Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.
Machine Learning Platform for Catalyst
Design
1
Zachary Ulissi, CMU Wei Tong, LBNL
Anubhav Jain, LBNL
with participation f...
Project overview
2
• Our challenge: design and screen
new materials for water purification
faster than ever before
• Our a...
Background
• New advancements in
materials theory allow us to
perform computer-aided-
design of materials, at the
level of...
• By leveraging
supercomputing and
machine learning, we will
virtually screen >1000 alloys
for nitrate reduction potential...
Overall vision and opportunity
• The short-term goal is to demonstrate experimental success of
a new intermetallic alloy f...
Nächste SlideShare
Wird geladen in …5
×

von

Machine Learning Platform for Catalyst Design Slide 1 Machine Learning Platform for Catalyst Design Slide 2 Machine Learning Platform for Catalyst Design Slide 3 Machine Learning Platform for Catalyst Design Slide 4 Machine Learning Platform for Catalyst Design Slide 5
Nächste SlideShare
What to Upload to SlideShare
Weiter
Herunterladen, um offline zu lesen und im Vollbildmodus anzuzeigen.

0 Gefällt mir

Teilen

Herunterladen, um offline zu lesen

Machine Learning Platform for Catalyst Design

Herunterladen, um offline zu lesen

Presentation given at National Alliance for Water Innovation (NAWI) webinar, August 2020

Ähnliche Bücher

Kostenlos mit einer 30-tägigen Testversion von Scribd

Alle anzeigen

Ähnliche Hörbücher

Kostenlos mit einer 30-tägigen Testversion von Scribd

Alle anzeigen
  • Gehören Sie zu den Ersten, denen das gefällt!

Machine Learning Platform for Catalyst Design

  1. 1. Machine Learning Platform for Catalyst Design 1 Zachary Ulissi, CMU Wei Tong, LBNL Anubhav Jain, LBNL with participation from:
  2. 2. Project overview 2 • Our challenge: design and screen new materials for water purification faster than ever before • Our approach: • Materials theory • High performance computing • Automated experiments • Our 1-year outcome: demonstrate commercially viable catalysts for oxyanion reduction
  3. 3. Background • New advancements in materials theory allow us to perform computer-aided- design of materials, at the level of atoms and electrons • Prior work strongly suggests that oxyanion reduction (in particular NO3 -) on metal surfaces can be predicted from computer models 3 Jain, A., Shin, Y. & Persson, K. A. Computational predictions of energy materials using density functional theory. Nature Reviews Materials 1, 15004 (2016). Liu, J.-X., Richards, D., Singh, N. & Goldsmith, B. R. Activity and Selectivity Trends in Electrocatalytic Nitrate Reduction on Transition Metals. ACS Catal. 9, 7052–7064 (2019).
  4. 4. • By leveraging supercomputing and machine learning, we will virtually screen >1000 alloys for nitrate reduction potential • The most promising candidates will be studied experimentally at facilities being developed at LBNL Incorporating into a screening framework 4
  5. 5. Overall vision and opportunity • The short-term goal is to demonstrate experimental success of a new intermetallic alloy for nitrate reduction • However, the long-term vision is to develop a general, flexible capability that can discover new materials for many different scenarios – a materials discovery platform • Although limitations certainly exist, developing such a platform could have large long-term value for the industry 5

Presentation given at National Alliance for Water Innovation (NAWI) webinar, August 2020

Aufrufe

Aufrufe insgesamt

138

Auf Slideshare

0

Aus Einbettungen

0

Anzahl der Einbettungen

0

Befehle

Downloads

5

Geteilt

0

Kommentare

0

Likes

0

×