SlideShare ist ein Scribd-Unternehmen logo
1 von 71
Downloaden Sie, um offline zu lesen
UC Berkeley P290e
How to “see” a neutrino?
Alan Poon

2017.09.27
Neutrino Sources
2
Most neutrino sources are natural (not from accelerators and reactors)
Figure from https://masterclass.icecube.wisc.edu/en/learn/detecting-neutrinos
• Huge flux
• Broad energy range
Why is it so hard to detect neutrinos?
3
Neutrinos participate only in weak interactions
Formaggio and Zeller, Rev. Mod. Phys. 84, 1307 (2012)

[10-27cm2]
Why is it so hard to detect neutrinos?
4
λ =
1
ρσ
σ ∼ 10−43
cm2 @1 MeV
ρ =
(82 e/atom)(11.3 g/cm3
)(6.02 × 1023
atom/mole)
(207 g/mole)
= 2.7 × 1024
e/cm3
λ ∼ 4 × 1016
m = 4 light years
attenuation length
• Look for its decay?
(AFAIK) Neutrinos don’t decay
• Look for its interactions?
Ex: 1-MeV scattering off atomic electrons in Pb:¯νe
Need:
HUGE flux
HUGE target
An explosive idea - Reines and Cowan
5
- Fred Reines
Reines and Cowan scrapped this idea.
Discovery of the (Anti-)Neutrinos
6
€
νefrom reactor
p
e+
511 keV γ
511 keV γ
e+e- annihilationn
γγ
γ’s from n
capture on
Cd
Cd
Liquid Scintillator
γ
Liquid Scintillator
H2O+CdCl2
• F. Reines & C.L. Cowan [Physical Review 117, 160 (1960)]
• Detection at Savannah River reactor plant
Inverse Beta Decay
¯νe + p → n + e+
“Saw” the coincidences!
7
neutrino
neutrino
noise
cosmic ray
Leptonic processes
and
coherent elastic neutrino-nucleus scattering
Neutrino-electron scattering
9
Tree level diagrams:
Targets have a lot of atomic electrons
Charged Current (CC) Neutral Current (NC)
νe, νμ, ντνe  only
ℒ = −
GF
2
[¯νeγμ
(1 −γ5
)e][¯eγμ(1 −γ5
)νe] + [¯νeγμ
(1 −γ5
)νe][¯eγμ(ge
V −ge
Aγ5
)e)]
Neutrino-electron scattering
10
Tree level diagrams:
Targets have a lot of atomic electrons
Charged Current (CC) Neutral Current (NC)
νe, νμ, ντνe  only
gL = sin2
θW ± e
μ,τ
1
2
gR = sin2
θW
gL ↔ gR for ¯ν
σ =
2G2
Fme
π
[(g2
L +
g2
R
3
Eν) −
gLgR
2
me]
Neutrino-electron scattering
11
νe
νe
e
e
θ
(Te, ⃗pe)
(Eν, ⃗pν)
Te =
2meE2
ν cos2
θ
(me + Eν)2 − E2
ν cos2 θ
• Electron emitted at very small angle 

with respect to the neutrino direction Eeθ2
e ≤ 2me:
Solar neutrino image
Solar neutrinos
Cherenkov radiation - seeing relativistic charged particles
12
Graphics from http://physicsopenlab.org/
cos θC =
1
βn
θC = 41∘
in H2O (β~1)
Event in SNO
Cherenkov light is emitted when a charged

particle passes through a dielectric medium

at a speed higher than the speed of light in 

that medium.
Coherent Elastic Neutrino-Nucleus Scattering
13
• When q << 1/R (Eν < 50 MeV),
σTotal ~ N2, but the nucleus recoil
energy is very low.

• First observation was made in a
CsI detector using neutrinos from
the Spallation Neutron Source at
ORNL.

D. Akimov et al., Science 10.1126/science.aao0990 (2017).
electron
CEνNS
Coherent Elastic Neutrino-Nucleus Scattering
14
D. Akimov et al., Science 10.1126/science.aao0990 (2017).
Their signals, your backgrounds
15
Coherent Elastic
Neutrino-Nucleus
Scattering
Inverse beta decay
and
low-energy neutrino-nucleus interactions
Inverse Beta Decay (IBD)
• Recall (the discovery of neutrinos by Reines & Cowan):
• The cross section of this process at low neutrino energy (~ a few MeV) is:









where f = 1.715 and τn = 880.2 (1.0) s 

(but with controversial measurements).
• The neutron lifetime is an important 

parameter that fixes the cross section

for single nucleon processes.
17
Inverse Beta Decay: ¯νe + p → n + e+
σtot =
2π2
m5
e
Ee+ pe+
fτn
E¯νe
> 1.8 MeV
PDG 2017
Geo-neutrinos
• 1 kt liquid scintillator
• Detect anti-neutrinos from reactors and
earth’s core by IBD
18 Shirahata 2017
Using other nuclei as neutrino target
• The first detection of solar neutrinos by Ray Davis (615t of C2Cl4 at
Homestake mine (now SURF) in SD:
19
νe + 37Cl → 37Ar + e−
(Eν > 0.814 MeV)
• Flushed tank, collected 37Ar, looked for its
decay back to 37Cl.
• Solar Neutrino Problem: only 1/3 of the
expected number of solar neutrinos was
observed.
• Ray Davis won the Nobel Prize in Physics
(with M. Koshiba) in 2002.
• Note:
• The Sun only emits (p-p chain)
• Charged-current (in detection) only
sensitive to
νe
νe
Solar Neutrino Problem (~2000)
• Are the Standard Solar Model predictions wrong?
• Or is there something about the neutrinos that we don’t understand?
20
Measure CC and NC (νe vs all flavors)
21
CC
NC
=
νe
νe + νµ +ντ
CC
ES
=
νe
νe + 0.15(νµ + ντ )
φCC
(νe ) < φNC
(νx )
φCC
(νe ) < φES
(νx )
Transformation to another
active flavor if:
Measure:
Alternatively…
Flavor transformation (particle physics) can be tested without any
assumption on the Standard Solar Model prediction of the total neutrino flux.
Is there a magic target ?
The deuteron
22
CC
NC
ES
νe + d → p + p + e−
νx + d → p + n + ν′x
νx + e−
→ νx + e−
•2 km underground at Vale’s Creighton
mine near Sudbury, ON, Canada
•1000t of D2O in a 12-m φ acrylic sphere
Sudbury Neutrino Observatory (SNO)
23
SNO provided the first direct observation of neutrino flavor transformation
(which requires neutrinos to be massive)
• A weak eigenstate is a linear combination of mass eigenstates :
where U = Maki-Nakagawa-Sakata-Pontecorvo (MNSP) matrix.
Aside: neutrino mixing
| | i
| =
3
i=1
U i| i
|U| =
0
@
0.779 $ 0.848 0.510 $ 0.604 0.122 $ 0.190
0.183 $ 0.568 0.385 $ 0.728 0.613 $ 0.794
0.200 $ 0.576 0.408 $ 0.742 0.589 $ 0.775
1
A
|⌫ei = (⇠ 0.81) |⌫1i + (⇠ 0.55) |⌫2i + (⇠ 0.16) |⌫3i
|⌫µi = (⇠ 0.38) |⌫1i + (⇠ 0.56) |⌫2i + (⇠ 0.70) |⌫3i
|⌫⌧ i = (⇠ 0.39) |⌫1i + (⇠ 0.58) |⌫2i + (⇠ 0.68) |⌫3i
KamLAND - Reactor Anti-Neutrino
KamLAND showed that neutrino oscillation is the origin of flavor
transformation seen in SNO
25
Nobs/Nno
prediction:
Δm2 = 5.5x10-5 eV2
sin2 2θ = 0.833
P⌫e!⌫e
= 1 sin2
2✓ sin2
✓
1.27
m2
[eV2
] L[m]
E[MeV]
◆
Other nuclear targets for ν detection
• A common target is liquid scintillator (lots of C and H), but there have been
other nuclei that have been studied quite extensively
• Theory vs experimental cross section agreement generally good for low
energy (1-300 MeV)
26
Intermediate-energy and high-energy
neutrino-nucleus interactions
Atmospheric ν problem (before 1998)
28
Expect Rμ/e: (νµ + νµ) / (νe + νe ) ~ 2
Measured ~ 0.6-0.7 of expectation
π+ → µ+ + νµ
e+ + νe + νµ
π− → µ− + νµ
e− + νe + νµ
Much higher energy 

than solar neutrinos
Intermediate-energy neutrino cross section
• The nucleus is typically described in terms of individual quasi-free nucleons
that participate in the scattering process
29
νμ N → μ−
X
¯νμ N → μ+
X
1. Quasielastic scattering (QE)
• Example: ,

• Final-state nucleon usually invisible in water
Cherenkov detector 

νμ n → μ−
p ¯νμ p → μ+
n
2. Resonant (RES)
• Neutrino interaction produces a baryon
resonance, which quickly decays and
most often to a nucleon and single pion
final state: 

νμ N → μ−
N* ; N* → π N′
3. Deep Inelastic Scattering (DIS)
• Both CC and NC possible

• Example: 
 ν + q → l−
q ′; q ′ → hadrons
4. NC Neutrino-Nucleon Interactions
ν + N → ν + X
The axial mass MA puzzle
QE scattering at O(GeV) needs to take into account the nucleon structure:
30
jμ
= [FV
1 (Q2
)γμ
+ i
κ
2M
FV
2 (Q2
)σμν
q ν − FA(Q2
)γμ
γ5
+ FP(Q2
)q μ
γ5
]τ±
The axial mass MA puzzle
QE scattering at O(GeV) needs to take into account the nucleon structure:
31
jμ
= [FV
1 (Q2
)γμ
+ i
κ
2M
FV
2 (Q2
)σμν
q ν − FA(Q2
)γμ
γ5
+ FP(Q2
)q μ
γ5
]τ±
Vector - OK
(from electron scattering)
Pseudoscalar - small
(~ml/M)2
The axial mass MA puzzle
QE scattering at O(GeV) needs to take into account the nucleon structure:
32
jμ
= [FV
1 (Q2
)γμ
+ i
κ
2M
FV
2 (Q2
)σμν
q ν − FA(Q2
)γμ
γ5
+ FP(Q2
)q μ
γ5
]τ±
FA(Q2
) =
1.267
(1 + Q2/M2
A)
2
Old (pre-1990) average:
Newer measurements (K2K, MINOS, 

MiniBooNE…etc) are higher, up to ~1.35 GeV
MA = 1.03 ± 0.02 GeV
12C
Super-Kamiokande
• 50 kt H2O, 22 kt fiducial volume
• Water Cherenkov detector
33
Event classification
Super-Kamiokande
34
Kajita
Reminder:
Segre Lecture - Kajita
5:30pm, Oct 30, 2017
First demonstration of physics
beyond the Standard Model (neutrino
oscillations, hence neutrino mass)
Neutrino 1998 conference
L/E (Further evidence of neutrino oscillation)
35
P⌫e!⌫e
= 1 sin2
2✓ sin2
✓
1.27
m2
[eV2
] L[m]
E[MeV]
◆
SuperKamiokande
PRL 93, 101801 (2004)
KamLAND
Cosmic Messenger
36
IceCube
July 2017
Highest-energy neutrinos observed
37
1.04 PeV
1.14 PeV
IceCube
2 PeV
“Big Bird”
1 PeV =1015 eV
How to measure the neutrino mass?
How to measure the mass of the neutrino?
⇡+
! µ+
+ ⌫µ
(in a model independent way)
How to measure the mass of the neutrino?
• Finding the missing mass at accelerator. For example:
• Energy-momentum conservation says (for pion decay at
rest):
• How well can the momentum of the muon be measured?
At an experiment at PSI [Phys. Rev. D53, 6065 (1996)], it was
measured to ~ 4 ppm:
⇡+
! µ+
+ ⌫µ
m2
⌫µ
= m2
⇡+ + m2
µ+ 2m⇡+ (m2
µ+ + p2
µ+ )1/2
pµ+ = (29.79200 ± 0.00011) MeV/c
Not good enough !
(when you want to measure neutrino mass to sub-eV level) !
Determining the neutrino mass from β endpoint
Z Q
Q E
dN
dE
dE ⇡ 2
✓
E
Q
◆3
Only a tiny fraction of decays will end up near the endpoint
An ideal isotope would have very small Q
Neutrino mass limit from beta-decays
Wilkerson 2012
Neutrino mass limit from beta-decays
Wilkerson 2012
Tritium β-decay
(12.3 yr half-life)
Neutrino mass limit from beta-decays
Wilkerson 2012
Mainz (2005, final result)
m(νe) < 2.3 eV (95% CL)
C. Kraus et al., EPJ C40:447
Troitsk (2011, re-analysis)
m(νe) < 2.05 eV (95% CL)
V. N. Aseev et al., PRD 84:112003
Another way to “see” the beta-electrons
45
! =
!
=
qB
me + E
coherent cyclotron radiation
Asner et al., PRL 114 (2015) 162501
83mKr test
A Nobel idea….
Seeing the cosmic neutrino background
47
Tν = 1.95 K
Tγ = 2.725 Kcf
The energy is so low
HOW?
per (neutrino+antineutrino) species
Seeing the cosmic neutrino background
48
Tritium and other isotopes studied for relic neutrino capture in:
Cocco, Mangano, Messina, JCAP 0706 (2007)015
Neutrino capture on Tritium
With 100 g of tritium, event rate is
~O(10) events per year
Seeing the cosmic neutrino background
49
Neutrino capture on Tritium
Gap (2m) constrained to < ~0.6eV
from Cosmology
(some electron flavor expected with
2m>0.1eV from neutrino oscillations)
What do we know?
Tritium β-decay
Endpoint (Q)
Challenges:
• Energy resolution

• Background

• Triggering on the electrons 

near endpoint
Tully 2017
Supported by:
The Simons Foundation
The John Templeton Foundation
PTOLEMY (R&D)
• Long baseline neutrino experiments 

(CP violation and neutrino mass
hierarchy)

• Neutrino astronomy

• Neutrinoless double beta decays

• Sterile neutrinos 

(from reactor and beam experiments)

• Neutrinos in cosmology….
But I have covered how to “see” the neutrinos in the energy ranges of the
sources in Slide 3, so you can explore these additional topics on your own.

[10-27cm2]
Neutrino topics that I didn’t cover (many):
References
• Christine Sutton, Spaceship Neutrinos, Cambridge
University Press (1992).
• H. Gallagher et al., Neutrino-Nucleus Interactions,
Annu. Rev. Nucl. Part. Sci. 61, 355 (2011).
• J. A. Formaggio and G. P. Zeller, From eV to EeV:
Neutrino cross sections across energy scales, Rev.
Mod. Phys. 84, 1307 (2012).
• T. W. Donnelly et al., Foundations of Nuclear and
Particle Physics, Cambridge University Press (2017).
51
Neutrino interactions
53 Halzen & Martin
Solar Neutrinos
54
pp chain:
4p + 2e → 4He + 2νe + 26.7 MeV
Standard
Solar
Model
Detailed computer
model of solar
evolution
Standard Solar Model
55
SuperK, SNO(CC)
Chlorine
Gallium
SNO(NC)
pp chain should only produce νe
Aside: Neutrino Oscillations
56
C. Guinti
Mass Hierarchy & CPV - Future
Future neutrino oscillation studies
JUNO (20kt LS)
IceCube/DeepCore/PINGU
Supernovae
Now
2026
KM3Net-ORCA
DUNE (40 kt LAr)
[Gu]
Hyper-K (187 kt H2O FV)
INO
[Singh]
CHIPS
SuperK
CPV & MH - Future
Hyper-K
Technologies that I found impressive
protoDUNE dual-phase
LAr TPC R&D
Reached design spec of 2.5 kV/cm extraction field
[Zambelli]
[Takeuchi]
CPV & MH - Future
Gu, DeYoung, Coelho
3y
MH
MH
CPV & MH - Future
Takeuchi, Ji
“Vanilla” mass mechanism
(T0⌫
1/2) 1
= G0⌫(Q , Z) |M0⌫|
2
hm i2
form
factor
nuclear
matrix
element
effective
Majorana
mass
hm i =
3X
i=1
U2
eimi
Normal Ordering Inverted Ordering
mass
1
2
3
1
2
3
m2
23 50 meV
m2
12 8 meV
mass
msmallest
Halflife mass scale
Signal
63
Energy resolution and low backgrounds are keys!
T1/2 ~ 1018-20 y T1/2 > 1026 y
Considerations
• Preferably:
• high isotopic abundance
• high efficiency
• large mass
• long exposure
• low background
• good energy resolution
There is not an
obvious choice
of isotope or
detector
technology
Many experimental ideas…presented here
Päs & Rodejohann, New J. Phys. 17 115010 (2015)
65
Many experimental ideas…presented here
66
GERDA
CUORE SNO+
CUPID-0
+
other “CUPIDs”
Schütz, Fujikawa, Nones,
Casali, Giuliani, Barrros, Hogan
0νββ news - GERDA (76Ge)
Schütz
0νββ news - CUORE (130Te)
Fujikawa
0νββ trailers - CUPIDs
Nones
CUPID-0 (Zn82Se)
Guliani
CUPID-Mo
Cardini
Kinetic Inductance Detectors
Problem: alpha background
0νββ trailers
SNO+
SuperNEMO
Hugon
Barros
“ton-scale”
LEGEND
Schütz
Mass sensitivity
Gerda-II
arXiv:1605.02889v1

Weitere ähnliche Inhalte

Was ist angesagt? (20)

General Properties of Nuclear
General Properties of NuclearGeneral Properties of Nuclear
General Properties of Nuclear
 
Advance Quantum Mechanics
Advance Quantum Mechanics Advance Quantum Mechanics
Advance Quantum Mechanics
 
Nuclear Shell models
Nuclear Shell modelsNuclear Shell models
Nuclear Shell models
 
Mesons
Mesons Mesons
Mesons
 
State and explain Alpha , Beta and Gamma decay
State and explain Alpha , Beta and Gamma decayState and explain Alpha , Beta and Gamma decay
State and explain Alpha , Beta and Gamma decay
 
Spectroscopy Introduction
Spectroscopy IntroductionSpectroscopy Introduction
Spectroscopy Introduction
 
5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanics
 
Strangeness in particle physics
Strangeness in particle physicsStrangeness in particle physics
Strangeness in particle physics
 
Quarks
QuarksQuarks
Quarks
 
Neutrino
NeutrinoNeutrino
Neutrino
 
Laser lecture01
Laser lecture01Laser lecture01
Laser lecture01
 
Laser linewidth measurement
Laser linewidth measurementLaser linewidth measurement
Laser linewidth measurement
 
UV PES.pdf
UV PES.pdfUV PES.pdf
UV PES.pdf
 
Aharonaov bohm effect
Aharonaov bohm effectAharonaov bohm effect
Aharonaov bohm effect
 
non linear optics
non linear opticsnon linear optics
non linear optics
 
Classical & Quantum Statistics
Classical & Quantum StatisticsClassical & Quantum Statistics
Classical & Quantum Statistics
 
Raman effect
Raman effectRaman effect
Raman effect
 
NUCLEAR MODELS AND NUCLEAR FORCES
NUCLEAR MODELS AND NUCLEAR FORCESNUCLEAR MODELS AND NUCLEAR FORCES
NUCLEAR MODELS AND NUCLEAR FORCES
 
Applications of schrodinger equation
Applications of schrodinger equationApplications of schrodinger equation
Applications of schrodinger equation
 
The wkb approximation
The wkb approximationThe wkb approximation
The wkb approximation
 

Ähnlich wie How to "see" a neutrino?

25.0 Nuclear Physics Sem 3.pptx
25.0 Nuclear Physics Sem 3.pptx25.0 Nuclear Physics Sem 3.pptx
25.0 Nuclear Physics Sem 3.pptxssuser955fb81
 
Trabajo Final de Grado Física(UV): Angular distribution and energy spectrum o...
Trabajo Final de Grado Física(UV): Angular distribution and energy spectrum o...Trabajo Final de Grado Física(UV): Angular distribution and energy spectrum o...
Trabajo Final de Grado Física(UV): Angular distribution and energy spectrum o...Christiaan Roca Catala
 
8m_ATOMS__NUCLEI.pdf chapter best notes preparation
8m_ATOMS__NUCLEI.pdf chapter best notes preparation8m_ATOMS__NUCLEI.pdf chapter best notes preparation
8m_ATOMS__NUCLEI.pdf chapter best notes preparation30jayporwal
 
Norman John Brodeur Nuclear Physics.pdf
Norman John Brodeur Nuclear Physics.pdfNorman John Brodeur Nuclear Physics.pdf
Norman John Brodeur Nuclear Physics.pdfNorman John Brodeur
 
The Sun and the Particle Physics
The Sun and the Particle PhysicsThe Sun and the Particle Physics
The Sun and the Particle PhysicsSSA KPI
 
Gnp ch103-lecture notes
Gnp ch103-lecture notesGnp ch103-lecture notes
Gnp ch103-lecture notesRohan Jain
 
Adamek_SestoGR18.pdf
Adamek_SestoGR18.pdfAdamek_SestoGR18.pdf
Adamek_SestoGR18.pdfgarfacio30
 
Refraction And Total Internal Reflection Internet
Refraction And Total Internal Reflection InternetRefraction And Total Internal Reflection Internet
Refraction And Total Internal Reflection Internetmrmeredith
 
Basics Nuclear Physics concepts
Basics Nuclear Physics conceptsBasics Nuclear Physics concepts
Basics Nuclear Physics conceptsMuhammad IrfaN
 
Lect27 handout
Lect27 handoutLect27 handout
Lect27 handoutnomio0703
 
Lect27 handout
Lect27 handoutLect27 handout
Lect27 handoutnomio0703
 
Neutron scattering from nanoparticles
Neutron  scattering from  nanoparticlesNeutron  scattering from  nanoparticles
Neutron scattering from nanoparticlesupvita pandey
 

Ähnlich wie How to "see" a neutrino? (20)

25.0 Nuclear Physics Sem 3.pptx
25.0 Nuclear Physics Sem 3.pptx25.0 Nuclear Physics Sem 3.pptx
25.0 Nuclear Physics Sem 3.pptx
 
Gravity tests with neutrons
Gravity tests with neutronsGravity tests with neutrons
Gravity tests with neutrons
 
Trabajo Final de Grado Física(UV): Angular distribution and energy spectrum o...
Trabajo Final de Grado Física(UV): Angular distribution and energy spectrum o...Trabajo Final de Grado Física(UV): Angular distribution and energy spectrum o...
Trabajo Final de Grado Física(UV): Angular distribution and energy spectrum o...
 
Neutron EDM and Dressed Spin
Neutron EDM and Dressed SpinNeutron EDM and Dressed Spin
Neutron EDM and Dressed Spin
 
11 Nuclear
11 Nuclear11 Nuclear
11 Nuclear
 
8m_ATOMS__NUCLEI.pdf chapter best notes preparation
8m_ATOMS__NUCLEI.pdf chapter best notes preparation8m_ATOMS__NUCLEI.pdf chapter best notes preparation
8m_ATOMS__NUCLEI.pdf chapter best notes preparation
 
Norman John Brodeur Nuclear Physics.pdf
Norman John Brodeur Nuclear Physics.pdfNorman John Brodeur Nuclear Physics.pdf
Norman John Brodeur Nuclear Physics.pdf
 
The Sun and the Particle Physics
The Sun and the Particle PhysicsThe Sun and the Particle Physics
The Sun and the Particle Physics
 
Gnp ch103-lecture notes
Gnp ch103-lecture notesGnp ch103-lecture notes
Gnp ch103-lecture notes
 
Adamek_SestoGR18.pdf
Adamek_SestoGR18.pdfAdamek_SestoGR18.pdf
Adamek_SestoGR18.pdf
 
Refraction And Total Internal Reflection Internet
Refraction And Total Internal Reflection InternetRefraction And Total Internal Reflection Internet
Refraction And Total Internal Reflection Internet
 
NEUTRINO
NEUTRINONEUTRINO
NEUTRINO
 
Search for Neutron Electric Dipole Moment
Search for Neutron Electric Dipole MomentSearch for Neutron Electric Dipole Moment
Search for Neutron Electric Dipole Moment
 
Basics Nuclear Physics concepts
Basics Nuclear Physics conceptsBasics Nuclear Physics concepts
Basics Nuclear Physics concepts
 
Workshop problems solving
Workshop problems solvingWorkshop problems solving
Workshop problems solving
 
cl21-UCNt-Slaughter
cl21-UCNt-Slaughtercl21-UCNt-Slaughter
cl21-UCNt-Slaughter
 
Lect27 handout
Lect27 handoutLect27 handout
Lect27 handout
 
Lect27 handout
Lect27 handoutLect27 handout
Lect27 handout
 
Lect27 handout
Lect27 handoutLect27 handout
Lect27 handout
 
Neutron scattering from nanoparticles
Neutron  scattering from  nanoparticlesNeutron  scattering from  nanoparticles
Neutron scattering from nanoparticles
 

Kürzlich hochgeladen

Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Silpa
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfSumit Kumar yadav
 
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Silpa
 
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptxTHE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptxANSARKHAN96
 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Serviceshivanisharma5244
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .Poonam Aher Patil
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptxSilpa
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxMohamedFarag457087
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceAlex Henderson
 
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry Areesha Ahmad
 
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIADr. TATHAGAT KHOBRAGADE
 
Chemistry 5th semester paper 1st Notes.pdf
Chemistry 5th semester paper 1st Notes.pdfChemistry 5th semester paper 1st Notes.pdf
Chemistry 5th semester paper 1st Notes.pdfSumit Kumar yadav
 
Grade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its FunctionsGrade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its FunctionsOrtegaSyrineMay
 
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRingsTransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRingsSérgio Sacani
 
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body Areesha Ahmad
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY1301aanya
 
Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxSilpa
 
Cyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptxCyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptxSilpa
 

Kürzlich hochgeladen (20)

Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdf
 
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
 
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptxTHE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptx
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical Science
 
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
 
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
 
Chemistry 5th semester paper 1st Notes.pdf
Chemistry 5th semester paper 1st Notes.pdfChemistry 5th semester paper 1st Notes.pdf
Chemistry 5th semester paper 1st Notes.pdf
 
Grade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its FunctionsGrade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its Functions
 
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRingsTransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
 
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptx
 
Cyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptxCyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptx
 

How to "see" a neutrino?

  • 1. UC Berkeley P290e How to “see” a neutrino? Alan Poon 2017.09.27
  • 2. Neutrino Sources 2 Most neutrino sources are natural (not from accelerators and reactors) Figure from https://masterclass.icecube.wisc.edu/en/learn/detecting-neutrinos • Huge flux • Broad energy range
  • 3. Why is it so hard to detect neutrinos? 3 Neutrinos participate only in weak interactions Formaggio and Zeller, Rev. Mod. Phys. 84, 1307 (2012) [10-27cm2]
  • 4. Why is it so hard to detect neutrinos? 4 λ = 1 ρσ σ ∼ 10−43 cm2 @1 MeV ρ = (82 e/atom)(11.3 g/cm3 )(6.02 × 1023 atom/mole) (207 g/mole) = 2.7 × 1024 e/cm3 λ ∼ 4 × 1016 m = 4 light years attenuation length • Look for its decay? (AFAIK) Neutrinos don’t decay • Look for its interactions? Ex: 1-MeV scattering off atomic electrons in Pb:¯νe Need: HUGE flux HUGE target
  • 5. An explosive idea - Reines and Cowan 5 - Fred Reines Reines and Cowan scrapped this idea.
  • 6. Discovery of the (Anti-)Neutrinos 6 € νefrom reactor p e+ 511 keV γ 511 keV γ e+e- annihilationn γγ γ’s from n capture on Cd Cd Liquid Scintillator γ Liquid Scintillator H2O+CdCl2 • F. Reines & C.L. Cowan [Physical Review 117, 160 (1960)] • Detection at Savannah River reactor plant Inverse Beta Decay ¯νe + p → n + e+
  • 8. Leptonic processes and coherent elastic neutrino-nucleus scattering
  • 9. Neutrino-electron scattering 9 Tree level diagrams: Targets have a lot of atomic electrons Charged Current (CC) Neutral Current (NC) νe, νμ, ντνe  only ℒ = − GF 2 [¯νeγμ (1 −γ5 )e][¯eγμ(1 −γ5 )νe] + [¯νeγμ (1 −γ5 )νe][¯eγμ(ge V −ge Aγ5 )e)]
  • 10. Neutrino-electron scattering 10 Tree level diagrams: Targets have a lot of atomic electrons Charged Current (CC) Neutral Current (NC) νe, νμ, ντνe  only gL = sin2 θW ± e μ,τ 1 2 gR = sin2 θW gL ↔ gR for ¯ν σ = 2G2 Fme π [(g2 L + g2 R 3 Eν) − gLgR 2 me]
  • 11. Neutrino-electron scattering 11 νe νe e e θ (Te, ⃗pe) (Eν, ⃗pν) Te = 2meE2 ν cos2 θ (me + Eν)2 − E2 ν cos2 θ • Electron emitted at very small angle 
 with respect to the neutrino direction Eeθ2 e ≤ 2me: Solar neutrino image Solar neutrinos
  • 12. Cherenkov radiation - seeing relativistic charged particles 12 Graphics from http://physicsopenlab.org/ cos θC = 1 βn θC = 41∘ in H2O (β~1) Event in SNO Cherenkov light is emitted when a charged
 particle passes through a dielectric medium
 at a speed higher than the speed of light in 
 that medium.
  • 13. Coherent Elastic Neutrino-Nucleus Scattering 13 • When q << 1/R (Eν < 50 MeV), σTotal ~ N2, but the nucleus recoil energy is very low. • First observation was made in a CsI detector using neutrinos from the Spallation Neutron Source at ORNL. D. Akimov et al., Science 10.1126/science.aao0990 (2017). electron CEνNS
  • 14. Coherent Elastic Neutrino-Nucleus Scattering 14 D. Akimov et al., Science 10.1126/science.aao0990 (2017).
  • 15. Their signals, your backgrounds 15 Coherent Elastic Neutrino-Nucleus Scattering
  • 16. Inverse beta decay and low-energy neutrino-nucleus interactions
  • 17. Inverse Beta Decay (IBD) • Recall (the discovery of neutrinos by Reines & Cowan): • The cross section of this process at low neutrino energy (~ a few MeV) is:
 
 
 
 
 where f = 1.715 and τn = 880.2 (1.0) s 
 (but with controversial measurements). • The neutron lifetime is an important 
 parameter that fixes the cross section
 for single nucleon processes. 17 Inverse Beta Decay: ¯νe + p → n + e+ σtot = 2π2 m5 e Ee+ pe+ fτn E¯νe > 1.8 MeV PDG 2017
  • 18. Geo-neutrinos • 1 kt liquid scintillator • Detect anti-neutrinos from reactors and earth’s core by IBD 18 Shirahata 2017
  • 19. Using other nuclei as neutrino target • The first detection of solar neutrinos by Ray Davis (615t of C2Cl4 at Homestake mine (now SURF) in SD: 19 νe + 37Cl → 37Ar + e− (Eν > 0.814 MeV) • Flushed tank, collected 37Ar, looked for its decay back to 37Cl. • Solar Neutrino Problem: only 1/3 of the expected number of solar neutrinos was observed. • Ray Davis won the Nobel Prize in Physics (with M. Koshiba) in 2002. • Note: • The Sun only emits (p-p chain) • Charged-current (in detection) only sensitive to νe νe
  • 20. Solar Neutrino Problem (~2000) • Are the Standard Solar Model predictions wrong? • Or is there something about the neutrinos that we don’t understand? 20
  • 21. Measure CC and NC (νe vs all flavors) 21 CC NC = νe νe + νµ +ντ CC ES = νe νe + 0.15(νµ + ντ ) φCC (νe ) < φNC (νx ) φCC (νe ) < φES (νx ) Transformation to another active flavor if: Measure: Alternatively… Flavor transformation (particle physics) can be tested without any assumption on the Standard Solar Model prediction of the total neutrino flux. Is there a magic target ?
  • 22. The deuteron 22 CC NC ES νe + d → p + p + e− νx + d → p + n + ν′x νx + e− → νx + e− •2 km underground at Vale’s Creighton mine near Sudbury, ON, Canada •1000t of D2O in a 12-m φ acrylic sphere
  • 23. Sudbury Neutrino Observatory (SNO) 23 SNO provided the first direct observation of neutrino flavor transformation (which requires neutrinos to be massive)
  • 24. • A weak eigenstate is a linear combination of mass eigenstates : where U = Maki-Nakagawa-Sakata-Pontecorvo (MNSP) matrix. Aside: neutrino mixing | | i | = 3 i=1 U i| i |U| = 0 @ 0.779 $ 0.848 0.510 $ 0.604 0.122 $ 0.190 0.183 $ 0.568 0.385 $ 0.728 0.613 $ 0.794 0.200 $ 0.576 0.408 $ 0.742 0.589 $ 0.775 1 A |⌫ei = (⇠ 0.81) |⌫1i + (⇠ 0.55) |⌫2i + (⇠ 0.16) |⌫3i |⌫µi = (⇠ 0.38) |⌫1i + (⇠ 0.56) |⌫2i + (⇠ 0.70) |⌫3i |⌫⌧ i = (⇠ 0.39) |⌫1i + (⇠ 0.58) |⌫2i + (⇠ 0.68) |⌫3i
  • 25. KamLAND - Reactor Anti-Neutrino KamLAND showed that neutrino oscillation is the origin of flavor transformation seen in SNO 25 Nobs/Nno prediction: Δm2 = 5.5x10-5 eV2 sin2 2θ = 0.833 P⌫e!⌫e = 1 sin2 2✓ sin2 ✓ 1.27 m2 [eV2 ] L[m] E[MeV] ◆
  • 26. Other nuclear targets for ν detection • A common target is liquid scintillator (lots of C and H), but there have been other nuclei that have been studied quite extensively • Theory vs experimental cross section agreement generally good for low energy (1-300 MeV) 26
  • 28. Atmospheric ν problem (before 1998) 28 Expect Rμ/e: (νµ + νµ) / (νe + νe ) ~ 2 Measured ~ 0.6-0.7 of expectation π+ → µ+ + νµ e+ + νe + νµ π− → µ− + νµ e− + νe + νµ Much higher energy 
 than solar neutrinos
  • 29. Intermediate-energy neutrino cross section • The nucleus is typically described in terms of individual quasi-free nucleons that participate in the scattering process 29 νμ N → μ− X ¯νμ N → μ+ X 1. Quasielastic scattering (QE) • Example: , • Final-state nucleon usually invisible in water Cherenkov detector νμ n → μ− p ¯νμ p → μ+ n 2. Resonant (RES) • Neutrino interaction produces a baryon resonance, which quickly decays and most often to a nucleon and single pion final state: νμ N → μ− N* ; N* → π N′ 3. Deep Inelastic Scattering (DIS) • Both CC and NC possible • Example: ν + q → l− q ′; q ′ → hadrons 4. NC Neutrino-Nucleon Interactions ν + N → ν + X
  • 30. The axial mass MA puzzle QE scattering at O(GeV) needs to take into account the nucleon structure: 30 jμ = [FV 1 (Q2 )γμ + i κ 2M FV 2 (Q2 )σμν q ν − FA(Q2 )γμ γ5 + FP(Q2 )q μ γ5 ]τ±
  • 31. The axial mass MA puzzle QE scattering at O(GeV) needs to take into account the nucleon structure: 31 jμ = [FV 1 (Q2 )γμ + i κ 2M FV 2 (Q2 )σμν q ν − FA(Q2 )γμ γ5 + FP(Q2 )q μ γ5 ]τ± Vector - OK (from electron scattering) Pseudoscalar - small (~ml/M)2
  • 32. The axial mass MA puzzle QE scattering at O(GeV) needs to take into account the nucleon structure: 32 jμ = [FV 1 (Q2 )γμ + i κ 2M FV 2 (Q2 )σμν q ν − FA(Q2 )γμ γ5 + FP(Q2 )q μ γ5 ]τ± FA(Q2 ) = 1.267 (1 + Q2/M2 A) 2 Old (pre-1990) average: Newer measurements (K2K, MINOS, 
 MiniBooNE…etc) are higher, up to ~1.35 GeV MA = 1.03 ± 0.02 GeV 12C
  • 33. Super-Kamiokande • 50 kt H2O, 22 kt fiducial volume • Water Cherenkov detector 33 Event classification
  • 34. Super-Kamiokande 34 Kajita Reminder: Segre Lecture - Kajita 5:30pm, Oct 30, 2017 First demonstration of physics beyond the Standard Model (neutrino oscillations, hence neutrino mass) Neutrino 1998 conference
  • 35. L/E (Further evidence of neutrino oscillation) 35 P⌫e!⌫e = 1 sin2 2✓ sin2 ✓ 1.27 m2 [eV2 ] L[m] E[MeV] ◆ SuperKamiokande PRL 93, 101801 (2004) KamLAND
  • 37. Highest-energy neutrinos observed 37 1.04 PeV 1.14 PeV IceCube 2 PeV “Big Bird” 1 PeV =1015 eV
  • 38. How to measure the neutrino mass?
  • 39. How to measure the mass of the neutrino? ⇡+ ! µ+ + ⌫µ (in a model independent way)
  • 40. How to measure the mass of the neutrino? • Finding the missing mass at accelerator. For example: • Energy-momentum conservation says (for pion decay at rest): • How well can the momentum of the muon be measured? At an experiment at PSI [Phys. Rev. D53, 6065 (1996)], it was measured to ~ 4 ppm: ⇡+ ! µ+ + ⌫µ m2 ⌫µ = m2 ⇡+ + m2 µ+ 2m⇡+ (m2 µ+ + p2 µ+ )1/2 pµ+ = (29.79200 ± 0.00011) MeV/c Not good enough ! (when you want to measure neutrino mass to sub-eV level) !
  • 41. Determining the neutrino mass from β endpoint Z Q Q E dN dE dE ⇡ 2 ✓ E Q ◆3 Only a tiny fraction of decays will end up near the endpoint An ideal isotope would have very small Q
  • 42. Neutrino mass limit from beta-decays Wilkerson 2012
  • 43. Neutrino mass limit from beta-decays Wilkerson 2012 Tritium β-decay (12.3 yr half-life)
  • 44. Neutrino mass limit from beta-decays Wilkerson 2012 Mainz (2005, final result) m(νe) < 2.3 eV (95% CL) C. Kraus et al., EPJ C40:447 Troitsk (2011, re-analysis) m(νe) < 2.05 eV (95% CL) V. N. Aseev et al., PRD 84:112003
  • 45. Another way to “see” the beta-electrons 45 ! = ! = qB me + E coherent cyclotron radiation Asner et al., PRL 114 (2015) 162501 83mKr test
  • 47. Seeing the cosmic neutrino background 47 Tν = 1.95 K Tγ = 2.725 Kcf The energy is so low HOW? per (neutrino+antineutrino) species
  • 48. Seeing the cosmic neutrino background 48 Tritium and other isotopes studied for relic neutrino capture in: Cocco, Mangano, Messina, JCAP 0706 (2007)015 Neutrino capture on Tritium With 100 g of tritium, event rate is ~O(10) events per year
  • 49. Seeing the cosmic neutrino background 49 Neutrino capture on Tritium Gap (2m) constrained to < ~0.6eV from Cosmology (some electron flavor expected with 2m>0.1eV from neutrino oscillations) What do we know? Tritium β-decay Endpoint (Q) Challenges: • Energy resolution • Background • Triggering on the electrons 
 near endpoint Tully 2017 Supported by: The Simons Foundation The John Templeton Foundation PTOLEMY (R&D)
  • 50. • Long baseline neutrino experiments 
 (CP violation and neutrino mass hierarchy) • Neutrino astronomy • Neutrinoless double beta decays • Sterile neutrinos 
 (from reactor and beam experiments) • Neutrinos in cosmology…. But I have covered how to “see” the neutrinos in the energy ranges of the sources in Slide 3, so you can explore these additional topics on your own. [10-27cm2] Neutrino topics that I didn’t cover (many):
  • 51. References • Christine Sutton, Spaceship Neutrinos, Cambridge University Press (1992). • H. Gallagher et al., Neutrino-Nucleus Interactions, Annu. Rev. Nucl. Part. Sci. 61, 355 (2011). • J. A. Formaggio and G. P. Zeller, From eV to EeV: Neutrino cross sections across energy scales, Rev. Mod. Phys. 84, 1307 (2012). • T. W. Donnelly et al., Foundations of Nuclear and Particle Physics, Cambridge University Press (2017). 51
  • 52.
  • 54. Solar Neutrinos 54 pp chain: 4p + 2e → 4He + 2νe + 26.7 MeV Standard Solar Model Detailed computer model of solar evolution
  • 55. Standard Solar Model 55 SuperK, SNO(CC) Chlorine Gallium SNO(NC) pp chain should only produce νe
  • 57. Mass Hierarchy & CPV - Future
  • 58. Future neutrino oscillation studies JUNO (20kt LS) IceCube/DeepCore/PINGU Supernovae Now 2026 KM3Net-ORCA DUNE (40 kt LAr) [Gu] Hyper-K (187 kt H2O FV) INO [Singh] CHIPS SuperK
  • 59. CPV & MH - Future Hyper-K Technologies that I found impressive protoDUNE dual-phase LAr TPC R&D Reached design spec of 2.5 kV/cm extraction field [Zambelli] [Takeuchi]
  • 60. CPV & MH - Future Gu, DeYoung, Coelho 3y MH MH
  • 61. CPV & MH - Future Takeuchi, Ji
  • 62. “Vanilla” mass mechanism (T0⌫ 1/2) 1 = G0⌫(Q , Z) |M0⌫| 2 hm i2 form factor nuclear matrix element effective Majorana mass hm i = 3X i=1 U2 eimi Normal Ordering Inverted Ordering mass 1 2 3 1 2 3 m2 23 50 meV m2 12 8 meV mass msmallest Halflife mass scale
  • 63. Signal 63 Energy resolution and low backgrounds are keys! T1/2 ~ 1018-20 y T1/2 > 1026 y
  • 64. Considerations • Preferably: • high isotopic abundance • high efficiency • large mass • long exposure • low background • good energy resolution There is not an obvious choice of isotope or detector technology
  • 65. Many experimental ideas…presented here Päs & Rodejohann, New J. Phys. 17 115010 (2015) 65
  • 66. Many experimental ideas…presented here 66 GERDA CUORE SNO+ CUPID-0 + other “CUPIDs” Schütz, Fujikawa, Nones, Casali, Giuliani, Barrros, Hogan
  • 67. 0νββ news - GERDA (76Ge) Schütz
  • 68. 0νββ news - CUORE (130Te) Fujikawa
  • 69. 0νββ trailers - CUPIDs Nones CUPID-0 (Zn82Se) Guliani CUPID-Mo Cardini Kinetic Inductance Detectors Problem: alpha background