Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.
Solución Posible: Es cualquier conjunto
de valores de la variable que satisface el
sistema de ecuaciones de la restricción...
ESTRUCTURA DE UN MODELO DE PL
FUNCIÓN OBJETIVO
Consiste en optimizar el
objetivo que persigue
una situación la cual es
una...
GRÁFICA DE
DESIGUALDADES
Y CONTORNOS
Gráfica de la igualdad.
Convierta la desigualdad
en igualdad y grafique la
recta
Esco...
EL MÉTODO GRÁFICO.
El método gráfico es una
forma fácil para resolver
problemas de Programación
Lineal, siempre y cuando e...
CONJUNTO CONVEXO. Un conjunto C es convexo si el
segmento rectilíneo que une cualquier par de puntos de C
se encuentra tot...
VARIABLESDEHOLGURAY
VARIABLESDEEXCEDENTE
Variable de holgura.
Variable agregada al lado izquierdo de una restricción de
"m...
Nächste SlideShare
Wird geladen in …5
×

unidad 2

189 Aufrufe

Veröffentlicht am

unidad 2

Veröffentlicht in: Bildung
  • Als Erste(r) kommentieren

  • Gehören Sie zu den Ersten, denen das gefällt!

unidad 2

  1. 1. Solución Posible: Es cualquier conjunto de valores de la variable que satisface el sistema de ecuaciones de la restricción. Solución Posible Básica: Es aquella solución posible en la que ninguna variable toma valores negativos. Solución Básica Posible Degenerada: Solución básica posible en la que al menos una variable toma el valor cero. Solución Óptima: Es aquella solución básica posible que optimiza a la función objetivo
  2. 2. ESTRUCTURA DE UN MODELO DE PL FUNCIÓN OBJETIVO Consiste en optimizar el objetivo que persigue una situación la cual es una función lineal de las diferentes actividades del problema, la función objetivo se maximiza o se minimiza VARIABLES DE DECISIÓN . Son las incógnitas del problema, La definición de las variables es el punto clave y básicamente consiste en l0s niveles de todas las actividades que pueden llevarse a cabo en el problema a formular RESTRICCIONES ESTRUCUTURALES. Diferentes requisitos que deben cumplir cualquier solución para que pueda llevarse a cabo, dichas restricciones pueden ser de capacidad, mercado, materia prima, calidad, balance de materiales, etc. CONDICIÓN TÉCNICA. Todas las variables deben tomar valores positivos,
  3. 3. GRÁFICA DE DESIGUALDADES Y CONTORNOS Gráfica de la igualdad. Convierta la desigualdad en igualdad y grafique la recta Escoja un punto de ensayo Evalúe el primer miembro de la expresión Determine si el punto de ensayo satisface la desigualdad.
  4. 4. EL MÉTODO GRÁFICO. El método gráfico es una forma fácil para resolver problemas de Programación Lineal, siempre y cuando el modelo conste de dos variables 1. Hallar las restricciones del problema 2. Las restricciones de no negatividad Xi ≥ 0 confían todos los valores posibles. 3. Sustituir ≥ y ≤ por (=) para cada restricción, con lo cual se produce la ecuación de una línea recta 4. Trazar la línea recta correspondiente a cada restricción en el plan, el área correspondiente a cada restricción lo define el signo correspondiente a cada restricción (≥ ó ≤) 5. El espacio en el cual se satisfacen las tres restricciones es el área factible 6. Las líneas paralelas que representan la función objetivo se trazan mediante la asignación de valores arbitrarios a fin de determinar la pendiente 7. La solución óptima puede determinarse al observar la dirección en la cual aumenta la función objetivo(Z)
  5. 5. CONJUNTO CONVEXO. Un conjunto C es convexo si el segmento rectilíneo que une cualquier par de puntos de C se encuentra totalmente en C CONJUNTO CONVEXO CONJUNTO NO CONVEXO
  6. 6. VARIABLESDEHOLGURAY VARIABLESDEEXCEDENTE Variable de holgura. Variable agregada al lado izquierdo de una restricción de "menor o igual que" para convertir la restricción en una igualdad. El valor de esta variable comúnmente puede interpretarse como la cantidad de recurso no usado. 6X + 3Y ≤ 12 6X+3Y+h=24 Variable de Excedente. Variable restada del lado izquierdo de una restricción de "mayor o igual que" para convertir dicha restricción en una igualdad. Generalmente el valor de esta variable puede interpretarse como la cantidad por encima de algún nivel mínimo requerido. 2X + 3Y ≥14 2X+3Y-h =14 RESTRICCIÓN ACTIVA. Dada una solución factible, una restricción es activa si al sustituir el valor de las variables se cumple la igualdad. Es decir, para esa solución el valor de la holgura o excedente, según sea el caso es CERO RESTRICCIÓN INACTIVA. Dada una solución factible, una restricción es inactiva si al sustituir el valor de las variables no se cumple la igualdad. Es decir, para esa solución el valor de la holgura o excedente, según sea el caso es DIFERENTE A CERO

×