator of the quantile, X[pn]:n = Xi:n = Fāˆ’1
n (i/n) such that
i ā‰¤ pn < i + 1.
ā€¢ weighted average of Fāˆ’1
n (p), e.g. Ī±Xi:n + (1 āˆ’ Ī±)Xi+1:n,
ā€¢ weighted average of Fāˆ’1
n (p), e.g.
n
i=1
Ī±iXi:n =
1
0
Ī±uFāˆ’1
n (u)du,
ā€¢ smoothed version of the cdf, Fāˆ’1
K (p) where FK(x) =
1
nh
n
i=1
K
x āˆ’ Xi
h
ā€¢ semiparametric approach, based on Hillā€™s estimator, Xnāˆ’k:n
n
k
(1 āˆ’ p)
āˆ’Ī¾k
,
where Ī¾k =
1
k
k
i=1
log Xn+1āˆ’i:n āˆ’ log Xnāˆ’k:n (if Ī¾ > 0),
ā€¢ fully parametric approach, Xn + u1āˆ’pvar(X) (if X āˆ¼ N(Āµ, Ļƒ2
))
18
Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios
0.0 0.5 1.0 1.5 2.0
0.00.20.40.60.81.0 Empirical quantile estimation
Value
Probability
0.0 0.5 1.0 1.5 2.0
0.00.20.40.60.81.0
Empirical quantile estimation
Value
Probability
Figure 8: Classical estimation of the quantile, based on Fāˆ’1
(Ā·).
19
Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios
0.0 0.5 1.0 1.5 2.0
0.00.51.01.5
Smoothed empirical quantile estimation
Value
Smootheddensity
0.0 0.5 1.0 1.5 2.0
0.00.20.40.60.81.0
Smoothed empirical quantile estimation
ValueProbability
Figure 9: Smoothed estimation of the quantile, based on Fāˆ’1
K (Ā·).
20
Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios
A short extention to general risk measures
In a much more general setting, spectral risk measures can be considered, i.e.
R(X) =
1
0
Ļ†(p)Fāˆ’1
X (p)dp,
for some distortion function Ļ† : [0, 1] ā†’ [0, 1].
21
Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios
Parametric bootstrap
Assume that X āˆ¼ L(Īø). The procedure is the following
1. generate n returns X1, . . . , Xn from L(Īø);
2. estimate for all Ļ‰ on a ļ¬nite grid, estimate VaR(Ļ‰t
X),
3. solve the minimization problem on the grid to get numerically Ļ‰āˆ—
n.
Using several simulations, the distribution of Ļ‰āˆ—
n and var(Ļ‰āˆ—
nX) can be
obtained.
22
Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios
āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0
āˆ’0.20.00.20.40.60.81.0
Allocation in the first asset
Allocationinsecondasset
Joint distribution of optimal allocations (1āˆ’2)
āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0
āˆ’0.20.00.20.40.60.81.0
Allocation in the first asset
Allocationinthirdasset
Joint distribution of optimal allocations (1āˆ’3)
āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0
āˆ’0.20.00.20.40.60.81.0
Allocation in the first asset
Allocationinfourthasset
Joint distribution of optimal allocations (1āˆ’4)
āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0
āˆ’0.20.00.20.40.60.81.0
Allocation in the second asset
Allocationinfourthasset
Joint distribution of optimal allocations (2āˆ’4)
āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0
āˆ’0.20.00.20.40.60.81.0
Allocation in the third asset
Allocationinfourthasset
Joint distribution of optimal allocations (3āˆ’4)
āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0
āˆ’0.20.00.20.40.60.81.0
Allocation in the second asset
Allocationinthirdasset
Joint distribution of optimal allocations (2āˆ’3)
Figure 10: Joint distributions of optimal allocations Ļ‰āˆ—
kā€™s, smoothed quantile
estimator.
23
Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios
0.16 0.18 0.20 0.22 0.24
05101520
Density of estimated optimal 99% quantile
Optimal Valueāˆ’atāˆ’Risk
Density
Figure 11: Distribution of VaRk(Ļ‰āˆ—
k
t
X, 95%).
24
Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios
āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0
āˆ’0.20.00.20.40.60.81.0
Allocation in the first asset
Allocationinsecondasset
Joint distribution of optimal allocations (1āˆ’2)
āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0
āˆ’0.20.00.20.40.60.81.0
Allocation in the first asset
Allocationinthirdasset
Joint distribution of optimal allocations (1āˆ’3)
āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0
āˆ’0.20.00.20.40.60.81.0
Allocation in the first asset
Allocationinfourthasset
Joint distribution of optimal allocations (1āˆ’4)
āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0
āˆ’0.20.00.20.40.60.81.0
Allocation in the second asset
Allocationinfourthasset
Joint distribution of optimal allocations (2āˆ’4)
āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0
āˆ’0.20.00.20.40.60.81.0
Allocation in the third asset
Allocationinfourthasset
Joint distribution of optimal allocations (3āˆ’4)
āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0
āˆ’0.20.00.20.40.60.81.0
Allocation in the second asset
Allocationinthirdasset
Joint distribution of optimal allocations (2āˆ’3)
Figure 12: Joint distributions of optimal allocations Ļ‰āˆ—
kā€™s, raw quantile estima-
tor.
25
Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios
0.16 0.18 0.20 0.22 0.24
010203040
Density of estimated optimal 95% quantile
Optimal Valueāˆ’atāˆ’Risk
Density
Figure 13: Distribution of VaRk(Ļ‰āˆ—
k
t
X, 95%).
26
Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios
Conclusion
Dealing with only 4 assets, it is diļ¬ƒcult to get robust optimal allocation, only
because of statistical uncertainty of classical estimators. Remark: this was
mentioned in Liu (2003) on high frequency data (every 5 minutes, i.e.
n = 10, 000) with 100 assets.
27
Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios
Some references
Coles, J.L. & Loewenstein, U. (1988). Equilibrium pricing and portfolio composition in the presence of uncertain
parameters. Journal of Financial Economics, 22, 279-303.
Dowd, K. & Blake, D.. (2006). After VaR: the theory, estimation, and insurance applications of quantile-based risk
measures. Journal of Risk & Insurance, 73, 193-229.
Duarte, A. (1999). Fast computation of eļ¬ƒcient portfolios. Journal of Risk, 1, 71-94.
Duffie, D. & Pan, J. (1997). An overview of Value at Risk. Journal of Derivatives, 4, 7-49.
Gaivoronski, A.A. & Pflug, G. (2000). Value-at-Risk in portfolio optimization: properties and computational
approach. Working Paper 00-2, Norwegian University of Sciences & Technology.
Jorion, P. (1997). Value at Risk: the new benchmark for controlling market risk. McGraw-Hill.
Kast, R., Luciano, E. & Peccati, L. (1998). VaR and optimization: 2nd international workshop on preferences and
decisions. Trento, July 1998.
Klein, R.W. & Bawa, V.S. (1976). The eļ¬€ect of estimation risk on optimal portfolio choice. Journal of Financial
Economics, 3, 215-231.
Larsen, N., Mausser, H. & Uryasev, S. (2002). Algorithms for optimization of Value at Risk. in Financial
engineering, e-commerce and supply-chain, Pardalos and Tsitsiringos eds., Kluwer Academic Publichers, 129-157.
Litterman, R. (1997). Hot spots and edges II. Risk, 10, 38-42.
Rockafellar, R.T. & Uryasev, S. (2000). Optimization of Conditional Value-at-Risk. Journal of Risk, 2, 21-41.
28

Weitere Ƥhnliche Inhalte

Was ist angesagt?

Slides universitƩ Laval, Actuariat, Avril 2011
Slides universitƩ Laval, Actuariat, Avril 2011Slides universitƩ Laval, Actuariat, Avril 2011
Slides universitƩ Laval, Actuariat, Avril 2011
Arthur Charpentier
Ā 

Was ist angesagt? (20)

Slides toulouse
Slides toulouseSlides toulouse
Slides toulouse
Ā 
Slides amsterdam-2013
Slides amsterdam-2013Slides amsterdam-2013
Slides amsterdam-2013
Ā 
Slides astin
Slides astinSlides astin
Slides astin
Ā 
Slides ensae 8
Slides ensae 8Slides ensae 8
Slides ensae 8
Ā 
Slides erasmus
Slides erasmusSlides erasmus
Slides erasmus
Ā 
Slides euria-1
Slides euria-1Slides euria-1
Slides euria-1
Ā 
Slides dauphine
Slides dauphineSlides dauphine
Slides dauphine
Ā 
Slides ACTINFO 2016
Slides ACTINFO 2016Slides ACTINFO 2016
Slides ACTINFO 2016
Ā 
Slides ensae 9
Slides ensae 9Slides ensae 9
Slides ensae 9
Ā 
Slides edf-2
Slides edf-2Slides edf-2
Slides edf-2
Ā 
Slides risk-rennes
Slides risk-rennesSlides risk-rennes
Slides risk-rennes
Ā 
Berlin
BerlinBerlin
Berlin
Ā 
Slides universitƩ Laval, Actuariat, Avril 2011
Slides universitƩ Laval, Actuariat, Avril 2011Slides universitƩ Laval, Actuariat, Avril 2011
Slides universitƩ Laval, Actuariat, Avril 2011
Ā 
Slides erm-cea-ia
Slides erm-cea-iaSlides erm-cea-ia
Slides erm-cea-ia
Ā 
Graduate Econometrics Course, part 4, 2017
Graduate Econometrics Course, part 4, 2017Graduate Econometrics Course, part 4, 2017
Graduate Econometrics Course, part 4, 2017
Ā 
Slides ineq-4
Slides ineq-4Slides ineq-4
Slides ineq-4
Ā 
Lundi 16h15-copules-charpentier
Lundi 16h15-copules-charpentierLundi 16h15-copules-charpentier
Lundi 16h15-copules-charpentier
Ā 
Slides barcelona Machine Learning
Slides barcelona Machine LearningSlides barcelona Machine Learning
Slides barcelona Machine Learning
Ā 
Inequality, slides #2
Inequality, slides #2Inequality, slides #2
Inequality, slides #2
Ā 
Slides ensae-2016-8
Slides ensae-2016-8Slides ensae-2016-8
Slides ensae-2016-8
Ā 

Andere mochten auch

Slides sales-forecasting-session1-web
Slides sales-forecasting-session1-webSlides sales-forecasting-session1-web
Slides sales-forecasting-session1-web
Arthur Charpentier
Ā 
Slides saopaulo-catastrophe (1)
Slides saopaulo-catastrophe (1)Slides saopaulo-catastrophe (1)
Slides saopaulo-catastrophe (1)
Arthur Charpentier
Ā 
Soutenance julie viard_partie_1
Soutenance julie viard_partie_1Soutenance julie viard_partie_1
Soutenance julie viard_partie_1
Arthur Charpentier
Ā 

Andere mochten auch (20)

Slides sales-forecasting-session1-web
Slides sales-forecasting-session1-webSlides sales-forecasting-session1-web
Slides sales-forecasting-session1-web
Ā 
Slides edf-1
Slides edf-1Slides edf-1
Slides edf-1
Ā 
Slides axa
Slides axaSlides axa
Slides axa
Ā 
Slides econometrics-2017-graduate-2
Slides econometrics-2017-graduate-2Slides econometrics-2017-graduate-2
Slides econometrics-2017-graduate-2
Ā 
Econometrics 2017-graduate-3
Econometrics 2017-graduate-3Econometrics 2017-graduate-3
Econometrics 2017-graduate-3
Ā 
Econometrics, PhD Course, #1 Nonlinearities
Econometrics, PhD Course, #1 NonlinearitiesEconometrics, PhD Course, #1 Nonlinearities
Econometrics, PhD Course, #1 Nonlinearities
Ā 
Slides picard-6
Slides picard-6Slides picard-6
Slides picard-6
Ā 
Slides saopaulo-catastrophe (1)
Slides saopaulo-catastrophe (1)Slides saopaulo-catastrophe (1)
Slides saopaulo-catastrophe (1)
Ā 
Cours add-r1-part5
Cours add-r1-part5Cours add-r1-part5
Cours add-r1-part5
Ā 
Lg ph d_slides_vfinal
Lg ph d_slides_vfinalLg ph d_slides_vfinal
Lg ph d_slides_vfinal
Ā 
Soutenance julie viard_partie_1
Soutenance julie viard_partie_1Soutenance julie viard_partie_1
Soutenance julie viard_partie_1
Ā 
HdR
HdRHdR
HdR
Ā 
Slides ensae-2016-2
Slides ensae-2016-2Slides ensae-2016-2
Slides ensae-2016-2
Ā 
Slides ensae-2016-1
Slides ensae-2016-1Slides ensae-2016-1
Slides ensae-2016-1
Ā 
Slides ensae-2016-6
Slides ensae-2016-6Slides ensae-2016-6
Slides ensae-2016-6
Ā 
Slides ensae-2016-9
Slides ensae-2016-9Slides ensae-2016-9
Slides ensae-2016-9
Ā 
Slides ensae-2016-7
Slides ensae-2016-7Slides ensae-2016-7
Slides ensae-2016-7
Ā 
Slides ensae-2016-5
Slides ensae-2016-5Slides ensae-2016-5
Slides ensae-2016-5
Ā 
Slides ensae-2016-3
Slides ensae-2016-3Slides ensae-2016-3
Slides ensae-2016-3
Ā 
Pricing Game, 100% Data Sciences
Pricing Game, 100% Data SciencesPricing Game, 100% Data Sciences
Pricing Game, 100% Data Sciences
Ā 

Ƅhnlich wie Slides angers-sfds

DDKT-Munich.pdf
DDKT-Munich.pdfDDKT-Munich.pdf
DDKT-Munich.pdf
GRAPE
Ā 
Expanding further the universe of exotic options closed pricing formulas in t...
Expanding further the universe of exotic options closed pricing formulas in t...Expanding further the universe of exotic options closed pricing formulas in t...
Expanding further the universe of exotic options closed pricing formulas in t...
caplogic-ltd
Ā 
DDKT-Praga.pdf
DDKT-Praga.pdfDDKT-Praga.pdf
DDKT-Praga.pdf
GRAPE
Ā 

Ƅhnlich wie Slides angers-sfds (20)

Options Portfolio Selection
Options Portfolio SelectionOptions Portfolio Selection
Options Portfolio Selection
Ā 
Solution to the Practice Test 3A, Normal Probability Distribution
Solution to the Practice Test 3A, Normal Probability DistributionSolution to the Practice Test 3A, Normal Probability Distribution
Solution to the Practice Test 3A, Normal Probability Distribution
Ā 
Slides ima
Slides imaSlides ima
Slides ima
Ā 
Solution to the Practice Test 3A, Chapter 6 Normal Probability Distribution
Solution to the Practice Test 3A, Chapter 6 Normal Probability DistributionSolution to the Practice Test 3A, Chapter 6 Normal Probability Distribution
Solution to the Practice Test 3A, Chapter 6 Normal Probability Distribution
Ā 
Error analysis statistics
Error analysis   statisticsError analysis   statistics
Error analysis statistics
Ā 
DDKT-Munich.pdf
DDKT-Munich.pdfDDKT-Munich.pdf
DDKT-Munich.pdf
Ā 
Classification
ClassificationClassification
Classification
Ā 
Litv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdfLitv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdf
Ā 
Side 2019, part 2
Side 2019, part 2Side 2019, part 2
Side 2019, part 2
Ā 
report
reportreport
report
Ā 
Hands-On Algorithms for Predictive Modeling
Hands-On Algorithms for Predictive ModelingHands-On Algorithms for Predictive Modeling
Hands-On Algorithms for Predictive Modeling
Ā 
asset-v1_MITx+18.6501x+2T2020+type@asset+block@lectureslides_Chap8-noPhantom.pdf
asset-v1_MITx+18.6501x+2T2020+type@asset+block@lectureslides_Chap8-noPhantom.pdfasset-v1_MITx+18.6501x+2T2020+type@asset+block@lectureslides_Chap8-noPhantom.pdf
asset-v1_MITx+18.6501x+2T2020+type@asset+block@lectureslides_Chap8-noPhantom.pdf
Ā 
Slides erm-cea-ia
Slides erm-cea-iaSlides erm-cea-ia
Slides erm-cea-ia
Ā 
pattern recognition
pattern recognition pattern recognition
pattern recognition
Ā 
ch7_lin_updatedApril13_2022.pdf
ch7_lin_updatedApril13_2022.pdfch7_lin_updatedApril13_2022.pdf
ch7_lin_updatedApril13_2022.pdf
Ā 
Side 2019, part 1
Side 2019, part 1Side 2019, part 1
Side 2019, part 1
Ā 
DDKT-SAET.pdf
DDKT-SAET.pdfDDKT-SAET.pdf
DDKT-SAET.pdf
Ā 
Inequality #4
Inequality #4Inequality #4
Inequality #4
Ā 
Expanding further the universe of exotic options closed pricing formulas in t...
Expanding further the universe of exotic options closed pricing formulas in t...Expanding further the universe of exotic options closed pricing formulas in t...
Expanding further the universe of exotic options closed pricing formulas in t...
Ā 
DDKT-Praga.pdf
DDKT-Praga.pdfDDKT-Praga.pdf
DDKT-Praga.pdf
Ā 

Mehr von Arthur Charpentier

Mehr von Arthur Charpentier (20)

Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
Ā 
ACT6100 introduction
ACT6100 introductionACT6100 introduction
ACT6100 introduction
Ā 
Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)
Ā 
Control epidemics
Control epidemics Control epidemics
Control epidemics
Ā 
STT5100 Automne 2020, introduction
STT5100 Automne 2020, introductionSTT5100 Automne 2020, introduction
STT5100 Automne 2020, introduction
Ā 
Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
Ā 
Machine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & InsuranceMachine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & Insurance
Ā 
Reinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and FinanceReinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and Finance
Ā 
Optimal Control and COVID-19
Optimal Control and COVID-19Optimal Control and COVID-19
Optimal Control and COVID-19
Ā 
Slides OICA 2020
Slides OICA 2020Slides OICA 2020
Slides OICA 2020
Ā 
Lausanne 2019 #3
Lausanne 2019 #3Lausanne 2019 #3
Lausanne 2019 #3
Ā 
Lausanne 2019 #4
Lausanne 2019 #4Lausanne 2019 #4
Lausanne 2019 #4
Ā 
Lausanne 2019 #2
Lausanne 2019 #2Lausanne 2019 #2
Lausanne 2019 #2
Ā 
Lausanne 2019 #1
Lausanne 2019 #1Lausanne 2019 #1
Lausanne 2019 #1
Ā 
Side 2019 #10
Side 2019 #10Side 2019 #10
Side 2019 #10
Ā 
Side 2019 #11
Side 2019 #11Side 2019 #11
Side 2019 #11
Ā 
Side 2019 #12
Side 2019 #12Side 2019 #12
Side 2019 #12
Ā 
Side 2019 #9
Side 2019 #9Side 2019 #9
Side 2019 #9
Ā 
Side 2019 #8
Side 2019 #8Side 2019 #8
Side 2019 #8
Ā 
Side 2019 #7
Side 2019 #7Side 2019 #7
Side 2019 #7
Ā 

KĆ¼rzlich hochgeladen

Jual Obat Aborsi ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan Cytotec
Jual Obat Aborsi ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan CytotecJual Obat Aborsi ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan Cytotec
Jual Obat Aborsi ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan Cytotec
ZurliaSoop
Ā 
QSM Chap 10 Service Culture in Tourism and Hospitality Industry.pptx
QSM Chap 10 Service Culture in Tourism and Hospitality Industry.pptxQSM Chap 10 Service Culture in Tourism and Hospitality Industry.pptx
QSM Chap 10 Service Culture in Tourism and Hospitality Industry.pptx
DitasDelaCruz
Ā 

KĆ¼rzlich hochgeladen (20)

Lundin Gold - Q1 2024 Conference Call Presentation (Revised)
Lundin Gold - Q1 2024 Conference Call Presentation (Revised)Lundin Gold - Q1 2024 Conference Call Presentation (Revised)
Lundin Gold - Q1 2024 Conference Call Presentation (Revised)
Ā 
Jual Obat Aborsi ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan Cytotec
Jual Obat Aborsi ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan CytotecJual Obat Aborsi ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan Cytotec
Jual Obat Aborsi ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan Cytotec
Ā 
Falcon Invoice Discounting: Unlock Your Business Potential
Falcon Invoice Discounting: Unlock Your Business PotentialFalcon Invoice Discounting: Unlock Your Business Potential
Falcon Invoice Discounting: Unlock Your Business Potential
Ā 
Falcon Invoice Discounting: Empowering Your Business Growth
Falcon Invoice Discounting: Empowering Your Business GrowthFalcon Invoice Discounting: Empowering Your Business Growth
Falcon Invoice Discounting: Empowering Your Business Growth
Ā 
PARK STREET šŸ’‹ Call Girl 9827461493 Call Girls in Escort service book now
PARK STREET šŸ’‹ Call Girl 9827461493 Call Girls in  Escort service book nowPARK STREET šŸ’‹ Call Girl 9827461493 Call Girls in  Escort service book now
PARK STREET šŸ’‹ Call Girl 9827461493 Call Girls in Escort service book now
Ā 
Durg CALL GIRL ā¤ 82729*64427ā¤ CALL GIRLS IN durg ESCORTS
Durg CALL GIRL ā¤ 82729*64427ā¤ CALL GIRLS IN durg ESCORTSDurg CALL GIRL ā¤ 82729*64427ā¤ CALL GIRLS IN durg ESCORTS
Durg CALL GIRL ā¤ 82729*64427ā¤ CALL GIRLS IN durg ESCORTS
Ā 
Lucknow Housewife Escorts by Sexy Bhabhi Service 8250092165
Lucknow Housewife Escorts  by Sexy Bhabhi Service 8250092165Lucknow Housewife Escorts  by Sexy Bhabhi Service 8250092165
Lucknow Housewife Escorts by Sexy Bhabhi Service 8250092165
Ā 
Organizational Transformation Lead with Culture
Organizational Transformation Lead with CultureOrganizational Transformation Lead with Culture
Organizational Transformation Lead with Culture
Ā 
Nashik Call Girl Just Call 7091819311 Top Class Call Girl Service Available
Nashik Call Girl Just Call 7091819311 Top Class Call Girl Service AvailableNashik Call Girl Just Call 7091819311 Top Class Call Girl Service Available
Nashik Call Girl Just Call 7091819311 Top Class Call Girl Service Available
Ā 
Paradip CALL GIRLā¤7091819311ā¤CALL GIRLS IN ESCORT SERVICE WE ARE PROVIDING
Paradip CALL GIRLā¤7091819311ā¤CALL GIRLS IN ESCORT SERVICE WE ARE PROVIDINGParadip CALL GIRLā¤7091819311ā¤CALL GIRLS IN ESCORT SERVICE WE ARE PROVIDING
Paradip CALL GIRLā¤7091819311ā¤CALL GIRLS IN ESCORT SERVICE WE ARE PROVIDING
Ā 
PHX May 2024 Corporate Presentation Final
PHX May 2024 Corporate Presentation FinalPHX May 2024 Corporate Presentation Final
PHX May 2024 Corporate Presentation Final
Ā 
Ooty Call Gril 80022//12248 Only For Sex And High Profile Best Gril Sex Avail...
Ooty Call Gril 80022//12248 Only For Sex And High Profile Best Gril Sex Avail...Ooty Call Gril 80022//12248 Only For Sex And High Profile Best Gril Sex Avail...
Ooty Call Gril 80022//12248 Only For Sex And High Profile Best Gril Sex Avail...
Ā 
GUWAHATI šŸ’‹ Call Girl 9827461493 Call Girls in Escort service book now
GUWAHATI šŸ’‹ Call Girl 9827461493 Call Girls in  Escort service book nowGUWAHATI šŸ’‹ Call Girl 9827461493 Call Girls in  Escort service book now
GUWAHATI šŸ’‹ Call Girl 9827461493 Call Girls in Escort service book now
Ā 
Berhampur 70918*19311 CALL GIRLS IN ESCORT SERVICE WE ARE PROVIDING
Berhampur 70918*19311 CALL GIRLS IN ESCORT SERVICE WE ARE PROVIDINGBerhampur 70918*19311 CALL GIRLS IN ESCORT SERVICE WE ARE PROVIDING
Berhampur 70918*19311 CALL GIRLS IN ESCORT SERVICE WE ARE PROVIDING
Ā 
Horngrenā€™s Cost Accounting A Managerial Emphasis, Canadian 9th edition soluti...
Horngrenā€™s Cost Accounting A Managerial Emphasis, Canadian 9th edition soluti...Horngrenā€™s Cost Accounting A Managerial Emphasis, Canadian 9th edition soluti...
Horngrenā€™s Cost Accounting A Managerial Emphasis, Canadian 9th edition soluti...
Ā 
Kalyan Call Girl 98350*37198 Call Girls in Escort service book now
Kalyan Call Girl 98350*37198 Call Girls in Escort service book nowKalyan Call Girl 98350*37198 Call Girls in Escort service book now
Kalyan Call Girl 98350*37198 Call Girls in Escort service book now
Ā 
Katrina Personal Brand Project and portfolio 1
Katrina Personal Brand Project and portfolio 1Katrina Personal Brand Project and portfolio 1
Katrina Personal Brand Project and portfolio 1
Ā 
Unveiling Falcon Invoice Discounting: Leading the Way as India's Premier Bill...
Unveiling Falcon Invoice Discounting: Leading the Way as India's Premier Bill...Unveiling Falcon Invoice Discounting: Leading the Way as India's Premier Bill...
Unveiling Falcon Invoice Discounting: Leading the Way as India's Premier Bill...
Ā 
Getting Real with AI - Columbus DAW - May 2024 - Nick Woo from AlignAI
Getting Real with AI - Columbus DAW - May 2024 - Nick Woo from AlignAIGetting Real with AI - Columbus DAW - May 2024 - Nick Woo from AlignAI
Getting Real with AI - Columbus DAW - May 2024 - Nick Woo from AlignAI
Ā 
QSM Chap 10 Service Culture in Tourism and Hospitality Industry.pptx
QSM Chap 10 Service Culture in Tourism and Hospitality Industry.pptxQSM Chap 10 Service Culture in Tourism and Hospitality Industry.pptx
QSM Chap 10 Service Culture in Tourism and Hospitality Industry.pptx
Ā 

Slides angers-sfds

  • 1. Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios Quantile estimation and optimal portfolios Arthur Charpentier & Abder Oulidi ENSAI-ENSAE-CREST & IMA Angers JournĆ©e SFdS, Mai 2007 1
  • 2. Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios Portfolio management and optimal allocations Idea: allocating capital among a set of assets to maximize return and minimize risk. If diversiļ¬cation eļ¬€ects were intuited early, and Markowitz (1952) proposed a mathematical model. ā€¢ return is measured by the expected value of the portfolio return, ā€¢ risk is quantiļ¬ed by the variance of this return. Agenda 1. statistical issue in the mean-variance framework 2. portfolio optimization with general risk measures 2
  • 3. Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios Portfolio optimization (parametric framework) Consider a risk measure R (variance or Value-at-Risk). Solve Ļ‰āˆ— = ļ£± ļ£² ļ£³ argmin{R(Ļ‰t X)}, u.c. Ļ‰t 1 = 1 and E(Ļ‰t X) ā‰„ Ī·, where X āˆ¼ L(Īø), Īø unknown. Īø is unknown but can be estimated using a sample {X1, . . . , Xn}. ā€œThe parameters governing the central tendency and dispersion of returns are usually not known, however; and are often estimated or guessed at using observed returns and other available data. In empirical applications, the estimated parameters are used as if they were the true valueā€ (Coles & Loewenstein (1988)). If Ļ‰āˆ— = Ļˆ(Īø) (e.g. mean-variance) Ļ‰āˆ— = Ļˆ(Īø). 3
  • 4. Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios Optimization of standard deviation (or variance) Allocation in the first asset Allocation in the second asset Standard deviation of the portfolio āˆ’200 āˆ’100 0 100 200 āˆ’200āˆ’1000100200 Allocation in the first asset Allocationinthesecondasset Figure 1: Portfolio variance optimization problem. 4
  • 5. Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios Portfolio optimization (parametric framework) In the case of no explicit expression of the optimum, solve (numerically) Ļ‰āˆ— = ļ£± ļ£² ļ£³ argminR(Ļ‰t X), u.c.Ļ‰ āˆˆ {(Ļ‰k)kāˆˆ{1,...,m}} where X āˆ¼ L(Īø). The idea is to generate samples Xiā€™s, ā€¢ either from a parametric distribution L(Īø), ā€¢ or from a nonparametric distribution (bootstrap approach). 5
  • 6. Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios Optimization of Value-at-Risk VaR of the portfolio āˆ’4 āˆ’2 0 2 4 6 āˆ’2āˆ’1012345 āˆ’4 āˆ’2 0 2 4 6 VaR of the portfolio āˆ’4 āˆ’2 0 2 4 6 012345 āˆ’4 āˆ’2 0 2 4 6 Figure 2: Optimization in the mean-VaR framework. 6
  • 7. Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios Classical mean-variance allocation problem Consider d risky assets, with weekly returns X = (X1, . . . , Xd). Denote Āµ = E(X) and Ī£ = var(X). Let Ļ‰ = (Ļ‰1, . . . , Ļ‰d) āˆˆ Rd denote the weights in all risky assets. ā€¢ the expected return of the portfolio is E(Ļ‰t X) = Ļ‰t Āµ, ā€¢ the variance of the portfolio is var(Ļ‰t X) = Ļ‰t Ī£Ļ‰. ļ£± ļ£² ļ£³ Ļ‰āˆ— āˆˆ argmin{Ļ‰t Ī£Ļ‰} u.c. Ļ‰t Āµ ā‰„ Ī· and Ļ‰t 1 = 1 convex ā‡ā‡’ ļ£± ļ£² ļ£³ Ļ‰āˆ— āˆˆ argmax{Ļ‰t Āµ} u.c. Ļ‰t Ī£Ļ‰ ā‰¤ Ī· and Ļ‰t 1 = 1 7
  • 8. Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios Classical mean-variance allocation problem The solution can be given explicitly (see Markowitz (1952)) as Ļ‰āˆ— = Ļˆ(Āµ, Ī£) = p + Ī·q where Āµ = E(X), Ī£ = var(X), p = 1 d bĪ£āˆ’1 1 āˆ’ aĪ£āˆ’1 Āµ and q = 1 d cĪ£āˆ’1 Āµ āˆ’ aĪ£āˆ’1 1 , and a = 1t Ī£āˆ’1 Āµ, b = Āµt Ī£āˆ’1 Āµ, c = 1t Ī£āˆ’1 1, d = bc āˆ’ a2 . Note that p is an allocation, and q indicates how the original portfolio should be modiļ¬ed. 8
  • 9. Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios Eļ¬ƒcient frontier first asset āˆ’0.2 0.0 0.2 0.4 āˆ’0.4 0.0 0.4 āˆ’0.20.00.2 āˆ’0.20.00.20.4 second asset third asset āˆ’0.20.20.6 āˆ’0.2 0.0 0.2 āˆ’0.40.00.4 āˆ’0.2 0.2 0.6 fourth asset Portfolio with 4assets 0.010 0.015 0.020 0.025 0.030 0.0000.0010.0020.0030.0040.0050.006 Efficient Frontier Standard deviation Expectedvalue Figure 3: Solving a variance optimization problem. 9
  • 10. Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios Inference issues In practice, Āµ = [Āµi] and Ī£ = [Ī£i,j] are unknown, and should be estimated. A natural idea is to deļ¬ne Āµi = 1 n n t=1 Xi,t et Ī£i,j = 1 n āˆ’ 1 n t=1 (Xi,t āˆ’ Āµi)(Xj,t āˆ’ Āµj). Given n observed observed returns, Āµ|Ī£ āˆ¼ N Āµ, Ī£ n and nĪ£|Ī£ āˆ¼ W (n āˆ’ 1, Ī£) . where the two random variables Āµ and Ī£ are independent, given Ī£. 10
  • 11. Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios 0.05 0.10 0.15 0.20 0.25 0.000.050.100.150.200.25 Efficient Frontier, with 250 past observations Standard deviation Expectedvalue 0.05 0.10 0.15 0.20 0.25 0.000.050.100.150.200.25 Efficient Frontier, with 1000 past observations Standard deviation Expectedvalue Figure 4: Eļ¬ƒcient frontiers and estimation. 11
  • 12. Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios Parametric bootstrap Assume that X āˆ¼ L(Īø). estimate Īø by Īøn. The procedure is the following 1. generate n returns X1, . . . , Xn from L(Īøn); 2. estimate Āµ and Ī£, i.e. Āµn and Ī£n, 3. solve the minimization problem, i.e. Ļ‰āˆ— = 1 d bĪ£ āˆ’1 1 āˆ’ aĪ£ āˆ’1 Āµ + Ī· 1 d cĪ£ āˆ’1 Āµ āˆ’ aĪ£ āˆ’1 1 , Using several simulations, the distribution of the Ļ‰āˆ— k and vark(Ļ‰āˆ— k t X) can be obtained. 12
  • 13. Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios Nonparametric bootstrap A nonparametric procedure can also be considered. Consider a n sample {X1, . . . , Xn} 1. generate a bootstrap sample from {X1, . . . , Xn} 2. estimate Āµ and Ī£, i.e. Āµn and Ī£n, 3. solve the minimization problem, i.e. Ļ‰āˆ— = 1 d bĪ£ āˆ’1 1 āˆ’ aĪ£ āˆ’1 Āµ + Ī· 1 d cĪ£ āˆ’1 Āµ āˆ’ aĪ£ āˆ’1 1 , Using several simulations, the distribution of the Ļ‰āˆ— k and vark(Ļ‰āˆ— k t X) can be obtained. 13
  • 14. Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios 0.4 0.6 0.8 1.0 012345 Allocation in the first asset Allocation weight Density 0.0 0.2 0.4 012345 Allocation in the second asset Allocation weight Density āˆ’0.3 āˆ’0.1 0.0 0.1 02468 Allocation in the third asset Allocation weight Density 0.05 0.15 0.25 0246810 Allocation in the fourth asset Allocation weightDensity Figure 5: Distributions of optimal allocations Ļ‰āˆ— kā€™s. 14
  • 15. Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0 āˆ’0.20.00.20.40.60.81.0 Allocation in the first asset Allocationinsecondasset Joint distribution of optimal allocations (1āˆ’2) āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0 āˆ’0.20.00.20.40.60.81.0 Allocation in the first asset Allocationinthirdasset Joint distribution of optimal allocations (1āˆ’3) āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0 āˆ’0.20.00.20.40.60.81.0 Allocation in the first asset Allocationinfourthasset Joint distribution of optimal allocations (1āˆ’4) āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0 āˆ’0.20.00.20.40.60.81.0 Allocation in the second asset Allocationinfourthasset Joint distribution of optimal allocations (2āˆ’4) āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0 āˆ’0.20.00.20.40.60.81.0 Allocation in the second asset Allocationinthirdasset Joint distribution of optimal allocations (2āˆ’3) āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0 āˆ’0.20.00.20.40.60.81.0 Allocation in the third asset Allocationinfourthasset Joint distribution of optimal allocations (3āˆ’4) Figure 6: Joint distributions of optimal allocations Ļ‰āˆ— kā€™s. 15
  • 16. Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios 0.05 0.06 0.07 0.08 0.09 0.10 0.11 020406080100 Density of estimated optimal standard deviation Optimal standard deviation Density Figure 7: Distribution of vark(Ļ‰āˆ— k t X) 16
  • 17. Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios Value-at-Risk minimization With V aR(X, p) = Fāˆ’1 (p) = sup{x, F(x) < p}, the program is ļ£± ļ£² ļ£³ Ļ‰āˆ— āˆˆ argmin{VaR(Ļ‰t X, Ī±)} u.c. E(Ļ‰t X) ā‰„ Ī·,Ļ‰t 1 = 1 nonconvex ļ£± ļ£² ļ£³ Ļ‰āˆ— āˆˆ argmax{E(Ļ‰t X)} u.c. {VaR(Ļ‰t X, Ī±)} ā‰¤ Ī· ,Ļ‰t 1 = 1 In the previous framework (mean-variance), it could be done easily since ā€¢ there are only a few estimates of the variance ā€¢ there exists an analytical expression of the optimal allocation, In the case of Value-at- Risk minimization, ā€¢ there are several estimators of quantiles (see Charpentier & Oulidi (2007)), ā€¢ numerical optimization should be considered. 17
  • 18. Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios Quantile estimation ā€¢ raw estimator of the quantile, X[pn]:n = Xi:n = Fāˆ’1 n (i/n) such that i ā‰¤ pn < i + 1. ā€¢ weighted average of Fāˆ’1 n (p), e.g. Ī±Xi:n + (1 āˆ’ Ī±)Xi+1:n, ā€¢ weighted average of Fāˆ’1 n (p), e.g. n i=1 Ī±iXi:n = 1 0 Ī±uFāˆ’1 n (u)du, ā€¢ smoothed version of the cdf, Fāˆ’1 K (p) where FK(x) = 1 nh n i=1 K x āˆ’ Xi h ā€¢ semiparametric approach, based on Hillā€™s estimator, Xnāˆ’k:n n k (1 āˆ’ p) āˆ’Ī¾k , where Ī¾k = 1 k k i=1 log Xn+1āˆ’i:n āˆ’ log Xnāˆ’k:n (if Ī¾ > 0), ā€¢ fully parametric approach, Xn + u1āˆ’pvar(X) (if X āˆ¼ N(Āµ, Ļƒ2 )) 18
  • 19. Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios 0.0 0.5 1.0 1.5 2.0 0.00.20.40.60.81.0 Empirical quantile estimation Value Probability 0.0 0.5 1.0 1.5 2.0 0.00.20.40.60.81.0 Empirical quantile estimation Value Probability Figure 8: Classical estimation of the quantile, based on Fāˆ’1 (Ā·). 19
  • 20. Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios 0.0 0.5 1.0 1.5 2.0 0.00.51.01.5 Smoothed empirical quantile estimation Value Smootheddensity 0.0 0.5 1.0 1.5 2.0 0.00.20.40.60.81.0 Smoothed empirical quantile estimation ValueProbability Figure 9: Smoothed estimation of the quantile, based on Fāˆ’1 K (Ā·). 20
  • 21. Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios A short extention to general risk measures In a much more general setting, spectral risk measures can be considered, i.e. R(X) = 1 0 Ļ†(p)Fāˆ’1 X (p)dp, for some distortion function Ļ† : [0, 1] ā†’ [0, 1]. 21
  • 22. Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios Parametric bootstrap Assume that X āˆ¼ L(Īø). The procedure is the following 1. generate n returns X1, . . . , Xn from L(Īø); 2. estimate for all Ļ‰ on a ļ¬nite grid, estimate VaR(Ļ‰t X), 3. solve the minimization problem on the grid to get numerically Ļ‰āˆ— n. Using several simulations, the distribution of Ļ‰āˆ— n and var(Ļ‰āˆ— nX) can be obtained. 22
  • 23. Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0 āˆ’0.20.00.20.40.60.81.0 Allocation in the first asset Allocationinsecondasset Joint distribution of optimal allocations (1āˆ’2) āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0 āˆ’0.20.00.20.40.60.81.0 Allocation in the first asset Allocationinthirdasset Joint distribution of optimal allocations (1āˆ’3) āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0 āˆ’0.20.00.20.40.60.81.0 Allocation in the first asset Allocationinfourthasset Joint distribution of optimal allocations (1āˆ’4) āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0 āˆ’0.20.00.20.40.60.81.0 Allocation in the second asset Allocationinfourthasset Joint distribution of optimal allocations (2āˆ’4) āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0 āˆ’0.20.00.20.40.60.81.0 Allocation in the third asset Allocationinfourthasset Joint distribution of optimal allocations (3āˆ’4) āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0 āˆ’0.20.00.20.40.60.81.0 Allocation in the second asset Allocationinthirdasset Joint distribution of optimal allocations (2āˆ’3) Figure 10: Joint distributions of optimal allocations Ļ‰āˆ— kā€™s, smoothed quantile estimator. 23
  • 24. Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios 0.16 0.18 0.20 0.22 0.24 05101520 Density of estimated optimal 99% quantile Optimal Valueāˆ’atāˆ’Risk Density Figure 11: Distribution of VaRk(Ļ‰āˆ— k t X, 95%). 24
  • 25. Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0 āˆ’0.20.00.20.40.60.81.0 Allocation in the first asset Allocationinsecondasset Joint distribution of optimal allocations (1āˆ’2) āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0 āˆ’0.20.00.20.40.60.81.0 Allocation in the first asset Allocationinthirdasset Joint distribution of optimal allocations (1āˆ’3) āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0 āˆ’0.20.00.20.40.60.81.0 Allocation in the first asset Allocationinfourthasset Joint distribution of optimal allocations (1āˆ’4) āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0 āˆ’0.20.00.20.40.60.81.0 Allocation in the second asset Allocationinfourthasset Joint distribution of optimal allocations (2āˆ’4) āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0 āˆ’0.20.00.20.40.60.81.0 Allocation in the third asset Allocationinfourthasset Joint distribution of optimal allocations (3āˆ’4) āˆ’0.2 0.0 0.2 0.4 0.6 0.8 1.0 āˆ’0.20.00.20.40.60.81.0 Allocation in the second asset Allocationinthirdasset Joint distribution of optimal allocations (2āˆ’3) Figure 12: Joint distributions of optimal allocations Ļ‰āˆ— kā€™s, raw quantile estima- tor. 25
  • 26. Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios 0.16 0.18 0.20 0.22 0.24 010203040 Density of estimated optimal 95% quantile Optimal Valueāˆ’atāˆ’Risk Density Figure 13: Distribution of VaRk(Ļ‰āˆ— k t X, 95%). 26
  • 27. Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios Conclusion Dealing with only 4 assets, it is diļ¬ƒcult to get robust optimal allocation, only because of statistical uncertainty of classical estimators. Remark: this was mentioned in Liu (2003) on high frequency data (every 5 minutes, i.e. n = 10, 000) with 100 assets. 27
  • 28. Arthur CHARPENTIER & Abder OULIDI - Quantile estimation and optimal portfolios Some references Coles, J.L. & Loewenstein, U. (1988). Equilibrium pricing and portfolio composition in the presence of uncertain parameters. Journal of Financial Economics, 22, 279-303. Dowd, K. & Blake, D.. (2006). After VaR: the theory, estimation, and insurance applications of quantile-based risk measures. Journal of Risk & Insurance, 73, 193-229. Duarte, A. (1999). Fast computation of eļ¬ƒcient portfolios. Journal of Risk, 1, 71-94. Duffie, D. & Pan, J. (1997). An overview of Value at Risk. Journal of Derivatives, 4, 7-49. Gaivoronski, A.A. & Pflug, G. (2000). Value-at-Risk in portfolio optimization: properties and computational approach. Working Paper 00-2, Norwegian University of Sciences & Technology. Jorion, P. (1997). Value at Risk: the new benchmark for controlling market risk. McGraw-Hill. Kast, R., Luciano, E. & Peccati, L. (1998). VaR and optimization: 2nd international workshop on preferences and decisions. Trento, July 1998. Klein, R.W. & Bawa, V.S. (1976). The eļ¬€ect of estimation risk on optimal portfolio choice. Journal of Financial Economics, 3, 215-231. Larsen, N., Mausser, H. & Uryasev, S. (2002). Algorithms for optimization of Value at Risk. in Financial engineering, e-commerce and supply-chain, Pardalos and Tsitsiringos eds., Kluwer Academic Publichers, 129-157. Litterman, R. (1997). Hot spots and edges II. Risk, 10, 38-42. Rockafellar, R.T. & Uryasev, S. (2000). Optimization of Conditional Value-at-Risk. Journal of Risk, 2, 21-41. 28