SlideShare ist ein Scribd-Unternehmen logo
1 von 12
Downloaden Sie, um offline zu lesen
Passivity-Based Control of
Rigid-Body Manipulator
ModuLabs
강남Dynamics Lab
Hancheol Choi
(babchol@gmail.com)
What is ‘Passivity’?
System is passive
if (Energy Inflow) ≥ (Energy Stored)
𝑢 𝑠 𝑦(𝑠)
𝑡
0
𝑑𝑠 ≥ 𝑉 𝑥 𝑡 − 𝑉(𝑥 0 )
if (Energy Inflow Rate) ≥ (Energy Stored Rate)
𝑢 𝑡 𝑦(𝑡) ≥ 𝑉(𝑥 𝑡 , 𝑢(𝑡))
 dissipative system
Ex 1. Electric network, one-port resistance
Ohm’s law: 𝑢 = 𝑅𝑦, 𝑦 = 𝐺𝑢
 𝑢𝑦 = 𝐺𝑢2
≥ 0
 Network is passive if 𝑢 𝑇
𝑦 ≥ 0 for all 𝑢
u: voltage(input),
y: current(output),
R: resistance,
G: conductance
𝑅 =
1
𝐺
+
-
u
y
Passivity-Based Control and Stability
Nonlinear system
𝑥 = 𝑓 𝑥, 𝑢
𝑦 = ℎ 𝑥 (𝑓 0,0 = 0, ℎ 0 = 0)
Recall that system is passive
if there exists ‘storage function’
s.t. 𝑉 𝑥 ≥ 0
𝑢 𝑇
𝑦 ≥ 𝑉 =
𝜕𝑉
𝜕𝑥
𝑓 𝑥, 𝑢 , ∀(𝑥, 𝑢)
System is zero-state observable
if there exists no solution of 𝑥 = 𝑓(𝑥, 0)
that satisfy ℎ 𝑥 = 0 except 𝑥 𝑡 = 0
 if y=0, then x=0
Theorem
If system is
(1) passive with a radially unbounded storage function (𝑉 ≥ 0)
(2) zero-state observable
Control input 𝑢 = −𝜙 𝑦
s.t. 𝜙 is locally Lipschitz function s.t. 𝜙 0 = 0, 𝑦 𝑇
𝜙 𝑦 > 0 , ∀𝑦 ≠ 0
can make system globally stabilized.
𝑥 = 𝑓(𝑥, −𝜙 𝑦 )
𝑉 =
𝜕𝑉
𝜕𝑥
𝑥 =
𝜕𝑉
𝜕𝑥
𝑓 𝑥, −𝜙 𝑦 ≤ −𝑦 𝑇
𝜙(𝑦) ≤ 0
By invariance principle, the origin is globally asymptotically stable.
Proof
Passivity-Based Control of Rigid-Body Manipulator
IDEA
Reshape the robot system’s natural energy such that the control objective is
achieved.[Berghuis, 1993]
[Takegaki and Arimoto, 1981]
Regulation control: control objective 𝑞 → 𝑞 𝑑
Shifting energy minimum at 𝒒, 𝒒 = (𝟎, 𝟎) to 𝒒, 𝒒 = 𝟎, 𝟎 , 𝒒 = 𝒒 − 𝒒 𝒅
Energy storage function with coordinate (𝑞, 𝑞)
𝑉 =
1
2
𝑞 𝑇
𝑀 𝑞 𝑞 +
1
2
𝑞 𝑇
𝐾𝑝 𝑞 - (1)
𝑉 = 𝑞 𝑇
𝑀 𝑞 𝑞 +
1
2
𝑞 𝑇
𝑀 𝑞 𝑞 + 𝑞 𝑇
𝐾𝑝 𝑞
= 𝑞 𝑇
𝜏 − 𝐶 𝑞, 𝑞 𝑞 − 𝑔 𝑞 +
1
2
𝑞 𝑇
𝑀 𝑞 𝑞 + 𝑞 𝑇
𝐾𝑝 𝑞
= 𝑞 𝑇
𝜏 − 𝑔 𝑞 + 𝐾𝑝 𝑞 +
1
2
𝑞 𝑇
[𝑀 𝑞 − 2𝐶 𝑞, 𝑞 ] 𝑞
= 𝑞 𝑇
𝜏 − 𝑔 𝑞 + 𝐾𝑝 𝑞 - (2)
How to design 𝜏?
= 0, (∵ 𝑀 − 2𝐶 is skew-symmetric)
IDEA
Reshape the robot system’s natural energy such that the control objective is
achieved.[Berghuis, 1993]
[Takegaki and Arimoto, 1981]
Regulation control: control objective 𝑞 → 𝑞 𝑑
Shifting energy minimum at 𝒒, 𝒒 = (𝟎, 𝟎) to 𝒒, 𝒒 = 𝟎, 𝟎 , 𝒒 = 𝒒 − 𝒒 𝒅
Energy storage function with coordinate (𝑒, 𝑞)
𝑉 =
1
2
𝑞 𝑇
𝑀 𝑞 𝑞 +
1
2
𝑞 𝑇
𝐾𝑝 𝑞 - (1)
𝑉 = 𝑞 𝑇
𝜏 − 𝑔 𝑞 + 𝐾𝑝 𝑞 - (2)
Let us define the control law as
𝜏 = 𝑔 𝑞 − 𝐾𝑝 𝑞 + 𝑣 - (3)
(3)(2): 𝑉 = 𝑞 𝑇
𝑣  passive for (𝑞, 𝑣) - (4)
How to design 𝑣? Recall passivity-based control. 𝑣 = −𝜙(𝑞) , 𝑞 𝜙(𝑞) ≥ 0  𝑣 = −𝐾 𝑑 𝑞 -(5)
(5)(4): 𝑉 = −𝐾 𝑑 𝑞 2
≤ 0, globally stable!
Final control law is 𝝉 = 𝒈 𝒒 − 𝑲 𝒑 𝒒 − 𝑲 𝒅 𝒒
Passivity-Based Control of Rigid-Body Manipulator
[Paden and Panja, 1988]
Tracking control: control objective 𝑞(𝑡) → 𝑞 𝑑(𝑡)
Shifting energy minimum at 𝒒, 𝒒 = (𝟎, 𝟎) to 𝒒, 𝒒 = 𝟎, 𝟎 , 𝒒 = 𝒒 − 𝒒 𝒅
Energy storage function with coordinate (𝑒, 𝑒)
𝑉 =
1
2
𝑞 𝑇
𝑀 𝑞 𝑞 +
1
2
𝑞 𝑇
𝐾 𝑝 𝑞 - (6)
𝑉 = 𝑞 𝑇
𝑀 𝑞 𝑞 +
1
2
𝑞 𝑇
𝑀 𝑞 𝑞 + 𝑞 𝑇
𝐾 𝑝 𝑞
= 𝑞 𝑇
(𝑀𝑞 − 𝑀𝑞 𝑑) +
1
2
𝑞 𝑇
𝑀 𝑞 + 𝑞 𝑇
𝐾 𝑝 𝑞
= 𝑞 𝑇
𝜏 − 𝐶𝑞 − 𝑔 − 𝑀𝑞 𝑑 +
1
2
𝑀 𝑞 + 𝐾 𝑝 𝑞
= 𝑞 𝑇
(𝜏 +
1
2
𝑀 − 2𝐶 𝑞 − 𝑀𝑞 𝑑 − 𝐶𝑞 𝑑 − 𝑔 + 𝐾 𝑝 𝑞)
= 𝑞 𝑇
(𝜏 − 𝑀𝑞 𝑑 − 𝐶𝑞 𝑑 − 𝑔 + 𝐾 𝑝 𝑞) - (7)
Let us define the control law as
𝜏 = 𝑀𝑞 𝑑 + 𝐶𝑞 𝑑 + 𝑔 − 𝐾 𝑝 𝑞 + 𝑣 - (8)
(8)(7): 𝑉 = 𝑞 𝑇
𝑣 - (9)
same as (5), we can set new control input as 𝑣 = −𝐾 𝑑 𝑞.
Then 𝑉 = −𝐾 𝑑 𝑞
2
≤ 0, globally stable! - (10)
Final control law is 𝝉 = 𝑴(𝒒)𝒒 𝒅 + 𝑪(𝒒, 𝒒)𝒒 𝒅 + 𝒈 𝒒 − 𝑲 𝒑 𝒒 − 𝑲 𝒅 𝒒
Passivity-Based Control of Rigid-Body Manipulator
= 0, (∵ 𝑀 − 2𝐶 is skew-symmetric)
[Slotine and Lie, 1987]
Applied sliding mode theory
IDEA
Look into (10) again, 𝑉 = −𝐾 𝑑 𝑞
2
tells us 𝑞 → 0 as 𝑉 → 0 , but it doesn’t guarantee 𝒒 → 𝟎
Let’s restrict them to lie on a sliding surface 𝒔 = 𝒒 + 𝜦𝒒 = 𝟎
Energy storage function with coordinate 𝑠
𝑽 =
𝟏
𝟐
𝒔 𝑻
𝑴𝒔 - (11)
𝑉 = 𝑠 𝑇
𝑀𝑠 +
1
2
𝑠 𝑇
𝑀 𝑠
= 𝑠 𝑇
(𝑀𝑞 + 𝑀Λ𝑞 +
1
2
𝑀 𝑠)
= 𝑠 𝑇
(𝜏 − 𝐶𝑞 − 𝑔 − 𝑀𝑞 𝑑 + 𝑀Λ𝑞 +
1
2
𝑀 𝑠)
= 𝑠 𝑇
(𝜏 − 𝑀𝑞 𝑑 + 𝑀Λ𝑒 − 𝐶𝑞 𝑑 + 𝐶Λ𝑞 − 𝑔 +
1
2
𝑀 − 2𝐶 𝑠) - (12)
Introduce virtual “reference trajectory”, 𝒒 𝒓 = 𝒒 𝒅 − 𝜦𝒒
𝑉 = 𝑠 𝑇
(𝜏 − 𝑀𝑞 𝑟 − 𝐶𝑞 𝑟 − 𝑔) - (13)
Same as before, we define control law as,
𝜏 = 𝑀𝑞 𝑟 + 𝐶𝑞 𝑟 + 𝑔 + 𝑣 - (14)
(14) (15): 𝑉 = 𝑠 𝑇
𝑣 - (15)
Same as before, we can set new control input as 𝑣 = −𝐾 𝑑 𝑠. Then 𝑉 = −𝐾 𝑑 𝑠 2
≤ 0
Then globally stable and guarantee (𝒒, 𝒒) → (𝟎, 𝟎)
Final control law is 𝝉 = 𝑴(𝒒)𝒒 𝒓 + 𝑪(𝒒, 𝒒)𝒒 𝒓 + 𝒈 𝒒 − 𝑲 𝒅 𝒔
𝒒 𝒓 = 𝒒 𝒅 − 𝜦𝒒, 𝒔 = 𝒒 + 𝜦𝒒
Passivity-Based Control of Rigid-Body Manipulator
= 0
Rigid-body dynamics with disturbance
𝑀 𝑞 𝑞 + 𝐶 𝑞, 𝑞 𝑞 + 𝑔 𝑞 = 𝜏 + 𝑑
Passivity-based control input
𝜏 = 𝑀(𝑞)𝑞 𝑟 + 𝐶(𝑞, 𝑞)𝑞 𝑟 + 𝑔 𝑞 − 𝐾 𝑑 𝑠
𝑞 𝑟 = 𝑞 𝑑 − 𝛬𝑞, 𝑠 = 𝑞 + 𝛬𝑞
Then, closed-loop system is,
𝑀 𝑞 𝑠 + 𝐶 𝑞, 𝑞 𝑠 + 𝐾 𝑑 𝑠 = 𝑑
For input-output pair (𝑠, 𝑑)
𝑠 𝑇
𝑑 = 𝑠 𝑇
𝑀 𝑞 𝑠 + 𝑠 𝑇
𝐶 𝑞, 𝑞 𝑠 + 𝑠 𝑇
𝐾 𝑑 𝑠
=
𝑑
𝑑𝑡
1
2
𝑠 𝑇
𝑀 𝑞 𝑠 −
1
2
𝑠 𝑇
𝑀 𝑞 𝑠 + 𝑠 𝑇
𝐶 𝑞, 𝑞 𝑠 + 𝑠 𝑇
𝐾𝑑 𝑠
=
𝑑
𝑑𝑡
1
2
𝑠 𝑇
𝑀 𝑞 𝑠 + 𝑠 𝑇
𝐾 𝑑 𝑠
∴ 𝒔 𝑻
𝒅 ≤
𝒅
𝒅𝒕
𝟏
𝟐
𝒔 𝑻
𝑴 𝒒 𝒔
 Input-output pair (𝑠, 𝑑) system is passive. Always stable for any disturbance 𝒅
Why Passivity-Based Control(PBC) Robust?
stored energy
dissipitated energy > 0
Rigid-body dynamics with disturbance
𝑀 𝑞 𝑞 + 𝐶 𝑞, 𝑞 𝑞 + 𝑔 𝑞 = 𝜏 + 𝑑
Computed-torque control input
𝜏 = 𝑀(𝑞) 𝑞 𝑑 − 𝐾𝑝 𝑞 − 𝐾 𝑑 𝑞 − 𝐾𝑖 𝑞 𝑑𝑡 + 𝐶(𝑞, 𝑞)𝑞 + 𝑔 𝑞
Then, closed-loop system is,
𝑞 − 𝐾 𝑑 𝑞 − 𝐾𝑝 𝑞 − 𝐾𝑖 𝑞 𝑑𝑡 = 𝑑
Differenciate closed-loop equation in frequency-domain
𝑠3
− 𝐾 𝑑 𝑠2
− 𝐾𝑝 𝑠 − 𝐾𝑖 𝑄 𝑠 = 𝑠𝐷 𝑠
𝐹 𝑠 =
𝑄 𝑠
𝐷(𝑠)
=
𝑠
𝑠3−𝐾 𝑑 𝑠2−𝐾 𝑝 𝑠−𝐾 𝑖
By final final value-theorem of Laplace transformation,
𝑓 𝑡 = ∞ = lim
𝑠→∞
𝑠𝐹(𝑠) = 0
Integral feedback term makes transfer function converging finally.
But disturbance will be rejected, only if 𝒅 is constant.
So, it is not more robust than passivity-based control.
Why PBC is more robust than Computed-Torque Control?
Computation Issue
Passivity-based control input,
𝜏 = 𝑀(𝑞)𝑞 𝑟 + 𝐶(𝑞, 𝑞)𝑞 𝑟 + 𝑔 𝑞 − 𝐾 𝑑 𝑠
𝑞 𝑟 = 𝑞 𝑑 − 𝛬𝑞, 𝑠 = 𝑞 + 𝛬𝑞
Normally, you can get 𝑀 𝑞 , 𝐶 𝑞, 𝑞 𝑞, 𝑔(𝑞) from inverse-dynamics algorithm.
But, you need 𝑪(𝒒, 𝒒) alone in PBC!
When there was no method to get 𝐶(𝑞, 𝑞) efficiently, [Slotine and Lie, 1987] modifies the
control input like this,
𝜏 = 𝑀(𝑞)𝑞 𝑟 + 𝐶(𝑞, 𝑞)𝑞 + 𝑔 𝑞 − 𝐾 𝑑 𝑠
Now, you can refer to [D. Luca, 2009], [Bjerkeng, 2012] to get coriolis matrix efficiently.
This 𝐶(𝑞, 𝑞) is slightly different from original 𝐶(𝑞, 𝑞) calculated symbolically.
But, skew-symmetric property of 𝑀 − 2𝐶 is preserved.
Reference
[1] M. Takegaki and S. Arimoto, “A new feedback method for dynamic control of
manipulators,” ASME J. Dynam. Syst., 1981.
[2] B. Paden and R. Panja, “Globally asymptotically stable ‘PD+’ controller for robot
manipulators,” Int. J. Control., 1988.
[3] Slotine and Li, “On the Adaptive Control of Robot Manipulators”, The
International Journal of Robotics Research, 1987.
[4] H. Berghuis, H. Nijmeijer, "A passivity approach to controller-observer design for
robots", IEEE Trans. Robot. Autom., vol. 9, no. 6, pp. 740-754, Sep. 1993.
[5] Hatanaka, “Passivity-Based Control and Estimation in Networked Robotics”,
Springer, 2015.
[6] De Luca, “A Modified Newton-Euler Method for Dynamic Computations in Robot
Fault Detection and Control”, ICRA, 2009.
[7] Bjerkeng, “A new Coriolis matrix factorization”, ICRA, 2012.

Weitere ähnliche Inhalte

Was ist angesagt?

Frequency response analysis I
Frequency response analysis IFrequency response analysis I
Frequency response analysis IMrunal Deshkar
 
Control systems tutorial
Control systems tutorialControl systems tutorial
Control systems tutorialHarikaReddy115
 
Canonical Tranformation I.pdf
Canonical Tranformation I.pdfCanonical Tranformation I.pdf
Canonical Tranformation I.pdfAlbertDaimari7
 
PID Controller Tuning
PID Controller TuningPID Controller Tuning
PID Controller TuningAhmad Taan
 
Control system stability routh hurwitz criterion
Control system stability routh hurwitz criterionControl system stability routh hurwitz criterion
Control system stability routh hurwitz criterionNilesh Bhaskarrao Bahadure
 
B.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integrationB.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integrationRai University
 
PPT of PLC and SCADA
PPT of PLC and SCADAPPT of PLC and SCADA
PPT of PLC and SCADAMohseen1234
 
Modern Control - Lec 06 - PID Tuning
Modern Control - Lec 06 - PID TuningModern Control - Lec 06 - PID Tuning
Modern Control - Lec 06 - PID TuningAmr E. Mohamed
 
Slotine adaptive control-manipulators
Slotine adaptive control-manipulatorsSlotine adaptive control-manipulators
Slotine adaptive control-manipulatorsHancheol Choi
 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationRai University
 
Sliding mode control
Sliding mode controlSliding mode control
Sliding mode controlswati singh
 
Transfer functions, poles and zeros.
Transfer functions, poles and zeros.Transfer functions, poles and zeros.
Transfer functions, poles and zeros.ARIF HUSSAIN
 
State variable analysis (observability & controllability)
State variable analysis (observability & controllability)State variable analysis (observability & controllability)
State variable analysis (observability & controllability)SatheeshCS2
 
BEC 26 control-Systems_unit-I_pdf
BEC 26 control-Systems_unit-I_pdfBEC 26 control-Systems_unit-I_pdf
BEC 26 control-Systems_unit-I_pdfShadab Siddiqui
 
Sliding Mode Controller
Sliding Mode Controller Sliding Mode Controller
Sliding Mode Controller Ramaiahsubasri
 
P, PI AND PID CONTROLLER
P, PI AND PID CONTROLLERP, PI AND PID CONTROLLER
P, PI AND PID CONTROLLERkaran sati
 
State space analysis.pptx
State space analysis.pptxState space analysis.pptx
State space analysis.pptxRaviMuthamala1
 

Was ist angesagt? (20)

Frequency response analysis I
Frequency response analysis IFrequency response analysis I
Frequency response analysis I
 
Control systems tutorial
Control systems tutorialControl systems tutorial
Control systems tutorial
 
final project
final projectfinal project
final project
 
Canonical Tranformation I.pdf
Canonical Tranformation I.pdfCanonical Tranformation I.pdf
Canonical Tranformation I.pdf
 
PID Controller Tuning
PID Controller TuningPID Controller Tuning
PID Controller Tuning
 
Control system stability routh hurwitz criterion
Control system stability routh hurwitz criterionControl system stability routh hurwitz criterion
Control system stability routh hurwitz criterion
 
Scada functions
Scada functionsScada functions
Scada functions
 
B.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integrationB.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integration
 
03 dynamic.system.
03 dynamic.system.03 dynamic.system.
03 dynamic.system.
 
PPT of PLC and SCADA
PPT of PLC and SCADAPPT of PLC and SCADA
PPT of PLC and SCADA
 
Modern Control - Lec 06 - PID Tuning
Modern Control - Lec 06 - PID TuningModern Control - Lec 06 - PID Tuning
Modern Control - Lec 06 - PID Tuning
 
Slotine adaptive control-manipulators
Slotine adaptive control-manipulatorsSlotine adaptive control-manipulators
Slotine adaptive control-manipulators
 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integration
 
Sliding mode control
Sliding mode controlSliding mode control
Sliding mode control
 
Transfer functions, poles and zeros.
Transfer functions, poles and zeros.Transfer functions, poles and zeros.
Transfer functions, poles and zeros.
 
State variable analysis (observability & controllability)
State variable analysis (observability & controllability)State variable analysis (observability & controllability)
State variable analysis (observability & controllability)
 
BEC 26 control-Systems_unit-I_pdf
BEC 26 control-Systems_unit-I_pdfBEC 26 control-Systems_unit-I_pdf
BEC 26 control-Systems_unit-I_pdf
 
Sliding Mode Controller
Sliding Mode Controller Sliding Mode Controller
Sliding Mode Controller
 
P, PI AND PID CONTROLLER
P, PI AND PID CONTROLLERP, PI AND PID CONTROLLER
P, PI AND PID CONTROLLER
 
State space analysis.pptx
State space analysis.pptxState space analysis.pptx
State space analysis.pptx
 

Ähnlich wie Passivity-based control of rigid-body manipulator

Stochastic optimal control & rl
Stochastic optimal control & rlStochastic optimal control & rl
Stochastic optimal control & rlChoiJinwon3
 
Lecture 5 backpropagation
Lecture 5 backpropagationLecture 5 backpropagation
Lecture 5 backpropagationParveenMalik18
 
3). work & energy (finished)
3). work & energy (finished)3). work & energy (finished)
3). work & energy (finished)PhysicsLover
 
Energy-Based Control of Under-Actuated Mechanical Systems - Remotely Driven A...
Energy-Based Control of Under-Actuated Mechanical Systems - Remotely Driven A...Energy-Based Control of Under-Actuated Mechanical Systems - Remotely Driven A...
Energy-Based Control of Under-Actuated Mechanical Systems - Remotely Driven A...Mostafa Shokrian Zeini
 
Vibration Isolation of a LEGO® plate
Vibration Isolation of a LEGO® plateVibration Isolation of a LEGO® plate
Vibration Isolation of a LEGO® plateOpen Adaptronik
 
04-Discrete_Time_Systems-1signal expectra signal processing.pptx
04-Discrete_Time_Systems-1signal expectra signal processing.pptx04-Discrete_Time_Systems-1signal expectra signal processing.pptx
04-Discrete_Time_Systems-1signal expectra signal processing.pptxJordanJohmMallillin
 
On tracking control problem for polysolenoid motor model predictive approach
On tracking control problem for polysolenoid motor model predictive approach On tracking control problem for polysolenoid motor model predictive approach
On tracking control problem for polysolenoid motor model predictive approach IJECEIAES
 
Lecture Notes: EEEC4340318 Instrumentation and Control Systems - Fundamental...
Lecture Notes:  EEEC4340318 Instrumentation and Control Systems - Fundamental...Lecture Notes:  EEEC4340318 Instrumentation and Control Systems - Fundamental...
Lecture Notes: EEEC4340318 Instrumentation and Control Systems - Fundamental...AIMST University
 
Solving Poisson Equation using Conjugate Gradient Method and its implementation
Solving Poisson Equation using Conjugate Gradient Methodand its implementationSolving Poisson Equation using Conjugate Gradient Methodand its implementation
Solving Poisson Equation using Conjugate Gradient Method and its implementationJongsu "Liam" Kim
 
Crash course in control theory for neuroscientists and biologists
Crash course in control theory for neuroscientists and biologistsCrash course in control theory for neuroscientists and biologists
Crash course in control theory for neuroscientists and biologistsMatteo Mischiati
 
Generalized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral TransformationGeneralized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral TransformationIJERA Editor
 
14th_Class_19-03-2024 Control systems.pptx
14th_Class_19-03-2024 Control systems.pptx14th_Class_19-03-2024 Control systems.pptx
14th_Class_19-03-2024 Control systems.pptxbuttshaheemsoci77
 
Saqib aeroelasticity cw
Saqib aeroelasticity cwSaqib aeroelasticity cw
Saqib aeroelasticity cwSagar Chawla
 
Learning group em - 20171025 - copy
Learning group   em - 20171025 - copyLearning group   em - 20171025 - copy
Learning group em - 20171025 - copyShuai Zhang
 
Intro to Quant Trading Strategies (Lecture 6 of 10)
Intro to Quant Trading Strategies (Lecture 6 of 10)Intro to Quant Trading Strategies (Lecture 6 of 10)
Intro to Quant Trading Strategies (Lecture 6 of 10)Adrian Aley
 
lecture 5 courseII (6).pptx
lecture 5 courseII (6).pptxlecture 5 courseII (6).pptx
lecture 5 courseII (6).pptxAYMENGOODKid
 
05-Classification_of_DT_System-1. information technologypptx
05-Classification_of_DT_System-1. information technologypptx05-Classification_of_DT_System-1. information technologypptx
05-Classification_of_DT_System-1. information technologypptxJordanJohmMallillin
 
lecture 1 courseII (2).pptx
lecture 1 courseII (2).pptxlecture 1 courseII (2).pptx
lecture 1 courseII (2).pptxAYMENGOODKid
 

Ähnlich wie Passivity-based control of rigid-body manipulator (20)

Stochastic optimal control & rl
Stochastic optimal control & rlStochastic optimal control & rl
Stochastic optimal control & rl
 
Lecture 5 backpropagation
Lecture 5 backpropagationLecture 5 backpropagation
Lecture 5 backpropagation
 
Periodic Solutions for Nonlinear Systems of Integro-Differential Equations of...
Periodic Solutions for Nonlinear Systems of Integro-Differential Equations of...Periodic Solutions for Nonlinear Systems of Integro-Differential Equations of...
Periodic Solutions for Nonlinear Systems of Integro-Differential Equations of...
 
3). work & energy (finished)
3). work & energy (finished)3). work & energy (finished)
3). work & energy (finished)
 
Energy-Based Control of Under-Actuated Mechanical Systems - Remotely Driven A...
Energy-Based Control of Under-Actuated Mechanical Systems - Remotely Driven A...Energy-Based Control of Under-Actuated Mechanical Systems - Remotely Driven A...
Energy-Based Control of Under-Actuated Mechanical Systems - Remotely Driven A...
 
Vibration Isolation of a LEGO® plate
Vibration Isolation of a LEGO® plateVibration Isolation of a LEGO® plate
Vibration Isolation of a LEGO® plate
 
04-Discrete_Time_Systems-1signal expectra signal processing.pptx
04-Discrete_Time_Systems-1signal expectra signal processing.pptx04-Discrete_Time_Systems-1signal expectra signal processing.pptx
04-Discrete_Time_Systems-1signal expectra signal processing.pptx
 
On tracking control problem for polysolenoid motor model predictive approach
On tracking control problem for polysolenoid motor model predictive approach On tracking control problem for polysolenoid motor model predictive approach
On tracking control problem for polysolenoid motor model predictive approach
 
Lecture Notes: EEEC4340318 Instrumentation and Control Systems - Fundamental...
Lecture Notes:  EEEC4340318 Instrumentation and Control Systems - Fundamental...Lecture Notes:  EEEC4340318 Instrumentation and Control Systems - Fundamental...
Lecture Notes: EEEC4340318 Instrumentation and Control Systems - Fundamental...
 
Chemical Bonding
Chemical BondingChemical Bonding
Chemical Bonding
 
Solving Poisson Equation using Conjugate Gradient Method and its implementation
Solving Poisson Equation using Conjugate Gradient Methodand its implementationSolving Poisson Equation using Conjugate Gradient Methodand its implementation
Solving Poisson Equation using Conjugate Gradient Method and its implementation
 
Crash course in control theory for neuroscientists and biologists
Crash course in control theory for neuroscientists and biologistsCrash course in control theory for neuroscientists and biologists
Crash course in control theory for neuroscientists and biologists
 
Generalized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral TransformationGeneralized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral Transformation
 
14th_Class_19-03-2024 Control systems.pptx
14th_Class_19-03-2024 Control systems.pptx14th_Class_19-03-2024 Control systems.pptx
14th_Class_19-03-2024 Control systems.pptx
 
Saqib aeroelasticity cw
Saqib aeroelasticity cwSaqib aeroelasticity cw
Saqib aeroelasticity cw
 
Learning group em - 20171025 - copy
Learning group   em - 20171025 - copyLearning group   em - 20171025 - copy
Learning group em - 20171025 - copy
 
Intro to Quant Trading Strategies (Lecture 6 of 10)
Intro to Quant Trading Strategies (Lecture 6 of 10)Intro to Quant Trading Strategies (Lecture 6 of 10)
Intro to Quant Trading Strategies (Lecture 6 of 10)
 
lecture 5 courseII (6).pptx
lecture 5 courseII (6).pptxlecture 5 courseII (6).pptx
lecture 5 courseII (6).pptx
 
05-Classification_of_DT_System-1. information technologypptx
05-Classification_of_DT_System-1. information technologypptx05-Classification_of_DT_System-1. information technologypptx
05-Classification_of_DT_System-1. information technologypptx
 
lecture 1 courseII (2).pptx
lecture 1 courseII (2).pptxlecture 1 courseII (2).pptx
lecture 1 courseII (2).pptx
 

Mehr von Hancheol Choi

[Review] contact model fusion
[Review] contact model fusion[Review] contact model fusion
[Review] contact model fusionHancheol Choi
 
[Paper Review] MIT Cheetah 1: Gait-pattern, trajectory generator
[Paper Review] MIT Cheetah 1: Gait-pattern, trajectory generator[Paper Review] MIT Cheetah 1: Gait-pattern, trajectory generator
[Paper Review] MIT Cheetah 1: Gait-pattern, trajectory generatorHancheol Choi
 
Review robot-collisions-survey
Review robot-collisions-surveyReview robot-collisions-survey
Review robot-collisions-surveyHancheol Choi
 
[Paper Review] Unified Force Impedance Control
[Paper Review] Unified Force Impedance Control[Paper Review] Unified Force Impedance Control
[Paper Review] Unified Force Impedance ControlHancheol Choi
 
로봇팔 제어 겉핥기
로봇팔 제어 겉핥기로봇팔 제어 겉핥기
로봇팔 제어 겉핥기Hancheol Choi
 

Mehr von Hancheol Choi (6)

[Review] contact model fusion
[Review] contact model fusion[Review] contact model fusion
[Review] contact model fusion
 
[Paper Review] MIT Cheetah 1: Gait-pattern, trajectory generator
[Paper Review] MIT Cheetah 1: Gait-pattern, trajectory generator[Paper Review] MIT Cheetah 1: Gait-pattern, trajectory generator
[Paper Review] MIT Cheetah 1: Gait-pattern, trajectory generator
 
Review robot-collisions-survey
Review robot-collisions-surveyReview robot-collisions-survey
Review robot-collisions-survey
 
[Paper Review] Unified Force Impedance Control
[Paper Review] Unified Force Impedance Control[Paper Review] Unified Force Impedance Control
[Paper Review] Unified Force Impedance Control
 
로봇팔 제어 겉핥기
로봇팔 제어 겉핥기로봇팔 제어 겉핥기
로봇팔 제어 겉핥기
 
Contraction mapping
Contraction mappingContraction mapping
Contraction mapping
 

Kürzlich hochgeladen

notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptMsecMca
 
Unit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfUnit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfRagavanV2
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VDineshKumar4165
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoordharasingh5698
 
2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projectssmsksolar
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptNANDHAKUMARA10
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxJuliansyahHarahap1
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapRishantSharmaFr
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptxJIT KUMAR GUPTA
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaOmar Fathy
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...soginsider
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationBhangaleSonal
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayEpec Engineered Technologies
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startQuintin Balsdon
 

Kürzlich hochgeladen (20)

notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
Unit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfUnit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdf
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
 
2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
 
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 

Passivity-based control of rigid-body manipulator

  • 1. Passivity-Based Control of Rigid-Body Manipulator ModuLabs 강남Dynamics Lab Hancheol Choi (babchol@gmail.com)
  • 2. What is ‘Passivity’? System is passive if (Energy Inflow) ≥ (Energy Stored) 𝑢 𝑠 𝑦(𝑠) 𝑡 0 𝑑𝑠 ≥ 𝑉 𝑥 𝑡 − 𝑉(𝑥 0 ) if (Energy Inflow Rate) ≥ (Energy Stored Rate) 𝑢 𝑡 𝑦(𝑡) ≥ 𝑉(𝑥 𝑡 , 𝑢(𝑡))  dissipative system Ex 1. Electric network, one-port resistance Ohm’s law: 𝑢 = 𝑅𝑦, 𝑦 = 𝐺𝑢  𝑢𝑦 = 𝐺𝑢2 ≥ 0  Network is passive if 𝑢 𝑇 𝑦 ≥ 0 for all 𝑢 u: voltage(input), y: current(output), R: resistance, G: conductance 𝑅 = 1 𝐺 + - u y
  • 3. Passivity-Based Control and Stability Nonlinear system 𝑥 = 𝑓 𝑥, 𝑢 𝑦 = ℎ 𝑥 (𝑓 0,0 = 0, ℎ 0 = 0) Recall that system is passive if there exists ‘storage function’ s.t. 𝑉 𝑥 ≥ 0 𝑢 𝑇 𝑦 ≥ 𝑉 = 𝜕𝑉 𝜕𝑥 𝑓 𝑥, 𝑢 , ∀(𝑥, 𝑢) System is zero-state observable if there exists no solution of 𝑥 = 𝑓(𝑥, 0) that satisfy ℎ 𝑥 = 0 except 𝑥 𝑡 = 0  if y=0, then x=0
  • 4. Theorem If system is (1) passive with a radially unbounded storage function (𝑉 ≥ 0) (2) zero-state observable Control input 𝑢 = −𝜙 𝑦 s.t. 𝜙 is locally Lipschitz function s.t. 𝜙 0 = 0, 𝑦 𝑇 𝜙 𝑦 > 0 , ∀𝑦 ≠ 0 can make system globally stabilized. 𝑥 = 𝑓(𝑥, −𝜙 𝑦 ) 𝑉 = 𝜕𝑉 𝜕𝑥 𝑥 = 𝜕𝑉 𝜕𝑥 𝑓 𝑥, −𝜙 𝑦 ≤ −𝑦 𝑇 𝜙(𝑦) ≤ 0 By invariance principle, the origin is globally asymptotically stable. Proof
  • 5. Passivity-Based Control of Rigid-Body Manipulator IDEA Reshape the robot system’s natural energy such that the control objective is achieved.[Berghuis, 1993] [Takegaki and Arimoto, 1981] Regulation control: control objective 𝑞 → 𝑞 𝑑 Shifting energy minimum at 𝒒, 𝒒 = (𝟎, 𝟎) to 𝒒, 𝒒 = 𝟎, 𝟎 , 𝒒 = 𝒒 − 𝒒 𝒅 Energy storage function with coordinate (𝑞, 𝑞) 𝑉 = 1 2 𝑞 𝑇 𝑀 𝑞 𝑞 + 1 2 𝑞 𝑇 𝐾𝑝 𝑞 - (1) 𝑉 = 𝑞 𝑇 𝑀 𝑞 𝑞 + 1 2 𝑞 𝑇 𝑀 𝑞 𝑞 + 𝑞 𝑇 𝐾𝑝 𝑞 = 𝑞 𝑇 𝜏 − 𝐶 𝑞, 𝑞 𝑞 − 𝑔 𝑞 + 1 2 𝑞 𝑇 𝑀 𝑞 𝑞 + 𝑞 𝑇 𝐾𝑝 𝑞 = 𝑞 𝑇 𝜏 − 𝑔 𝑞 + 𝐾𝑝 𝑞 + 1 2 𝑞 𝑇 [𝑀 𝑞 − 2𝐶 𝑞, 𝑞 ] 𝑞 = 𝑞 𝑇 𝜏 − 𝑔 𝑞 + 𝐾𝑝 𝑞 - (2) How to design 𝜏? = 0, (∵ 𝑀 − 2𝐶 is skew-symmetric)
  • 6. IDEA Reshape the robot system’s natural energy such that the control objective is achieved.[Berghuis, 1993] [Takegaki and Arimoto, 1981] Regulation control: control objective 𝑞 → 𝑞 𝑑 Shifting energy minimum at 𝒒, 𝒒 = (𝟎, 𝟎) to 𝒒, 𝒒 = 𝟎, 𝟎 , 𝒒 = 𝒒 − 𝒒 𝒅 Energy storage function with coordinate (𝑒, 𝑞) 𝑉 = 1 2 𝑞 𝑇 𝑀 𝑞 𝑞 + 1 2 𝑞 𝑇 𝐾𝑝 𝑞 - (1) 𝑉 = 𝑞 𝑇 𝜏 − 𝑔 𝑞 + 𝐾𝑝 𝑞 - (2) Let us define the control law as 𝜏 = 𝑔 𝑞 − 𝐾𝑝 𝑞 + 𝑣 - (3) (3)(2): 𝑉 = 𝑞 𝑇 𝑣  passive for (𝑞, 𝑣) - (4) How to design 𝑣? Recall passivity-based control. 𝑣 = −𝜙(𝑞) , 𝑞 𝜙(𝑞) ≥ 0  𝑣 = −𝐾 𝑑 𝑞 -(5) (5)(4): 𝑉 = −𝐾 𝑑 𝑞 2 ≤ 0, globally stable! Final control law is 𝝉 = 𝒈 𝒒 − 𝑲 𝒑 𝒒 − 𝑲 𝒅 𝒒 Passivity-Based Control of Rigid-Body Manipulator
  • 7. [Paden and Panja, 1988] Tracking control: control objective 𝑞(𝑡) → 𝑞 𝑑(𝑡) Shifting energy minimum at 𝒒, 𝒒 = (𝟎, 𝟎) to 𝒒, 𝒒 = 𝟎, 𝟎 , 𝒒 = 𝒒 − 𝒒 𝒅 Energy storage function with coordinate (𝑒, 𝑒) 𝑉 = 1 2 𝑞 𝑇 𝑀 𝑞 𝑞 + 1 2 𝑞 𝑇 𝐾 𝑝 𝑞 - (6) 𝑉 = 𝑞 𝑇 𝑀 𝑞 𝑞 + 1 2 𝑞 𝑇 𝑀 𝑞 𝑞 + 𝑞 𝑇 𝐾 𝑝 𝑞 = 𝑞 𝑇 (𝑀𝑞 − 𝑀𝑞 𝑑) + 1 2 𝑞 𝑇 𝑀 𝑞 + 𝑞 𝑇 𝐾 𝑝 𝑞 = 𝑞 𝑇 𝜏 − 𝐶𝑞 − 𝑔 − 𝑀𝑞 𝑑 + 1 2 𝑀 𝑞 + 𝐾 𝑝 𝑞 = 𝑞 𝑇 (𝜏 + 1 2 𝑀 − 2𝐶 𝑞 − 𝑀𝑞 𝑑 − 𝐶𝑞 𝑑 − 𝑔 + 𝐾 𝑝 𝑞) = 𝑞 𝑇 (𝜏 − 𝑀𝑞 𝑑 − 𝐶𝑞 𝑑 − 𝑔 + 𝐾 𝑝 𝑞) - (7) Let us define the control law as 𝜏 = 𝑀𝑞 𝑑 + 𝐶𝑞 𝑑 + 𝑔 − 𝐾 𝑝 𝑞 + 𝑣 - (8) (8)(7): 𝑉 = 𝑞 𝑇 𝑣 - (9) same as (5), we can set new control input as 𝑣 = −𝐾 𝑑 𝑞. Then 𝑉 = −𝐾 𝑑 𝑞 2 ≤ 0, globally stable! - (10) Final control law is 𝝉 = 𝑴(𝒒)𝒒 𝒅 + 𝑪(𝒒, 𝒒)𝒒 𝒅 + 𝒈 𝒒 − 𝑲 𝒑 𝒒 − 𝑲 𝒅 𝒒 Passivity-Based Control of Rigid-Body Manipulator = 0, (∵ 𝑀 − 2𝐶 is skew-symmetric)
  • 8. [Slotine and Lie, 1987] Applied sliding mode theory IDEA Look into (10) again, 𝑉 = −𝐾 𝑑 𝑞 2 tells us 𝑞 → 0 as 𝑉 → 0 , but it doesn’t guarantee 𝒒 → 𝟎 Let’s restrict them to lie on a sliding surface 𝒔 = 𝒒 + 𝜦𝒒 = 𝟎 Energy storage function with coordinate 𝑠 𝑽 = 𝟏 𝟐 𝒔 𝑻 𝑴𝒔 - (11) 𝑉 = 𝑠 𝑇 𝑀𝑠 + 1 2 𝑠 𝑇 𝑀 𝑠 = 𝑠 𝑇 (𝑀𝑞 + 𝑀Λ𝑞 + 1 2 𝑀 𝑠) = 𝑠 𝑇 (𝜏 − 𝐶𝑞 − 𝑔 − 𝑀𝑞 𝑑 + 𝑀Λ𝑞 + 1 2 𝑀 𝑠) = 𝑠 𝑇 (𝜏 − 𝑀𝑞 𝑑 + 𝑀Λ𝑒 − 𝐶𝑞 𝑑 + 𝐶Λ𝑞 − 𝑔 + 1 2 𝑀 − 2𝐶 𝑠) - (12) Introduce virtual “reference trajectory”, 𝒒 𝒓 = 𝒒 𝒅 − 𝜦𝒒 𝑉 = 𝑠 𝑇 (𝜏 − 𝑀𝑞 𝑟 − 𝐶𝑞 𝑟 − 𝑔) - (13) Same as before, we define control law as, 𝜏 = 𝑀𝑞 𝑟 + 𝐶𝑞 𝑟 + 𝑔 + 𝑣 - (14) (14) (15): 𝑉 = 𝑠 𝑇 𝑣 - (15) Same as before, we can set new control input as 𝑣 = −𝐾 𝑑 𝑠. Then 𝑉 = −𝐾 𝑑 𝑠 2 ≤ 0 Then globally stable and guarantee (𝒒, 𝒒) → (𝟎, 𝟎) Final control law is 𝝉 = 𝑴(𝒒)𝒒 𝒓 + 𝑪(𝒒, 𝒒)𝒒 𝒓 + 𝒈 𝒒 − 𝑲 𝒅 𝒔 𝒒 𝒓 = 𝒒 𝒅 − 𝜦𝒒, 𝒔 = 𝒒 + 𝜦𝒒 Passivity-Based Control of Rigid-Body Manipulator = 0
  • 9. Rigid-body dynamics with disturbance 𝑀 𝑞 𝑞 + 𝐶 𝑞, 𝑞 𝑞 + 𝑔 𝑞 = 𝜏 + 𝑑 Passivity-based control input 𝜏 = 𝑀(𝑞)𝑞 𝑟 + 𝐶(𝑞, 𝑞)𝑞 𝑟 + 𝑔 𝑞 − 𝐾 𝑑 𝑠 𝑞 𝑟 = 𝑞 𝑑 − 𝛬𝑞, 𝑠 = 𝑞 + 𝛬𝑞 Then, closed-loop system is, 𝑀 𝑞 𝑠 + 𝐶 𝑞, 𝑞 𝑠 + 𝐾 𝑑 𝑠 = 𝑑 For input-output pair (𝑠, 𝑑) 𝑠 𝑇 𝑑 = 𝑠 𝑇 𝑀 𝑞 𝑠 + 𝑠 𝑇 𝐶 𝑞, 𝑞 𝑠 + 𝑠 𝑇 𝐾 𝑑 𝑠 = 𝑑 𝑑𝑡 1 2 𝑠 𝑇 𝑀 𝑞 𝑠 − 1 2 𝑠 𝑇 𝑀 𝑞 𝑠 + 𝑠 𝑇 𝐶 𝑞, 𝑞 𝑠 + 𝑠 𝑇 𝐾𝑑 𝑠 = 𝑑 𝑑𝑡 1 2 𝑠 𝑇 𝑀 𝑞 𝑠 + 𝑠 𝑇 𝐾 𝑑 𝑠 ∴ 𝒔 𝑻 𝒅 ≤ 𝒅 𝒅𝒕 𝟏 𝟐 𝒔 𝑻 𝑴 𝒒 𝒔  Input-output pair (𝑠, 𝑑) system is passive. Always stable for any disturbance 𝒅 Why Passivity-Based Control(PBC) Robust? stored energy dissipitated energy > 0
  • 10. Rigid-body dynamics with disturbance 𝑀 𝑞 𝑞 + 𝐶 𝑞, 𝑞 𝑞 + 𝑔 𝑞 = 𝜏 + 𝑑 Computed-torque control input 𝜏 = 𝑀(𝑞) 𝑞 𝑑 − 𝐾𝑝 𝑞 − 𝐾 𝑑 𝑞 − 𝐾𝑖 𝑞 𝑑𝑡 + 𝐶(𝑞, 𝑞)𝑞 + 𝑔 𝑞 Then, closed-loop system is, 𝑞 − 𝐾 𝑑 𝑞 − 𝐾𝑝 𝑞 − 𝐾𝑖 𝑞 𝑑𝑡 = 𝑑 Differenciate closed-loop equation in frequency-domain 𝑠3 − 𝐾 𝑑 𝑠2 − 𝐾𝑝 𝑠 − 𝐾𝑖 𝑄 𝑠 = 𝑠𝐷 𝑠 𝐹 𝑠 = 𝑄 𝑠 𝐷(𝑠) = 𝑠 𝑠3−𝐾 𝑑 𝑠2−𝐾 𝑝 𝑠−𝐾 𝑖 By final final value-theorem of Laplace transformation, 𝑓 𝑡 = ∞ = lim 𝑠→∞ 𝑠𝐹(𝑠) = 0 Integral feedback term makes transfer function converging finally. But disturbance will be rejected, only if 𝒅 is constant. So, it is not more robust than passivity-based control. Why PBC is more robust than Computed-Torque Control?
  • 11. Computation Issue Passivity-based control input, 𝜏 = 𝑀(𝑞)𝑞 𝑟 + 𝐶(𝑞, 𝑞)𝑞 𝑟 + 𝑔 𝑞 − 𝐾 𝑑 𝑠 𝑞 𝑟 = 𝑞 𝑑 − 𝛬𝑞, 𝑠 = 𝑞 + 𝛬𝑞 Normally, you can get 𝑀 𝑞 , 𝐶 𝑞, 𝑞 𝑞, 𝑔(𝑞) from inverse-dynamics algorithm. But, you need 𝑪(𝒒, 𝒒) alone in PBC! When there was no method to get 𝐶(𝑞, 𝑞) efficiently, [Slotine and Lie, 1987] modifies the control input like this, 𝜏 = 𝑀(𝑞)𝑞 𝑟 + 𝐶(𝑞, 𝑞)𝑞 + 𝑔 𝑞 − 𝐾 𝑑 𝑠 Now, you can refer to [D. Luca, 2009], [Bjerkeng, 2012] to get coriolis matrix efficiently. This 𝐶(𝑞, 𝑞) is slightly different from original 𝐶(𝑞, 𝑞) calculated symbolically. But, skew-symmetric property of 𝑀 − 2𝐶 is preserved.
  • 12. Reference [1] M. Takegaki and S. Arimoto, “A new feedback method for dynamic control of manipulators,” ASME J. Dynam. Syst., 1981. [2] B. Paden and R. Panja, “Globally asymptotically stable ‘PD+’ controller for robot manipulators,” Int. J. Control., 1988. [3] Slotine and Li, “On the Adaptive Control of Robot Manipulators”, The International Journal of Robotics Research, 1987. [4] H. Berghuis, H. Nijmeijer, "A passivity approach to controller-observer design for robots", IEEE Trans. Robot. Autom., vol. 9, no. 6, pp. 740-754, Sep. 1993. [5] Hatanaka, “Passivity-Based Control and Estimation in Networked Robotics”, Springer, 2015. [6] De Luca, “A Modified Newton-Euler Method for Dynamic Computations in Robot Fault Detection and Control”, ICRA, 2009. [7] Bjerkeng, “A new Coriolis matrix factorization”, ICRA, 2012.