SlideShare ist ein Scribd-Unternehmen logo
1 von 14
Downloaden Sie, um offline zu lesen
REVISIONS
SYMBOL DESCRIPTION DATE APPROVAL
- Initial Release 2/19/2016 LF
SHEET REVISION STATUS
All sheets are at the same revision
ORIGINATOR
Susana Douglas Original signature on file
DATE FSC: 4540
APPROVED
Lou Fetter Original signature on file
General Specification for
Thermofoil Heater, All-
Polyimide, Space
Applications
ENGINEERING APPROVAL
Bruce Meinhold Original signature on file
CODE 562 SUPERVISORY APPROVAL
Kusum Sahu Original signature on file
ADDITIONAL APPROVAL S-311-P-841
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND 20771
CAGE CODE: 25306
S-311-P-841 Page 2 of 14 REV -
1.0 SCOPE
1.1 Purpose. This specification establishes the requirements for thermofoil heaters of an all-
polyimide (adhesive-less) construction for high reliability space applications. It defines
the process, test verification, and inspections required by product used in space flight
applications.
2.0 APPLICABLE DOCUMENTS
2.1 Government Specifications, Standards, and Handbooks. The following documents in
effect on this date of invitation for bids or requests for proposal form a part of this
specification to the extent specified herein. Unless otherwise specified, the issues of
these documents are those listed in the issue of the Department of Defense Index of
Specifications and Standards (DoD ISS) and supplement thereto, in effect on the date of
the contract or purchase order.
Military Standards
MIL-STD-129 Standard Practice, Military Marking for Shipment
and Storage
MIL-STD-202 Test Method Standard, Electronic and Electrical
Component Parts
MIL–STD–1285 Standard Practice, Marking of Electrical and
Electronic Parts
MIL–STD–1580 Test Method Standard, Destructive Physical
Analysis for Electronic, Electromagnetic, and
Electromechanical Parts
Military Specifications
MIL-DTL-81381 Detail Specification, Wire, Electric, Polyimide-
Insulated, Copper or Copper Alloy
National Aeronautics and Space Administration Goddard Space Flight Center (NASA
GSFC)
EEE-INST-002 Instructions for EEE Parts Selection, Screening,
Qualification, and Derating
S-311-M-70 Specification for the Performance of Destructive
Physical Analyses (DPA)
S-311-P-841 Page 3 of 14 REV -
2.2 Non–Government Publications. The following documents form a part of this document
to the extent specified herein.
American National Standards Institute (ANSI)
ANSI/ISO/IEC 17025 General Requirements for the Competence of
Testing and Calibration Laboratories
ANSI/NCSL Z540.3 Requirements for the Calibration of Measuring and
Test Equipment
American Society for Testing and Materials (ASTM)
ASTM D5213 Standard Specification for Polymeric Resin Film
for Electrical Insulation and Dielectric
Applications
ASTM E595 Standard Test Method for Total Mass Loss and
Collected Volatile Condensable Materials from
Outgassing in a Vacuum Environment
European Space Components Coordination (ESCC)
ESCC 3901/019 Detail Specification, Polyimide Insulated Wires
and Cables, Low Frequency, 600V, -200 to 200°C
International Organization for Standardization (ISO)
ISO 9001 Quality Management Systems – Requirements
Society of Automotive Engineers (SAE) International
AS9100 Quality Management Systems – Aerospace
Requirements
AS22759 Aerospace Standard, Wire, Electrical,
Fluoropolymer Insulated, Copper or Copper Alloy
2.3 Order of precedence. In the event of any conflict between the text of this specification
and the references cited herein, the text of this specification shall take precedence.
However, nothing in this text shall supersede applicable laws and regulations unless a
specific exemption has been obtained.
3.0 REQUIREMENTS
3.1 Individual Item Requirements. Heaters supplied to this specification shall be in
accordance with the requirements specified herein and the manufacturer’s detailed
drawing. Any conflict between the requirements of this specification and the heater
detailed drawing shall constitute a product non-conformance to this specification, for
which performance and reliability cannot be guaranteed.
S-311-P-841 Page 4 of 14 REV -
3.2 Part or Identifying Number (PIN). The PIN shall be as specified in the manufacturer’s
detailed drawing.
3.3 Temperature rating. Heaters shall meet the temperature requirements below. Note, the
maximum operating temperature limit of 220°C corresponds to a zero power level.
Appropriate derating should be applied at higher temperatures to account for self-
heating.
Storage (non-operating) temperature range: -65 to 220 °C
Operating temperature range: -65°C to 220 °C
3.4 Design and construction. Heaters shall be of the design and physical construction
specified herein.
3.4.1 Materials. The heater construction materials shall be in conformance with the
requirements specified herein. However, when a definite material is not specified, a
material shall be used that will enable the heaters to meet the performance
requirements of this specification. Acceptance or approval of any constituent
material shall not be construed as a guarantee of acceptance of the finished product.
All materials used in the design shall withstand the heater operating temperature
range specified in paragraph 3.3, with the exception of the backside mounting
adhesive.
3.4.1.1 Thermal vacuum outgassing. All construction materials must meet outgassing
requirements of 1.0% total mass loss (TML) maximum and 0.1% collected
volatile condensable materials (CVCM) maximum, when tested in accordance
with 4.5.4.1.
3.4.1.2 Heater element. The heating element shall be composed of a Ni-600 Inconel
(nickel-chromium-iron) alloy. Single or dual resistive elements may be used in
the design, but must be of a single layer in cross-section. The element(s) shall
be an etched foil uniform in cross-section, with a minimum trace width of 0.010
in. (0.0254 cm) by design. Spacing between foil traces shall not be less than
0.010 in. (0.0254 cm) by design. The spacing between the outer foil trace and
the heater edge, defined as the border trim, shall not be less than 0.010 in.
(0.0254 cm) by design.
3.4.1.3 Base material and protective cover layer. A polyimide (Kapton) layer shall be
used as the heater base material, also known as the substrate or mounting
surface. A second polyimide layer over the heating element shall provide a
protective enclosure.
3.4.1.4 Lead wire. The lead wire color, gauge size, length, and part/specification
number shall be in accordance with the heater detailed drawing. Lead wire shall
consist of a silver-coated copper alloy conductor and adhere to the applicable
S-311-P-841 Page 5 of 14 REV -
wire specifications and standards listed in section 2.0 of this specification. The
wire size shall be a minimum of 26 gauge for high strength copper alloy
conductors and 24 gauge for all other copper conductors. Lead wire insulation
may consist of polyimide (Kapton), polytetrafluoroethylene (PTFE/Teflon), or
ethylene-tetrafluoroethylene (ETFE) materials.
3.4.1.5 Lead termination. The termination of the lead wire shall be of a welded
construction, containing a minimum of two weld points between the lead wire
and landing bond pad. Lead wire terminations shall be enclosed in a hardened
Hysol epoxy potting, in order to secure lead wires to the heater such that lead
pull stresses are not transmitted to the weld joint.
3.4.1.6 Backside mounting adhesive (optional). Heaters require the installation of
adhesive on the heater backside in order to mount the product in the desired
application. The user has the option to install this adhesive post-delivery of the
product, or to request product from the manufacturer with installed backside
adhesive. In the latter circumstance, a high temperature acrylic adhesive (3M
966 or equivalent) shall be used that meets the outgassing requirements of
paragraph 3.4.1.1, and the application thermal requirements in the final installed
configuration (as defined by the user). The manufacturer shall only apply the
backside adhesive to product after completion of all quality inspections specified
in section 4.0 herein. Failure to do so will cause degradation to the adhesive and
potential damage to the heaters during voltage conditioning.
3.4.2 Configuration and physical dimensions. The heater outline, terminal lead
configuration, and physical dimensions (length, width, and thickness) of the product
shall be as specified in the detailed drawing. The dimensional tolerance for length
and width shall not exceed ±2% of the dimensional values. The heater thickness,
measured over foil traces, shall not exceed 0.010 in. (0.0254 cm) by design, and
shall not vary by more than ±0.001 in. (0.0254 mm) of the thickness specified in the
detailed drawing.
3.5 Workmanship. Heaters shall be processed in such a manner as to be uniform in quality,
and shall be free of any defects affecting life, serviceability, or performance. At a
minimum, product shall adhere to the criteria below when inspected per paragraph 4.4.1.
3.5.1 Heater element foil: The foil element shall be free of the defects described below.
3.5.1.1 Localized reduction. Any defect that results in a localized reduction of more
than 30% of the heater element width shall constitute a failure. These defects
include, but are not limited to, over-etching of the foil trace, voids, mouse-bites,
and scratches that fully penetrate through the metal foil to the base polyimide
material. Surface scratches are not cause for rejection.
3.5.1.2 Fractures and cracks. The presence of any fracture or crack in the foil element
shall be cause for rejection.
S-311-P-841 Page 6 of 14 REV -
3.5.1.3 Element to element and border trim spacing. Any foil defect, such as metal trace
protrusions or remaining un-etched foil in the element to element or border trim
spacing, shall not reduce the spacing to less than 0.005 in. (0.0127 cm).
Bridging between adjacent foil traces shall be cause for rejection.
3.5.1.4 Cross-section. The presence of foil inclusions, raised spots, or other foil defects
that result in a non-uniform cross-section, shall be cause for rejection. Over-
etching of the foil resulting in a trapezoidal cross-section of the foil trace shall
only be cause for rejection if the trace width is reduced by more than 30%.
3.5.2 Base material and protective cover layer: Polyimide (Kapton) base and cover layers
shall be free of delamination, blisters, or bubbles that reduce the element to element
and trim border spacing requirements to less than 0.005 in. (0.0127 cm). Any
delamination between the heating element and the substrate (mounting surface) shall
be cause for rejection. Minor scratches, abrasions, and pinholes on the Kapton
surface are acceptable provided they do not expose the heater element. Kapton
surface indentations and wrinkles are acceptable, provided there is no evidence of
delamination. Slight edge separation of the polyimide on the border trim line is
acceptable. Nicks, tears, or cuts on the heater edge which have a sharp point and
can lead to crack propagation further into the conducting region, shall be cause for
rejection. Polyimide protrusions or burrs on the heater edge shall be cause for
rejection if detected by the unaided eye.
3.5.3 Lead wire: The lead wire insulation shall be free of cracks, splits, and any nicks or
cuts that expose the wire conductor. Minor scratches, abrasions, and deformations
of the insulation are acceptable. Evidence of discoloration, corrosion, or flaking of
the conductor or conductor plating shall be cause for rejection.
3.5.4 Lead termination. No voids or gaps between the lead wire and landing bond pad
shall be present at the weld locations. Surface indentations of the polyimide around
or surrounding the lead wire attach region are acceptable, provided there is no
evidence of delamination. Punctures in the polyimide substrate at the weld locations
are cause for rejection. Excess epoxy from the lead attach potting material shall not
extend to the heater backside.
3.5.5 Foreign material: Any loose foreign object debris (FOD) shall be removed from the
assembly. FOD entrapped in the polyimide shall be cause for rejection if
delamination occurs in the surrounding area or if bridging adjacent foil element
traces. Additionally, conductive FOD shall be cause for rejection if it reduces the
element to element or border trim spacing to less than 0.005 in. (0.0127 cm).
Conductive debris can be characterized by a shiny or bright appearance using bright-
field microscopy. Any embedded FOD that causes a projection on the mounting
surface is considered rejectable.
S-311-P-841 Page 7 of 14 REV -
3.6 Power rating. Heaters shall have a maximum power rating of 4.5 W/in2
(0.7 W/cm2
)
when suspended in still air at 25°C. Note, this power rating is for test purposes only and
is not indicative of the maximum power rating in application (with heater mounted to a
heat sink). Actual rated power (or voltage) shall be specified in the detailed drawing.
For rated power levels greater than 4.5 W/in2
, the manufacturer shall indicate the
mounting adhesive type used when determining the rating.
3.7 DC resistance (DCR). When heater elements are tested as specified in paragraph 4.4.2,
the measured resistance shall be within the tolerance of the value specified by the
detailed drawing.
3.8 Dielectric withstanding voltage (DWV). When heaters are tested as specified in
paragraph 4.4.3, the leakage current between the element and the outer surface shall not
exceed 1 mA.
3.9 Insulation resistance (IR). When heaters are tested as specified in paragraph 4.4.4, the
insulation resistance shall not be less than 1000 megohms.
3.10 Thermal shock. When heaters are tested as specified in paragraph 4.4.5, there shall be
no evidence of physical damage. The change in DCR shall not exceed ±1%.
3.11 Voltage conditioning. When heaters are tested as specified in paragraph 4.4.6, there
shall be no evidence of physical damage, including blistering, delamination, or bubbles.
The change in DCR shall not exceed ±1%, the insulation resistance shall not decrease,
and the DWV leakage current shall not exceed 1 mA.
3.12 Low-temperature operation. When heater elements are tested as specified in paragraph
4.5.2.1, there shall be no evidence of physical damage. The change in DCR shall not
exceed ±1%.
3.13 Lead pull strength. When heaters are tested as specified in paragraph 4.5.2.2, there shall
be no loosening or fracturing of the lead attachment and no delaminations in the heater
element. The change in DCR shall not exceed ±1%.
3.14 Life. When heaters are tested as specified in paragraph 4.5.3.1, there shall be no
evidence of physical damage, including blistering, delamination, or bubbles. The
change in DCR shall not exceed ±1%, the insulation resistance shall not decrease, and
the DWV leakage current shall not exceed 1 mA.
3.15 Marking. Heaters shall be marked with the part number, cage code, date code,
characteristics, and ratings. Date code and cage code shall be in accordance with MIL-
STD-1285. Markings shall be made with an opaque permanent low outgassing ink and
shall remain legible at the end of all performance and quality inspection tests.
3.16 Percent Defective Allowable (PDA). When calculated per paragraph 4.4.8, the
cumulative PDA shall be ≤ 10%.
S-311-P-841 Page 8 of 14 REV -
4.0 QUALITY ASSURANCE PROVISIONS
4.1 Responsibility for inspection. The manufacturer is responsible for the performance of
all inspection requirements, as specified herein. GSFC reserves the right to perform any
of the inspections specified herein, where such inspections are deemed necessary to
verify conformance to the prescribed requirements.
4.2 Design and source approval. Prior to qualification, the manufacturer’s facility shall be
subjected to survey at the option of GSFC. Compliance with ANSI/NCSL Z540.3,
ANSI/ISO/IEC 17025, or equivalent is required. In addition, the history and detailed
engineering of the specific heater design shall be reviewed, as well as the documented
manufacturing and quality control procedures. Only those sources approved in the
design and source approval phase shall be eligible for qualification or award of contract
under this specification. Source approval and design approval do not constitute part lot
acceptance or an equivalent thereof.
4.2.1 Qualification. Heaters supplied in full conformance to this specification shall be
product which has been granted qualification approval by NASA GSFC.
4.2.1.1 QPLD status. Manufacturers supplying heaters to this specification and pre-
approved as a source of supply by NASA GSFC, shall be listed as a qualified
manufacturer for this product in the latest revision of the GSFC Qualified Parts
List Directory (QPLD).
4.2.2 QPLD summary report. Manufacturers supplying heaters to this specification shall
provide an annual product summary to the GSFC QPLD Administrator specified in
paragraph 6.2. The summary shall include the total number of lots manufactured to
this specification, with pass/fail statistics (inspection lot level).
4.2.3 Retention of qualification. On an annual basis, the manufacturer shall verify the
retention of qualification with the GSFC QPLD Administrator. Retention is based
on meeting the following requirements:
a. The manufacturer has not modified the design of the item.
b. The specification requirements for the item have not been amended so far as to
affect the character of the item.
c. Lot rejection for group A inspection has not occurred.
d. The requirements for group B inspection have been met every 24 months with
zero occurrence of failures.
e. The manufacturer has supplied an annual QPLD summary report and group B
inspection data every 24 months.
4.2.4 Requalification. Requalification shall be imposed following any change in design,
manufacture, materials, or quality control procedures as reviewed and approved
during qualification. Requalification shall be required if it is demonstrated that any
stipulation initially presented in the manufacturer’s certification no longer applies.
S-311-P-841 Page 9 of 14 REV -
Inspection discrepancies that are not suitably explained by failure analysis or by
other means, and for which corrective actions have not been implemented, shall also
be considered a basis for disqualification by GSFC.
4.3 Classification of inspections. The inspections specified herein are classified as follows:
a. Group A Inspection
b. Group B Inspection
4.3.1 Inspection of product for delivery. Inspection of product for delivery to this
specification shall consist of Group A inspection.
4.3.2 Inspection lot. An inspection lot shall consist of all heater products of the same
design and construction of a single nominal resistance value and voltage rating,
processed as a single lot through all manufacturing steps on the same equipment,
and identified by a common date code (see paragraph 3.15).
4.4 Group A inspection. Group A inspection shall be performed on 100% of the product for
each inspection lot of heaters supplied to this specification. Group A inspection shall
consist of the following tests listed in Table I, performed in the order shown.
Table I – Group A Inspection.
Test / Inspection Requirement Paragraph Method Paragraph
Visual and Mechanical Inspection 3.4, 3.5, and 3.15 4.4.1
DCR 3.7 4.4.2
DWV 3.8 4.4.3
IR 3.9 4.4.4
Thermal Shock 3.10 4.4.5
Voltage Conditioning 3.11 4.4.6
PDA 3.16 4.4.8
4.4.1 Visual and mechanical inspection. Visual and mechanical inspection shall be
performed using a minimum magnification of 10X, to verify that the physical
dimensions, workmanship, and markings are in accordance with the requirements of
paragraphs 3.4, 3.5, and 3.15. A Coordinate Measuring Machine (CMM) may be
used to verify physical dimensions.
4.4.2 DC resistance (DCR). The DCR shall be measured between the heater leads at 25°C
per MIL-STD-202, Method 303 and shall meet the requirements of paragraph 3.7.
4.4.3 Dielectric withstanding voltage (DWV). Heaters shall be tested per MIL-STD-202,
Method 301, at 500 VRMS for one minute. The potential shall be applied between
the element and conductive plates that are in intimate contact with the complete
outer surface of the heater. The measured leakage current shall meet the
requirements of paragraph 3.8.
S-311-P-841 Page 10 of 14 REV -
4.4.4 Insulation resistance (IR). The insulation resistance shall be measured between the
element and the entire outside surface at 25°C per MIL-STD-202, Method 302, Test
Condition B, and shall meet the requirements of paragraph 3.9.
4.4.5 Thermal shock. The unmounted heaters shall be tested per MIL-STD-202, Method
107, Test Condition C, except using a maximum temperature limit of 220°C.
Heaters shall meet the requirements of paragraph 3.10.
4.4.6 Voltage conditioning. Heaters shall be conditioned by suspension in still air at 25°C
± 5°C by their terminal leads. The applied voltage shall be the voltage required to
reach either the maximum operating temperature of 220°C, as verified by infrared
imaging, or the maximum rated power density of 4.5 W/in2
, whichever is higher (see
Figure 1 for explanation of voltage calculation based on rated power density). The
voltage shall be applied continuously for a minimum of 168 hours, after which the
heaters shall meet the requirements of paragraph 3.11. For dual element heaters,
both elements shall be powered simultaneously.
The rated voltage (Vrated) may be calculated based on rated power density
using the formula below:
_________________
Vrated = √ ( Prated x A x Rnom )
where
Vrated = Rated voltage (V)
Prated = Maximum rated power density (W/in.2
)
A = Effective heating area, defined as the total heater area
excluding the border trim and the lead wire termination
pads (in.2
)
Rnom = Nominal resistance (Ω)
Figure 1 – Sample schematic of a heater shown for the purposes of demonstrating rated
voltage calculation based on maximum rated power density.
Effective Heating Area
Border Trim
Lead Termination
S-311-P-841 Page 11 of 14 REV -
4.4.7 Failures. Heaters that do not pass Group A inspection shall be removed from the
inspection lot and shall not be furnished to this specification.
4.4.8 Lot rejection. PDA shall be calculated by combining all failures identified during
Group A thermal shock and voltage conditioning test, and dividing by the total
number of heaters submitted to thermal shock test. Failures at visual inspection and
initial electrical do not count towards PDA calculation. PDA shall meet the
requirements of paragraph 3.16, or the entire inspection lot shall be considered non-
conforming product and rejected.
4.5 Group B Inspection. Heaters used for Group B inspection shall have successfully
passed all Group A inspections. Group B inspection shall be performed by the
manufacturer on sample units produced with equipment, processes, and procedures
normally used in production. Data from an established reliability program subjecting
the same or similar parts to equivalent or more stringent testing may be submitted for
part or all of the Group B inspection requirements. Group B inspection tests and sample
size are specified in Table II and below, and shall be performed in the order shown.
Table II – Group B Inspection.
Test / Inspection
Requirement
Paragraph
Method
Paragraph
Sample
Size
Subgroup 1
Low-Temperature Operation
Lead Pull Strength
3.12
3.13
4.5.2.1
4.5.2.2
10
Subgroup 2
Life
Destructive Physical Analysis (DPA)
3.14
3.4, 3.5
4.5.3.1
4.5.3.2
10
1
Subgroup 3
Thermal Vacuum Outgassing*
3.4.1.1 4.5.4.1 2
* In lieu of test, the manufacturer may submit prior outgas test data for identical or similar product that uses
the same construction materials, provided the specified requirement and test method are met.
S-311-P-841 Page 12 of 14 REV -
4.5.1 Sample size. The number of heaters to be subjected to Group B inspection shall be
22, as shown in Table II.
4.5.2 Subgroup 1. Sample size shall be ten (10) with zero (0) rejects allowed.
4.5.2.1 Low-temperature operation. The unmounted heaters shall be placed in a
chamber at -65°C, and after one-hour stabilization at this temperature, full-rated
continuous power (as defined in paragraph 3.6) shall be applied for 45 minutes.
Fifteen (15) minutes after removal of power, the heaters shall be brought to 25°C
± 5°C in a period not exceeding 8 hours and DC resistance measured after
approximately 24 hours at 25°C. The heaters shall meet the requirements of
paragraph 3.12.
4.5.2.2 Lead pull strength. The leads shall be tested per MIL-STD-202, Method 211,
Test Condition A at 3 lbs. (1.36 kg) and shall meet the requirements of
paragraph 3.13.
4.5.3 Subgroup 2. Sample size shall be ten (10) with zero (0) rejects allowed.
4.5.3.1 Life. Heaters shall have rated power applied for 1000 hours continuously while
suspended in still air at 25°C. Heaters shall meet the requirements of paragraph
3.14. The applied voltage shall be the voltage required to reach either the
maximum heater operating temperature of 220°C or the maximum rated power
density of 4.5 W/in2
, whichever is higher.
4.5.3.2 Destructive Physical Analysis (DPA). Destructive physical analysis shall be
performed on one (1) life test sample per GSFC S-311-M-70, and shall
additionally meet the requirements of paragraphs 3.4 and 3.5 herein. A
minimum of two (x- and y-) axes shall be examined.
4.5.4 Subgroup 3. Sample size shall be two (2) with zero (0) rejects allowed.
4.5.4.1 Thermal vacuum outgassing. Heaters shall meet the requirements of paragraph
3.4.1.1 when tested in accordance with ASTM-E595.
4.5.5 Failures. A failure during group B inspection shall be cause for refusal to grant
qualification.
5.0 PREPARATION FOR DELIVERY
5.1 Preservation and packaging. Heaters shall be individually packaged and shall be
afforded preservation and packaging in accordance with the supplier’s normal
commercial practice.
S-311-P-841 Page 13 of 14 REV -
5.2 Packaging. Heaters packaged as specified shall be packed in containers of the type,
size, and kind commonly used for the purpose, and in a manner that will ensure
acceptance by a common carrier and a safe delivery at the destination. Shipping
containers shall comply with the uniform freight classification rules or regulations of
other carriers as applicable to the mode of transportation.
5.3 Marking. In addition to any special marking required by the contract or order, unit
packages, intermediate packages, and exterior shipping containers shall be marked in
accordance with MIL-STD-129.
6.0 NOTES
6.1 Ordering data. Acquisition documents should specify the following:
a. Number, title, and date of this specification
b. Part number and/or detailed drawing number
c. Quantity
6.2 Data Address. When supplemental data, reports, or information requests are to be
transmitted to GSFC, the following address shall be used, unless otherwise specified.
Custodian: QPLD Administrator
Parts, Packaging, and Assembly Technologies Office, Code 562
Goddard Space Flight Center
8800 Greenbelt Road
Mailstop 562.0
Greenbelt, Maryland 20771
6.3 Notice. When GSFC drawings, specification, or other data are used for any purpose
other than in connection with a definitely related GSFC procurement operation, the
United States Government thereby incurs no responsibility nor any obligation
whatsoever; the fact that GSFC might have formulated, furnished, or in any way
supplied the said drawings, specification, or other data is not to be regarded by
implication or otherwise in any manner licensing the holder or any person or
corporation, or conveying any right or permission to manufacture, use, or sell any
patented invention that may in any way be related thereto.
6.3 Approved source(s) of supply. Identification of the suggested source(s) of supply
hereon is not to be construed as a guarantee of present or continued availability as a
source of supply for the item.
6.4 Use and application information. The following precautions should be noted when
selecting a heater design for space flight use.
S-311-P-841 Page 14 of 14 REV -
6.4.1 Lead wire application information. Polyimide or Teflon insulated lead wire are the
vendor preferred use in the specified heater construction, due to the high
temperature properties associated with these insulation types. However, the user
should always take the necessary precautions when selecting an appropriate lead
wire type in their particular application.
6.4.1.1 Polyimide insulation. Polyimide wire may be preferred for its light weight and
excellent mechanical, electrical, and radiation resistance properties. However,
the insulation of this wire has known reliability problems in certain applications.
Extended exposure to moisture or alkaline cleaning chemicals has been shown to
degrade the insulation’s mechanical strength, resulting in flaking of the outer
insulation tape, and cracking from vibration or movement when installed around
tight radius bends. Therefore, the user should ensure the wire insulation will
NOT be used in such a way that allows for the potential of repeated mechanical
wear such as chafing, or any movement that can cause abrasions or cuts in the
insulation.
6.4.1.2 Teflon insulation. When using Teflon insulated wire, the user should use
caution to prevent compression or pinching of the insulation, due to its cold flow
(creep) characteristics. The user is advised NOT to route Teflon insulated wires
over sharp edges and tight turns, or apply tight stitches and tie wraps to the wire.
6.4.2 Radiation performance. The user is cautioned to evaluate the radiation resistance of
the heater construction materials specified herein for the intended space environment
in their particular application. While Kapton is known to be highly resistant to
radiation effects, Teflon insulation of lead wire can be degraded by solar radiation
above 5 x 105
rads. Polymers, in general, should be closely evaluated for radiation
resistance.
6.4.3 Mounting application information. When applying a mounting adhesive to the
heater backside, avoidance of air entrapment and bubbles is essential to achieve
desired performance. The same is true when physically mounting the heater to the
heat sink. Adhesive and mounting application practices recommended by the
manufacturer should be used. It is important to select an adhesive that will maintain
the bond throughout the design life in the application. In addition, it is
recommended to apply a fillet of adhesive between exposed heater edges and the
surface onto which the heater is being mounted, especially if being mounted on a
curved surface. Additional mounting practices may be required when mounting to
curved surfaces with small diameters. At any time, the heater should never be
flexed at a radius of curvature smaller than 0.03 in. The lead termination region
should never be flexed and should remain mounted on a flat surface.

Weitere ähnliche Inhalte

Was ist angesagt?

How to use microcool’s mdt fin technology
How to use microcool’s mdt fin technologyHow to use microcool’s mdt fin technology
How to use microcool’s mdt fin technologyScott Holland
 
Machinability assessment in turning of inconel 718 nickel base super alloys a...
Machinability assessment in turning of inconel 718 nickel base super alloys a...Machinability assessment in turning of inconel 718 nickel base super alloys a...
Machinability assessment in turning of inconel 718 nickel base super alloys a...IAEME Publication
 
IRJET- Optimization on Friction Welding of Duplex Stainless Steel-S31803
IRJET- Optimization on Friction Welding of Duplex Stainless Steel-S31803IRJET- Optimization on Friction Welding of Duplex Stainless Steel-S31803
IRJET- Optimization on Friction Welding of Duplex Stainless Steel-S31803IRJET Journal
 
Comparative studies on mechanical properties of aisi 4340 high strength alloy...
Comparative studies on mechanical properties of aisi 4340 high strength alloy...Comparative studies on mechanical properties of aisi 4340 high strength alloy...
Comparative studies on mechanical properties of aisi 4340 high strength alloy...eSAT Journals
 
Abtech BPG Fire Rated Enclosures - Fire Rated Resistant Enclosures
Abtech BPG Fire Rated Enclosures - Fire Rated Resistant EnclosuresAbtech BPG Fire Rated Enclosures - Fire Rated Resistant Enclosures
Abtech BPG Fire Rated Enclosures - Fire Rated Resistant EnclosuresThorne & Derrick International
 
En19 steel its properties and application
En19 steel its properties and applicationEn19 steel its properties and application
En19 steel its properties and applicationnajeeb muhamed
 
Astm a105
Astm a105Astm a105
Astm a105Luis_76
 
IRJET- Mechanical and Tribological Characterisation of Sintered Iron and Alu...
IRJET-	 Mechanical and Tribological Characterisation of Sintered Iron and Alu...IRJET-	 Mechanical and Tribological Characterisation of Sintered Iron and Alu...
IRJET- Mechanical and Tribological Characterisation of Sintered Iron and Alu...IRJET Journal
 
ENGINEERING RESEARCH PROJECT
ENGINEERING RESEARCH PROJECTENGINEERING RESEARCH PROJECT
ENGINEERING RESEARCH PROJECTnisarg parekh
 
Microstructure and tribological properties of nanoparticulate wc
Microstructure and tribological properties of nanoparticulate wcMicrostructure and tribological properties of nanoparticulate wc
Microstructure and tribological properties of nanoparticulate wcIAEME Publication
 
Optimization of Process Parameters of Tungsten Inert Gas Welding by Taguchi M...
Optimization of Process Parameters of Tungsten Inert Gas Welding by Taguchi M...Optimization of Process Parameters of Tungsten Inert Gas Welding by Taguchi M...
Optimization of Process Parameters of Tungsten Inert Gas Welding by Taguchi M...ijsrd.com
 
Welding duplex stainless steel
Welding duplex stainless steelWelding duplex stainless steel
Welding duplex stainless steelLalu Rajendran
 

Was ist angesagt? (18)

How to use microcool’s mdt fin technology
How to use microcool’s mdt fin technologyHow to use microcool’s mdt fin technology
How to use microcool’s mdt fin technology
 
Machinability assessment in turning of inconel 718 nickel base super alloys a...
Machinability assessment in turning of inconel 718 nickel base super alloys a...Machinability assessment in turning of inconel 718 nickel base super alloys a...
Machinability assessment in turning of inconel 718 nickel base super alloys a...
 
IRJET- Optimization on Friction Welding of Duplex Stainless Steel-S31803
IRJET- Optimization on Friction Welding of Duplex Stainless Steel-S31803IRJET- Optimization on Friction Welding of Duplex Stainless Steel-S31803
IRJET- Optimization on Friction Welding of Duplex Stainless Steel-S31803
 
Seminar on inconel718
Seminar on inconel718Seminar on inconel718
Seminar on inconel718
 
236135365 heat-treatment-manual
236135365 heat-treatment-manual236135365 heat-treatment-manual
236135365 heat-treatment-manual
 
Comparative studies on mechanical properties of aisi 4340 high strength alloy...
Comparative studies on mechanical properties of aisi 4340 high strength alloy...Comparative studies on mechanical properties of aisi 4340 high strength alloy...
Comparative studies on mechanical properties of aisi 4340 high strength alloy...
 
Abtech BPG Fire Rated Enclosures - Fire Rated Resistant Enclosures
Abtech BPG Fire Rated Enclosures - Fire Rated Resistant EnclosuresAbtech BPG Fire Rated Enclosures - Fire Rated Resistant Enclosures
Abtech BPG Fire Rated Enclosures - Fire Rated Resistant Enclosures
 
En19 steel its properties and application
En19 steel its properties and applicationEn19 steel its properties and application
En19 steel its properties and application
 
ASTM A269
ASTM A269ASTM A269
ASTM A269
 
Astm a105
Astm a105Astm a105
Astm a105
 
Heat treatment
Heat treatment Heat treatment
Heat treatment
 
IRJET- Mechanical and Tribological Characterisation of Sintered Iron and Alu...
IRJET-	 Mechanical and Tribological Characterisation of Sintered Iron and Alu...IRJET-	 Mechanical and Tribological Characterisation of Sintered Iron and Alu...
IRJET- Mechanical and Tribological Characterisation of Sintered Iron and Alu...
 
ENGINEERING RESEARCH PROJECT
ENGINEERING RESEARCH PROJECTENGINEERING RESEARCH PROJECT
ENGINEERING RESEARCH PROJECT
 
Microstructure and tribological properties of nanoparticulate wc
Microstructure and tribological properties of nanoparticulate wcMicrostructure and tribological properties of nanoparticulate wc
Microstructure and tribological properties of nanoparticulate wc
 
Forged flange
Forged flangeForged flange
Forged flange
 
Conduits and accessories
Conduits and accessoriesConduits and accessories
Conduits and accessories
 
Optimization of Process Parameters of Tungsten Inert Gas Welding by Taguchi M...
Optimization of Process Parameters of Tungsten Inert Gas Welding by Taguchi M...Optimization of Process Parameters of Tungsten Inert Gas Welding by Taguchi M...
Optimization of Process Parameters of Tungsten Inert Gas Welding by Taguchi M...
 
Welding duplex stainless steel
Welding duplex stainless steelWelding duplex stainless steel
Welding duplex stainless steel
 

Ähnlich wie General Specification for Thermofoil Heater, All-Polyimide, Space Applications

acero norma A727 a727m
acero norma A727 a727macero norma A727 a727m
acero norma A727 a727mMario Espinosa
 
Ceramic Coating on Piston Top in IC Engine to Reduce Thermal Losses
Ceramic Coating on Piston Top in IC Engine to Reduce Thermal LossesCeramic Coating on Piston Top in IC Engine to Reduce Thermal Losses
Ceramic Coating on Piston Top in IC Engine to Reduce Thermal LossesIRJET Journal
 
ISO 898-2 2012 Fasteners — Mechanical properties of fasteners made of carbon ...
ISO 898-2 2012 Fasteners — Mechanical properties of fasteners made of carbon ...ISO 898-2 2012 Fasteners — Mechanical properties of fasteners made of carbon ...
ISO 898-2 2012 Fasteners — Mechanical properties of fasteners made of carbon ...QuangTo19
 
IRJET- High Effect of 22Cr10AlY Coating Thickness on Air Hot Corrosion of...
IRJET-  	  High Effect of 22Cr10AlY Coating Thickness on Air Hot Corrosion of...IRJET-  	  High Effect of 22Cr10AlY Coating Thickness on Air Hot Corrosion of...
IRJET- High Effect of 22Cr10AlY Coating Thickness on Air Hot Corrosion of...IRJET Journal
 
EDUARDO H. PARE SPECS & SW_BUILDING & UNDERGROUND CABLES CIVIL WORKS
EDUARDO H. PARE SPECS & SW_BUILDING & UNDERGROUND CABLES CIVIL WORKSEDUARDO H. PARE SPECS & SW_BUILDING & UNDERGROUND CABLES CIVIL WORKS
EDUARDO H. PARE SPECS & SW_BUILDING & UNDERGROUND CABLES CIVIL WORKSEduardo H. Pare
 
SPECS & SW_BUILDING & UNDERGROUND CABLES CIVIL WORKS
SPECS & SW_BUILDING & UNDERGROUND CABLES CIVIL WORKSSPECS & SW_BUILDING & UNDERGROUND CABLES CIVIL WORKS
SPECS & SW_BUILDING & UNDERGROUND CABLES CIVIL WORKSEduardo H. Pare
 
EDUARDO H. PARE CIVIL, STRUCTURAL AND ARCHITECTURAL SPECIFICATIONS
EDUARDO H. PARE CIVIL, STRUCTURAL AND ARCHITECTURAL SPECIFICATIONSEDUARDO H. PARE CIVIL, STRUCTURAL AND ARCHITECTURAL SPECIFICATIONS
EDUARDO H. PARE CIVIL, STRUCTURAL AND ARCHITECTURAL SPECIFICATIONSEduardo H. Pare
 
2136-872A-X003-001-VER-A4000C (1).PDF
2136-872A-X003-001-VER-A4000C (1).PDF2136-872A-X003-001-VER-A4000C (1).PDF
2136-872A-X003-001-VER-A4000C (1).PDFWorldofAllLyrics
 
Acsr moose conductor
Acsr moose conductorAcsr moose conductor
Acsr moose conductorDineshsenthil
 
IRJET- Single Stop Transient Thermal Coupled with Structural Analysis and Rep...
IRJET- Single Stop Transient Thermal Coupled with Structural Analysis and Rep...IRJET- Single Stop Transient Thermal Coupled with Structural Analysis and Rep...
IRJET- Single Stop Transient Thermal Coupled with Structural Analysis and Rep...IRJET Journal
 
3M Cold Shrink Joint 145 kV Inline (Straight Through) SS145-II
3M Cold Shrink Joint 145 kV Inline (Straight Through) SS145-II3M Cold Shrink Joint 145 kV Inline (Straight Through) SS145-II
3M Cold Shrink Joint 145 kV Inline (Straight Through) SS145-IIThorne & Derrick International
 
Investigation of PolyMethyl Methacrylate for Speedometer Application
Investigation of PolyMethyl Methacrylate for Speedometer ApplicationInvestigation of PolyMethyl Methacrylate for Speedometer Application
Investigation of PolyMethyl Methacrylate for Speedometer ApplicationIRJET Journal
 
Mounting Considerations for International Rectifier’s Power Semiconductor Pac...
Mounting Considerations for International Rectifier’s Power Semiconductor Pac...Mounting Considerations for International Rectifier’s Power Semiconductor Pac...
Mounting Considerations for International Rectifier’s Power Semiconductor Pac...ZunAib Ali
 
Mil prf-22191 f military packaging
Mil prf-22191 f military packagingMil prf-22191 f military packaging
Mil prf-22191 f military packagingpinkinator
 
ICS 5000 UK version
ICS 5000 UK version ICS 5000 UK version
ICS 5000 UK version Schiedel UK
 
IRJET- Study of Loading Conditions for Three Plate Lap Welded Specimen us...
IRJET-  	  Study of Loading Conditions for Three Plate Lap Welded Specimen us...IRJET-  	  Study of Loading Conditions for Three Plate Lap Welded Specimen us...
IRJET- Study of Loading Conditions for Three Plate Lap Welded Specimen us...IRJET Journal
 

Ähnlich wie General Specification for Thermofoil Heater, All-Polyimide, Space Applications (20)

acero norma A727 a727m
acero norma A727 a727macero norma A727 a727m
acero norma A727 a727m
 
Ceramic Coating on Piston Top in IC Engine to Reduce Thermal Losses
Ceramic Coating on Piston Top in IC Engine to Reduce Thermal LossesCeramic Coating on Piston Top in IC Engine to Reduce Thermal Losses
Ceramic Coating on Piston Top in IC Engine to Reduce Thermal Losses
 
ISO 898-2 2012 Fasteners — Mechanical properties of fasteners made of carbon ...
ISO 898-2 2012 Fasteners — Mechanical properties of fasteners made of carbon ...ISO 898-2 2012 Fasteners — Mechanical properties of fasteners made of carbon ...
ISO 898-2 2012 Fasteners — Mechanical properties of fasteners made of carbon ...
 
IRJET- High Effect of 22Cr10AlY Coating Thickness on Air Hot Corrosion of...
IRJET-  	  High Effect of 22Cr10AlY Coating Thickness on Air Hot Corrosion of...IRJET-  	  High Effect of 22Cr10AlY Coating Thickness on Air Hot Corrosion of...
IRJET- High Effect of 22Cr10AlY Coating Thickness on Air Hot Corrosion of...
 
EDUARDO H. PARE SPECS & SW_BUILDING & UNDERGROUND CABLES CIVIL WORKS
EDUARDO H. PARE SPECS & SW_BUILDING & UNDERGROUND CABLES CIVIL WORKSEDUARDO H. PARE SPECS & SW_BUILDING & UNDERGROUND CABLES CIVIL WORKS
EDUARDO H. PARE SPECS & SW_BUILDING & UNDERGROUND CABLES CIVIL WORKS
 
SPECS & SW_BUILDING & UNDERGROUND CABLES CIVIL WORKS
SPECS & SW_BUILDING & UNDERGROUND CABLES CIVIL WORKSSPECS & SW_BUILDING & UNDERGROUND CABLES CIVIL WORKS
SPECS & SW_BUILDING & UNDERGROUND CABLES CIVIL WORKS
 
EDUARDO H. PARE CIVIL, STRUCTURAL AND ARCHITECTURAL SPECIFICATIONS
EDUARDO H. PARE CIVIL, STRUCTURAL AND ARCHITECTURAL SPECIFICATIONSEDUARDO H. PARE CIVIL, STRUCTURAL AND ARCHITECTURAL SPECIFICATIONS
EDUARDO H. PARE CIVIL, STRUCTURAL AND ARCHITECTURAL SPECIFICATIONS
 
2136-872A-X003-001-VER-A4000C (1).PDF
2136-872A-X003-001-VER-A4000C (1).PDF2136-872A-X003-001-VER-A4000C (1).PDF
2136-872A-X003-001-VER-A4000C (1).PDF
 
Acsr moose conductor
Acsr moose conductorAcsr moose conductor
Acsr moose conductor
 
IRJET- Single Stop Transient Thermal Coupled with Structural Analysis and Rep...
IRJET- Single Stop Transient Thermal Coupled with Structural Analysis and Rep...IRJET- Single Stop Transient Thermal Coupled with Structural Analysis and Rep...
IRJET- Single Stop Transient Thermal Coupled with Structural Analysis and Rep...
 
Alarmline digital manual
Alarmline digital manualAlarmline digital manual
Alarmline digital manual
 
3M Cold Shrink Joint 145 kV Inline (Straight Through) SS145-II
3M Cold Shrink Joint 145 kV Inline (Straight Through) SS145-II3M Cold Shrink Joint 145 kV Inline (Straight Through) SS145-II
3M Cold Shrink Joint 145 kV Inline (Straight Through) SS145-II
 
Spec u kon fsi 2021
Spec u kon fsi 2021Spec u kon fsi 2021
Spec u kon fsi 2021
 
Investigation of PolyMethyl Methacrylate for Speedometer Application
Investigation of PolyMethyl Methacrylate for Speedometer ApplicationInvestigation of PolyMethyl Methacrylate for Speedometer Application
Investigation of PolyMethyl Methacrylate for Speedometer Application
 
Mounting Considerations for International Rectifier’s Power Semiconductor Pac...
Mounting Considerations for International Rectifier’s Power Semiconductor Pac...Mounting Considerations for International Rectifier’s Power Semiconductor Pac...
Mounting Considerations for International Rectifier’s Power Semiconductor Pac...
 
Mtd4(5005)
Mtd4(5005)Mtd4(5005)
Mtd4(5005)
 
Mil prf-22191 f military packaging
Mil prf-22191 f military packagingMil prf-22191 f military packaging
Mil prf-22191 f military packaging
 
ICS 5000 UK version
ICS 5000 UK version ICS 5000 UK version
ICS 5000 UK version
 
Taiyaba rashid acp
Taiyaba rashid acpTaiyaba rashid acp
Taiyaba rashid acp
 
IRJET- Study of Loading Conditions for Three Plate Lap Welded Specimen us...
IRJET-  	  Study of Loading Conditions for Three Plate Lap Welded Specimen us...IRJET-  	  Study of Loading Conditions for Three Plate Lap Welded Specimen us...
IRJET- Study of Loading Conditions for Three Plate Lap Welded Specimen us...
 

Mehr von Belilove Company-Engineers

BCE Flanged, Replaceable, Multi-Thermocouple Feedthroughs
BCE Flanged, Replaceable, Multi-Thermocouple FeedthroughsBCE Flanged, Replaceable, Multi-Thermocouple Feedthroughs
BCE Flanged, Replaceable, Multi-Thermocouple FeedthroughsBelilove Company-Engineers
 
NASA Preferred Reliability Practices Vacuum Seals Design Criteria
NASA Preferred Reliability Practices Vacuum Seals Design CriteriaNASA Preferred Reliability Practices Vacuum Seals Design Criteria
NASA Preferred Reliability Practices Vacuum Seals Design CriteriaBelilove Company-Engineers
 
Application of alarm annunciator as cyber security layer
Application of alarm annunciator as cyber security layerApplication of alarm annunciator as cyber security layer
Application of alarm annunciator as cyber security layerBelilove Company-Engineers
 
Selecting the Right Magnetic Level Indicator (MLI)
Selecting the Right Magnetic Level Indicator (MLI)Selecting the Right Magnetic Level Indicator (MLI)
Selecting the Right Magnetic Level Indicator (MLI)Belilove Company-Engineers
 
Installation Operation Manual for Brooks GF100 Series
Installation Operation Manual for Brooks GF100 SeriesInstallation Operation Manual for Brooks GF100 Series
Installation Operation Manual for Brooks GF100 SeriesBelilove Company-Engineers
 
Process Heaters, Furnaces and Fired Heaters: Improving Efficiency and Reducin...
Process Heaters, Furnaces and Fired Heaters: Improving Efficiency and Reducin...Process Heaters, Furnaces and Fired Heaters: Improving Efficiency and Reducin...
Process Heaters, Furnaces and Fired Heaters: Improving Efficiency and Reducin...Belilove Company-Engineers
 
Comparing Industrial Level Displacer Transmitter Technologies
Comparing Industrial Level Displacer Transmitter TechnologiesComparing Industrial Level Displacer Transmitter Technologies
Comparing Industrial Level Displacer Transmitter TechnologiesBelilove Company-Engineers
 
Ammonium & Nitrate Analyzers for Water Treatment
Ammonium & Nitrate Analyzers for Water TreatmentAmmonium & Nitrate Analyzers for Water Treatment
Ammonium & Nitrate Analyzers for Water TreatmentBelilove Company-Engineers
 
Optimizing the Steam Generation Cycle and Condensate Recovery Process
Optimizing the Steam Generation Cycle and Condensate Recovery ProcessOptimizing the Steam Generation Cycle and Condensate Recovery Process
Optimizing the Steam Generation Cycle and Condensate Recovery ProcessBelilove Company-Engineers
 
Control Valves for the Power Generation Industry" A Product and Applications ...
Control Valves for the Power Generation Industry" A Product and Applications ...Control Valves for the Power Generation Industry" A Product and Applications ...
Control Valves for the Power Generation Industry" A Product and Applications ...Belilove Company-Engineers
 
Combustion Analyzer to Add Extra Layer of Safety to Burner Management System
Combustion Analyzer to Add Extra Layer of Safety to Burner Management SystemCombustion Analyzer to Add Extra Layer of Safety to Burner Management System
Combustion Analyzer to Add Extra Layer of Safety to Burner Management SystemBelilove Company-Engineers
 
Applying Thin Film Coatings in Medical Devices
Applying Thin Film Coatings in Medical DevicesApplying Thin Film Coatings in Medical Devices
Applying Thin Film Coatings in Medical DevicesBelilove Company-Engineers
 
Electric Heating Element Technical Reference Guide
Electric Heating Element Technical Reference GuideElectric Heating Element Technical Reference Guide
Electric Heating Element Technical Reference GuideBelilove Company-Engineers
 

Mehr von Belilove Company-Engineers (20)

BCE’s Vacuum Ring Heater
BCE’s Vacuum Ring HeaterBCE’s Vacuum Ring Heater
BCE’s Vacuum Ring Heater
 
BCE SUPERCIRC Heater
BCE SUPERCIRC HeaterBCE SUPERCIRC Heater
BCE SUPERCIRC Heater
 
BCE Flanged, Replaceable, Multi-Thermocouple Feedthroughs
BCE Flanged, Replaceable, Multi-Thermocouple FeedthroughsBCE Flanged, Replaceable, Multi-Thermocouple Feedthroughs
BCE Flanged, Replaceable, Multi-Thermocouple Feedthroughs
 
NASA Preferred Reliability Practices Vacuum Seals Design Criteria
NASA Preferred Reliability Practices Vacuum Seals Design CriteriaNASA Preferred Reliability Practices Vacuum Seals Design Criteria
NASA Preferred Reliability Practices Vacuum Seals Design Criteria
 
Heaters for process air and gases
Heaters for process air and gasesHeaters for process air and gases
Heaters for process air and gases
 
Magnetic Level Indicator Selection Guide
Magnetic Level Indicator Selection GuideMagnetic Level Indicator Selection Guide
Magnetic Level Indicator Selection Guide
 
Liquid Turbine Flow Meter
Liquid Turbine Flow MeterLiquid Turbine Flow Meter
Liquid Turbine Flow Meter
 
Application of alarm annunciator as cyber security layer
Application of alarm annunciator as cyber security layerApplication of alarm annunciator as cyber security layer
Application of alarm annunciator as cyber security layer
 
Selecting the Right Magnetic Level Indicator (MLI)
Selecting the Right Magnetic Level Indicator (MLI)Selecting the Right Magnetic Level Indicator (MLI)
Selecting the Right Magnetic Level Indicator (MLI)
 
Installation Operation Manual for Brooks GF100 Series
Installation Operation Manual for Brooks GF100 SeriesInstallation Operation Manual for Brooks GF100 Series
Installation Operation Manual for Brooks GF100 Series
 
Process Heaters, Furnaces and Fired Heaters: Improving Efficiency and Reducin...
Process Heaters, Furnaces and Fired Heaters: Improving Efficiency and Reducin...Process Heaters, Furnaces and Fired Heaters: Improving Efficiency and Reducin...
Process Heaters, Furnaces and Fired Heaters: Improving Efficiency and Reducin...
 
Comparing Industrial Level Displacer Transmitter Technologies
Comparing Industrial Level Displacer Transmitter TechnologiesComparing Industrial Level Displacer Transmitter Technologies
Comparing Industrial Level Displacer Transmitter Technologies
 
Ammonium & Nitrate Analyzers for Water Treatment
Ammonium & Nitrate Analyzers for Water TreatmentAmmonium & Nitrate Analyzers for Water Treatment
Ammonium & Nitrate Analyzers for Water Treatment
 
Optimizing the Steam Generation Cycle and Condensate Recovery Process
Optimizing the Steam Generation Cycle and Condensate Recovery ProcessOptimizing the Steam Generation Cycle and Condensate Recovery Process
Optimizing the Steam Generation Cycle and Condensate Recovery Process
 
Control Valves for the Power Generation Industry" A Product and Applications ...
Control Valves for the Power Generation Industry" A Product and Applications ...Control Valves for the Power Generation Industry" A Product and Applications ...
Control Valves for the Power Generation Industry" A Product and Applications ...
 
Combustion Analyzer to Add Extra Layer of Safety to Burner Management System
Combustion Analyzer to Add Extra Layer of Safety to Burner Management SystemCombustion Analyzer to Add Extra Layer of Safety to Burner Management System
Combustion Analyzer to Add Extra Layer of Safety to Burner Management System
 
Applying Thin Film Coatings in Medical Devices
Applying Thin Film Coatings in Medical DevicesApplying Thin Film Coatings in Medical Devices
Applying Thin Film Coatings in Medical Devices
 
Intrinsic Safety Explained
Intrinsic Safety ExplainedIntrinsic Safety Explained
Intrinsic Safety Explained
 
BCE Custom Vacuum Feedthroughs
BCE Custom Vacuum FeedthroughsBCE Custom Vacuum Feedthroughs
BCE Custom Vacuum Feedthroughs
 
Electric Heating Element Technical Reference Guide
Electric Heating Element Technical Reference GuideElectric Heating Element Technical Reference Guide
Electric Heating Element Technical Reference Guide
 

Kürzlich hochgeladen

Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Standamitlee9823
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfKamal Acharya
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Christo Ananth
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapRishantSharmaFr
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdfKamal Acharya
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXssuser89054b
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...SUHANI PANDEY
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfRagavanV2
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...ranjana rawat
 

Kürzlich hochgeladen (20)

Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 

General Specification for Thermofoil Heater, All-Polyimide, Space Applications

  • 1. REVISIONS SYMBOL DESCRIPTION DATE APPROVAL - Initial Release 2/19/2016 LF SHEET REVISION STATUS All sheets are at the same revision ORIGINATOR Susana Douglas Original signature on file DATE FSC: 4540 APPROVED Lou Fetter Original signature on file General Specification for Thermofoil Heater, All- Polyimide, Space Applications ENGINEERING APPROVAL Bruce Meinhold Original signature on file CODE 562 SUPERVISORY APPROVAL Kusum Sahu Original signature on file ADDITIONAL APPROVAL S-311-P-841 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GODDARD SPACE FLIGHT CENTER GREENBELT, MARYLAND 20771 CAGE CODE: 25306
  • 2. S-311-P-841 Page 2 of 14 REV - 1.0 SCOPE 1.1 Purpose. This specification establishes the requirements for thermofoil heaters of an all- polyimide (adhesive-less) construction for high reliability space applications. It defines the process, test verification, and inspections required by product used in space flight applications. 2.0 APPLICABLE DOCUMENTS 2.1 Government Specifications, Standards, and Handbooks. The following documents in effect on this date of invitation for bids or requests for proposal form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (DoD ISS) and supplement thereto, in effect on the date of the contract or purchase order. Military Standards MIL-STD-129 Standard Practice, Military Marking for Shipment and Storage MIL-STD-202 Test Method Standard, Electronic and Electrical Component Parts MIL–STD–1285 Standard Practice, Marking of Electrical and Electronic Parts MIL–STD–1580 Test Method Standard, Destructive Physical Analysis for Electronic, Electromagnetic, and Electromechanical Parts Military Specifications MIL-DTL-81381 Detail Specification, Wire, Electric, Polyimide- Insulated, Copper or Copper Alloy National Aeronautics and Space Administration Goddard Space Flight Center (NASA GSFC) EEE-INST-002 Instructions for EEE Parts Selection, Screening, Qualification, and Derating S-311-M-70 Specification for the Performance of Destructive Physical Analyses (DPA)
  • 3. S-311-P-841 Page 3 of 14 REV - 2.2 Non–Government Publications. The following documents form a part of this document to the extent specified herein. American National Standards Institute (ANSI) ANSI/ISO/IEC 17025 General Requirements for the Competence of Testing and Calibration Laboratories ANSI/NCSL Z540.3 Requirements for the Calibration of Measuring and Test Equipment American Society for Testing and Materials (ASTM) ASTM D5213 Standard Specification for Polymeric Resin Film for Electrical Insulation and Dielectric Applications ASTM E595 Standard Test Method for Total Mass Loss and Collected Volatile Condensable Materials from Outgassing in a Vacuum Environment European Space Components Coordination (ESCC) ESCC 3901/019 Detail Specification, Polyimide Insulated Wires and Cables, Low Frequency, 600V, -200 to 200°C International Organization for Standardization (ISO) ISO 9001 Quality Management Systems – Requirements Society of Automotive Engineers (SAE) International AS9100 Quality Management Systems – Aerospace Requirements AS22759 Aerospace Standard, Wire, Electrical, Fluoropolymer Insulated, Copper or Copper Alloy 2.3 Order of precedence. In the event of any conflict between the text of this specification and the references cited herein, the text of this specification shall take precedence. However, nothing in this text shall supersede applicable laws and regulations unless a specific exemption has been obtained. 3.0 REQUIREMENTS 3.1 Individual Item Requirements. Heaters supplied to this specification shall be in accordance with the requirements specified herein and the manufacturer’s detailed drawing. Any conflict between the requirements of this specification and the heater detailed drawing shall constitute a product non-conformance to this specification, for which performance and reliability cannot be guaranteed.
  • 4. S-311-P-841 Page 4 of 14 REV - 3.2 Part or Identifying Number (PIN). The PIN shall be as specified in the manufacturer’s detailed drawing. 3.3 Temperature rating. Heaters shall meet the temperature requirements below. Note, the maximum operating temperature limit of 220°C corresponds to a zero power level. Appropriate derating should be applied at higher temperatures to account for self- heating. Storage (non-operating) temperature range: -65 to 220 °C Operating temperature range: -65°C to 220 °C 3.4 Design and construction. Heaters shall be of the design and physical construction specified herein. 3.4.1 Materials. The heater construction materials shall be in conformance with the requirements specified herein. However, when a definite material is not specified, a material shall be used that will enable the heaters to meet the performance requirements of this specification. Acceptance or approval of any constituent material shall not be construed as a guarantee of acceptance of the finished product. All materials used in the design shall withstand the heater operating temperature range specified in paragraph 3.3, with the exception of the backside mounting adhesive. 3.4.1.1 Thermal vacuum outgassing. All construction materials must meet outgassing requirements of 1.0% total mass loss (TML) maximum and 0.1% collected volatile condensable materials (CVCM) maximum, when tested in accordance with 4.5.4.1. 3.4.1.2 Heater element. The heating element shall be composed of a Ni-600 Inconel (nickel-chromium-iron) alloy. Single or dual resistive elements may be used in the design, but must be of a single layer in cross-section. The element(s) shall be an etched foil uniform in cross-section, with a minimum trace width of 0.010 in. (0.0254 cm) by design. Spacing between foil traces shall not be less than 0.010 in. (0.0254 cm) by design. The spacing between the outer foil trace and the heater edge, defined as the border trim, shall not be less than 0.010 in. (0.0254 cm) by design. 3.4.1.3 Base material and protective cover layer. A polyimide (Kapton) layer shall be used as the heater base material, also known as the substrate or mounting surface. A second polyimide layer over the heating element shall provide a protective enclosure. 3.4.1.4 Lead wire. The lead wire color, gauge size, length, and part/specification number shall be in accordance with the heater detailed drawing. Lead wire shall consist of a silver-coated copper alloy conductor and adhere to the applicable
  • 5. S-311-P-841 Page 5 of 14 REV - wire specifications and standards listed in section 2.0 of this specification. The wire size shall be a minimum of 26 gauge for high strength copper alloy conductors and 24 gauge for all other copper conductors. Lead wire insulation may consist of polyimide (Kapton), polytetrafluoroethylene (PTFE/Teflon), or ethylene-tetrafluoroethylene (ETFE) materials. 3.4.1.5 Lead termination. The termination of the lead wire shall be of a welded construction, containing a minimum of two weld points between the lead wire and landing bond pad. Lead wire terminations shall be enclosed in a hardened Hysol epoxy potting, in order to secure lead wires to the heater such that lead pull stresses are not transmitted to the weld joint. 3.4.1.6 Backside mounting adhesive (optional). Heaters require the installation of adhesive on the heater backside in order to mount the product in the desired application. The user has the option to install this adhesive post-delivery of the product, or to request product from the manufacturer with installed backside adhesive. In the latter circumstance, a high temperature acrylic adhesive (3M 966 or equivalent) shall be used that meets the outgassing requirements of paragraph 3.4.1.1, and the application thermal requirements in the final installed configuration (as defined by the user). The manufacturer shall only apply the backside adhesive to product after completion of all quality inspections specified in section 4.0 herein. Failure to do so will cause degradation to the adhesive and potential damage to the heaters during voltage conditioning. 3.4.2 Configuration and physical dimensions. The heater outline, terminal lead configuration, and physical dimensions (length, width, and thickness) of the product shall be as specified in the detailed drawing. The dimensional tolerance for length and width shall not exceed ±2% of the dimensional values. The heater thickness, measured over foil traces, shall not exceed 0.010 in. (0.0254 cm) by design, and shall not vary by more than ±0.001 in. (0.0254 mm) of the thickness specified in the detailed drawing. 3.5 Workmanship. Heaters shall be processed in such a manner as to be uniform in quality, and shall be free of any defects affecting life, serviceability, or performance. At a minimum, product shall adhere to the criteria below when inspected per paragraph 4.4.1. 3.5.1 Heater element foil: The foil element shall be free of the defects described below. 3.5.1.1 Localized reduction. Any defect that results in a localized reduction of more than 30% of the heater element width shall constitute a failure. These defects include, but are not limited to, over-etching of the foil trace, voids, mouse-bites, and scratches that fully penetrate through the metal foil to the base polyimide material. Surface scratches are not cause for rejection. 3.5.1.2 Fractures and cracks. The presence of any fracture or crack in the foil element shall be cause for rejection.
  • 6. S-311-P-841 Page 6 of 14 REV - 3.5.1.3 Element to element and border trim spacing. Any foil defect, such as metal trace protrusions or remaining un-etched foil in the element to element or border trim spacing, shall not reduce the spacing to less than 0.005 in. (0.0127 cm). Bridging between adjacent foil traces shall be cause for rejection. 3.5.1.4 Cross-section. The presence of foil inclusions, raised spots, or other foil defects that result in a non-uniform cross-section, shall be cause for rejection. Over- etching of the foil resulting in a trapezoidal cross-section of the foil trace shall only be cause for rejection if the trace width is reduced by more than 30%. 3.5.2 Base material and protective cover layer: Polyimide (Kapton) base and cover layers shall be free of delamination, blisters, or bubbles that reduce the element to element and trim border spacing requirements to less than 0.005 in. (0.0127 cm). Any delamination between the heating element and the substrate (mounting surface) shall be cause for rejection. Minor scratches, abrasions, and pinholes on the Kapton surface are acceptable provided they do not expose the heater element. Kapton surface indentations and wrinkles are acceptable, provided there is no evidence of delamination. Slight edge separation of the polyimide on the border trim line is acceptable. Nicks, tears, or cuts on the heater edge which have a sharp point and can lead to crack propagation further into the conducting region, shall be cause for rejection. Polyimide protrusions or burrs on the heater edge shall be cause for rejection if detected by the unaided eye. 3.5.3 Lead wire: The lead wire insulation shall be free of cracks, splits, and any nicks or cuts that expose the wire conductor. Minor scratches, abrasions, and deformations of the insulation are acceptable. Evidence of discoloration, corrosion, or flaking of the conductor or conductor plating shall be cause for rejection. 3.5.4 Lead termination. No voids or gaps between the lead wire and landing bond pad shall be present at the weld locations. Surface indentations of the polyimide around or surrounding the lead wire attach region are acceptable, provided there is no evidence of delamination. Punctures in the polyimide substrate at the weld locations are cause for rejection. Excess epoxy from the lead attach potting material shall not extend to the heater backside. 3.5.5 Foreign material: Any loose foreign object debris (FOD) shall be removed from the assembly. FOD entrapped in the polyimide shall be cause for rejection if delamination occurs in the surrounding area or if bridging adjacent foil element traces. Additionally, conductive FOD shall be cause for rejection if it reduces the element to element or border trim spacing to less than 0.005 in. (0.0127 cm). Conductive debris can be characterized by a shiny or bright appearance using bright- field microscopy. Any embedded FOD that causes a projection on the mounting surface is considered rejectable.
  • 7. S-311-P-841 Page 7 of 14 REV - 3.6 Power rating. Heaters shall have a maximum power rating of 4.5 W/in2 (0.7 W/cm2 ) when suspended in still air at 25°C. Note, this power rating is for test purposes only and is not indicative of the maximum power rating in application (with heater mounted to a heat sink). Actual rated power (or voltage) shall be specified in the detailed drawing. For rated power levels greater than 4.5 W/in2 , the manufacturer shall indicate the mounting adhesive type used when determining the rating. 3.7 DC resistance (DCR). When heater elements are tested as specified in paragraph 4.4.2, the measured resistance shall be within the tolerance of the value specified by the detailed drawing. 3.8 Dielectric withstanding voltage (DWV). When heaters are tested as specified in paragraph 4.4.3, the leakage current between the element and the outer surface shall not exceed 1 mA. 3.9 Insulation resistance (IR). When heaters are tested as specified in paragraph 4.4.4, the insulation resistance shall not be less than 1000 megohms. 3.10 Thermal shock. When heaters are tested as specified in paragraph 4.4.5, there shall be no evidence of physical damage. The change in DCR shall not exceed ±1%. 3.11 Voltage conditioning. When heaters are tested as specified in paragraph 4.4.6, there shall be no evidence of physical damage, including blistering, delamination, or bubbles. The change in DCR shall not exceed ±1%, the insulation resistance shall not decrease, and the DWV leakage current shall not exceed 1 mA. 3.12 Low-temperature operation. When heater elements are tested as specified in paragraph 4.5.2.1, there shall be no evidence of physical damage. The change in DCR shall not exceed ±1%. 3.13 Lead pull strength. When heaters are tested as specified in paragraph 4.5.2.2, there shall be no loosening or fracturing of the lead attachment and no delaminations in the heater element. The change in DCR shall not exceed ±1%. 3.14 Life. When heaters are tested as specified in paragraph 4.5.3.1, there shall be no evidence of physical damage, including blistering, delamination, or bubbles. The change in DCR shall not exceed ±1%, the insulation resistance shall not decrease, and the DWV leakage current shall not exceed 1 mA. 3.15 Marking. Heaters shall be marked with the part number, cage code, date code, characteristics, and ratings. Date code and cage code shall be in accordance with MIL- STD-1285. Markings shall be made with an opaque permanent low outgassing ink and shall remain legible at the end of all performance and quality inspection tests. 3.16 Percent Defective Allowable (PDA). When calculated per paragraph 4.4.8, the cumulative PDA shall be ≤ 10%.
  • 8. S-311-P-841 Page 8 of 14 REV - 4.0 QUALITY ASSURANCE PROVISIONS 4.1 Responsibility for inspection. The manufacturer is responsible for the performance of all inspection requirements, as specified herein. GSFC reserves the right to perform any of the inspections specified herein, where such inspections are deemed necessary to verify conformance to the prescribed requirements. 4.2 Design and source approval. Prior to qualification, the manufacturer’s facility shall be subjected to survey at the option of GSFC. Compliance with ANSI/NCSL Z540.3, ANSI/ISO/IEC 17025, or equivalent is required. In addition, the history and detailed engineering of the specific heater design shall be reviewed, as well as the documented manufacturing and quality control procedures. Only those sources approved in the design and source approval phase shall be eligible for qualification or award of contract under this specification. Source approval and design approval do not constitute part lot acceptance or an equivalent thereof. 4.2.1 Qualification. Heaters supplied in full conformance to this specification shall be product which has been granted qualification approval by NASA GSFC. 4.2.1.1 QPLD status. Manufacturers supplying heaters to this specification and pre- approved as a source of supply by NASA GSFC, shall be listed as a qualified manufacturer for this product in the latest revision of the GSFC Qualified Parts List Directory (QPLD). 4.2.2 QPLD summary report. Manufacturers supplying heaters to this specification shall provide an annual product summary to the GSFC QPLD Administrator specified in paragraph 6.2. The summary shall include the total number of lots manufactured to this specification, with pass/fail statistics (inspection lot level). 4.2.3 Retention of qualification. On an annual basis, the manufacturer shall verify the retention of qualification with the GSFC QPLD Administrator. Retention is based on meeting the following requirements: a. The manufacturer has not modified the design of the item. b. The specification requirements for the item have not been amended so far as to affect the character of the item. c. Lot rejection for group A inspection has not occurred. d. The requirements for group B inspection have been met every 24 months with zero occurrence of failures. e. The manufacturer has supplied an annual QPLD summary report and group B inspection data every 24 months. 4.2.4 Requalification. Requalification shall be imposed following any change in design, manufacture, materials, or quality control procedures as reviewed and approved during qualification. Requalification shall be required if it is demonstrated that any stipulation initially presented in the manufacturer’s certification no longer applies.
  • 9. S-311-P-841 Page 9 of 14 REV - Inspection discrepancies that are not suitably explained by failure analysis or by other means, and for which corrective actions have not been implemented, shall also be considered a basis for disqualification by GSFC. 4.3 Classification of inspections. The inspections specified herein are classified as follows: a. Group A Inspection b. Group B Inspection 4.3.1 Inspection of product for delivery. Inspection of product for delivery to this specification shall consist of Group A inspection. 4.3.2 Inspection lot. An inspection lot shall consist of all heater products of the same design and construction of a single nominal resistance value and voltage rating, processed as a single lot through all manufacturing steps on the same equipment, and identified by a common date code (see paragraph 3.15). 4.4 Group A inspection. Group A inspection shall be performed on 100% of the product for each inspection lot of heaters supplied to this specification. Group A inspection shall consist of the following tests listed in Table I, performed in the order shown. Table I – Group A Inspection. Test / Inspection Requirement Paragraph Method Paragraph Visual and Mechanical Inspection 3.4, 3.5, and 3.15 4.4.1 DCR 3.7 4.4.2 DWV 3.8 4.4.3 IR 3.9 4.4.4 Thermal Shock 3.10 4.4.5 Voltage Conditioning 3.11 4.4.6 PDA 3.16 4.4.8 4.4.1 Visual and mechanical inspection. Visual and mechanical inspection shall be performed using a minimum magnification of 10X, to verify that the physical dimensions, workmanship, and markings are in accordance with the requirements of paragraphs 3.4, 3.5, and 3.15. A Coordinate Measuring Machine (CMM) may be used to verify physical dimensions. 4.4.2 DC resistance (DCR). The DCR shall be measured between the heater leads at 25°C per MIL-STD-202, Method 303 and shall meet the requirements of paragraph 3.7. 4.4.3 Dielectric withstanding voltage (DWV). Heaters shall be tested per MIL-STD-202, Method 301, at 500 VRMS for one minute. The potential shall be applied between the element and conductive plates that are in intimate contact with the complete outer surface of the heater. The measured leakage current shall meet the requirements of paragraph 3.8.
  • 10. S-311-P-841 Page 10 of 14 REV - 4.4.4 Insulation resistance (IR). The insulation resistance shall be measured between the element and the entire outside surface at 25°C per MIL-STD-202, Method 302, Test Condition B, and shall meet the requirements of paragraph 3.9. 4.4.5 Thermal shock. The unmounted heaters shall be tested per MIL-STD-202, Method 107, Test Condition C, except using a maximum temperature limit of 220°C. Heaters shall meet the requirements of paragraph 3.10. 4.4.6 Voltage conditioning. Heaters shall be conditioned by suspension in still air at 25°C ± 5°C by their terminal leads. The applied voltage shall be the voltage required to reach either the maximum operating temperature of 220°C, as verified by infrared imaging, or the maximum rated power density of 4.5 W/in2 , whichever is higher (see Figure 1 for explanation of voltage calculation based on rated power density). The voltage shall be applied continuously for a minimum of 168 hours, after which the heaters shall meet the requirements of paragraph 3.11. For dual element heaters, both elements shall be powered simultaneously. The rated voltage (Vrated) may be calculated based on rated power density using the formula below: _________________ Vrated = √ ( Prated x A x Rnom ) where Vrated = Rated voltage (V) Prated = Maximum rated power density (W/in.2 ) A = Effective heating area, defined as the total heater area excluding the border trim and the lead wire termination pads (in.2 ) Rnom = Nominal resistance (Ω) Figure 1 – Sample schematic of a heater shown for the purposes of demonstrating rated voltage calculation based on maximum rated power density. Effective Heating Area Border Trim Lead Termination
  • 11. S-311-P-841 Page 11 of 14 REV - 4.4.7 Failures. Heaters that do not pass Group A inspection shall be removed from the inspection lot and shall not be furnished to this specification. 4.4.8 Lot rejection. PDA shall be calculated by combining all failures identified during Group A thermal shock and voltage conditioning test, and dividing by the total number of heaters submitted to thermal shock test. Failures at visual inspection and initial electrical do not count towards PDA calculation. PDA shall meet the requirements of paragraph 3.16, or the entire inspection lot shall be considered non- conforming product and rejected. 4.5 Group B Inspection. Heaters used for Group B inspection shall have successfully passed all Group A inspections. Group B inspection shall be performed by the manufacturer on sample units produced with equipment, processes, and procedures normally used in production. Data from an established reliability program subjecting the same or similar parts to equivalent or more stringent testing may be submitted for part or all of the Group B inspection requirements. Group B inspection tests and sample size are specified in Table II and below, and shall be performed in the order shown. Table II – Group B Inspection. Test / Inspection Requirement Paragraph Method Paragraph Sample Size Subgroup 1 Low-Temperature Operation Lead Pull Strength 3.12 3.13 4.5.2.1 4.5.2.2 10 Subgroup 2 Life Destructive Physical Analysis (DPA) 3.14 3.4, 3.5 4.5.3.1 4.5.3.2 10 1 Subgroup 3 Thermal Vacuum Outgassing* 3.4.1.1 4.5.4.1 2 * In lieu of test, the manufacturer may submit prior outgas test data for identical or similar product that uses the same construction materials, provided the specified requirement and test method are met.
  • 12. S-311-P-841 Page 12 of 14 REV - 4.5.1 Sample size. The number of heaters to be subjected to Group B inspection shall be 22, as shown in Table II. 4.5.2 Subgroup 1. Sample size shall be ten (10) with zero (0) rejects allowed. 4.5.2.1 Low-temperature operation. The unmounted heaters shall be placed in a chamber at -65°C, and after one-hour stabilization at this temperature, full-rated continuous power (as defined in paragraph 3.6) shall be applied for 45 minutes. Fifteen (15) minutes after removal of power, the heaters shall be brought to 25°C ± 5°C in a period not exceeding 8 hours and DC resistance measured after approximately 24 hours at 25°C. The heaters shall meet the requirements of paragraph 3.12. 4.5.2.2 Lead pull strength. The leads shall be tested per MIL-STD-202, Method 211, Test Condition A at 3 lbs. (1.36 kg) and shall meet the requirements of paragraph 3.13. 4.5.3 Subgroup 2. Sample size shall be ten (10) with zero (0) rejects allowed. 4.5.3.1 Life. Heaters shall have rated power applied for 1000 hours continuously while suspended in still air at 25°C. Heaters shall meet the requirements of paragraph 3.14. The applied voltage shall be the voltage required to reach either the maximum heater operating temperature of 220°C or the maximum rated power density of 4.5 W/in2 , whichever is higher. 4.5.3.2 Destructive Physical Analysis (DPA). Destructive physical analysis shall be performed on one (1) life test sample per GSFC S-311-M-70, and shall additionally meet the requirements of paragraphs 3.4 and 3.5 herein. A minimum of two (x- and y-) axes shall be examined. 4.5.4 Subgroup 3. Sample size shall be two (2) with zero (0) rejects allowed. 4.5.4.1 Thermal vacuum outgassing. Heaters shall meet the requirements of paragraph 3.4.1.1 when tested in accordance with ASTM-E595. 4.5.5 Failures. A failure during group B inspection shall be cause for refusal to grant qualification. 5.0 PREPARATION FOR DELIVERY 5.1 Preservation and packaging. Heaters shall be individually packaged and shall be afforded preservation and packaging in accordance with the supplier’s normal commercial practice.
  • 13. S-311-P-841 Page 13 of 14 REV - 5.2 Packaging. Heaters packaged as specified shall be packed in containers of the type, size, and kind commonly used for the purpose, and in a manner that will ensure acceptance by a common carrier and a safe delivery at the destination. Shipping containers shall comply with the uniform freight classification rules or regulations of other carriers as applicable to the mode of transportation. 5.3 Marking. In addition to any special marking required by the contract or order, unit packages, intermediate packages, and exterior shipping containers shall be marked in accordance with MIL-STD-129. 6.0 NOTES 6.1 Ordering data. Acquisition documents should specify the following: a. Number, title, and date of this specification b. Part number and/or detailed drawing number c. Quantity 6.2 Data Address. When supplemental data, reports, or information requests are to be transmitted to GSFC, the following address shall be used, unless otherwise specified. Custodian: QPLD Administrator Parts, Packaging, and Assembly Technologies Office, Code 562 Goddard Space Flight Center 8800 Greenbelt Road Mailstop 562.0 Greenbelt, Maryland 20771 6.3 Notice. When GSFC drawings, specification, or other data are used for any purpose other than in connection with a definitely related GSFC procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; the fact that GSFC might have formulated, furnished, or in any way supplied the said drawings, specification, or other data is not to be regarded by implication or otherwise in any manner licensing the holder or any person or corporation, or conveying any right or permission to manufacture, use, or sell any patented invention that may in any way be related thereto. 6.3 Approved source(s) of supply. Identification of the suggested source(s) of supply hereon is not to be construed as a guarantee of present or continued availability as a source of supply for the item. 6.4 Use and application information. The following precautions should be noted when selecting a heater design for space flight use.
  • 14. S-311-P-841 Page 14 of 14 REV - 6.4.1 Lead wire application information. Polyimide or Teflon insulated lead wire are the vendor preferred use in the specified heater construction, due to the high temperature properties associated with these insulation types. However, the user should always take the necessary precautions when selecting an appropriate lead wire type in their particular application. 6.4.1.1 Polyimide insulation. Polyimide wire may be preferred for its light weight and excellent mechanical, electrical, and radiation resistance properties. However, the insulation of this wire has known reliability problems in certain applications. Extended exposure to moisture or alkaline cleaning chemicals has been shown to degrade the insulation’s mechanical strength, resulting in flaking of the outer insulation tape, and cracking from vibration or movement when installed around tight radius bends. Therefore, the user should ensure the wire insulation will NOT be used in such a way that allows for the potential of repeated mechanical wear such as chafing, or any movement that can cause abrasions or cuts in the insulation. 6.4.1.2 Teflon insulation. When using Teflon insulated wire, the user should use caution to prevent compression or pinching of the insulation, due to its cold flow (creep) characteristics. The user is advised NOT to route Teflon insulated wires over sharp edges and tight turns, or apply tight stitches and tie wraps to the wire. 6.4.2 Radiation performance. The user is cautioned to evaluate the radiation resistance of the heater construction materials specified herein for the intended space environment in their particular application. While Kapton is known to be highly resistant to radiation effects, Teflon insulation of lead wire can be degraded by solar radiation above 5 x 105 rads. Polymers, in general, should be closely evaluated for radiation resistance. 6.4.3 Mounting application information. When applying a mounting adhesive to the heater backside, avoidance of air entrapment and bubbles is essential to achieve desired performance. The same is true when physically mounting the heater to the heat sink. Adhesive and mounting application practices recommended by the manufacturer should be used. It is important to select an adhesive that will maintain the bond throughout the design life in the application. In addition, it is recommended to apply a fillet of adhesive between exposed heater edges and the surface onto which the heater is being mounted, especially if being mounted on a curved surface. Additional mounting practices may be required when mounting to curved surfaces with small diameters. At any time, the heater should never be flexed at a radius of curvature smaller than 0.03 in. The lead termination region should never be flexed and should remain mounted on a flat surface.