SlideShare ist ein Scribd-Unternehmen logo
1 von 19
Plane of the Open Loop 
Transfer Function 
B(0) 
B(iw) 
-B(iw) 
()Bi 
Professor Walter W. Olson 
-1 
Real 
Imaginary 
Stable 
Department of Mechanical, Industrial and Manufacturing Engineering 
University of Toledo 
-1 is called the 
critical point 
Unstable 
Loop Transfer Function
Outline of Today’s Lecture 
 Review 
 Partial Fraction Expansion 
 real distinct roots 
 repeated roots 
 complex conjugate roots 
 Open Loop System 
 Nyquist Plot 
 Simple Nyquist Theorem 
 Nyquist Gain Scaling 
 Conditional Stability 
 Full Nyquist Theorem
Partial Fraction Expansion 
 When using Partial Fraction Expansion, our 
objective is to turn the Transfer Function 
2 
m k 
i i i i ni ni 
  
  
K s z s s 
(  ) (  2  
) 
  
1 1 
2 
r n q 
 w w 
 w w 
s s p s s 
(  ) (  2  
) 
i  1 i i  
1 
i ni ni 
G s 
( ) 
 
into a sum of fractions where the denominators 
are the factors of the denominator of the Transfer 
Function: 
K A ( s ) A ( s ) A ( s ) B ( s ) B ( s 
) 
n q 
1 2 1 
G s 
( ) ... ... 
        
2 2 
s s  p s  p s  p s   w s  w s   w s  
w 
2 2 
n n n q nq nq 
1 2 1 1 1 
r 
Then we use the linear property of Laplace 
Transforms and the relatively easy form to make 
the Inverse Transform.
Case 1: Real and Distinct Roots 
n 
i  
i 
 
Put the transfer function in the form of 
( ) ... 
n 
where the are called the residue at the pole 
and determined by 
  
... 
1 
( ) 
0 1 2 
1 2 
( ) 
G s 
( ) 
0 0 3 3 
n 
i i 
s 
G s 
s s p 
a a a a 
G s 
s s p s p s p 
a p 
a sG s a s p 
 
 
 
     
   
   
  
 
 
        
3 
1 
2 
1 1 
2 2 
( ) 
( ) ... 
n 
s p 
s p 
s p n n s p 
a s p G s 
a s p G s a s p G s 
  
  
   
Case 1: Real and Distinct Roots 
Example 
    
    
s s 
  
2 4 
1 5 
0 1 2 
( ) 
( ) 
1 5 
 2   4   1   5   5   1 
 
0 1 2 
      
2 2 2 2 
6 8 6 5 5 
0 1 2 
0 1 2 
1 2 1 
0 1 2 
1 2 2 
1 
0 0 
0.6 0.75 
6 5 6 
5 3.6 0.15 
5 8 1.6 
1.6 0.75 
( ) 
1 
G s 
s s s 
a a a 
G s 
s s s 
s s a s s a s s a s s 
s s a s s a s s a s s 
a a a 
a a a 
a a a 
a a a 
a a 
G s 
s s 
 
  
   
  
         
         
    
        
       
           
   
 
5 
0.15 
5 
s 
 
( ) 1.6 0.75 0.15 t t 
g t   e   
e 
Case 2: Complex Conjugate 
Roots 
2 2 
 
1 
2 
 
 
1 1 1 
... 
( ) 
... ( 2 ) 
We can either solve this using the method of matching coefficients 
which is usually more difficult or by a method similar to that 
previously used as follows: 
2 
q 
i i i i 
G s 
s s 
s s 
 w w 
 w w 
  
   
s s 
  
   w  w     w  w  
 
1 1 
1 1 1 1 1 1 1 1 
A ( s ) 
a a 
then the term 
  
s  s  s    s 
   
2  w w  w w  1  w w  
1 
proceeding as before 
i i i 
    
    
2 2 
2 
1 1 1 1 
2 
1 1 1 1 
1 2 
2 2 2 2 
1 1 1 1 1 1 1 1 
2 
1 
1 1 1 1 1 1 
2 
1 
s 
2 1 1 1 1 s 
1 
a s G s 
a s G s 
 w w  
 w w  
 w w  
 w w  
   
   
    
   
Case 3: Repeated Roots 
n n 
n n 
i i i 
G s 
n i s p 
i 
  
n i 
  
1 1 
1 
1 
2 
2 2 
3 
3 
... 
( ) 
n 
...( ) ... 
i 
Form the equation with the repeated terms expanded as 
( ) ... ... ... 
( ) ( ) 
n 
( ) ( ) 
n 
( ) 
( ) 
s p 
n 
n i 
s p 
n 
s p 
a a a 
G s 
s p s p s p 
a s p G s 
d 
a s p G s 
ds 
d 
a s p G s 
ds 
d 
a 
ds 
 
 
 
 
 
 
 
 
 
 
     
   
  
    
    
n 
   
   
  
3 
1 
    
1 1 
( ) 
... 
i 
( ) 
s p 
n 
n 
n i 
s p 
s p G s 
d 
a s p G s 
ds 
 
 
 

Heaviside Expansion 
  
  
  
  
1 
1 
Heaviside Expansion Formula: L 
where are the distinct roots of ( ) 
15( 2) 
2 
Example: ( ) 
( 2 25) 
Roots of the denominator are 0, 1 4.899, and 
i 
n 
i b t 
i 
i 
i 
A s A b 
e 
B s d B b 
ds 
b n B s 
s 
G s 
s s s 
i 
 
 
  
    
       
    
  
 
 
  
  
 
  
   
2 2 2 
 
  
15. 73.485i 15. 73.485i 
48.0 
    
3 
    
 
1 
2 
1 
0 1 4.899 1 4.899 
1 4.899 
1 4.899 
( 2 25) 2 2 3 4 25 
15( 2) 
L 
3 4 25 
30 
( ) 
25 
( 
0 9.798i 48.00 9.798i 
) 1.2 0.6 1.408i 
i 
i 
s t 
i s s 
t i t i t 
i 
i 
d 
B s s s s s s s 
ds 
s 
G s e 
s s 
g t e e e 
g t e 
    
  
  
        
   
  
  
 
 
    
   
  
   
  
   1 4.899 0.6 1.408i t i t e     
Loop Nomenclature 
Reference 
Input 
R(s) 
+- 
Output 
y(s) 
Error 
signal 
E(s) 
Open Loop 
Signal 
B(s) 
Plant 
G(s) 
Disturbance/Noise 
Sensor 
H(s) 
Prefilter 
F(s) 
Controller 
C(s) 
+- 
The plant is that which is to be controlled with transfer function G(s) 
The prefilter and the controller define the control laws of the system. 
The open loop signal is the signal that results from the actions of the 
prefilter, the controller, the plant and the sensor and has the transfer function 
F(s)C(s)G(s)H(s) 
The closed loop signal is the output of the system and has the transfer function 
F ( s ) C ( s ) G ( s 
) 
 C s G s H s 
1 ( ) ( ) ( )
Closed Loop System 
++ 
Output 
y(s) 
Error 
signal 
E(s) 
Open Loop 
Signal 
B(s) 
Plant 
P(s) 
Controller 
C(s) 
Input 
r(s) 
The closed loop transfer function is 
    
    
  
  
-1 
  
  
n s n s 
y s C s P s d s d s n s n s 
    
  
  
  
  
    
        
( ) 
  
            
( ) 
( ) 1 
1 
The characteristic polynomial is 
( ) 1 
For stability, the roots of ( ) m 
c p 
c p c p 
yr 
c p c p c p 
c p 
c p c p 
G s 
r s C s P s n s n s d s d s n s n s 
d s d s 
s C s P s d s d s n s n s 
s 
 
 
 
    
ust have negative real parts 
While we can check for stability, it does not give us design guidance
Note: Your book uses L(s) rather than B(s) 
To avoid confusion with the Laplace transform, I will use B(s) 
Open Loop System 
++ 
Output 
y(s) 
Error 
signal 
E(s) 
Open Loop 
Signal 
B(s) 
Plant 
P(s) 
Controller 
C(s) 
Input 
r(s) 
Sensor 
b s n s n s 
    
  
  
  
  
( ) 
The open loop transfer function is ( ) 
   
( ) 
c p 
c p 
B s C s P s 
r s d s d s 
-1 
If in the closed loop, the input r(s) were sinusoidal and if the signal were 
to continue in the same form and magnitude after the signal were disconnected, 
it would be necessary for 
n  s  
n  s 
 
( w )  c p 
  
1 0   
  c p 
B i 
d s d s
Open Loop System 
Nyquist Plot Error 
signal 
E(s) 
++ 
Output 
y(s) 
Open Loop 
Signal 
B(s) 
Plant 
P(s) 
Controller 
C(s) 
Input 
r(s) 
Sensor 
-1 
n  s  
n  s 
 
( w )  c p   
1 
0   
  c p 
B i 
d s d s 
-1 
Real 
Imaginary 
Plane of the Open Loop 
Transfer Function 
B(0) 
B(iw) 
B(i) 
-1 is called the 
critical point 
B(-iw)
Simple Nyquist TheoremError 
signal 
E(s) 
++ 
Output 
y(s) 
Open Loop 
Signal 
B(s) 
Plant 
P(s) 
Controller 
C(s) 
Input 
r(s) 
Sensor 
-1 
-1 
Plane of the Open Loop 
Transfer Function 
Real 
Imaginary 
B(0) 
B(iw) 
-B(iw) 
()Bi 
-1 is called the 
critical point 
Stable 
Unstable 
Simple Nyquist Theorem: 
For the loop transfer function, B(iw), if B(iw) has no poles in the right 
hand side, expect for simple poles on the imaginary axis, then the 
system is stable if there are no encirclements of the critical point -1.
Example 
1 
 Plot the Nyquist plot for ( ) 
 2 
 2 2 
B s 
s s s 
 
  
1 
   2 
B i 
( ) 
i w i w w 
i 
  
2 2 
w 
 
B (0) 
  
i 
B (1 i )   0.4  
0.2 
i 
B (  1 i )   0.4  
0.2 
i 
B (2 i )   0.1  
0.05 
i 
B (  2 i )   0.1  
0.05 
i 
-1 
Im 
Re 
Stable
Example 
 Plot the Nyquist plot for 
10 
  
( ) 
2 2 
B s 
s s s 
 
  
10 20 20 10 
   
   
  
  
2 4 
( ) 
2 2 4 
(0) 
(1 ) 4 2 
( 1 ) 4 2 
(2 ) 1 0.5 
( 2 ) 1 0.5 
(4 ) 0.077 0.135 
( 4 ) 0.077 135 
i 
B i 
i i i 
B i 
B i i 
B i i 
B i i 
B i i 
B i i 
B i i 
w 
w 
w w w w 
   
  
   
    
   
    
   
   
-1 
Im 
Re 
Unstable
Nyquist Gain Scaling 
 The form of the Nyquist plot is scaled by the 
system gain 
K 
  
B s 
( ) 
s s s 
  
2 2 
 
 Show with Sisotool
Conditional Stabilty 
 While most system increase stability by 
decreasing gain, some can be stabilized by 
increasing gain 
 Show with Sisotool 
2 
K s s 
(0.25 0.12 1) 
  
 2 
 
( ) 
1.69 1.09 1 
B s 
s s s 
 
 
Full Nyquist Theorem 
 Assume that the transfer function B(iw) with P 
poles has been plotted as a Nyquist plot. Let N be 
the number of clockwise encirclements of -1 by 
B(iw) minus the counterclockwise encirclements 
of -1 by B(iw)Then the closed loop system has 
Z=N+P poles in the right half plane. 
 Show with Sisotool 
K s i s i 
( 5 2 )( 5 2 ) 
    
        
( ) 
.5 2 .5 2 2 6 2 6 
B s 
s s i s i s i s i 
 
       
Summary 
 Open Loop System 
 Nyquist Plot 
 Simple Nyquist Theorem 
 Nyquist Gain Scaling 
 Conditional Stability 
 Full Nyquist Theorem 
-1 
Next Class: Stability Margins 
Im 
Re 
Unstable

Weitere ähnliche Inhalte

Was ist angesagt?

Control systems
Control systems Control systems
Control systems Dr.YNM
 
Notes nyquist plot and stability criteria
Notes nyquist plot and stability criteriaNotes nyquist plot and stability criteria
Notes nyquist plot and stability criteriaAleksandar Micic
 
Dcs lec03 - z-analysis of discrete time control systems
Dcs   lec03 - z-analysis of discrete time control systemsDcs   lec03 - z-analysis of discrete time control systems
Dcs lec03 - z-analysis of discrete time control systemsAmr E. Mohamed
 
Modern Control - Lec 03 - Feedback Control Systems Performance and Characteri...
Modern Control - Lec 03 - Feedback Control Systems Performance and Characteri...Modern Control - Lec 03 - Feedback Control Systems Performance and Characteri...
Modern Control - Lec 03 - Feedback Control Systems Performance and Characteri...Amr E. Mohamed
 
Modern Control - Lec 01 - Introduction to Control System
Modern Control - Lec 01 - Introduction to Control SystemModern Control - Lec 01 - Introduction to Control System
Modern Control - Lec 01 - Introduction to Control SystemAmr E. Mohamed
 
Root Locus Plot
Root Locus Plot Root Locus Plot
Root Locus Plot Hussain K
 
state space representation,State Space Model Controllability and Observabilit...
state space representation,State Space Model Controllability and Observabilit...state space representation,State Space Model Controllability and Observabilit...
state space representation,State Space Model Controllability and Observabilit...Waqas Afzal
 
digital control Chapter 2 slide
digital control Chapter 2 slidedigital control Chapter 2 slide
digital control Chapter 2 slideasyrafjpk
 
Chapter 4 time domain analysis
Chapter 4 time domain analysisChapter 4 time domain analysis
Chapter 4 time domain analysisBin Biny Bino
 
Lecture 2 transfer-function
Lecture 2 transfer-functionLecture 2 transfer-function
Lecture 2 transfer-functionSaifullah Memon
 
Block diagrams and signal flow graphs
Block diagrams and signal flow graphsBlock diagrams and signal flow graphs
Block diagrams and signal flow graphsHussain K
 
Lecture 6 modelling-of_electrical__electronic_systems
Lecture 6 modelling-of_electrical__electronic_systemsLecture 6 modelling-of_electrical__electronic_systems
Lecture 6 modelling-of_electrical__electronic_systemsSaifullah Memon
 
Transfer function and mathematical modeling
Transfer  function  and  mathematical  modelingTransfer  function  and  mathematical  modeling
Transfer function and mathematical modelingvishalgohel12195
 
Lecture 10 11-signal_flow_graphs
Lecture 10 11-signal_flow_graphsLecture 10 11-signal_flow_graphs
Lecture 10 11-signal_flow_graphsSaifullah Memon
 
Modern Control - Lec 06 - PID Tuning
Modern Control - Lec 06 - PID TuningModern Control - Lec 06 - PID Tuning
Modern Control - Lec 06 - PID TuningAmr E. Mohamed
 
Steady State Error
Steady State ErrorSteady State Error
Steady State Errorsahed dewan
 

Was ist angesagt? (20)

Control systems
Control systems Control systems
Control systems
 
Notes nyquist plot and stability criteria
Notes nyquist plot and stability criteriaNotes nyquist plot and stability criteria
Notes nyquist plot and stability criteria
 
Dcs lec03 - z-analysis of discrete time control systems
Dcs   lec03 - z-analysis of discrete time control systemsDcs   lec03 - z-analysis of discrete time control systems
Dcs lec03 - z-analysis of discrete time control systems
 
Modern Control - Lec 03 - Feedback Control Systems Performance and Characteri...
Modern Control - Lec 03 - Feedback Control Systems Performance and Characteri...Modern Control - Lec 03 - Feedback Control Systems Performance and Characteri...
Modern Control - Lec 03 - Feedback Control Systems Performance and Characteri...
 
Modern Control - Lec 01 - Introduction to Control System
Modern Control - Lec 01 - Introduction to Control SystemModern Control - Lec 01 - Introduction to Control System
Modern Control - Lec 01 - Introduction to Control System
 
Root Locus Plot
Root Locus Plot Root Locus Plot
Root Locus Plot
 
state space representation,State Space Model Controllability and Observabilit...
state space representation,State Space Model Controllability and Observabilit...state space representation,State Space Model Controllability and Observabilit...
state space representation,State Space Model Controllability and Observabilit...
 
digital control Chapter 2 slide
digital control Chapter 2 slidedigital control Chapter 2 slide
digital control Chapter 2 slide
 
Signal flow graph
Signal flow graphSignal flow graph
Signal flow graph
 
Polar Plot
Polar PlotPolar Plot
Polar Plot
 
Chapter 4 time domain analysis
Chapter 4 time domain analysisChapter 4 time domain analysis
Chapter 4 time domain analysis
 
Lecture 2 transfer-function
Lecture 2 transfer-functionLecture 2 transfer-function
Lecture 2 transfer-function
 
Block diagrams and signal flow graphs
Block diagrams and signal flow graphsBlock diagrams and signal flow graphs
Block diagrams and signal flow graphs
 
Lecture 6 modelling-of_electrical__electronic_systems
Lecture 6 modelling-of_electrical__electronic_systemsLecture 6 modelling-of_electrical__electronic_systems
Lecture 6 modelling-of_electrical__electronic_systems
 
Transfer function and mathematical modeling
Transfer  function  and  mathematical  modelingTransfer  function  and  mathematical  modeling
Transfer function and mathematical modeling
 
Polar plot
Polar plotPolar plot
Polar plot
 
Lecture 10 11-signal_flow_graphs
Lecture 10 11-signal_flow_graphsLecture 10 11-signal_flow_graphs
Lecture 10 11-signal_flow_graphs
 
Modern Control - Lec 06 - PID Tuning
Modern Control - Lec 06 - PID TuningModern Control - Lec 06 - PID Tuning
Modern Control - Lec 06 - PID Tuning
 
Steady State Error
Steady State ErrorSteady State Error
Steady State Error
 
State space models
State space modelsState space models
State space models
 

Ähnlich wie Lecture 23 loop transfer function

7-2.Nyquist Stability Criterion.ppt
7-2.Nyquist Stability Criterion.ppt7-2.Nyquist Stability Criterion.ppt
7-2.Nyquist Stability Criterion.pptDummyDummy74
 
State Space Realizations_new.pptx
State Space Realizations_new.pptxState Space Realizations_new.pptx
State Space Realizations_new.pptxMohdNajibAliMokhtar
 
Clase 02-modelado-de-sistemas-de-control (1)
Clase 02-modelado-de-sistemas-de-control (1)Clase 02-modelado-de-sistemas-de-control (1)
Clase 02-modelado-de-sistemas-de-control (1)ronald sanchez
 
State equations model based on modulo 2 arithmetic and its applciation on rec...
State equations model based on modulo 2 arithmetic and its applciation on rec...State equations model based on modulo 2 arithmetic and its applciation on rec...
State equations model based on modulo 2 arithmetic and its applciation on rec...Anax Fotopoulos
 
State Equations Model Based On Modulo 2 Arithmetic And Its Applciation On Rec...
State Equations Model Based On Modulo 2 Arithmetic And Its Applciation On Rec...State Equations Model Based On Modulo 2 Arithmetic And Its Applciation On Rec...
State Equations Model Based On Modulo 2 Arithmetic And Its Applciation On Rec...Anax_Fotopoulos
 
chapter-2.ppt control system slide for students
chapter-2.ppt control system slide for studentschapter-2.ppt control system slide for students
chapter-2.ppt control system slide for studentslipsa91
 
Time-Response Lecture
Time-Response LectureTime-Response Lecture
Time-Response Lectures2021677
 
Lecture -Earthquake Engineering (2).pdf
Lecture -Earthquake Engineering (2).pdfLecture -Earthquake Engineering (2).pdf
Lecture -Earthquake Engineering (2).pdfRayRabara
 
Geohydrology ii (3)
Geohydrology ii (3)Geohydrology ii (3)
Geohydrology ii (3)Amro Elfeki
 
Positive and negative solutions of a boundary value problem for a fractional ...
Positive and negative solutions of a boundary value problem for a fractional ...Positive and negative solutions of a boundary value problem for a fractional ...
Positive and negative solutions of a boundary value problem for a fractional ...journal ijrtem
 
fcs-0202.pptx
fcs-0202.pptxfcs-0202.pptx
fcs-0202.pptxsamy1604
 

Ähnlich wie Lecture 23 loop transfer function (20)

17330361.ppt
17330361.ppt17330361.ppt
17330361.ppt
 
7-2.Nyquist Stability Criterion.ppt
7-2.Nyquist Stability Criterion.ppt7-2.Nyquist Stability Criterion.ppt
7-2.Nyquist Stability Criterion.ppt
 
State Space Realizations_new.pptx
State Space Realizations_new.pptxState Space Realizations_new.pptx
State Space Realizations_new.pptx
 
Clase 02-modelado-de-sistemas-de-control (1)
Clase 02-modelado-de-sistemas-de-control (1)Clase 02-modelado-de-sistemas-de-control (1)
Clase 02-modelado-de-sistemas-de-control (1)
 
State equations model based on modulo 2 arithmetic and its applciation on rec...
State equations model based on modulo 2 arithmetic and its applciation on rec...State equations model based on modulo 2 arithmetic and its applciation on rec...
State equations model based on modulo 2 arithmetic and its applciation on rec...
 
State Equations Model Based On Modulo 2 Arithmetic And Its Applciation On Rec...
State Equations Model Based On Modulo 2 Arithmetic And Its Applciation On Rec...State Equations Model Based On Modulo 2 Arithmetic And Its Applciation On Rec...
State Equations Model Based On Modulo 2 Arithmetic And Its Applciation On Rec...
 
chapter-2.ppt control system slide for students
chapter-2.ppt control system slide for studentschapter-2.ppt control system slide for students
chapter-2.ppt control system slide for students
 
Discrete control2
Discrete control2Discrete control2
Discrete control2
 
2706264.ppt
2706264.ppt2706264.ppt
2706264.ppt
 
Discrete control
Discrete controlDiscrete control
Discrete control
 
Time-Response Lecture
Time-Response LectureTime-Response Lecture
Time-Response Lecture
 
alt klausur
alt klausuralt klausur
alt klausur
 
1619494.ppt
1619494.ppt1619494.ppt
1619494.ppt
 
Lecture -Earthquake Engineering (2).pdf
Lecture -Earthquake Engineering (2).pdfLecture -Earthquake Engineering (2).pdf
Lecture -Earthquake Engineering (2).pdf
 
rahul.ppt
rahul.pptrahul.ppt
rahul.ppt
 
Geohydrology ii (3)
Geohydrology ii (3)Geohydrology ii (3)
Geohydrology ii (3)
 
Ssmboost
SsmboostSsmboost
Ssmboost
 
Positive and negative solutions of a boundary value problem for a fractional ...
Positive and negative solutions of a boundary value problem for a fractional ...Positive and negative solutions of a boundary value problem for a fractional ...
Positive and negative solutions of a boundary value problem for a fractional ...
 
Block diagrams.ppt
Block diagrams.pptBlock diagrams.ppt
Block diagrams.ppt
 
fcs-0202.pptx
fcs-0202.pptxfcs-0202.pptx
fcs-0202.pptx
 

Kürzlich hochgeladen

Call Girls Bareilly Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bareilly Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Bareilly Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bareilly Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore EscortsCall Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escortsvidya singh
 
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort ServicePremium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Servicevidya singh
 
VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...
VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...
VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...Garima Khatri
 
Top Rated Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated  Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...Top Rated  Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...chandars293
 
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore EscortsVIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escortsaditipandeya
 
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls JaipurCall Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipurparulsinha
 
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Dipal Arora
 
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...hotbabesbook
 
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...Dipal Arora
 
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...narwatsonia7
 
Low Rate Call Girls Kochi Anika 8250192130 Independent Escort Service Kochi
Low Rate Call Girls Kochi Anika 8250192130 Independent Escort Service KochiLow Rate Call Girls Kochi Anika 8250192130 Independent Escort Service Kochi
Low Rate Call Girls Kochi Anika 8250192130 Independent Escort Service KochiSuhani Kapoor
 
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls AvailableVip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls AvailableNehru place Escorts
 
VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...
VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...
VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...narwatsonia7
 
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...Arohi Goyal
 

Kürzlich hochgeladen (20)

Call Girls Bareilly Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bareilly Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Bareilly Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bareilly Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
 
Russian Call Girls in Delhi Tanvi ➡️ 9711199012 💋📞 Independent Escort Service...
Russian Call Girls in Delhi Tanvi ➡️ 9711199012 💋📞 Independent Escort Service...Russian Call Girls in Delhi Tanvi ➡️ 9711199012 💋📞 Independent Escort Service...
Russian Call Girls in Delhi Tanvi ➡️ 9711199012 💋📞 Independent Escort Service...
 
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore EscortsCall Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
 
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort ServicePremium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
 
VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...
VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...
VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...
 
Top Rated Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated  Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...Top Rated  Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
 
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore EscortsVIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escorts
 
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls JaipurCall Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
 
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
 
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
 
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
 
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...
 
Low Rate Call Girls Kochi Anika 8250192130 Independent Escort Service Kochi
Low Rate Call Girls Kochi Anika 8250192130 Independent Escort Service KochiLow Rate Call Girls Kochi Anika 8250192130 Independent Escort Service Kochi
Low Rate Call Girls Kochi Anika 8250192130 Independent Escort Service Kochi
 
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls AvailableVip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
 
VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...
VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...
VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...
 
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
 

Lecture 23 loop transfer function

  • 1. Plane of the Open Loop Transfer Function B(0) B(iw) -B(iw) ()Bi Professor Walter W. Olson -1 Real Imaginary Stable Department of Mechanical, Industrial and Manufacturing Engineering University of Toledo -1 is called the critical point Unstable Loop Transfer Function
  • 2. Outline of Today’s Lecture  Review  Partial Fraction Expansion  real distinct roots  repeated roots  complex conjugate roots  Open Loop System  Nyquist Plot  Simple Nyquist Theorem  Nyquist Gain Scaling  Conditional Stability  Full Nyquist Theorem
  • 3. Partial Fraction Expansion  When using Partial Fraction Expansion, our objective is to turn the Transfer Function 2 m k i i i i ni ni     K s z s s (  ) (  2  )   1 1 2 r n q  w w  w w s s p s s (  ) (  2  ) i  1 i i  1 i ni ni G s ( )  into a sum of fractions where the denominators are the factors of the denominator of the Transfer Function: K A ( s ) A ( s ) A ( s ) B ( s ) B ( s ) n q 1 2 1 G s ( ) ... ...         2 2 s s  p s  p s  p s   w s  w s   w s  w 2 2 n n n q nq nq 1 2 1 1 1 r Then we use the linear property of Laplace Transforms and the relatively easy form to make the Inverse Transform.
  • 4. Case 1: Real and Distinct Roots n i  i  Put the transfer function in the form of ( ) ... n where the are called the residue at the pole and determined by   ... 1 ( ) 0 1 2 1 2 ( ) G s ( ) 0 0 3 3 n i i s G s s s p a a a a G s s s p s p s p a p a sG s a s p                           3 1 2 1 1 2 2 ( ) ( ) ... n s p s p s p n n s p a s p G s a s p G s a s p G s        
  • 5. Case 1: Real and Distinct Roots Example         s s   2 4 1 5 0 1 2 ( ) ( ) 1 5  2   4   1   5   5   1  0 1 2       2 2 2 2 6 8 6 5 5 0 1 2 0 1 2 1 2 1 0 1 2 1 2 2 1 0 0 0.6 0.75 6 5 6 5 3.6 0.15 5 8 1.6 1.6 0.75 ( ) 1 G s s s s a a a G s s s s s s a s s a s s a s s s s a s s a s s a s s a a a a a a a a a a a a a a G s s s                                                             5 0.15 5 s  ( ) 1.6 0.75 0.15 t t g t   e   e 
  • 6. Case 2: Complex Conjugate Roots 2 2  1 2   1 1 1 ... ( ) ... ( 2 ) We can either solve this using the method of matching coefficients which is usually more difficult or by a method similar to that previously used as follows: 2 q i i i i G s s s s s  w w  w w      s s      w  w     w  w   1 1 1 1 1 1 1 1 1 1 A ( s ) a a then the term   s  s  s    s    2  w w  w w  1  w w  1 proceeding as before i i i         2 2 2 1 1 1 1 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 s 2 1 1 1 1 s 1 a s G s a s G s  w w   w w   w w   w w               
  • 7. Case 3: Repeated Roots n n n n i i i G s n i s p i   n i   1 1 1 1 2 2 2 3 3 ... ( ) n ...( ) ... i Form the equation with the repeated terms expanded as ( ) ... ... ... ( ) ( ) n ( ) ( ) n ( ) ( ) s p n n i s p n s p a a a G s s p s p s p a s p G s d a s p G s ds d a s p G s ds d a ds                             n         3 1     1 1 ( ) ... i ( ) s p n n n i s p s p G s d a s p G s ds    
  • 8. Heaviside Expansion         1 1 Heaviside Expansion Formula: L where are the distinct roots of ( ) 15( 2) 2 Example: ( ) ( 2 25) Roots of the denominator are 0, 1 4.899, and i n i b t i i i A s A b e B s d B b ds b n B s s G s s s s i                                  2 2 2    15. 73.485i 15. 73.485i 48.0     3      1 2 1 0 1 4.899 1 4.899 1 4.899 1 4.899 ( 2 25) 2 2 3 4 25 15( 2) L 3 4 25 30 ( ) 25 ( 0 9.798i 48.00 9.798i ) 1.2 0.6 1.408i i i s t i s s t i t i t i i d B s s s s s s s ds s G s e s s g t e e e g t e                                           1 4.899 0.6 1.408i t i t e     
  • 9. Loop Nomenclature Reference Input R(s) +- Output y(s) Error signal E(s) Open Loop Signal B(s) Plant G(s) Disturbance/Noise Sensor H(s) Prefilter F(s) Controller C(s) +- The plant is that which is to be controlled with transfer function G(s) The prefilter and the controller define the control laws of the system. The open loop signal is the signal that results from the actions of the prefilter, the controller, the plant and the sensor and has the transfer function F(s)C(s)G(s)H(s) The closed loop signal is the output of the system and has the transfer function F ( s ) C ( s ) G ( s )  C s G s H s 1 ( ) ( ) ( )
  • 10. Closed Loop System ++ Output y(s) Error signal E(s) Open Loop Signal B(s) Plant P(s) Controller C(s) Input r(s) The closed loop transfer function is             -1     n s n s y s C s P s d s d s n s n s                         ( )               ( ) ( ) 1 1 The characteristic polynomial is ( ) 1 For stability, the roots of ( ) m c p c p c p yr c p c p c p c p c p c p G s r s C s P s n s n s d s d s n s n s d s d s s C s P s d s d s n s n s s        ust have negative real parts While we can check for stability, it does not give us design guidance
  • 11. Note: Your book uses L(s) rather than B(s) To avoid confusion with the Laplace transform, I will use B(s) Open Loop System ++ Output y(s) Error signal E(s) Open Loop Signal B(s) Plant P(s) Controller C(s) Input r(s) Sensor b s n s n s             ( ) The open loop transfer function is ( )    ( ) c p c p B s C s P s r s d s d s -1 If in the closed loop, the input r(s) were sinusoidal and if the signal were to continue in the same form and magnitude after the signal were disconnected, it would be necessary for n  s  n  s  ( w )  c p   1 0     c p B i d s d s
  • 12. Open Loop System Nyquist Plot Error signal E(s) ++ Output y(s) Open Loop Signal B(s) Plant P(s) Controller C(s) Input r(s) Sensor -1 n  s  n  s  ( w )  c p   1 0     c p B i d s d s -1 Real Imaginary Plane of the Open Loop Transfer Function B(0) B(iw) B(i) -1 is called the critical point B(-iw)
  • 13. Simple Nyquist TheoremError signal E(s) ++ Output y(s) Open Loop Signal B(s) Plant P(s) Controller C(s) Input r(s) Sensor -1 -1 Plane of the Open Loop Transfer Function Real Imaginary B(0) B(iw) -B(iw) ()Bi -1 is called the critical point Stable Unstable Simple Nyquist Theorem: For the loop transfer function, B(iw), if B(iw) has no poles in the right hand side, expect for simple poles on the imaginary axis, then the system is stable if there are no encirclements of the critical point -1.
  • 14. Example 1  Plot the Nyquist plot for ( )  2  2 2 B s s s s    1    2 B i ( ) i w i w w i   2 2 w  B (0)   i B (1 i )   0.4  0.2 i B (  1 i )   0.4  0.2 i B (2 i )   0.1  0.05 i B (  2 i )   0.1  0.05 i -1 Im Re Stable
  • 15. Example  Plot the Nyquist plot for 10   ( ) 2 2 B s s s s    10 20 20 10           2 4 ( ) 2 2 4 (0) (1 ) 4 2 ( 1 ) 4 2 (2 ) 1 0.5 ( 2 ) 1 0.5 (4 ) 0.077 0.135 ( 4 ) 0.077 135 i B i i i i B i B i i B i i B i i B i i B i i B i i w w w w w w                          -1 Im Re Unstable
  • 16. Nyquist Gain Scaling  The form of the Nyquist plot is scaled by the system gain K   B s ( ) s s s   2 2   Show with Sisotool
  • 17. Conditional Stabilty  While most system increase stability by decreasing gain, some can be stabilized by increasing gain  Show with Sisotool 2 K s s (0.25 0.12 1)    2  ( ) 1.69 1.09 1 B s s s s   
  • 18. Full Nyquist Theorem  Assume that the transfer function B(iw) with P poles has been plotted as a Nyquist plot. Let N be the number of clockwise encirclements of -1 by B(iw) minus the counterclockwise encirclements of -1 by B(iw)Then the closed loop system has Z=N+P poles in the right half plane.  Show with Sisotool K s i s i ( 5 2 )( 5 2 )             ( ) .5 2 .5 2 2 6 2 6 B s s s i s i s i s i         
  • 19. Summary  Open Loop System  Nyquist Plot  Simple Nyquist Theorem  Nyquist Gain Scaling  Conditional Stability  Full Nyquist Theorem -1 Next Class: Stability Margins Im Re Unstable