SlideShare ist ein Scribd-Unternehmen logo
1 von 23
Downloaden Sie, um offline zu lesen
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015
31
MODELING OF MANUFACTURING OF A FIELD-
EFFECT TRANSISTOR TO DETERMINE CONDITIONS
TO DECREASE LENGTH OF CHANNEL
E.L. Pankratov1
, E.A. Bulaeva2
1
Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950,
Russia
2
Nizhny Novgorod State University of Architecture and Civil Engineering, 65 Il'insky
street, Nizhny Novgorod, 603950, Russia
ABSTRACT
In this paper we introduce an approach to model technological process of manufacture of a field-effect
heterotransistor. The modeling gives us possibility to optimize the technological process to decrease length
of channel by using mechanical stress. As accompanying results of the decreasing one can find decreasing
of thickness of the heterotransistors and increasing of their density, which were comprised in integrated
circuits.
KEYWORDS
Modelling of manufacture of a field-effect heterotransistor, Accounting mechanical stress; Optimization the
technological process, Decreasing length of channel
1. INTRODUCTION
One of intensively solved problems of the solid-state electronics is decreasing of elements of in-
tegrated circuits and their discrete analogs [1-7]. To solve this problem attracted an interest wide-
ly used laser and microwave types of annealing [8-14]. These types of annealing leads to genera-
tion of inhomogeneous distribution of temperature. In this situation one can obtain increasing of
sharpness of p-n-junctions with increasing of homogeneity of dopant distribution in enriched area
[8-14]. The first effects give us possibility to decrease switching time of p-n-junction and value of
local overheats during operating of the device or to manufacture more shallow p-n-junction with
fixed maximal value of local overheat. An alternative approach to laser and microwave types of
annealing one can use native inhomogeneity of heterostructure and optimization of annealing of
dopant and/or radiation defects to manufacture diffusive –junction and implanted-junction rectifi-
ers [12-18]. It is known, that radiation processing of materials is also leads to modification of dis-
tribution of dopant concentration [19]. The radiation processing could be also used to increase of
sharpness of p-n-junctions with increasing of homogeneity of dopant distribution in enriched area
[20, 21]. Distribution of dopant concentration is also depends on mechanical stress in heterostruc-
ture [15].
In this paper we consider a field-effect heterotransistor. Manufacturing of the transistor based on
combination of main ideas of Refs. [5] and [12-18]. Framework the combination we consider a
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015
32
heterostructure with a substrate and an epitaxial layer with several sections. Some dopants have
been infused or implanted into the section to produce required types of conductivity. Farther we
consider optimal annealing of dopant and/or radiation defects. Manufacturing of the transistor has
been considered in details in Ref. [17]. Main aim of the present paper is analysis of influence of
mechanical stress on length of channel of the field-effect transistor.
Fig. 1. Heterostructure with substrate and epitaxial layer with two or three sections
a1a2-a1Lx-a2-a1
c1 c1
c2
oxide
source drain
gate
c3
Fig. 2. Heterostructure with substrate and epitaxial layer with two or three sections. Sectional view
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015
33
2. METHOD OF SOLUTION
To solve our aim we determine spatio-temporal distribution of concentration of dopant in the con-
sidered heterostructure and make the analysis. We determine spatio-temporal distribution of con-
centration of dopant with account mechanical stress by solving the second Fick’s law [1-4,22,23]
( ) ( ) ( ) ( ) +





∂
∂
∂
∂
+





∂
∂
∂
∂
+





∂
∂
∂
∂
=
∂
∂
z
tzyxC
D
zy
tzyxC
D
yx
tzyxC
D
xt
tzyxC ,,,,,,,,,,,,
(1)
( ) ( ) ( ) ( ) 





∫∇
∂
∂
Ω+





∫∇
∂
∂
Ω+
zz L
S
S
L
S
S
WdtWyxCtzyx
Tk
D
y
WdtWyxCtzyx
Tk
D
x 00
,,,,,,,,,,,, µµ
with boundary and initial conditions
( ) 0
,,,
0
=
∂
∂
=x
x
tzyxC
,
( ) 0
,,,
=
∂
∂
= xLx
x
tzyxC
,
( ) 0
,,,
0
=
∂
∂
=y
y
tzyxC
,
( ) 0
,,,
=
∂
∂
= yLx
y
tzyxC
,
( ) 0
,,,
0
=
∂
∂
=z
z
tzyxC
,
( ) 0
,,,
=
∂
∂
= zLx
z
tzyxC
, C(x,y,z,0)=fC(x,y,z).
Here C(x,y,z,t) is the spatio-temporal distribution of concentration of dopant; Ω is the atomic vo-
lume; ∇S is the operators of surficial gradient; ( )∫
zL
zdtzyxC
0
,,, is the surficial concentration of
dopant on interface between layers of heterostructure; µ(x,y,z,t) is the chemical potential; D and
DS are coefficients of volumetric and surficial (due to mechanical stress) of diffusion. Values of
the diffusion coefficients depend on properties of materials of heterostructure, speed of heating
and cooling of heterostructure, spatio-temporal distribution of concentration of dopant. Concen-
traional dependence of dopant diffusion coefficients have been approximated by the following
relations [24]
( ) ( )
( )





+=
TzyxP
tzyxC
TzyxDD L
,,,
,,,
1,,, γ
γ
ξ , ( ) ( )
( )





+=
TzyxP
tzyxC
TzyxDD SLSS
,,,
,,,
1,,, γ
γ
ξ . (2)
Here DL (x,y,z,T) and DLS (x,y,z,T) are spatial (due to inhomogeneity of heterostructure) and tem-
perature (due to Arrhenius law) dependences of dopant diffusion coefficients; T is the temperature
of annealing; P (x,y,z,T) is the limit of solubility of dopant; parameter γ could be integer in the
following interval γ ∈[1,3] [24]; V (x,y,z,t) is the spatio-temporal distribution of concentration of
radiation of vacancies; V*
is the equilibrium distribution of vacancies. Concentrational depen-
dence of dopant diffusion coefficients has been discussed in details in [24]. Chemical potential
could be determine by the following relation [22]
µ=E(z)Ωσij[uij(x,y,z,t)+uji(x,y,z,t)]/2, (3)
where E is the Young modulus; σij is the stress tensor;








∂
∂
+
∂
∂
=
i
j
j
i
ij
x
u
x
u
u
2
1
is the deformation
tensor; ui, uj are the components ux(x,y,z,t), uy(x,y,z,t) and uz(x,y,z,t) of the displacement vector
( )tzyxu ,,,
r
; xi, xj are the coordinates x, y, z. Relation (3) could be transform to the following form
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015
34
( ) ( ) ( ) ( ) ( )




×








∂
∂
+
∂
∂








∂
∂
+
∂
∂
=
i
j
j
i
i
j
j
i
x
tzyxu
x
tzyxu
x
tzyxu
x
tzyxu
tzyx
,,,,,,
2
1,,,,,,
,,,µ
( )
( )
( )
( ) ( ) ( ) ( )[ ]




−−





−
∂
∂
−
+−
Ω
× ij
k
kij
ij TtzyxTzzK
x
tzyxu
z
z
zE δβε
σ
δσ
δε 000 ,,,3
,,,
212
,
where σ is the Poisson coefficient; ε0=(as-aEL)/aEL is the mismatch strain; as, aEL are the lattice
spacings for substrate and epitaxial layer, respectively; K is the modulus of uniform compression;
β is the coefficient of thermal expansion; Tr is the equilibrium temperature, which coincide (for
our case) with room temperature. Components of displacement vector could be obtained by solv-
ing of the following equations [23]
( ) ( ) ( ) ( ) ( )
( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )










∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
z
tzyx
y
tzyx
x
tzyx
t
tzyxu
z
z
tzyx
y
tzyx
x
tzyx
t
tzyxu
z
z
tzyx
y
tzyx
x
tzyx
t
tzyxu
z
zzzyzxz
yzyyyxy
xzxyxxx
,,,,,,,,,,,,
,,,,,,,,,,,,
,,,,,,,,,,,,
2
2
2
2
2
2
σσσ
ρ
σσσ
ρ
σσσ
ρ
where
( )
( )[ ]
( ) ( ) ( ) ( )
×
∂
∂
+








∂
∂
−
∂
∂
+
∂
∂
+
=
k
k
ij
k
kij
i
j
j
i
ij
x
tzyxu
x
tzyxu
x
tzyxu
x
tzyxu
z
zE ,,,,,,
3
,,,,,,
12
δ
δ
σ
σ
( ) ( ) ( ) ( )[ ]rTtzyxTzKzzK −−× ,,,β , ρ (z) is the density of materials, δij is the Kronecker sym-
bol. With account of the relation the last system of equation takes the form
( )
( )
( ) ( )
( )[ ]
( )
( ) ( )
( )[ ]
( )
+
∂∂
∂






+
−+
∂
∂






+
+=
∂
∂
yx
tzyxu
z
zE
zK
x
tzyxu
z
zE
zK
t
tzyxu
z
yxx
,,,
13
,,,
16
5,,,
2
2
2
2
2
σσ
ρ
( )
( )[ ]
( ) ( )
( ) ( )
( )[ ]
( )
( ) ×−
∂∂
∂






+
++








∂
∂
+
∂
∂
+
+ zK
zx
tzyxu
z
zE
zK
z
tzyxu
y
tzyxu
z
zE zzy ,,,
13
,,,,,,
12
2
2
2
2
2
σσ
( ) ( )
x
tzyxT
z
∂
∂
×
,,,
β
( )
( ) ( )
( )[ ]
( ) ( )
( ) ( ) ( ) +
∂
∂
−








∂∂
∂
+
∂
∂
+
=
∂
∂
y
tzyxT
zKz
yx
tzyxu
x
tzyxu
z
zE
t
tzyxu
z xyy ,,,,,,,,,
12
,,, 2
2
2
2
2
β
σ
ρ
( )
( )[ ]
( ) ( ) ( )
( )[ ]
( )
( )
+
∂
∂






+
+
+














∂
∂
+
∂
∂
+∂
∂
+ 2
2
,,,
112
5,,,,,,
12 y
tzyxu
zK
z
zE
y
tzyxu
z
tzyxu
z
zE
z
yzy
σσ
( ) ( )
( )[ ]
( )
( )
( )
yx
tzyxu
zK
zy
tzyxu
z
zE
zK
yy
∂∂
∂
+
∂∂
∂






+
−+
,,,,,,
16
22
σ
(4)
( )
( ) ( ) ( ) ( ) ( )
×








∂∂
∂
+
∂∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
zy
tzyxu
zx
tzyxu
y
tzyxu
x
tzyxu
t
tzyxu
z
yxzzz
,,,,,,,,,,,,,,,
22
2
2
2
2
2
2
ρ
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015
35
( )
( )[ ]
( )
( ) ( ) ( ) ( )
×
∂
∂
−














∂
∂
+
∂
∂
+
∂
∂
∂
∂
+
+
×
z
tzyxT
z
tzyxu
y
tzyxu
x
tzyxu
zK
zz
zE xyx ,,,,,,,,,,,,
12 σ
( ) ( ) ( )
( )
( ) ( ) ( ) ( )














∂
∂
−
∂
∂
−
∂
∂
−
∂
∂
+∂
∂
+×
z
tzyxu
y
tzyxu
x
tzyxu
z
tzyxu
z
zE
z
zzK zyxz ,,,,,,,,,,,,
6
16
1
σ
β .
Conditions for the displacement vector could be written as
( ) 0
,,,0
=
∂
∂
x
tzyu
r
;
( ) 0
,,,
=
∂
∂
x
tzyLu x
r
;
( ) 0
,,0,
=
∂
∂
y
tzxu
r
;
( ) 0
,,,
=
∂
∂
y
tzLxu y
r
;
( ) 0
,0,,
=
∂
∂
z
tyxu
r
;
( ) 0
,,,
=
∂
∂
z
tLyxu z
r
; ( ) 00,,, uzyxu
rr
= ; ( ) 0,,, uzyxu
rr
=∞ .
Farther let us analyze spatio-temporal distribution of temperature during annealing of dopant. We
determine spatio-temporal distribution of temperature as solution of the second law of Fourier
[25]
( ) ( ) ( ) ( ) ( ) +





∂
∂
∂
∂
+





∂
∂
∂
∂
+





∂
∂
∂
∂
=
∂
∂
z
tzyxT
zy
tzyxT
yx
tzyxT
xt
tzyxT
Tc
,,,,,,,,,,,,
λλλ
( )tzyxp ,,,+ (5)
with boundary and initial conditions
( ) 0
,,,
0
=
∂
∂
=x
x
tzyxT
,
( ) 0
,,,
=
∂
∂
= xLx
x
tzyxT
,
( ) 0
,,,
0
=
∂
∂
=y
y
tzyxT
,
( ) 0
,,,
=
∂
∂
= yLx
y
tzyxT
,
( ) 0
,,,
0
=
∂
∂
=z
z
tzyxT
,
( ) 0
,,,
=
∂
∂
= zLx
z
tzyxT
, T (x,y,z,0)=fT (x,y,z).
Here λ is the heat conduction coefficient. Value of the coefficient depends on materials of hetero-
structure and temperature. Temperature dependence of heat conduction coefficient in most inter-
est area could be approximated by the following function: λ(x,y,z,T)=λass(x,y,z)[1+µ Td
ϕ
/
Tϕ
(x,y,z,t)] (see, for example, [25]). c(T)=cass[1-ϑ exp(-T(x,y,z,t)/Td)] is the heat capacitance; Td is
the Debye temperature [25]. The temperature T(x,y,z,t) is approximately equal or larger, than
Debye temperature Td for most interesting for us temperature interval. In this situation one can
write the following approximate relation: c(T)≈cass. p(x,y,z,t) is the volumetric density of heat,
which escapes in the heterostructure. Framework the paper it is attracted an interest microwave
annealing of dopant. This approach leads to generation inhomogenous distribution of temperature
[12-14,26]. Such distribution of temperature gives us possibility to increase sharpness of p-n-
junctions with increasing of homogeneity of dopant distribution in enriched area. In this situation
it is practicably to choose frequency of electro-magnetic field. After this choosing thickness of
scin-layer should be approximately equal to thickness of epitaxial layer.
First of all we calculate spatio-temporal distribution of temperature. We calculate spatio-temporal
distribution of temperature by using recently introduce approach [15, 17,18]. Framework the ap-
proach we transform approximation of thermal diffusivity α ass(x,y,z) =λass(x,y,z)/cass =α0ass[1+εT
gT(x,y,z)]. Farther we determine solution of Eqs. (5) as the following power series
( ) ( )∑ ∑=
∞
=
∞
=0 0
,,,,,,
i j
ij
ji
T tzyxTtzyxT µε . (6)
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015
36
Substitution of the series into Eq.(6) gives us possibility to obtain system of equations for the ini-
tial-order approximation of temperature T00(x,y,z,t) and corrections for them Tij(x,y,z,t) (i≥1, j≥1).
The equations are presented in the Appendix. Substitution of the series (6) in boundary and initial
conditions for spatio-temporal distribution of temperature gives us possibility to obtain boundary
and initial conditions for the functions Tij(x,y,z,t) (i≥0, j≥0). The conditions are presented in the
Appendix. Solutions of the equations for the functions Tij(x,y,z,t) (i≥0, j≥0) have been obtain as
the second-order approximation on the parameters ε and µ by standard approaches [28,29] and
presented in the Appendix. Recently we obtain, that the second-order approximation is enough
good approximation to make qualitative analysis and to obtain some quantitative results (see, for
example, [15,17,18]). Analytical results have allowed to identify and to illustrate the main depen-
dence. To check our results obtained we used numerical approaches.
Farther let us estimate components of the displacement vector. The components could be obtained
by using the same approach as for calculation distribution of temperature. However, relations for
components could by calculated in shorter form by using method of averaging of function correc-
tions [12-14,16,27]. It is practicably to transform differential equations of system (4) to integro-
differential form. The integral equations are presented in the Appendix. We determine the first-
order approximations of components of the displacement vector by replacement the required
functions uβ(x,y,z,t) on their average values αuβ1. The average values αuβ1 have been calculated by
the following relations
αus1=Ms1/4LΘ, (7)
where ( )∫ ∫ ∫ ∫=
Θ
− −0 0
,,,
x
x
y
y
zL
L
L
L
L
isis tdxdydzdtzyxuM . The replacement leads to the following results
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )



−∫ ∫
∂
∂
−−∫ ∫
∂
∂
=
∞ t zz
x dwd
x
wyxT
wwKtdwd
x
wyxT
wwKttzyxu
0 00 0
1
,,,,,,
,,, τ
τ
βττ
τ
α
( )] 101 ,,, uxxux twyx αφα +Φ− ,
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )



−∫ ∫
∂
∂
−−∫ ∫
∂
∂
=
∞ t zz
y dwd
y
wyxT
wwKtdwd
y
wyxT
wwKttzyxu
0 00 0
1
,,,,,,
,,, τ
τ
βττ
τ
α
( )] 101 ,,, uyyuy twyx αφα +Φ− ,
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )



−∫ ∫
∂
∂
−∫ ∫
∂
∂
=
∞ t zz
z dwd
w
wyxT
wwKtdwd
w
wyxT
wwKttzyxu
0 00 0
1
,,,,,,
,,, τ
τ
βττ
τ
α
( )] 101 ,,, zzuz twyx αφα +Φ− .
Substitution of the above relations into relations (7) gives us possibility to obtain values of the
parameters αuβ1. Appropriate relations could be written as
( ) ( )[ ]
( ) ( )∫ −
ΘΧ−∞Χ
Θ= zL
z
xxz
ux
zdzzLL
L
0
3
20
1
8 ρ
α ,
( ) ( )[ ]
( ) ( )∫ −
ΘΧ−∞Χ
Θ= zL
z
yyz
uy
zdzzLL
L
0
3
20
1
8 ρ
α ,
( ) ( )[ ]
( ) ( )∫ −
ΘΧ−∞ΧΘ
= zL
z
zzz
uz
zdzzLL
L
0
3
20
1
8 ρ
α ,
where ( ) ( ) ( ) ( ) ( )
∫ ∫ ∫ ∫
∂
∂
−





Θ
+=ΘΧ
Θ
− −0 0
,,,
1
x
x
y
y
zL
L
L
L
L
z
i
is dxdydzd
s
zyxT
zzKzL
t
τ
τ
χ .
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015
37
The second-order approximations of components of the displacement vector by replacement of
the required functions uβ(x,y,z,t) on the following sums αus2+us1(x,y,z,t), where αus2=(Mus2-Mus1)/
4L3
Θ. Results of calculations of the second-order approximations us2(x,y,z,t) and their average
values αus2 are presented in the Appendix, because the relations are bulky.
Spatio-temporal distribution of concentration of dopant we obtain by solving the Eq.(1). To solve
the equations we used recently introduce approach [15,17,18] and transform approximations of
dopant diffusion coefficients DL (x,y,z,T) and DSL (x,y,z, T) to the following form:
DL(x,y,z,T)=D0L[1+ε L gL(x,y,z,T)] and DSL(x,y,z,T)=D0SL[1+ εSLgSL(x,y,z,T)]. We also introduce the
following dimensionless parameter: ω = D0SL/ D0L. In this situation the Eq.(1) takes the form
( ) ( )[ ] ( )
( )
( ) ( )



×
∂
∂
∂
∂
+






∂
∂






++
∂
∂
=
∂
∂
y
tzyxC
yx
tzyxC
TzP
tzyxC
Tzg
x
D
t
tzyxC
LLL
,,,,,,
,
,,,
1,1
,,,
0 γ
γ
ξε
( )[ ] ( )
( )
( )[ ] ( )
( )


×





++
∂
∂
+









++×
TzyxP
tzyxC
Tzyxg
z
DD
TzyxP
tzyxC
Tzg LLLLLL
,,,
,,,
1,,,1
,,,
,,,
1,1 00 γ
γ
γ
γ
ξεξε
( ) ( )[ ] ( )
( )
( )



×∫





++
∂
∂
Ω+



∂
∂
×
zL
SLSLSL WdtWyxC
TzP
tzyxC
Tzg
x
D
z
tzyxC
0
0 ,,,
,
,,,
1,1
,,,
γ
γ
ξεω (8)
( ) ( )
( )
( )
( )






∫
∇






+
∂
∂
Ω+


∇
×
zL
S
SLL
S
WdtWyxC
Tk
tzyx
TzP
tzyxC
y
DD
Tk
tzyx
0
00 ,,,
,,,
,
,,,
1
,,, µ
ξω
µ
γ
γ
.
We determine solution of Eq.(1) as the following power series
( ) ( )∑ ∑ ∑=
∞
=
∞
=
∞
=0 0 0
,,,,,,
i j k
ijk
kji
L tzyxCtzyxC ωξε . (9)
Substitution of the series into Eq.(8) gives us possibility to obtain systems of equations for initial-
order approximation of concentration of dopant C000(x,y,z,t) and corrections for them Cijk(x, y,z,t)
(i ≥1, j ≥1, k≥1).The equations are presented in the Appendix. Substitution of the series into ap-
propriate boundary and initial conditions gives us possibility to obtain boundary and initial condi-
tions for all functions Cijk(x,y,z,t) (i ≥0, j ≥0, k ≥0). Solutions of equations for the functions
Cijk(x,y,z,t) (i≥0, j≥0, k≥0) have been calculated by standard approaches [28,29] and presented in
the Appendix.
Analysis of spatio-temporal distributions of concentrations of dopant and radiation defects has
been done analytically by using the second-order approximations framework recently introduced
power series. The approximation is enough good approximation to make qualitative analysis and
to obtain some quantitative results. All obtained analytical results have been checked by compari-
son with results, calculated by numerical simulation.
3. DISCUSSION
In this section we analyzed redistribution of dopant under influence of mechanical stress based on
relations calculated in previous section. Fig. 3 show spatio-temporal distribution of concentration
of dopant in a homogenous sample (curve 1) and in heterostructure with negative and positive
value of the mismatch strain ε0 (curve 2 and 3, respectively). The figure shows, that manufactur-
ing field-effect heterotransistors gives us possibility to make more compact field-effect transistors
in direction, which is parallel to interface between layers of heterostructure. As a consequence of
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015
38
the increasing of compactness one can obtain decreasing of length of channel of field- effect tran-
sistor and increasing of density of the transistors in integrated circuits. It should be noted, that
presents of interface between layers of heterostructure give us possibility to manufacture more
thin transistors [17].
x, y
C(x,Θ),C(y,Θ)
2
3
1
Fig. 3. Distributions of concentration of dopant in directions, which is perpendicular to interface between
layers of heterostructure. Curve 1 is a dopant distribution in a homogenous sample. Curve 2 corresponds to
negative value of the mismatch strain. Curve 3 corresponds to positive value of the mismatch strain
4. CONCLUSION
In this paper we consider possibility to decrease length of channel of field-effect transistor by us-
ing mechanical stress in heterostructure. At the same time with decreasing of the length it could
be increased density of transistors in integrated circuits.
ACKNOWLEDGEMENTS
This work is supported by the contract 11.G34.31.0066 of the Russian Federation Government,
Scientific School of Russia SSR-339.2014.2 and educational fellowship for scientific research.
REFERENCES
[1] I.P. Stepanenko. Basis of Microelectronics (Soviet Radio, Moscow, 1980).
[2] A.G. Alexenko, I.I. Shagurin. Microcircuitry (Radio and communication, Moscow, 1990).
[3] V.G. Gusev, Yu.M. Gusev. Electronics. (Moscow: Vysshaya shkola, 1991, in Russian).
[4] V.I. Lachin, N.S. Savelov. Electronics (Phoenix, Rostov-na-Donu, 2001).
[5] A. Kerentsev, V. Lanin. "Constructive-technological features of MOSFET-transistors" Power Elec-
tronics. Issue 1. P. 34-38 (2008).
[6] A.N. Andronov, N.T. Bagraev, L.E. Klyachkin, S.V. Robozerov. "Ultrashallow p+−n junc-tions in
silicon (100): electron-beam diagnostics of sub-surface region" Semiconductors. Vol.32 (2). P. 137-
144 (1998).
[7] S.T. Shishiyanu, T.S. Shishiyanu, S.K. Railyan. "Shallow p−n junctions in Si prepared by pulse pho-
ton annealing" Semiconductors. Vol.36 (5). P. 611-617 (2002).
[8] V.I. Mazhukin, V.V. Nosov, U. Semmler. "Study of heat and thermoelastic fields in semiconductors
at pulsed processing" Mathematical modeling. Vol. 12 (2), 75 (2000).
[9] K.K. Ong, K.L. Pey, P.S. Lee, A.T.S. Wee, X.C. Wang, Y.F. Chong. "Dopant distribution in the re-
crystallization transient at the maximum melt depth induced by laser annealing" Appl. Phys. Lett.
Vol. 89 (17), 172111 (2006).
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015
39
[10] J. A. Sharp, N. E. B. Cowern, R. P. Webb, K. J. Kirkby, D. Giubertoni, S. Genarro, M. Bersani, M. A.
Foad, F. Cristiano, P. F. Fazzini. "Deactivation of ultrashallow boron implants in preamorphized sili-
con after nonmelt laser annealing with multiple scans" Appl.Phys. Lett. Vol. 89, 192105 (2006).
[11] Yu.V. Bykov, A.G. Yeremeev, N.A. Zharova, I.V. Plotnikov, K.I. Rybakov, M.N. Drozdov, Yu.N.
Drozdov, V.D. Skupov. "Diffusion processes in semiconductor structures during microwave anneal-
ing" Radiophysics and Quantum Electronics. Vol. 43 (3). P. 836-843 (2003).
[12] E.L. Pankratov. "Redistribution of dopant during microwave annealing of a multilayer structure for
production p-n-junction" J. Appl. Phys. Vol. 103 (6). P. 064320-064330 (2008).
[13] E.L. Pankratov. "Optimization of near-surficial annealing for decreasing of depth of p-n-junction in
semiconductor heterostructure" Proc. of SPIE. Vol. 7521, 75211D (2010).
[14] E.L. Pankratov. "Decreasing of depth of implanted-junction rectifier in semiconductor heterostructure
by optimized laser annealing" J. Comp. Theor. Nanoscience. Vol. 7 (1). P. 289-295 (2010).
[15] E.L. Pankratov. "Influence of mechanical stress in semiconductor heterostructure on density of p-n-
junctions" Applied Nanoscience. Vol. 2 (1). P. 71-89 (2012).
[16] E.L. Pankratov, E.A. Bulaeva. "Application of native inhomogeneities to increase compactness of
vertical field-effect transistors" J. Comp. Theor. Nanoscience. Vol. 10 (4). P. 888-893 (2013).
[17] E.L. Pankratov, E.A. Bulaeva. "An approach to decrease dimensions of field-effect transistors " Uni-
versal Journal of Materials Science. Vol. 1 (1). P.6-11 (2013).
[18] E.L. Pankratov, E.A. Bulaeva. "Doping of materials during manufacture p-n-junctions and bipolar
transistors. Analytical approaches to model technological approaches and ways of optimization of dis-
tributions of dopants" Reviews in Theoretical Science. Vol. 1 (1). P. 58-82 (2013).
[19] V.V. Kozlivsky. Modification of semiconductors by proton beams (Nauka, Sant-Peterburg, 2003, in
Russian).
[20] E.L. Pankratov. "Decreasing of depth of p-n-junction in a semiconductor heterostructure by serial
radiation processing and microwave annealing" J. Comp. Theor. Nanoscience. Vol. 9 (1). P. 41-49
(2012).
[21] E.L. Pankratov, E.A. Bulaeva. "Increasing of sharpness of diffusion-junction heterorectifier by using
radiation processing" Int. J. Nanoscience. Vol. 11 (5). P. 1250028-1--1250028-8 (2012).
[22] Y.W. Zhang, A.F. Bower. "Numerical simulations of islands formation in a coherent strained epitaxial
thin film system" Journal of the Mechanics and Physics of Solids. Vol. 47 (11). P. 2273-2297 (1999).
[23] L.D. Landau, E.M. Lefshits. Theoretical physics. 7 (Theory of elasticity) (Physmatlit, Moscow, 2001,
in Russian).
[24] Z.Yu. Gotra. Technology of microelectronic devices (Radio and communication, Moscow, 1991).
[25] K.V. Shalimova. Physics of semiconductors (Moscow: Energoatomizdat, 1985, in Rus-sian).
[26] V.E. Kuz’michev. Laws and formulas of physics. Kiev: Naukova Dumka, 1989 (in Russian).
[27] Yu.D. Sokolov. About the definition of dynamic forces in the mine lifting Applied Mechanics. Vol.1
(1). P. 23-35 (1955).
[28] A.N. Tikhonov, A.A. Samarskii. The mathematical physics equations (Moscow, Nauka 1972) (in
Russian).
[29] H.S. Carslaw, J.C. Jaeger. Conduction of heat in solids (Oxford University Press, 1964).
APPENDIX
Equations for functions Tij(x,y,z,t) (i≥0, j≥0)
( ) ( ) ( ) ( ) ( )
ass
ass
tzyxp
z
tzyxT
y
tzyxT
x
tzyxT
t
tzyxT
ν
α
,,,,,,,,,,,,,,,
2
00
2
2
00
2
2
00
2
0
00
+





∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
( ) ( ) ( ) ( ) +





∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
0
2
2
0
2
2
0
2
0
0 ,,,,,,,,,,,,
z
tzyxT
y
tzyxT
x
tzyxT
t
tzyxT iii
ass
i
α
( ) ( ) ( ) ( ) ( ) ( )












∂
∂
∂
∂
+
∂
∂
+
∂
∂
+ −−−
z
tzyxT
zg
zy
tzyxT
xg
x
tzyxT
zg i
T
i
T
i
Tass
,,,,,,,,, 10
2
10
2
2
10
2
0α , i≥1
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015
40
( ) ( ) ( ) ( )
( )
×+





∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
tzyxT
T
z
tzyxT
y
tzyxT
x
tzyxT
t
tzyxT dass
ass
,,,
,,,,,,,,,,,,
00
0
2
01
2
2
01
2
2
01
2
0
01
ϕ
ϕ
α
α
( ) ( ) ( )
( )
( )




+





∂
∂
−





∂
∂
+
∂
∂
+
∂
∂
×
2
00
00
0
2
00
2
2
00
2
2
00
2
,,,
,,,
,,,,,,,,,
x
tzyxT
tzyxT
T
z
tzyxT
y
tzyxT
x
tzyxT dass
ϕ
ϕ
α
( ) ( )










∂
∂
+





∂
∂
+
2
00
2
00 ,,,,,,
z
tzyxT
y
tzyxT
( ) ( ) ( ) ( )
( )
×+





∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
tzyxT
T
z
tzyxT
y
tzyxT
x
tzyxT
t
tzyxT dass
ass
,,,
,,,,,,,,,,,,
00
0
2
02
2
2
02
2
2
02
2
0
02
ϕ
ϕ
α
α
( ) ( ) ( )
( )
( )



×
∂
∂
−





∂
∂
+
∂
∂
+
∂
∂
× +
x
tzyxT
tzyxT
T
z
tzyxT
y
tzyxT
x
tzyxT dass ,,,
,,,
,,,,,,,,, 00
1
00
0
2
01
2
2
01
2
2
01
2
ϕ
ϕ
αϕ
( ) ( ) ( ) ( ) ( )



∂
∂
∂
∂
+
∂
∂
∂
∂
+
∂
∂
×
z
tzyxT
z
tzyxT
y
tzyxT
y
tzyxT
x
tzyxT ,,,,,,,,,,,,,,, 0100010001
( ) ( ) ( )
( )
( )
( )
( )



×+
∂
∂
+
∂
∂
=
∂
∂
Tzyxg
x
tzyxT
Tzyxg
tzyxT
tzyxT
x
tzyxT
t
tzyxT
TTass ,,,
,,,
,,,
,,,
,,,,,,,,,
2
00
2
00
01
2
11
2
0
11
α
( )
( )
( )
( )
( )




+





∂
∂
∂
∂
+










∂
∂
∂
∂
+
∂
∂
×
x
tzyxT
Tzyxg
xz
tzyxT
Tzyxg
zy
tzyxT
TassT
,,,
,,,
,,,
,,,
,,, 01
0
00
2
00
2
α
( )
( )[ ] ( )
( )[ ] ( )
+



∂
∂
++
∂
∂
++
∂
∂
+ assTT
z
tzyxT
Tzyxg
y
tzyxT
Tzyxg
x
tzyxT
02
01
2
2
01
2
2
01
2
,,,
,,,1
,,,
,,,1
,,,
α
( )
( )
( ) ( )
( )
( ) ( )
( )
( ) ×





∂
∂
+
∂
∂
+
∂
∂
+ +++ 2
00
2
1
00
10
2
00
2
1
00
10
2
00
2
1
00
10 ,,,
,,,
,,,,,,
,,,
,,,,,,
,,,
,,,
z
tzyxT
tzyxT
tzyxT
y
tzyxT
tzyxT
tzyxT
x
tzyxT
tzyxT
tzyxT
ϕϕϕ
( )
( ) ( ) ( )
( )
×+





∂
∂
+
∂
∂
+
∂
∂
+×
tzyxT
T
z
tzyxT
y
tzyxT
x
tzyxT
tzyxT
T
T dassdass
dass
,,,
,,,,,,,,,
,,, 00
0
2
10
2
2
10
2
2
10
2
00
0
0 ϕ
ϕ
ϕ
ϕ
ϕ αα
α
( ) ( ) ( ) ( ) ( ) ( ) −














∂
∂
∂
∂
+
∂
∂
+
∂
∂
×
z
tzyxT
Tzyxg
zy
tzyxT
Tzyxg
x
tzyxT
Tzyxg TTT
,,,
,,,
,,,
,,,
,,,
,,, 00
2
10
2
2
10
2
( ) ( ) ( ) ( ) ( ) ( ) ×





∂
∂
∂
∂
+
∂
∂
∂
∂
+
∂
∂
∂
∂
−
z
tzyxT
z
tzyxT
y
tzyxT
y
tzyxT
x
tzyxT
x
tzyxT ,,,,,,,,,,,,,,,,,, 001000100010
( )
( )
( )
( ) ( ) ( )
×














∂
∂
+





∂
∂
+





∂
∂
−× ++
2
00
2
00
2
00
1
00
1
00
0 ,,,,,,,,,
,,,
,,,
,,, z
tzyxT
y
tzyxT
x
tzyxT
tzyxT
Tzyxg
tzyxT
T Tdass
ϕϕ
ϕ
αϕ
ϕ
ϕα dass T0× .
Conditions for the functions Tij(x,y,z,t) (i≥0, j≥0)
( )
0
,,,
0
=
∂
∂
=x
ij
x
tzyxT
,
( )
0
,,,
=
∂
∂
= xLx
ij
x
tzyxT
,
( )
0
,,,
0
=
∂
∂
=y
ij
y
tzyxT
,
( )
0
,,,
=
∂
∂
= yLx
ij
y
tzyxT
,
( )
0
,,,
0
=
∂
∂
=z
ij
z
tzyxT
,
( )
0
,,,
=
∂
∂
= zLx
ij
z
tzyxT
, T00(x,y,z,0)=fT(x,y,z), Tij(x,y,z,0)=0, i≥1, j≥1.
Solutions of the equations for the functions Tij(x,y,z,t) (i≥0, j≥0) with account appropriate boun-
dary and initial conditions could be written as
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015
41
( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫+∫ ∫ ∫=
∞
=1 00 0 0
00
2
,,
1
,,,
n
L
nnTnnn
zyx
L L L
T
zyx
xx y z
uctezcycxc
LLL
udvdwdwvuf
LLL
tzyxT
( ) ( ) ( ) ( ) ×+∫ ∫ ∫ ∫+∫ ∫×
zyx
t L L L
asszyx
L L
Tnn
LLL
dudvdwd
wvup
LLL
udvdwdwvufwcvc
x y zy z 2,,,1
,,
0 0 0 00 0
τ
ν
τ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
∑ ∫ ∫ ∫ ∫−×
∞
=1 0 0 0 0
,,,
n
t L L L
ass
nnnnTnTnnn
x y z
dudvdwd
wvup
wcvcucetezcycxc τ
ν
τ
τ ,
where cn(χ)=cos(πnχ/L), ( )
















++−= 2220
22 111
exp
zyx
assnT
LLL
tnte απ ;
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫−=
∞
=1 0 0 0 0
2
0
0 ,,,2,,,
n
t L L L
TnnnnTnTnnn
zyx
ass
i
x y z
Twvugwcvcusetezcycxcn
LLL
tzyxT τ
απ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫−+
∂
∂
×
∞
=
−
1 0 0 0
2
010
2
,,,
n
t L L
nnnTnTnnn
zyx
assi
x y
vsucetezcycxcn
LLL
dudvdwd
u
wvuT
τ
απ
τ
τ
( ) ( ) ( ) ( ) ( ) ( ) ( )×∑+∫
∂
∂
×
∞
=
−
1
2
0
0
10
2
,,,
,,,
n
nTnnn
zyx
ass
L
i
nT tezcycxcn
LLL
dudvdwd
v
wvuT
wcTwvug
z απ
τ
τ
( ) ( ) ( ) ( ) ( )
( )
∫ ∫ ∫ ∫
∂
∂
−× −
t L L L
i
TnnnnT
x y z
dudvdwd
w
wvuT
Twvugwsvcuce
0 0 0 0
10 ,,,
,,, τ
τ
τ , i≥1,
where sn(χ)=sin(πnχ/L);
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )
×∑ ∫ ∫ ∫ ∫
∂
∂
−=
∞
=1 0 0 0 0
2
00
2
2001
,,,2
,,,
n
t L L L
nnnTnTnnn
zyx
d
ass
x y z
u
wvuT
vcusetezcycxcn
LLL
T
tzyxT
τ
τ
π
α
ϕ
( )
( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫−+×
∞
=1 0 0 0 0
20
00
2
,,, n
t L L L
nnnnTnTnnn
zyx
d
assn
x y z
wcvsucetezcycxcn
LLL
T
wvuT
dudvdwd
wc τ
π
α
τ
τ ϕ
ϕ
( )
( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−+
∂
∂
×
∞
=1 0 0 0
20
00
2
00
2
2
,,,
,,,
n
t L L
nnnTnTnnn
zyx
d
ass
x y
vcucetezcycxcn
LLL
T
wvuT
dudvdwd
v
wvuT
τ
π
α
τ
ττ ϕ
ϕ
( ) ( )
( )
( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫−−∫
∂
∂
×
∞
=1 0 0
0
0 00
2
00
2
2
,,,
,,,
n
t L
nnTnTnnn
zyx
ass
d
L
n
xz
ucetezcycxc
LLL
T
wvuT
dudvdwd
u
wvuT
ws τ
αϕ
τ
ττ ϕ
ϕ
( ) ( ) ( )
( )
( ) ( ) ( ) ( ) ( )×∑ ∫ −−∫ ∫ 





∂
∂
×
∞
=
+
1 0
0
0 0
1
00
2
00
2
,,,
,,,
n
t
nTnTnnn
zyx
dass
L L
nn etezcycxc
LLL
T
wvuT
dudvdwd
u
wvuT
wcvc
y z
τ
α
ϕ
τ
ττ ϕ
ϕ
( ) ( ) ( ) ( )
( )
( ) ( ) ( ) ( )×∑−∫ ∫ ∫ 





∂
∂
×
∞
=
+
1
0
0 0 0
1
00
2
00
2
,,,
,,,
n
nTnnn
zyx
ass
d
L L L
nnn tezcycxc
LLL
T
wvuT
dudvdwd
v
wvuT
wcvcuc
x y z αϕ
τ
ττ ϕ
ϕ
( ) ( ) ( ) ( )
( )
( )∫ ∫ ∫ ∫ 





∂
∂
−× +
t L L L
nnnnT
x y z
wvuT
dudvdwd
w
wvuT
wcvcuce
0 0 0 0
1
00
2
00
,,,
,,,
τ
ττ
τ ϕ
;
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )
×∑ ∫ ∫ ∫ ∫
∂
∂
−=
∞
=1 0 0 0 0
2
01
2
2002
,,,2
,,,
n
t L L L
nnnTnTnnn
zyx
d
ass
x y z
u
wvuT
vcusetezcycxcn
LLL
T
tzyxT
τ
τ
π
α
ϕ
( )
( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫−+×
∞
=1 0 0 0 0
20
00
2
,,, n
t L L L
nnnnTnTnnn
zyx
d
assn
x y z
wcvsucetezcycxcn
LLL
T
wvuT
dudvdwd
wc τ
π
α
τ
τ ϕ
ϕ
( )
( )
( ) ( ) ( ) ( ) ( ) ( )∑ ×∫ ∫−+
∂
∂
×
∞
=1 0 0
20
00
2
01
2
2
,,,
,,,
n
t L
nnTnTnnn
zyx
d
ass
x
ucetezcycxcn
LLL
T
wvuT
dudvdwd
v
wvuT
τ
π
α
τ
ττ ϕ
ϕ
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015
42
( ) ( ) ( )
( )
( ) ( ) ( ) ( ) ( )×∑ ∫ −−∫ ∫
∂
∂
×
∞
=1 0
2
0
0 0 00
2
01
2
2
,,,
,,,
n
t
nTnTnnn
zyx
ass
L L
nn etezcycxc
LLLwvuT
dudvdwd
w
wvuT
wsvc
y z
τ
απ
τ
ττ
ϕ
( ) ( ) ( ) ( ) ( )
( )
( ) ×∑−∫ ∫ ∫
∂
∂
∂
∂
×
∞
=
+
1
2
0
0 0 0
1
00
0100
2
,,,
,,,,,,
n
n
zyx
ass
d
L L L
nnnd xc
LLL
T
wvuT
dudvdwd
u
wvuT
u
wvuT
wcvcucT
x y z απ
τ
τττ ϕ
ϕ
ϕ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )
−∫ ∫ ∫ ∫
∂
∂
∂
∂
−× +
t L L L
nnnnTnTnn
x y z
wvuT
dudvdwd
v
wvuT
v
wvuT
wcvcucetezcyc
0 0 0 0
1
00
0100
,,,
,,,,,,
τ
τττ
τ ϕ
( ) ( ) ( ) ( ) ( ) ( )
( )
∑ ×∫ ∫ ∫ ∫
∂
∂
∂
∂
−−
∞
=
+
10 0 0 0
1
00
0100
2
0
,,,
,,,,,,
2
n
t L L L
nnnnT
zyx
assd
x y z
wvuT
dudvdwd
w
wvuT
w
wvuT
wcvcuce
LLL
T
τ
τττ
τ
α
π ϕ
ϕ
( ) ( ) ( ) ( )tezcycxc nTnnn× ;
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )
∑ ∫ ∫ ∫ ∫



×
∂
∂
−=
∞
=1 0 0 0 0
2
00
2
0
11
,,,2
,,,
n
t L L L
nnnnTnTnnn
zyx
ass
x y z
w
wvuT
wcvcucetezcycxc
LLL
tzyxT
τ
τ
α
( ) ( ) ( ) ( ) ( ) ( )
( )
+










∂
∂
∂
∂
+
∂
∂
+× τ
τ
τττ
dudvdwd
wvuT
wvuT
w
wvuT
wg
wv
wvuT
TwvugTwvug TTT
,,,
,,,,,,,,,
,,,,,,
00
0100
2
00
2
( )
( )[ ] ( )
( )
( )
+










∂
∂
∂
∂
+
∂
∂
++
∂
∂
× τ
τττ
dudvdwd
w
wvuT
Twvug
wv
wvuT
Twvug
u
wvuT
TT
,,,
,,,
,,,
,,,1
,,, 01
2
01
2
2
01
2
( ) ( ) ( ) ( ) ( ) ( ) ( )
( )
( )
( )
∑ ∫ ∫ ∫ ∫ 


+
∂
∂
−+
∞
=
+
1 0 0 0 0
2
00
2
1
00
100 ,,,
,,,
,,,
2
n
t L L L
nnnTnTnnn
zyx
dass
x y z
u
wvuT
wvuT
wvuT
vcucetezcycxc
LLL
T τ
τ
τ
τ
α
ϕ
ϕ
( )
( )
( ) ( )
( )
( )
( ) ×+


∂
∂
+
∂
∂
× ++
yx
ass
n
LL
dudvdwdwc
w
wvuT
wvuT
wvuT
v
wvuT
wvuT
wvuT 0
2
00
2
1
00
10
2
00
2
1
00
10 ,,,
,,,
,,,,,,
,,,
,,, α
τ
τ
τ
ττ
τ
τ
ϕϕ
( ) ( ) ( ) ( )
( ) ( ) ( )
∑ ×∫ ∫ ∫ ∫ 





∂
∂
+
∂
∂
+
∂
∂
−×
∞
=10 0 0 0
2
10
2
2
10
2
2
10
2
,,,,,,,,,
2
n
t L L L
nnnnT
z
d
x y z
w
wvuT
v
wvuT
u
wvuT
wcvcuce
L
T τττ
τ
ϕ
( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫−+×
∞
=1 0 0 0
0
00
22
,,, n
t L L
nnnTnTnnn
zyx
dass
nTnnn
x y
vcucetezcycxc
LLL
T
tezcycxc
wvuT
dudvdwd
τ
α
τ
τ ϕ
ϕ
( ) ( )
( )
( )
( )
( )∫




×+





∂
∂
∂
∂
+
∂
∂
×
zL
TTTn Twvug
w
wvuT
Twvug
wu
wvuT
Twvugwc
0
00
2
00
2
,,,
,,,
,,,
,,,
,,,
ττ
( )
( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−−



∂
∂
×
∞
=1 0 0 0
0
00
2
00
2
2
,,,
,,,
n
t L L
nnnTnTnnn
zyx
dass
x y
vcucetezcycxc
LLL
T
wvuT
dudvdwd
v
wvuT
τ
α
ϕ
τ
ττ ϕ
ϕ
( ) ( ) ( ) ( )
( )∫














∂
∂
+





∂
∂
+





∂
∂
× +
zL
n
wvuT
dudvdwd
w
wvuT
v
wvuT
u
wvuT
wc
0
1
00
2
00
2
00
2
00
,,,
,,,,,,,,,
τ
ττττ
ϕ
.
Integro-differential form of equations of systems (4) could be written as
( ) ( ) ( ) ( ) ( ) ( )




∫ ∫ ×








∂∂
∂
−
∂∂
∂
−
∂
∂
−+=
t z
zyx
xx
wx
wyxu
yx
wyxu
x
wyxu
ttzyxutzyxu
0 0
22
2
2
,,,,,,,,,
5,,,,,,
τττ
τφ
( )
( )[ ]
( ) ( ) ( ) ( )
( )
−∫ ∫
+







∂∂
∂
−
∂∂
∂
−
∂
∂
−
+
×
∞
0 0
22
2
2
1
,,,,,,,,,
5
616
z
zyx
d
w
wdwE
wx
wyxu
yx
wyxu
x
wyxut
w
dwdwE
τ
σ
τττ
σ
τ
( ) ( ) ( ) ( ) ( )
∫ ∫ 


+
∂∂
∂
+∫ ∫








∂∂
∂
+
∂∂
∂
+
∂
∂
−
∞ t z
x
z
zyx
yx
wyxu
dwd
wx
wyxu
yx
wyxu
x
wyxu
wKt
0 0
2
0 0
22
2
2
,,,
2
1,,,,,,,,, τ
τ
τττ
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015
43
( ) ( )
( )
( ) ( )
( ) ( )
×∫ ∫








∂
∂
+
∂∂
∂
−+−
+



∂
∂
+
t z
yxy
w
wyxu
wx
wyxu
tdt
w
wdwE
y
wyxu
0 0
2
22
2
2
,,,,,,
2
1
1
,,, ττ
τττ
σ
τ
( )
( )
( ) ( ) ( )
( )
( )
∫ ∫ 


+
∂∂
∂
−∫ ∫
+







∂
∂
+
∂∂
∂
−
+
×
∞∞
0 0
2
0 0
2
22
,,,
1
,,,,,,
21
z
x
z
yx
wx
wyxu
d
w
wdwE
y
wyxu
yx
wyxut
d
w
wdwE τ
τ
σ
ττ
τ
σ
( ) ( )
( )
( ) ( ) ( ) ( ) ( ) ×∫ ∫+∫ ∫
∂
∂
−−
+



∂
∂
+
∞
0 00 0
2
2
,,,
21
,,, zt z
y
wKtdwd
x
wyxT
wKwt
t
d
w
wdwE
w
wyxu
τ
τ
βττ
σ
τ
( ) ( ) ( ) ( ) ( ) ( )−Φ−∫ ∫
∂
∂
−+
∂
∂
× tzyxdwd
wyxu
wtdwd
x
wyxT
w x
t z
x
,,,
,,,,,,
1
0 0
2
2
τ
τ
τ
ρττ
τ
β
( )
( )



∫ ∫
∂
∂
−
∞
0 0
2
2
,,,z
x
dwd
wyxu
wt τ
τ
τ
ρ ,
( ) ( ) ( )
( ) ( ) ( )
( )



×−∫ ∫
+







∂∂
∂
+
∂
∂
−+=
21
,,,,,,
2
1
,,,,,,
0 0
2
2
2
t
d
w
wdwE
yx
wyxu
x
wyxu
ttzyxutzyxu
t z
xy
yy τ
σ
ττ
τφ
( ) ( ) ( )
( )
( ) ( )
∫ ∫




−
∂∂
∂
−
∂
∂
+∫ ∫
+







∂∂
∂
+
∂
∂
×
∞ t z
xy
z
xy
yx
wyxu
y
wyxu
d
w
wdwE
yx
wyxu
x
wyxu
0 0
2
2
2
0 0
2
2
2
,,,,,,
5
6
1
1
,,,,,, ττ
τ
σ
ττ
( ) ( )
( )
( )
( ) ( ) ( )
×∫ ∫








∂∂
∂
−
∂∂
∂
−
∂
∂
−−
+



∂∂
∂
−
∞
0 0
22
2
22
,,,,,,,,,
5
1
,,, z
zxyz
wy
wyxu
yx
wyxu
y
wyxu
dt
w
wdwE
wy
wyxu τττ
ττ
σ
τ
( )
( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) +∫ ∫
∂
∂
+∫ ∫
∂
∂
−−
+
×
∞
0 00 0
,,,,,,
61
zt z
dwd
y
wyxT
wKwtdwd
y
wyxT
wwKt
t
d
w
wdwE
τ
τ
βτ
τ
βττ
σ
( ) ( )
( ) ( ) ( )
( ) ×∫ ∫−∫ ∫








∂∂
∂
+
∂
∂
+
∂∂
∂
−+
∞
0 00 0
2
2
22
,,,,,,,,, zt z
yyy
wKtdwd
wy
wyxu
y
wyxu
yx
wyxu
wKt τ
τττ
τ
( ) ( ) ( )
( )
( )
∫ 


+
∂
∂
−+








∂∂
∂
+
∂
∂
+
∂∂
∂
×
t
yyyy
z
zyxu
tdwd
wy
wyxu
y
wyxu
yx
wyxu
0
2
2
22
,,,,,,,,,,,, τ
ττ
τττ
( ) ( )
( )[ ]
( )
( )[ ]
( ) ( ) +∫ 





∂
∂
+
∂
∂
+
−
+



∂
∂
+
∞
0
,,,,,,
1212
,,,
τ
ττ
σσ
τ
τ
d
y
zyxu
z
zyxu
z
zEt
z
zE
d
y
zyxu zyz
( )
( )
( ) ( )
( )
( )




Φ−∫ ∫
∂
∂
−−∫ ∫
∂
∂
+
∞
tzyxdwd
wyxu
wtdwd
wyxu
w y
t z
y
z
y
,,,
,,,,,,
1
0 0
2
2
0 0
2
2
τ
τ
τ
ρττ
τ
τ
ρ ,
( ) ( ) ( )
( ) ( ) ( )
( )



×−∫ ∫
+






∂∂
∂
+
∂
∂
−+=
21
,,,,,,
2
1
,,,,,,
0 0
2
2
2
t
d
w
wdwE
wx
wyxu
x
wyxu
ttzyxutzyxu
t z
xz
zz τ
σ
ττ
τφ
( ) ( ) ( )
( )
( ) ( )
×∫ ∫








∂∂
∂
+
∂
∂
+∫ ∫
+






∂∂
∂
+
∂
∂
×
∞ t z
yz
z
xz
wy
wyxu
y
wyxu
d
w
wdwE
wx
wyxu
x
wyxu
0 0
2
2
2
0 0
2
2
2
,,,,,,
1
,,,,,, ττ
τ
σ
ττ
( )
( )
( ) ( ) ( ) ( )
( )
( ) ( )×∫ ∫−−∫ ∫
+







∂∂
∂
+
∂
∂
−
−
+
×
∞ t zz
yz
wtd
w
wdwE
wy
wyxu
y
wyxut
d
t
w
wdwE
0 00 0
2
2
2
1
,,,,,,
221
βττ
σ
ττ
τ
τ
σ
( ) ( ) ( ) ( ) ( ) ( ) ( )
∫ 


−
∂
∂
−+∫ ∫
∂
∂
+
∂
∂
×
∞ t
z
z
z
zyxu
tdwd
w
wyxT
wwKtdwd
w
wyxT
wK
00 0
,,,
5
,,,,,, τ
ττ
τ
βτ
τ
( ) ( ) ( )
( )[ ]
( )
( )
( ) ( )
∫ 


−
∂
∂
−
∂
∂
+
−
+



∂
∂
−
∂
∂
−
∞
0
,,,,,,
5
116
,,,,,,
x
zyxu
z
zyxu
z
zE
z
zE
d
y
zyxu
x
zyxu xzyx ττ
σσ
τ
ττ
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015
44
( )
( ) ( ) ( ) ( ) ( ) −∫ 





∂
∂
+
∂
∂
+
∂
∂
−+


∂
∂
−
t
zyxy
d
z
zyxu
y
zyxu
x
zyxu
tzK
t
d
y
zyxu
0
,,,,,,,,,
6
,,,
τ
τττ
ττ
τ
( ) ( ) ( ) ( ) ( )




Φ−∫ 





∂
∂
+
∂
∂
+
∂
∂
−
∞
tzyxd
z
zyxu
y
zyxu
x
zyxu
zKt z
zyx
,,,
,,,,,,,,,
1
0
τ
τττ
,
where ( ) ( ) ( )[ ]∫=Φ
z
i
is wdtwyxuwtzyx s
0
,,,,,, ρ , s=x,y,z, φ=L/Θ2
E0, E0 is the average value of Young
modulus.
The second-order approximations of components of displacement vector could be written as
( ) ( ) ( ) ( ) ( )




∫ ∫




−
∂∂
∂
−
∂
∂
−++=
t z
yx
xuxx
yx
wyxu
x
wyxu
ttzyxutzyxu
0 0
1
2
2
1
2
1122
,,,,,,
5
6
1
,,,,,,
ττ
τφα
( ) ( )
( )
( ) ( ) ( )
∫ ∫ ×








∂∂
∂
−
∂∂
∂
−
∂
∂
−
+



∂∂
∂
−
∞
0 0
1
2
1
2
2
1
2
1
2
,,,,,,,,,
5
1
,,, z
zyxz
wx
wyxu
yx
wyxu
x
wyxu
d
w
wdwE
wx
wyxu τττ
τ
σ
τ
( )
( )
( ) ( ) ( ) ( ) ( ) −∫ ∫








∂∂
∂
+
∂∂
∂
+
∂
∂
−+
+
×
t z
zyx
dwd
wx
wyxu
yx
wyxu
x
wyxu
wKt
t
d
w
wdwE
0 0
1
2
1
2
2
1
2
,,,,,,,,,
61
τ
τττ
ττ
σ
( ) ( ) ( ) ( ) ( )
∫ ∫ 


+
∂∂
∂
+∫ ∫








∂∂
∂
+
∂∂
∂
+
∂
∂
−
∞ t z
x
z
zyx
yx
wyxu
dwd
wx
wyxu
yx
wyxu
x
wyxu
wKt
0 0
1
2
0 0
1
2
1
2
2
1
2
,,,,,,,,,,,, τ
τ
τττ
( ) ( )
( )
( ) ( ) ( ) ( )
( )
×∫ ∫
+







∂
∂
+
∂∂
∂
+
−
+



∂
∂
+
t z
yxy
w
wdwE
y
wyxu
yx
wyxu
d
t
w
wdwE
y
wyxu
0 0
2
1
2
1
2
2
1
2
1
,,,,,,
2
1
21
,,,
σ
ττ
τ
τ
σ
τ
( ) ( ) ( ) ( ) ( )
( )
( )
( )
×∫ ∫
+
−∫ ∫
+







∂
∂
+
∂∂
∂
−+−×
∞
0 00 0
2
1
2
1
2
121
,,,,,,
2
1 zt z
yx
w
wEt
d
w
wdwE
w
wyxu
wx
wyxu
tdt
σ
τ
σ
ττ
τττ
( ) ( ) ( ) ( )
×∫ ∫








∂
∂
+
∂∂
∂
−








∂
∂
+
∂∂
∂
×
∞
0 0
2
1
2
1
2
2
1
2
1
2
,,,,,,
2
,,,,,, z
yxyx
w
wyxu
wx
wyxut
dwd
y
wyxu
yx
wyxu ττ
τ
ττ
( )
( )
( ) ( ) ( ) ( ) ( ) ( ) (∫ −∫
∂
∂
−∫ ∫
∂
∂
+
+
×
∞ t zz
twd
x
wyxT
wwKdwd
x
wyxT
wKwtd
w
wdwE
0 00 0
,,,,,,
1
τ
χτ
τ
χτ
σ
) ( ) ( ) ( ) ( ) ( ) −∫ ∫
∂
∂
+∫ ∫
∂
∂
−−−
∞
0 0
2
1
2
0 0
2
1
2
,,,,,, z
x
t z
x
dwd
wyxu
wtdwd
wyxu
wtd τ
τ
τ
ρτ
τ
τ
ρτττ
( ) ( )}tzyxtzyx xxux ,,,,,, 102 Φ−Φ−α ,
( ) ( )
( ) ( ) ( )
( )



−∫ ∫
+







∂∂
∂
+
∂
∂−
++=
t z
xy
yuyy d
w
wdwE
yx
wyxu
x
wyxut
tzyxutzyxu
0 0
1
2
2
1
2
122
1
,,,,,,
2
,,,,,, τ
σ
τττ
α
( ) ( ) ( )
( )
( ) ( )
∫ ∫




−
∂∂
∂
−
∂
∂
+∫ ∫
+







∂∂
∂
+
∂
∂
−
∞ t z
xy
z
xy
yx
wyxu
y
wyxu
d
w
wdwE
yx
wyxu
x
wyxut
0 0
1
2
2
1
2
0 0
1
2
2
1
2
,,,,,,
5
1
,,,,,,
2
ττ
τ
σ
ττ
( ) ( )
( )
( ) ( ) ( ) ×∫ ∫








∂∂
∂
−
∂∂
∂
−
∂
∂
−
−
+



∂∂
∂
−
∞
0 0
1
2
1
2
2
1
2
1
2
,,,,,,,,,
5
61
,,, z
zxyz
wy
wyxu
yx
wyxu
y
wyxu
d
t
w
wdwE
wy
wyxu τττ
τ
τ
σ
τ
( )
( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) −∫ ∫
∂
∂
+∫ ∫
∂
∂
−−
+
×
∞
0 00 0
,,,,,,
61
zt z
dwd
y
wyxT
wwKtdwd
y
wyxT
wKwt
t
d
w
wdwE
τ
τ
χτ
τ
χττ
σ
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015
45
( ) ( )
( ) ( ) ( )
( )∫ ∫ ×−∫ ∫








∂∂
∂
+
∂
∂
+
∂∂
∂
−−
∞
0 00 0
1
2
2
1
2
1
2
,,,,,,,,, zt z
yyy
wKtdwd
wy
wyxu
y
wyxu
yx
wyxu
wKt τ
τττ
τ
( ) ( ) ( )
( )
( )
∫ 


+
∂
∂
−+








∂∂
∂
+
∂
∂
+
∂∂
∂
×
t
yyyy
z
zyxu
tdwd
wy
wyxu
y
wyxu
yx
wyxu
0
11
2
2
1
2
1
2
,,,
2
1,,,,,,,,, τ
ττ
τττ
( ) ( )
( )
( )
( )[ ]
( ) ( )
×−∫ 





∂
∂
+
∂
∂
+
−
+



∂
∂
+
∞
2
0
111 ,,,,,,
121
,,,
uy
zyz
d
y
zyxu
z
zyxu
z
zEt
z
zE
d
y
zyxu
ατ
ττ
σσ
τ
τ
( ) ( )} 110 ,,,,,, φtzyxtzyx yy Φ−Φ× ,
( ) ( )
( ) ( ) ( )
( )



×∫ ∫
+






∂∂
∂
+
∂
∂
++=
t z
xz
zzz
w
wdwE
wx
wyxu
x
wyxu
tzyxutzyxu
0 0
1
2
2
1
2
1122
1
,,,,,,
2
1
,,,,,,
σ
ττ
φα
( ) ( ) ( ) ( )
( )
( ) ( )
∫ ∫ 


+
∂
∂
−+∫ ∫
+






∂∂
∂
+
∂
∂
−−×
∞ t z
z
z
xz
y
wyxu
td
w
wdwE
wx
wyxu
x
wyxut
dt
0 0
2
1
2
0 0
1
2
2
1
2
,,,
2
1
1
,,,,,,
2
τ
ττ
σ
ττ
ττ
( ) ( )
( )
( ) ( ) ( ) ( ) ( )
∫ ∫ 


+
∂
∂
−∫ ∫
∂
∂
−−
+



∂∂
∂
+
∞
0 0
2
1
2
0 0
1
2
,,,,,,
1
,,, z
z
t z
y
y
wyxu
dwd
w
wyxT
wwKtd
w
wdwE
wy
wyxu τ
τ
τ
χττ
σ
τ
( ) ( )
( )
( ) ( ) ( ) ( )
( )[ ]
( )×∫ −
+
+∫ ∫
∂
∂
+
+



∂∂
∂
+
∞ tz
y
t
z
zE
dwd
w
wyxT
wwKt
t
d
w
wdwE
wy
wyxu
00 0
1
2
16
,,,
21
,,,
τ
σ
τ
τ
χτ
σ
τ
( ) ( ) ( ) ( ) ( )
∫ 


−
∂
∂
−
∂
∂
−





∂
∂
−
∂
∂
−
∂
∂
×
∞
0
11111 ,,,,,,
5
6
,,,,,,,,,
5
x
zyxu
z
zyxut
d
y
zyxu
x
zyxu
z
zyxu xzyxz ττ
τ
τττ
( ) ( )
( )[ ]
( ) ( ) ( ) ( ) ×∫ 





∂
∂
+
∂
∂
+
∂
∂
−+
+



∂
∂
−
t
zyxy
d
z
zyxu
y
zyxu
x
zyxu
t
z
zEt
d
y
zyxu
0
1111 ,,,,,,,,,
16
,,,
τ
τττ
τ
σ
τ
τ
( ) ( )
( ) ( ) ( )
( )−Φ−∫ 





∂
∂
+
∂
∂
+
∂
∂
−×
∞
tzyxd
z
zyxu
y
zyxu
x
zyxu
zKtzK zz
zyx
,,,
,,,,,,,,,
02
0
111
ατ
τττ
( )}tzyxz ,,,1Φ− .
Calculation of the average values αuβ2 leads to the following results
( ) ( ) ( ) ( ) ( )
( )
(




∫ ∫ ∫ ∫ −
+







∂∂
∂
−
∂∂
∂
−
∂
∂
−Θ=
Θ
0 0 0 0
1
2
1
2
2
1
2
2
2
1
,,,,,,,,,
5
12
1 x y zL L L
z
zyx
zux L
z
zdzE
zx
tzyxu
yx
tzyxu
x
tzyxu
tL
σ
α
) ( ) ( ) ( ) ( ) ( )
( )
×∫ ∫ ∫ ∫
+
−








∂∂
∂
−
∂∂
∂
−
∂
∂Θ
−−
∞
0 0 0 0
1
2
1
2
2
1
22
1
,,,,,,,,,
5
12
x y zL L L
zzyx
z
zL
zx
tzyxu
yx
tzyxu
x
tzyxu
zEtdxdydz
σ
( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫








∂∂
∂
+
∂∂
∂
+
∂
∂
−−Θ+×
Θ
0 0 0 0
1
2
1
2
2
1
2
2 ,,,,,,,,,
2
1 x y zL L L
zyx
z
zx
tzyxu
yx
tzyxu
x
tzyxu
zLttdxdydzd
( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫








∂∂
∂
+
∂∂
∂
+
∂
∂
−
Θ
−×
∞
0 0 0 0
1
2
1
2
2
1
22
,,,,,,,,,
2
x y zL L L
zyx
z
zx
tzyxu
yx
tzyxu
x
tzyxu
zLtdxdydzdzK
( ) ( ) ( ) ( ) ( )
( )
×∫ ∫ ∫ ∫
+
−








∂
∂
+
∂∂
∂
−Θ+×
Θ
0 0 0 0
2
1
2
1
2
2
1
,,,,,,
2
1 x y zL L L
zyx
ydzd
z
zL
y
tzyxu
yx
tzyxu
zEttdxdydzdzK
σ
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015
46
( ) ( ) ( ) ( ) ( )
( )
×
Θ
−∫ ∫ ∫ ∫
+







∂
∂
+
∂∂
∂
−−Θ+×
Θ
41
,,,,,,
2
1 2
0 0 0 0
2
1
2
1
2
2
x y zL L L
yx
z tdxdyd
z
zdzE
z
tzyxu
zx
tzyxu
zLttdxd
σ
( )( )
( )
( ) ( )
( )
( )∫ ∫ ∫ ∫ ×
+
−
−Θ+∫ ∫ ∫ ∫








∂
∂
+
∂∂
∂
+
−
×
Θ∞
0 0 0 0
2
0 0 0 0
2
1
2
1
2
14
1,,,,,,
1
x y zx y z L L L
z
L L L
yxz
z
zL
ttdxdydzd
y
tzyxu
yx
tzyxu
z
zL
zE
σσ
( ) ( )
( ) ( ) ( ) ( )×∫ ∫ ∫ ∫
∂
∂
−+








∂
∂
+
∂∂
∂
×
∞
0 0 0 0
2
1
2
2
1
2
1
2
,,,
2
,,,,,, x y zL L L
x
z
yx
t
tzyxuz
zLtdxdydzdzE
z
tzyxu
zx
tzyxu ρ
( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫ −
Θ
+∫ ∫ ∫ ∫ −−Θ−Θ×
∞Θ
0 0 0 0
2
0 0 0 0
1
2
2
,,,
x y zx y z L L L
z
L L L
xz zLtdxdydzdtzyxuzzLttdxdydzd ρ
( )
( ) ( ) ( ) ( ) 



∫ −Θ



ΘΧ−∞Χ
Θ
+
∂
∂
×
zL
zxx
x
zdzzLLtdxdydzd
t
tzyxu
0
20
2
2
1
2
4
2
1
2
,,,
ρ ,
( ) ( )
( )
( )
( ) ( )




×
Θ
−∫ ∫ ∫ ∫








∂∂
∂
+
∂
∂
+
−
−Θ=
Θ
2
,,,,,,
12
1 2
0 0 0 0
1
2
2
1
2
2
2
x y zL L L
xyz
zuy tdxdydzd
yx
tzyxu
x
tzyxu
z
zL
zEL
σ
τα
( )
( )
( )
( ) ( )
( )
( )
×∫ ∫ ∫ ∫
+
−
+∫ ∫ ∫ ∫








∂∂
∂
+
∂
∂
+
−
×
Θ∞
0 0 0 00 0 0 0
1
2
2
1
2
112
1,,,,,,
1
x y zx y z L L L
z
L L L
xyz
z
zL
zEtdxdydzd
yx
tzyxu
x
tzyxu
z
zL
zE
σσ
( ) ( ) ( )
( ) ( ) ×∫ ∫ ∫ ∫
Θ
−−Θ








∂∂
∂
−
∂∂
∂
−
∂
∂
×
∞
0 0 0 0
2
21
2
1
2
2
1
2
12
,,,,,,,,,
5
x y zL L L
zxy
zEtdxdydzd
zy
tzyxu
yx
tzyxu
y
tzyxu
τ
( )
( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫−Θ+








∂∂
∂
−
∂∂
∂
−
∂
∂
+
−
×
Θ
0 0 0 0
21
2
1
2
2
1
2
2
,,,,,,,,,
5
1
x y zL L L
zxyz zK
ttdxdydzd
zy
tzyxu
yx
tzyxu
y
tzyxu
z
zL
σ
( )
( ) ( ) ( )
( )( )×∫ ∫ ∫ ∫ −−








∂∂
∂
+
∂
∂
+
∂∂
∂
−×
∞
0 0 0 0
1
2
2
1
2
1
2
,,,,,,,,, x y zL L L
z
yyy
z zLzKtdxdydzd
zy
tzyxu
y
tzyxu
yx
tzyxu
zL
( ) ( ) ( ) ( )
∫ ∫ ∫ ∫ 


+
∂
∂
+








∂∂
∂
+
∂
∂
+
∂∂
∂Θ
×
Θ
0 0 0 0
11
2
2
1
2
1
22
,,,
2
1,,,,,,,,,
2
x y zL L L
yyyy
z
tzyxu
tdxdydzd
zy
tzyxu
y
tzyxu
yx
tzyxu
( ) ( )
( )
( )
( ) ( ) ( )
( )
×∫ ∫ ∫ ∫
+






∂
∂
+
∂
∂Θ
−−Θ
+



∂
∂
+
∞
0 0 0 0
11
2
21
1
,,,,,,
21
,,, x y zL L L
zyz
z
zdzE
y
tzyxu
z
tzyxu
tdxdyd
z
zdzE
y
tzyxu
σ
τ
σ
( ) ( )
( ) ( )
×∫ ∫ ∫ ∫
∂
∂Θ
+∫ ∫ ∫ ∫
∂
∂
−Θ−×
∞Θ
0 0 0 0
2
1
22
0 0 0 0
2
1
2
2 ,,,
2
,,,
2
1 x y zx y z L L L
y
L L L
y
t
tzyxu
tdxdydzd
t
tzyxu
zttdxdyd ρ
( ) ( ) ( ) ( )
( ) ( )
×


∞Χ
Θ+
ΘΧ
−∫ ∫ ∫ ∫ −−×
Θ
22
,,,
022
0 0 0 0
1
yy
L L L
yz
x y z
tdxdydzdtzyxuzzLtdxdydzdz ρρ
( ) ( )
1
0
4
−




∫ −Θ×
zL
z zdzzLL ρ ,
( ) ( )
( )
( )
( ) ( )




×
Θ
−∫ ∫ ∫ ∫ 





∂∂
∂
+
∂
∂
+
−
−Θ=
Θ
2
,,,,,,
12
1 2
0 0 0 0
1
2
2
1
2
2
2
x y zL L L
xzz
zz tdxdydzd
zx
tzyxu
x
tzyxu
z
zL
zEtL
σ
α
( )( )
( )
( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫−Θ+∫ ∫ ∫ ∫ 





∂∂
∂
+
∂
∂
+
−
×
Θ∞
0 0 0 0
2
0 0 0 0
1
2
2
1
2
2
1,,,,,,
1
x y zx y z L L LL L L
xzz
zEttdxdydzd
zx
tzyxu
x
tzyxu
z
zL
zE
σ
( ) ( ) ( ) ( )
∫ ∫ ∫ ∫ ×








∂∂
∂
+
∂
∂
−








∂∂
∂
+
∂
∂
×
∞
0 0 0 0
1
2
2
1
2
1
2
2
1
2
,,,,,,,,,,,, x y zL L L
yzyz
zy
tzyxu
y
tzyxu
tdxdydzd
zy
tzyxu
y
tzyxu
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015
47
( ) ( )
( )[ ]
( ) ( ) ( )
∫ ∫ ∫ ∫ ×





∂
∂
−
∂
∂
−
∂
∂
+
+
−
Θ×
Θ
0 0 0 0
1112
,,,,,,,,,
5
12
1
12
x y zL L L
yxzz
y
tzyxu
x
tzyxu
z
tzyxu
tdxdydzd
z
zLzE
σ
( )
( )
( )
( ) ( ) ( )
∫ ∫ ∫ ∫ ×





∂
∂
−
∂
∂
−
∂
∂Θ
−−Θ
+
×
∞
0 0 0 0
111
2
2 ,,,,,,,,,
5
121
x y zL L L
yxz
y
tzyxu
x
tzyxu
z
tzyxu
tdtxdyd
z
zdzE
σ
( )
( )
( ) ( ) ( ) ( ) ( )
×∫ ∫ ∫ ∫ 





∂
∂
+
∂
∂
+
∂
∂
−Θ+
+
×
Θ
0 0 0 0
1112 ,,,,,,,,,
21
x y zL L L
zyx
z
tzyxu
y
tzyxu
x
tzyxuzK
ttdxdyd
z
zdzE
σ
( )
( )
( ) ( ) ( )
×∫ ∫ ∫ ∫ 





∂
∂
+
∂
∂
+
∂
∂Θ
−
ΘΧ
−×
∞
0 0 0 0
111
2
2 ,,,,,,,,,
22
x y zL L L
zyxz
z
tzyxu
y
tzyxu
x
tzyxu
zKtdxdydzd
( ) ( ) ( )
( )
( ) ×



∫ −


∞Χ
Θ+∫ ∫ ∫ ∫ −−×
Θ zx y z L
z
z
L L L
zz zLtdxdydzdztzyxuzLtdxdydzd
0
02
0 0 0 0
1 4
2
,,, ρ
( ) } 1−
Θ× Lzdzρ .
System of equations for the functions Cijk(x,y,z,t) (i≥0, j≥0, k≥0) could be written as
( ) ( ) ( ) ( )






∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
000
2
2
000
2
2
000
2
0
000 ,,,,,,,,,,,,
z
tzyxC
y
tzyxC
x
tzyxC
D
t
tzyxC
L ;
( )
( )
( )
( )
( )








+





∂
∂
∂
∂
+





∂
∂
∂
∂
=
∂
∂ −−
y
tzyxC
Tzg
yx
tzyxC
Tzg
x
D
t
tzyxC i
L
i
LL
i ,,,
,
,,,
,
,,, 100100
0
00
( )
( ) ( ) ( ) ( )










∂
∂
+
∂
∂
+
∂
∂
+










∂
∂
∂
∂
+ −
2
00
2
2
00
2
2
00
2
100 ,,,,,,,,,,,,
,
z
tzyxC
y
tzyxC
x
tzyxC
z
tzyxC
Tzg
z
iiii
L , i≥1;
( ) ( ) ( ) ( )
+





∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
010
2
2
010
2
2
010
2
0
010 ,,,,,,,,,,,,
z
tzyxC
y
tzyxC
x
tzyxC
D
t
tzyxC
L
( )
( )
( ) ( )
( )
( )




+





∂
∂
∂
∂
+





∂
∂
∂
∂
+
y
tzyxC
TzyxP
tzyxC
yx
tzyxC
TzyxP
tzyxC
x
D L
,,,
,,,
,,,,,,
,,,
,,, 000000000000
0 γ
γ
γ
γ
( )
( )
( )









∂
∂
∂
∂
+
z
tzyxC
TzyxP
tzyxC
z
,,,
,,,
,,, 000000
γ
γ
;
( ) ( ) ( ) ( )
×+





∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
LL D
z
tzyxC
y
tzyxC
x
tzyxC
D
t
tzyxC
02
020
2
2
020
2
2
020
2
0
020 ,,,,,,,,,,,,
( )
( )
( )
( )
( )
( )







×
∂
∂
∂
∂
+





∂
∂
∂
∂
×
−
y
tzyxC
tzyxC
yy
tzyxC
TzyxP
tzyxC
tzyxC
x
,,,
,,,
,,,
,,,
,,,
,,, 000
010
000
1
000
010 γ
γ
( )
( )
( )
( )
( )
( ) ( )
( )


×
∂
∂
+










∂
∂
∂
∂
+


×
−−
TzyxP
tzyxC
x
D
z
tzyxC
TzyxP
tzyxC
tzyxC
zTzyxP
tzyxC
L
,,,
,,,,,,
,,,
,,,
,,,
,,,
,,, 000
0
000
1
000
010
1
000
γ
γ
γ
γ
γ
γ
( ) ( )
( )
( ) ( )
( )
( )










∂
∂
∂
∂
+





∂
∂
∂
∂
+


∂
∂
×
z
tzyxC
TzyxP
tzyxC
zy
tzyxC
TzyxP
tzyxC
yx
tzyxC ,,,
,,,
,,,,,,
,,,
,,,,,, 010000010000010
γ
γ
γ
γ
;
( ) ( ) ( ) ( )
+





∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
001
2
2
001
2
2
001
2
0
001 ,,,,,,,,,,,,
z
tzyxC
y
tzyxC
x
tzyxC
D
t
tzyxC
L
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015
48
( )[ ] ( )
( )
( )
( )
+







 ∇
∫





++
∂
∂
Ω+
Tk
tzyx
WdtWyxC
TzyxP
tzyxC
Tzyxg
x
D S
L
SLSLSSL
z ,,,
,,,
,,,
,,,
1,,,1
0
000
000
0
µ
ξε γ
γ
( )[ ] ( )
( )
( )
( )







 ∇
∫





++
∂
∂
Ω+
Tk
tzyx
WdtWyxC
TzyxP
tzyxC
Tzyxg
y
D S
L
SLSLSSL
z ,,,
,,,
,,,
,,,
1,,,1
0
000
000
0
µ
ξε γ
γ
;
( ) ( ) ( ) ( ) +





∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
002
2
2
002
2
2
002
2
0
002 ,,,,,,,,,,,,
z
tzyxC
y
tzyxC
x
tzyxC
D
t
tzyxC
L
( )[ ] ( )
( )
( )
( )
+







 ∇
∫





++
∂
∂
Ω+
Tk
tzyx
WdtWyxC
TzyxP
tzyxC
Tzyxg
x
D S
L
SLSLSSL
z ,,,
,,,
,,,
,,,
1,,,1
0
001
000
0
µ
ξε γ
γ
( )[ ] ( )
( )
( )
( )
+







 ∇
∫





++
∂
∂
Ω+
Tk
tzyx
WdtWyxC
TzyxP
tzyxC
Tzyxg
y
D S
L
SLSLSSL
z ,,,
,,,
,,,
,,,
1,,,1
0
001
000
0
µ
ξε γ
γ
( )[ ] ( )
( )
( )
( )




×∫





++
∂
∂
Ω+
−
zL
SLSLSSL WdtWyxC
TzyxP
tzyxC
tzyxCTzyxg
x
D
0
000
1
000
0010 ,,,
,,,
,,,
,,,1,,,1 γ
γ
γ
ξε
( ) ( ) ( )
( )
( ) ( ) ×



∫
∇






+
∂
∂
+


∇
×
−
zL
S
S
S
WdtWyxC
Tk
tzyx
TzyxP
tzyxC
tzyxC
yTk
tzyx
0
000
1
000
001 ,,,
,,,
,,,
,,,
,,,1
,,, µ
ξ
µ
γ
γ
γ
( )[ ]} SLLSLS DTzyxg 0,,,1 Ω+× ε ;
( ) ( ) ( ) ( ) ( )







×
∂
∂
∂
∂
+





∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
x
tzyxC
xz
tzyxC
y
tzyxC
x
tzyxC
D
t
tzyxC
L
,,,,,,,,,,,,,,, 010
2
110
2
2
110
2
2
110
2
0
110
( ) ( )
( )
( )
( )
+










∂
∂
∂
∂
+





∂
∂
∂
∂
+




× LLLL D
z
tzyxC
Tzyxg
zy
tzyxC
Tzyxg
y
Tzyxg 0
010010 ,,,
,,,
,,,
,,,,,,
( )
( )
( ) ( )
( )
( ) ( )
( )






×
∂
∂
+





∂
∂
∂
∂
+





∂
∂
∂
∂
+
TzyxP
tzyxC
zy
tzyxC
TzyxP
tzyxC
yx
tzyxC
TzyxP
tzyxC
x ,,,
,,,,,,
,,,
,,,,,,
,,,
,,, 000100000100000
γ
γ
γ
γ
γ
γ
( ) ( ) ( )
( )
( ) ( )
( )






×
∂
∂
+





∂
∂
∂
∂
+







∂
∂
×
−−
TzyxP
tzyxC
yx
tzyxC
TzyxP
tzyxC
tzyxC
x
D
z
tzyxC
L
,,,
,,,,,,
,,,
,,,
,,,
,,, 1
000000
1
000
1000
100
γ
γ
γ
γ
( )
( )
( )
( )
( )
( )
LD
z
tzyxC
TzyxP
tzyxC
tzyxC
zy
tzyxC
tzyxC 0
000
1
000
100
000
100
,,,
,,,
,,,
,,,
,,,
,,,










∂
∂
∂
∂
+


∂
∂
×
−
γ
γ
;
( ) ( ) ( ) ( ) ( )







×
∂
∂
∂
∂
+





∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
y
tzyxC
xz
tzyxC
y
tzyxC
x
tzyxC
D
t
tzyxC
L
,,,,,,,,,,,,,,, 000
2
100
2
2
100
2
2
100
2
0
101
( ) ( ) ( ) ( ) ( ) +










∂
∂
∂
∂
+





∂
∂
∂
∂
+




× LLLL D
z
tzyxC
Tzyxg
zy
tzyxC
Tzyxg
y
Tzyxg 0
000000 ,,,
,,,
,,,
,,,,,,
( )[ ] ( ) ( )
( )
( )



×∫





++
∂
∂
Ω+
−
zL
SLSLSSL WdtWyxC
TzP
tzyxC
tzyxCTzyxg
x
D
0
100
1
000
1000 ,,,
,
,,,
,,,1,,,1 γ
γ
ξε
( )
( )[ ] ( )
( )
( )
( )
( )
( )[ ] ( )



×∫+
∂
∂
+


∇
∫×
×










++
∂
∂
Ω+


∇
×
−
zz L
LSLS
S
L
SLSLSSL
S
WdtWyxCTzyxg
xTk
tzyx
WdtWyxC
TzP
tzyxC
tzyxCTzyxg
y
D
Tk
tzyx
0
100
0
100
1
000
1000
,,,,,,1
,,,
,,,
,
,,,
,,,1,,,1
,,,
ε
µ
ξε
µ
γ
γ
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015
49
( ) ( ) ( )[ ] ( )



×
∇
+
∂
∂
+Ω



∫
∇
×
Tk
tzyx
Tzyxg
y
DWdtWyxC
Tk
tzyx S
LSLSSL
L
S
z ,,,
,,,1,,,
,,,
0
0
100
µ
ε
µ
( ) ( ) SL
LL
DWdtWyxCWdtWyxC
zz
0
0
100
0
100 ,,,,,, Ω



∫∫× ;
( ) ( ) ( ) ( ) ( )
( )





×
∂
∂
+





∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
TzyxP
tzyxC
xz
tzyxC
y
tzyxC
x
tzyxC
D
t
tzyxC
L
,,,
,,,,,,,,,,,,,,, 000
2
011
2
2
011
2
2
011
2
0
011
γ
γ
( ) ( )
( )
( ) ( )
( )
( ) +










∂
∂
∂
∂
+





∂
∂
∂
∂
+


∂
∂
× LD
z
tzyxC
TzyxP
tzyxC
zy
tzyxC
TzyxP
tzyxC
yx
tzyxC
0
001000001000001 ,,,
,,,
,,,,,,
,,,
,,,,,,
γ
γ
γ
γ
( ) ( )
( )
( ) ( ) ( )







×
∂
∂
∂
∂
+





∂
∂
∂
∂
+
−
y
tzyxC
tzyxC
yx
tzyxC
TzyxP
tzyxC
tzyxC
x
D L
,,,
,,,
,,,
,,,
,,,
,,, 000
001
000
1
000
0010 γ
γ
( )
( )
( )
( )
( )
( ) ( )



×
∇
∂
∂
+










∂
∂
∂
∂
+


×
−−
Tk
tzyx
xz
tzyxC
TzyxP
tzyxC
tzyxC
zTzyxP
tzyxC S ,,,,,,
,,,
,,,
,,,
,,,
,,, 000
1
000
001
1
000 µ
γ
γ
γ
γ
( )[ ] ( )
( )
( ) ( )×


∇
∂
∂
+Ω



∫





++×
Tk
tzyx
x
DWdtWyxC
TzyxP
tzyxC
Tzyxg S
SL
L
SLSLS
z ,,,
,,,
,,,
,,,
1,,,1 0
0
010
000 µ
ξε γ
γ
( )[ ] ( ) ( )
( )
( ) ×Ω+Ω



∫





++×
−
SLSL
L
SLSLS DDWdtWyxC
TzyxP
tzyxC
tzyxCTzyxg
z
00
0
000
1
000
010 ,,,
,,,
,,,
,,,1,,,1 γ
γ
ξε
( )[ ] ( )
( )
( )
( )
( )








∫
∇






++
∂
∂
×
−
zL
S
SLSLS WdtWyxC
Tk
tzyx
TzyxP
tzyxC
tzyxCTzyxg
y 0
000
1
000
010 ,,,
,,,
,,,
,,,
,,,1,,,1
µ
ξε γ
γ
.
Boundary and initial conditions for functions Cijk(x,t) (i≥0, j≥0, k≥0) could be written as
( )
0
,,,
0
=
=x
ijk
x
tzyxC
∂
∂
;
( )
0
,,,
=
= xLx
ijk
x
tzyxC
∂
∂
;
( )
0
,,,
0
=
=y
ijk
y
tzyxC
∂
∂
;
( )
0
,,,
=
= yLy
ijk
y
tzyxC
∂
∂
;
( )
0
,,,
0
=
=z
ijk
z
tzyxC
∂
∂
;
( )
0
,,,
=
= zLz
ijk
z
tzyxC
∂
∂
; C000(x,y,z,0)=fC (x,y,z); Cijk(x,y,z,0)=0.
Solutions of equations for functions Cijk(x,t) (i≥0, j≥0, k≥0) could be written as
( ) ( ) ( ) ( ) ( )∑+=
∞
=1
0
000
2
,,,
n
nCnnnnC
zyxzyx
C
tezcycxcF
LLLLLL
F
tzyxC ,
where ( )
















++−= 2220
22 111
exp
zyx
LnC
LLL
tDnte π , ( ) ( ) ( ) ( )∫ ∫ ∫=
x y zL L L
CnnnnC udvdwdwvufwcvcucF
0 0 0
,, ;
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫−−=
∞
=1 0 0 0 0
2
0
00 ,,,
2
,,,
n
t L L L
LnnnCnCnnnnC
zyx
L
i
x y z
TwvugvcusetezcycxcFn
LLL
D
tzyxC τ
π
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫−−
∂
∂
×
∞
=
−
1 0 0
2
0100 2,,,
n
t L
nnCnCnnnnC
zyx
Li
n
x
ucetezcycxcFn
LLL
D
dudvdwd
u
wvuC
wc τ
π
τ
τ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑−∫ ∫
∂
∂
×
∞
=
−
1
2
0
0 0
100 2,,,
,,,
n
nCnnn
zyx
L
L L
i
Lnn tezcycxc
LLL
D
dudvdwd
v
wvuC
Twvugwcvs
y z π
τ
τ
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015
50
( ) ( ) ( ) ( ) ( )
( )
∫ ∫ ∫ ∫
∂
∂
−× −
t L L L
i
LnnnnCnC
x y z
dudvdwd
w
wvuC
TwvugwsvcuceFn
0 0 0 0
100 ,,,
,,, τ
τ
τ , i≥1;
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )
×∑ ∫ ∫ ∫ ∫−−=
∞
=1 0 0 0 0
000
2
0
010
,,,
,,,2
,,,
n
t L L L
nnnCnCnnnnC
zyx
L
x y z
TwvuP
wvuC
vcusetezcycxcFn
LLL
D
tzyxC γ
γ
τ
τ
π
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫−−
∂
∂
×
∞
=1 0 0
2
0000 2,,,
n
t L
nnCnCnnnnC
zyx
L
n
x
ucetezcycxcFn
LLL
D
dudvdwd
u
wvuC
wc τ
π
τ
τ
( ) ( ) ( ) ( )
( )
( ) ( ) ( ) ×∑−∫ ∫ ∫
∂
∂
×
∞
=1
2
0
0 0 0
000000 2,,,
,,,
,,,
n
nn
zyx
L
L L L
nnn ycxcn
LLL
D
dudvdwd
v
wvuC
TwvuP
wvuC
wcwcvs
y z z π
τ
ττ
γ
γ
( ) ( ) ( ) ( ) ( ) ( )
( )
( )
( )
∫ ∫ ∫ ∫
∂
∂
−×
t L L L
nnnnCnCnnC
x y z
dudvdwd
w
wvuC
TwvuP
wvuC
wsvcucetezcF
0 0 0 0
000000 ,,,
,,,
,,,
τ
ττ
τ γ
γ
;
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫−−=
∞
=1 0 0 0 0
0102
0
020 ,,,
2
,,,
n
t L L L
nnnCnCnnnnC
zyx
L
x y z
wvuCvcusetezcycxcFn
LLL
D
tzyxC ττ
π
( ) ( )
( )
( ) ( ) ( ) ( ) ( )×∑−
∂
∂
×
∞
=
−
1
2
0000
1
000 2,,,
,,,
,,,
n
nCnnnnC
zyx
L
n tezcycxcFn
LLL
D
dudvdwd
u
wvuC
TwvuP
wvuC
wc
π
τ
ττ
γ
γ
( ) ( ) ( ) ( ) ( ) ( )
( )
( ) −∫ ∫ ∫ ∫
∂
∂
−×
−t L L L
nnnnC
x y z
dudvdwd
v
wvuC
TwvuP
wvuC
wvuCwcvcuse
0 0 0 0
000
1
000
010
,,,
,,,
,,,
,,, τ
ττ
ττ γ
γ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )
×∑ ∫ ∫ ∫ ∫−−
∞
=
−
1 0 0 0 0
1
000
010
,,,
,,,
,,,
n
t L L L
nnnnCnCnnnnC
x y z
TwvuP
wvuC
wvuCwcvcusetezcycxcFn γ
γ
τ
ττ
( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ −−
∂
∂
×
∞
=1 0
2
0000
2
0 2,,,2
n
t
nCnCnnnnC
zyx
L
zyx
L
etezcycxcFn
LLL
D
dudvdwd
w
wvuC
LLL
D
τ
π
τ
τπ
( ) ( ) ( ) ( )
( )
( ) ( )×∑−∫ ∫ ∫
∂
∂
×
∞
=1
2
0
0 0 0
010000 2,,,
,,,
,,,
n
nnC
zyx
L
L L L
nnn xcFn
LLL
D
dudvdwd
u
wvuC
TwvuP
wvuC
wcvcus
x y z π
τ
ττ
γ
γ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )
( ) −∫ ∫ ∫ ∫
∂
∂
−×
t L L L
nnnnCnCnn
x y z
dudvdwd
v
wvuC
TwvuP
wvuC
wcvsucetezcyc
0 0 0 0
010000 ,,,
,,,
,,,
τ
ττ
τ γ
γ
( ) ( ) ( ) ( ) ( )
( )
( ) ×∑ ∫ ∫ ∫ ∫
∂
∂
−−
∞
=1 0 0 0 0
010000
2
0 ,,,
,,,
,,,2
n
t L L L
nnnnCnC
zyx
L
x y z
dudvdwd
w
wvuC
TwvuP
wvuC
wsvcuceFn
LLL
D
τ
ττ
τ
π
γ
γ
( ) ( ) ( ) ( )tezcycxc nCnnn× ;
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫
∇
−
Ω
−=
∞
=1 0 0 0 0
2
0
001
,,,2
,,,
n
t L L L
S
nnCnCnnnnC
zyx
L
x y z
Tk
wvu
usetezcycxcFn
LLL
D
tzyxC
τµ
τ
π
( )[ ] ( )
( )
( ) ( ) ( ) −∫





++× ττ
τ
ξε γ
γ
dudvdvcwdwcWdWvuC
TwvuP
wvuC
Twvug nn
L
SLSLS
z
0
000
000
,,,
,,,
,,,
1,,,1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫ ∫−
Ω
−
∞
=1 0 0 0 0 0
0002
0
,,,
2
n
t L L L L
nnnnCnCnnnnC
zyx
L
x y z z
WdWvuCwcvsucetezcycxcFn
LLL
D
ττ
π
( )[ ] ( )
( )
( )
τ
τµτ
ξε γ
γ
dudvdwd
Tk
wvu
TwP
wvuC
Twvug S
SLSLS
,,,
,
,,,
1,,,1 000 ∇






++× ;
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫
∇
−
Ω
−=
∞
=1 0 0 0 0
2
0
002
,,,2
,,,
n
t L L L
S
nnnCnCnnnnC
zyx
L
x y z
Tk
wvu
vcusetezcycxcFn
LLL
D
tzyxC
τµ
τ
π
( )[ ] ( )
( )
( ) ( ) ×
Ω
−∫





++×
zyx
L
n
L
SLSLS
LLL
D
dudvdwdwcWdWvuC
TwvuP
wvuC
Twvug
z
2
0
0
001
000
,,,
,,,
,,,
1,,,1
π
ττ
τ
ξε γ
γ
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015
51
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫ ∫
∇
−×
∞
=1 0 0 0 0 0
001 ,,,
,,,
n
t L L L L
S
nnnnCnCnnnnC
x y z z
WdWvuC
Tk
wvu
wcvsucetezcycxcFn τ
τµ
τ
( )[ ] ( )
( )
( ) ( ) ( )×∑
Ω
−





++×
∞
=1
2
0000 2
,,,
,,,
1,,,12
n
nnnnC
zyx
L
SLSLS zcycxcF
LLL
D
dudvdwd
TwvuP
wvuC
Twvug
π
τ
τ
ξε γ
γ
( ) ( ) ( ) ( ) ( ) ( ) ( )
( )
( ) ×∫ ∫ ∫ ∫ ∫





+−×
−t L L L L
SnnnnCnC
x y z z
WdWvuC
TwvuP
wvuC
tzyxCwcvcuseten
0 0 0 0 0
000
1
000
001 ,,,
,,,
,,,
,,,1 τ
τ
ξτ γ
γ
γ
( )[ ] ( ) ( ) ( ) ( ) ( ) ×∑
Ω
−
∇
+×
∞
=1
2
02,,,
,,,1
n
nCnnnnC
zyx
LS
LSLS tezcycxcF
LLL
D
dudvdwd
Tk
wvu
Twvug
π
τ
τµ
ε
( ) ( ) ( ) ( ) ( ) ( )
( )
( )∫ ∫ ∫ ∫ ×∫





+
∇
×
−t L L L L
S
S
nnn
x y z z
WdWvuC
TwP
wvuC
tzyxC
Tk
wvu
wcvcusn
0 0 0 0 0
000
1
000
001 ,,,
,
,,,
,,,1
,,,
τ
τ
ξ
τµ
γ
γ
γ
( )[ ] ( ) ττε deudvdwdTwvug nCLSLS −+× ,,,1 ;
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫−−=
∞
=1 0 0 0 0
2
0
110 ,,,
2
,,,
n
t L L L
LnnnCnCnnnnC
zyx
L
x y z
TwvugvcusetezcycxcFn
LLL
D
tzyxC τ
π
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫−−
∂
∂
×
∞
=1 0 0
2
0010 2,,,
n
t L
nnCnCnnnnC
zyx
L
n
x
ucetezcycxcFn
LLL
D
dudvdwd
u
wvuC
wc τ
π
τ
τ
( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ×−∫ ∫
∂
∂
×
∞
=1
2
0
0 0
010 2,,,
,,,
n
nnnnC
zyx
L
L L
Lnn zcycxcFn
LLL
D
dudvdwd
v
wvuC
Twvugwcvs
y z π
τ
τ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×−∫ ∫ ∫ ∫
∂
∂
−×
zyx
L
t L L L
LnnnnCnC
LLL
D
dudvdwd
w
wvuC
Twvugwsvcucete
x y z
2
0
0 0 0 0
010 2,,,
,,,
π
τ
τ
τ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫−×
∞
=1 0 0 0 0
100 ,,,,,,
n
t L L L
LnnnnCnCnnnnC
x y z
wvuCTwvugwcvcusetezcycxcFn ττ
( )
( )
( ) ( ) ( ) ( ) ( ) ×∑−
∂
∂
×
∞
=
−
1
2
0000
1
000 2,,,
,,,
,,,
n
nCnnnnC
zyx
L
tezcycxcFn
LLL
D
dudvdwd
u
wvuC
TwvuP
wvuC π
τ
ττ
γ
γ
( ) ( ) ( ) ( ) ( ) ( )
( )
( )×∫ ∫ ∫ ∫
∂
∂
−×
−t L L L
LnnnC
x y z
v
wvuC
TwvuP
wvuC
wvuCTwvugvsuce
0 0 0 0
000
1
000
100
,,,
,,,
,,,
,,,,,,
ττ
ττ γ
γ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫−−×
∞
=1 0 0 0
2
02
n
t L L
nnnCnCnnnnC
zyx
L
n
x y
vcucetezcycxcFn
LLL
D
dudvdwdwc τ
π
τ
( ) ( ) ( ) ( )
( )
( ) −∫
∂
∂
×
−
zL
Ln dudvdwd
w
wvuC
TwvuP
wvuC
wvuCTwvugws
0
000
1
000
100
,,,
,,,
,,,
,,,,,, τ
ττ
τ γ
γ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫−−
∞
=1 0 0 0 0
2
0
,,,
2
n
t L L L
LnnnnCnCnnnnC
zyx
L
x y z
TwvugwcvcusetezcycxcFn
LLL
D
τ
π
( )
( )
( ) ( ) ( ) ( ) ( )×∑−
∂
∂
×
∞
=1
2
0100000 2,,,
,,,
,,,
n
nCnnn
zyx
L
tezcycxcn
LLL
D
dudvdwd
u
wvuC
TwvuP
wvuC π
τ
ττ
γ
γ
( ) ( ) ( ) ( ) ( )
( )
( ) ×∫ ∫ ∫ ∫
∂
∂
−×
t L L L
LnnnCnC
x y z
vdwd
u
wvuC
TwvuP
wvuC
TwvugwcvseF
0 0 0 0
100000 ,,,
,,,
,,,
,,,
ττ
τ γ
γ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫−−×
∞
=1 0 0 0 0
2
02
n
t L L L
nnnnCnCnnnnC
zyx
L
n
x y z
wsvcucetezcycxcFn
LLL
D
duduc τ
π
τ
( )
( )
( )
( )
τ
ττ
γ
γ
dudvdwd
u
wvuC
TwP
wvuC
TwvugL
∂
∂
×
,,,
,
,,,
,,, 100000
;
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015
52
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫−−=
∞
=1 0 0 0 0
2
0
101 ,,,
2
,,,
n
t L L L
LnnnCnCnnnnC
zyx
L
x y z
TwvugvcusetezcycxcFn
LLL
D
tzyxC τ
π
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫−−
∂
∂
×
∞
=1 0 0
2
0000 2,,,
n
t L
nnCnCnnnnC
zyx
L
n
x
ucetezcycxcF
LLL
D
dudvdwd
u
wvuC
wc τ
π
τ
τ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑−∫ ∫ ∫
∂
∂
×
∞
=1
2
0
0 0 0
000 2,,,
,,,
n
nn
zyx
L
L L L
Lnnn ycxcn
LLL
D
dudvdwd
v
wvuC
Twvugwcwcvsn
y z z π
τ
τ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) −∫ ∫ ∫ ∫
∂
∂
−×
t L L L
LnnnnCnCnnC
x y z
dudvdwd
w
wvuC
TwvugwsvcucetezcF
0 0 0 0
000 ,,,
,,, τ
τ
τ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]×∑ ∫ ∫ ∫ ∫ +−Ω−
∞
=1 0 0 0 0
2
0
,,,1
2
n
t L L L
LSLSnnnCnCnnnnC
zyx
L
x y z
TwvugvcusetezcycxcFn
LLL
D
ετ
π
( ) ( )
( )
( ) ( ) −
∇
∫





+
∇
× τ
τµ
τ
τ
ξ
τµ
γ
γ
dudvdwd
Tk
wvu
WdWvuC
TwvuP
wvuC
Tk
wvu S
L
S
S
z ,,,
,,,
,,,
,,,
1
,,,
0
100
000
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]∑ ∫ ∫ ∫ ∫ ×+−Ω−
∞
=1 0 0 0 0
2
0
,,,1
2
n
t L L L
LSLSnnnCnCnnnnC
zyx
L
x y z
TwvugvcusetezcycxcFn
LLL
D
ετ
π
( ) ( ) ( )
( )
( ) ( ) −∫
∇






+×
−
ττ
τµτ
τξ γ
γ
dudvdwdWdWvuC
Tk
wvu
TwvuP
wvuC
wvuCwc
zL
S
Sn
0
000
1
000
100 ,,,
,,,
,,,
,,,
,,,1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]×∑ ∫ ∫ ∫ ∫ +−Ω−
∞
=1 0 0 0 0
2
0
,,,1
2
n
t L L L
LSLSnnnCnCnnnnC
zyx
L
x y z
TwvugvsucetezcycxcFn
LLL
D
ετ
π
( )
( )
( )
( )
( )
( ) ττ
τ
τξ
τµ
γ
γ
dudvdwdWdWvuC
TwvuP
wvuC
wvuC
Tk
wvu
wc
zL
S
S
n ∫





+
∇
×
−
0
000
1
000
100 ,,,
,,,
,,,
,,,1
,,,
;
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )
×∑ ∫ ∫ ∫ ∫−−=
∞
=1 0 0 0 0
000
2
0
011
,,,
,,,2
,,,
n
t L L L
nnnCnCnnnnC
zyx
L
x y z
TwvuP
wvuC
vcusetezcycxcFn
LLL
D
tzyxC γ
γ
τ
τ
π
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫−−
∂
∂
×
∞
=1 0 0
2
0001 2,,,
n
t L
nnCnCnnnnC
zyx
L
n
x
ucetezcycxcFn
LLL
D
dudvdwd
u
wvuC
wc τ
π
τ
τ
( ) ( ) ( ) ( )
( )
( ) ( ) ( ) ×∑−∫ ∫ ∫
∂
∂
×
∞
=1
2
0
0 0 0
001000 2,,,
,,,
,,,
n
nnnC
zyx
L
L L L
nnn ycxcFn
LLL
D
dudvdwd
v
wvuC
TwvuP
wvuC
wcwcvs
y z z π
τ
ττ
γ
γ
( ) ( ) ( ) ( ) ( ) ( ) ( )
( )
( ) ×−∫ ∫ ∫ ∫
∂
∂
−×
zyx
L
t L L L
nnnnCnCn
LLL
D
dudvdwd
w
wvuC
TwvuP
wvuC
wsvcucetezc
x y z
2
0
0 0 0 0
001000 2,,,
,,,
,,, π
τ
ττ
τ γ
γ
( ) ( ) ( ) ( ) ( ) ( )
( )
( ) ×∑ ∫ ∫ ∫ ∫
∂
∂
−×
∞
=
−
1 0 0 0 0
000
1
000
001
,,,
,,,
,,,
,,,
n
t L L L
nnnnCnC
x y z
dudvdwd
u
wvuC
TwvuP
wvuC
wvuCwcvcuseF τ
ττ
ττ γ
γ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫−−×
∞
=1 0 0 0 0
0012
0
,,,
2
n
t L L L
nnnCnCnnn
zyx
L
nCnnn
x y z
wvuCvsucetezcycxc
LLL
D
tezcycxcn ττ
π
( ) ( )
( )
( ) ( ) ( ) ( ) ( )×∑−
∂
∂
×
∞
=
−
1
2
0000
1
000 2,,,
,,,
,,,
n
nCnnn
zyx
L
nnC tezcycxcn
LLL
D
dudvdwd
v
wvuC
TwvuP
wvuC
wcFn
π
τ
ττ
γ
γ
( ) ( ) ( ) ( ) ( ) ( )
( )
( ) −∫ ∫ ∫ ∫
∂
∂
−×
−t L L L
nnnnCnC
x y z
dudvdwd
w
wvuC
TwvuP
wvuC
wvuCwsvcuceF
0 0 0 0
000
1
000
001
,,,
,,,
,,,
,,, τ
ττ
ττ γ
γ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]×∑ ∫ ∫ ∫ ∫ +−Ω−
∞
=1 0 0 0 0
2
0
,,,1
2
n
t L L L
LSLSnnnnCnCnnnnC
zyx
L
x y z
TwvugwcvcusetezcycxcFn
LLL
D
ετ
π
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015
53
( )
( )
( ) ( ) ×∑Ω−∫
∇






+×
∞
=1
2
0
0
010
000 2
,,,
,,,
,,,
,,,
1
n
nC
zyx
L
L
S
S F
LLL
D
dudvdwdWdWvuC
Tk
wvu
TwvuP
wvuC z π
ττ
τµτ
ξ γ
γ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( )
( )
×∫ ∫ ∫ ∫ 





++−×
t L L L
SLSLSnnnCnCnnn
x y z
TwvuP
wvuC
Twvugvsucetezcycxcn
0 0 0 0
000
,,,
,,,
1,,,1 γ
γ
τ
ξετ
( ) ( ) ( ) ( ) ( ) ( )∑ ×Ω−∫
∇
×
∞
=1
2
0
0
010
2
,,,
,,,
n
nnnnC
zyx
L
L
S
n zcycxcF
LLL
D
dudvdwdWdWvuC
Tk
wvu
wc
z π
ττ
τµ
( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )
( )
×∫ ∫ ∫ ∫ 





++−×
−t L L L
SLSLSnnnnCnC
x y z
TwvuP
wvuC
wvuCTwgwcvcuseten
0 0 0 0
1
000
010
,,,
,,,
,,,1,1 γ
γ
τ
τξετ
( ) ( ) ( ) ( ) ( ) ( ) ×∑Ω−∫
∇
×
∞
=1
2
0
0
000
2
,,,
,,,
n
nCnnn
zyx
L
L
S
tezcycxcn
LLL
D
dudvdwdWdWvuC
Tk
wvu z π
ττ
τµ
( ) ( ) ( ) ( ) ( )[ ] ( ) ×∫ ∫ ∫ ∫ ∫+−×
t L L L L
LSLSnnnnCnC
x y z z
WdWvuCTwvugwcvsuceF
0 0 0 0 0
000 ,,,,,,1 τετ
( )
( )
( )
( )
τ
τµτ
τξ γ
γ
dudvdwd
Tk
wvu
TwP
wvuC
wvuC S
S
,,,
,
,,,
,,,1
1
000
010
∇






+×
−
.
Author
Pankratov Evgeny Leonidovich was born at 1977. From 1985 to 1995 he was educated in a secondary
school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University:
from 1995 to 1999 it was bachelor course in Radiophysics, from 1999 to 2001 it was master course in Ra-
diophysics with specialization in Statistical Radiophysics, from 2001 to 2004 it was PhD course in Radio-
physics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of Micro-
structures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny Novgo-
rod State University of Architecture and Civil Engineering. Now E.L. Pankratov is in his Full Doctor
course in Radiophysical Department of Nizhny Novgorod State University. He has 96 published papers in
area of his researches.
Bulaeva Elena Alexeevna was born at 1991. From 1997 to 2007 she was educated in secondary school of
village Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school
“Center for gifted children”. From 2009 she is a student of Nizhny Novgorod State University of Architec-
ture and Civil Engineering (spatiality “Assessment and management of real estate”). At the same time she
is a student of courses “Translator in the field of professional communication” and “Design (interior art)” in
the University. E.A. Bulaeva was a contributor of grant of President of Russia (grant № MK-548.2010.2).
She has 29 published papers in area of her researches.

Weitere ähnliche Inhalte

Was ist angesagt?

ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORSON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORSijcsitcejournal
 
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flopOn Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flopBRNSS Publication Hub
 
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...ijcsitcejournal
 
Flexural analysis of thick beams using single
Flexural analysis of thick beams using singleFlexural analysis of thick beams using single
Flexural analysis of thick beams using singleiaemedu
 
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...ijoejournal
 
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...BRNSS Publication Hub
 
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...BRNSS Publication Hub
 
Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...ijfcstjournal
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...ijrap
 
Computational model to design circular runner
Computational model to design circular runnerComputational model to design circular runner
Computational model to design circular runnereSAT Publishing House
 
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...BRNSS Publication Hub
 
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...antjjournal
 
The numerical solution of helmholtz equation via multivariate padé approximation
The numerical solution of helmholtz equation via multivariate padé approximationThe numerical solution of helmholtz equation via multivariate padé approximation
The numerical solution of helmholtz equation via multivariate padé approximationeSAT Journals
 
Free vibration analysis of laminated composite beams using fem
Free vibration analysis of laminated composite beams using femFree vibration analysis of laminated composite beams using fem
Free vibration analysis of laminated composite beams using femOsama Mohammed Elmardi Suleiman
 
Free vibration analysis of composite plates with uncertain properties
Free vibration analysis of composite plates  with uncertain propertiesFree vibration analysis of composite plates  with uncertain properties
Free vibration analysis of composite plates with uncertain propertiesUniversity of Glasgow
 
Using Porosity of Epitaxial Layer to Decrease Quantity of Radiation Defects G...
Using Porosity of Epitaxial Layer to Decrease Quantity of Radiation Defects G...Using Porosity of Epitaxial Layer to Decrease Quantity of Radiation Defects G...
Using Porosity of Epitaxial Layer to Decrease Quantity of Radiation Defects G...msejjournal
 

Was ist angesagt? (17)

ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORSON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
 
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flopOn Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
 
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
 
Flexural analysis of thick beams using single
Flexural analysis of thick beams using singleFlexural analysis of thick beams using single
Flexural analysis of thick beams using single
 
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
 
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
 
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
 
Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
 
Computational model to design circular runner
Computational model to design circular runnerComputational model to design circular runner
Computational model to design circular runner
 
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
 
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
ON APPROACH TO INCREASE DENSITY OF FIELD- EFFECT TRANSISTORS IN AN INVERTER C...
 
The numerical solution of helmholtz equation via multivariate padé approximation
The numerical solution of helmholtz equation via multivariate padé approximationThe numerical solution of helmholtz equation via multivariate padé approximation
The numerical solution of helmholtz equation via multivariate padé approximation
 
Free vibration analysis of laminated composite beams using fem
Free vibration analysis of laminated composite beams using femFree vibration analysis of laminated composite beams using fem
Free vibration analysis of laminated composite beams using fem
 
Free vibration analysis of composite plates with uncertain properties
Free vibration analysis of composite plates  with uncertain propertiesFree vibration analysis of composite plates  with uncertain properties
Free vibration analysis of composite plates with uncertain properties
 
H - FUNCTION AND GENERAL CLASS OF POLYNOMIAL AND HEAT CONDUCTION IN A ROD.
H - FUNCTION AND GENERAL CLASS OF POLYNOMIAL AND HEAT CONDUCTION IN A ROD. H - FUNCTION AND GENERAL CLASS OF POLYNOMIAL AND HEAT CONDUCTION IN A ROD.
H - FUNCTION AND GENERAL CLASS OF POLYNOMIAL AND HEAT CONDUCTION IN A ROD.
 
Using Porosity of Epitaxial Layer to Decrease Quantity of Radiation Defects G...
Using Porosity of Epitaxial Layer to Decrease Quantity of Radiation Defects G...Using Porosity of Epitaxial Layer to Decrease Quantity of Radiation Defects G...
Using Porosity of Epitaxial Layer to Decrease Quantity of Radiation Defects G...
 

Ähnlich wie MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS TO DECREASE LENGTH OF CHANNEL

Modeling of manufacturing of a field effect transistor to determine condition...
Modeling of manufacturing of a field effect transistor to determine condition...Modeling of manufacturing of a field effect transistor to determine condition...
Modeling of manufacturing of a field effect transistor to determine condition...ijcsa
 
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...BRNSSPublicationHubI
 
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...ijfcstjournal
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...ijrap
 
On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a...
On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a...On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a...
On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a...BRNSS Publication Hub
 
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...BRNSSPublicationHubI
 
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...BRNSS Publication Hub
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...msejjournal
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...msejjournal
 
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...ijrap
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...ijrap
 
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...BRNSSPublicationHubI
 
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...ijrap
 

Ähnlich wie MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS TO DECREASE LENGTH OF CHANNEL (20)

Modeling of manufacturing of a field effect transistor to determine condition...
Modeling of manufacturing of a field effect transistor to determine condition...Modeling of manufacturing of a field effect transistor to determine condition...
Modeling of manufacturing of a field effect transistor to determine condition...
 
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
 
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
 
On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a...
On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a...On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a...
On Optimization of Manufacturing of a Two-level Current-mode Logic Gates in a...
 
4_AJMS_223_19_RA.pdf
4_AJMS_223_19_RA.pdf4_AJMS_223_19_RA.pdf
4_AJMS_223_19_RA.pdf
 
02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf
 
02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf
 
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
 
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
 
3_AJMS_222_19.pdf
3_AJMS_222_19.pdf3_AJMS_222_19.pdf
3_AJMS_222_19.pdf
 
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
 
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
On increasing of the Density of Elements of Field-effect Heterotransistors Fr...
 
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
 
06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf
 

Mehr von antjjournal

ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...antjjournal
 
A MODEL OF MANUFACTURING OF A MOSFETFILTER WITH ACCOUNT MISMATCH-INDUCED STRE...
A MODEL OF MANUFACTURING OF A MOSFETFILTER WITH ACCOUNT MISMATCH-INDUCED STRE...A MODEL OF MANUFACTURING OF A MOSFETFILTER WITH ACCOUNT MISMATCH-INDUCED STRE...
A MODEL OF MANUFACTURING OF A MOSFETFILTER WITH ACCOUNT MISMATCH-INDUCED STRE...antjjournal
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...antjjournal
 
Performance Enhancement of Single Slope Solar Still Using Nano-Particles Mixe...
Performance Enhancement of Single Slope Solar Still Using Nano-Particles Mixe...Performance Enhancement of Single Slope Solar Still Using Nano-Particles Mixe...
Performance Enhancement of Single Slope Solar Still Using Nano-Particles Mixe...antjjournal
 
Synthesis, Evaluation, Modeling and Simulation of Nano-Pore NAA Zeolite Membr...
Synthesis, Evaluation, Modeling and Simulation of Nano-Pore NAA Zeolite Membr...Synthesis, Evaluation, Modeling and Simulation of Nano-Pore NAA Zeolite Membr...
Synthesis, Evaluation, Modeling and Simulation of Nano-Pore NAA Zeolite Membr...antjjournal
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...antjjournal
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...antjjournal
 
REVIEW OF NANO TECHNOLOGY DEVELOPMENT IN TEXTILE INDUSTRY AND THE ROLE OF R &...
REVIEW OF NANO TECHNOLOGY DEVELOPMENT IN TEXTILE INDUSTRY AND THE ROLE OF R &...REVIEW OF NANO TECHNOLOGY DEVELOPMENT IN TEXTILE INDUSTRY AND THE ROLE OF R &...
REVIEW OF NANO TECHNOLOGY DEVELOPMENT IN TEXTILE INDUSTRY AND THE ROLE OF R &...antjjournal
 
REVIEW OF NANO TECHNOLOGY DEVELOPMENT IN TEXTILE INDUSTRY AND THE ROLE OF R &...
REVIEW OF NANO TECHNOLOGY DEVELOPMENT IN TEXTILE INDUSTRY AND THE ROLE OF R &...REVIEW OF NANO TECHNOLOGY DEVELOPMENT IN TEXTILE INDUSTRY AND THE ROLE OF R &...
REVIEW OF NANO TECHNOLOGY DEVELOPMENT IN TEXTILE INDUSTRY AND THE ROLE OF R &...antjjournal
 
A NOVEL PRECURSOR IN PREPARATION AND CHARACTERIZATION OF NICKEL OXIDE (NIO) A...
A NOVEL PRECURSOR IN PREPARATION AND CHARACTERIZATION OF NICKEL OXIDE (NIO) A...A NOVEL PRECURSOR IN PREPARATION AND CHARACTERIZATION OF NICKEL OXIDE (NIO) A...
A NOVEL PRECURSOR IN PREPARATION AND CHARACTERIZATION OF NICKEL OXIDE (NIO) A...antjjournal
 
WORK FUNCTION ESTIMATION OF BISMUTH DOPED ZNO THIN FILM
WORK FUNCTION ESTIMATION OF BISMUTH DOPED ZNO THIN FILMWORK FUNCTION ESTIMATION OF BISMUTH DOPED ZNO THIN FILM
WORK FUNCTION ESTIMATION OF BISMUTH DOPED ZNO THIN FILMantjjournal
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...antjjournal
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...antjjournal
 
SYNTHESIS, EVALUATION, MODELING AND SIMULATION OF NANO-PORE NAA ZEOLITE MEMBR...
SYNTHESIS, EVALUATION, MODELING AND SIMULATION OF NANO-PORE NAA ZEOLITE MEMBR...SYNTHESIS, EVALUATION, MODELING AND SIMULATION OF NANO-PORE NAA ZEOLITE MEMBR...
SYNTHESIS, EVALUATION, MODELING AND SIMULATION OF NANO-PORE NAA ZEOLITE MEMBR...antjjournal
 
Advanced Nanoscience and Technology: An International Journal (ANTJ)
Advanced Nanoscience and Technology: An International Journal (ANTJ) Advanced Nanoscience and Technology: An International Journal (ANTJ)
Advanced Nanoscience and Technology: An International Journal (ANTJ) antjjournal
 
Advanced Nanoscience and Technology: An International Journal (ANTJ)
 Advanced Nanoscience and Technology: An International Journal (ANTJ)  Advanced Nanoscience and Technology: An International Journal (ANTJ)
Advanced Nanoscience and Technology: An International Journal (ANTJ) antjjournal
 
Advanced Nanoscience and Technology: An International Journal (ANTJ)
Advanced Nanoscience and Technology: An International Journal (ANTJ) Advanced Nanoscience and Technology: An International Journal (ANTJ)
Advanced Nanoscience and Technology: An International Journal (ANTJ) antjjournal
 
Micromachining of poly (methyl
Micromachining of poly (methylMicromachining of poly (methyl
Micromachining of poly (methylantjjournal
 
ENHANCED ACTIVITY OF ANTIBIOTICS BY LIPOSOMAL DRUG DELIVERY
ENHANCED ACTIVITY OF ANTIBIOTICS BY LIPOSOMAL DRUG DELIVERYENHANCED ACTIVITY OF ANTIBIOTICS BY LIPOSOMAL DRUG DELIVERY
ENHANCED ACTIVITY OF ANTIBIOTICS BY LIPOSOMAL DRUG DELIVERYantjjournal
 
PERFORMANCE ENHANCEMENT OF SINGLE SLOPE SOLAR STILL USING NANOPARTICLES MIXED...
PERFORMANCE ENHANCEMENT OF SINGLE SLOPE SOLAR STILL USING NANOPARTICLES MIXED...PERFORMANCE ENHANCEMENT OF SINGLE SLOPE SOLAR STILL USING NANOPARTICLES MIXED...
PERFORMANCE ENHANCEMENT OF SINGLE SLOPE SOLAR STILL USING NANOPARTICLES MIXED...antjjournal
 

Mehr von antjjournal (20)

ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
 
A MODEL OF MANUFACTURING OF A MOSFETFILTER WITH ACCOUNT MISMATCH-INDUCED STRE...
A MODEL OF MANUFACTURING OF A MOSFETFILTER WITH ACCOUNT MISMATCH-INDUCED STRE...A MODEL OF MANUFACTURING OF A MOSFETFILTER WITH ACCOUNT MISMATCH-INDUCED STRE...
A MODEL OF MANUFACTURING OF A MOSFETFILTER WITH ACCOUNT MISMATCH-INDUCED STRE...
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
 
Performance Enhancement of Single Slope Solar Still Using Nano-Particles Mixe...
Performance Enhancement of Single Slope Solar Still Using Nano-Particles Mixe...Performance Enhancement of Single Slope Solar Still Using Nano-Particles Mixe...
Performance Enhancement of Single Slope Solar Still Using Nano-Particles Mixe...
 
Synthesis, Evaluation, Modeling and Simulation of Nano-Pore NAA Zeolite Membr...
Synthesis, Evaluation, Modeling and Simulation of Nano-Pore NAA Zeolite Membr...Synthesis, Evaluation, Modeling and Simulation of Nano-Pore NAA Zeolite Membr...
Synthesis, Evaluation, Modeling and Simulation of Nano-Pore NAA Zeolite Membr...
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
 
REVIEW OF NANO TECHNOLOGY DEVELOPMENT IN TEXTILE INDUSTRY AND THE ROLE OF R &...
REVIEW OF NANO TECHNOLOGY DEVELOPMENT IN TEXTILE INDUSTRY AND THE ROLE OF R &...REVIEW OF NANO TECHNOLOGY DEVELOPMENT IN TEXTILE INDUSTRY AND THE ROLE OF R &...
REVIEW OF NANO TECHNOLOGY DEVELOPMENT IN TEXTILE INDUSTRY AND THE ROLE OF R &...
 
REVIEW OF NANO TECHNOLOGY DEVELOPMENT IN TEXTILE INDUSTRY AND THE ROLE OF R &...
REVIEW OF NANO TECHNOLOGY DEVELOPMENT IN TEXTILE INDUSTRY AND THE ROLE OF R &...REVIEW OF NANO TECHNOLOGY DEVELOPMENT IN TEXTILE INDUSTRY AND THE ROLE OF R &...
REVIEW OF NANO TECHNOLOGY DEVELOPMENT IN TEXTILE INDUSTRY AND THE ROLE OF R &...
 
A NOVEL PRECURSOR IN PREPARATION AND CHARACTERIZATION OF NICKEL OXIDE (NIO) A...
A NOVEL PRECURSOR IN PREPARATION AND CHARACTERIZATION OF NICKEL OXIDE (NIO) A...A NOVEL PRECURSOR IN PREPARATION AND CHARACTERIZATION OF NICKEL OXIDE (NIO) A...
A NOVEL PRECURSOR IN PREPARATION AND CHARACTERIZATION OF NICKEL OXIDE (NIO) A...
 
WORK FUNCTION ESTIMATION OF BISMUTH DOPED ZNO THIN FILM
WORK FUNCTION ESTIMATION OF BISMUTH DOPED ZNO THIN FILMWORK FUNCTION ESTIMATION OF BISMUTH DOPED ZNO THIN FILM
WORK FUNCTION ESTIMATION OF BISMUTH DOPED ZNO THIN FILM
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
 
SYNTHESIS, EVALUATION, MODELING AND SIMULATION OF NANO-PORE NAA ZEOLITE MEMBR...
SYNTHESIS, EVALUATION, MODELING AND SIMULATION OF NANO-PORE NAA ZEOLITE MEMBR...SYNTHESIS, EVALUATION, MODELING AND SIMULATION OF NANO-PORE NAA ZEOLITE MEMBR...
SYNTHESIS, EVALUATION, MODELING AND SIMULATION OF NANO-PORE NAA ZEOLITE MEMBR...
 
Advanced Nanoscience and Technology: An International Journal (ANTJ)
Advanced Nanoscience and Technology: An International Journal (ANTJ) Advanced Nanoscience and Technology: An International Journal (ANTJ)
Advanced Nanoscience and Technology: An International Journal (ANTJ)
 
Advanced Nanoscience and Technology: An International Journal (ANTJ)
 Advanced Nanoscience and Technology: An International Journal (ANTJ)  Advanced Nanoscience and Technology: An International Journal (ANTJ)
Advanced Nanoscience and Technology: An International Journal (ANTJ)
 
Advanced Nanoscience and Technology: An International Journal (ANTJ)
Advanced Nanoscience and Technology: An International Journal (ANTJ) Advanced Nanoscience and Technology: An International Journal (ANTJ)
Advanced Nanoscience and Technology: An International Journal (ANTJ)
 
Micromachining of poly (methyl
Micromachining of poly (methylMicromachining of poly (methyl
Micromachining of poly (methyl
 
ENHANCED ACTIVITY OF ANTIBIOTICS BY LIPOSOMAL DRUG DELIVERY
ENHANCED ACTIVITY OF ANTIBIOTICS BY LIPOSOMAL DRUG DELIVERYENHANCED ACTIVITY OF ANTIBIOTICS BY LIPOSOMAL DRUG DELIVERY
ENHANCED ACTIVITY OF ANTIBIOTICS BY LIPOSOMAL DRUG DELIVERY
 
PERFORMANCE ENHANCEMENT OF SINGLE SLOPE SOLAR STILL USING NANOPARTICLES MIXED...
PERFORMANCE ENHANCEMENT OF SINGLE SLOPE SOLAR STILL USING NANOPARTICLES MIXED...PERFORMANCE ENHANCEMENT OF SINGLE SLOPE SOLAR STILL USING NANOPARTICLES MIXED...
PERFORMANCE ENHANCEMENT OF SINGLE SLOPE SOLAR STILL USING NANOPARTICLES MIXED...
 

Kürzlich hochgeladen

Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxfenichawla
 
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsRussian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college projectTonystark477637
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...Call Girls in Nagpur High Profile
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesPrabhanshu Chaturvedi
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 

Kürzlich hochgeladen (20)

Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsRussian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and Properties
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 

MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS TO DECREASE LENGTH OF CHANNEL

  • 1. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015 31 MODELING OF MANUFACTURING OF A FIELD- EFFECT TRANSISTOR TO DETERMINE CONDITIONS TO DECREASE LENGTH OF CHANNEL E.L. Pankratov1 , E.A. Bulaeva2 1 Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950, Russia 2 Nizhny Novgorod State University of Architecture and Civil Engineering, 65 Il'insky street, Nizhny Novgorod, 603950, Russia ABSTRACT In this paper we introduce an approach to model technological process of manufacture of a field-effect heterotransistor. The modeling gives us possibility to optimize the technological process to decrease length of channel by using mechanical stress. As accompanying results of the decreasing one can find decreasing of thickness of the heterotransistors and increasing of their density, which were comprised in integrated circuits. KEYWORDS Modelling of manufacture of a field-effect heterotransistor, Accounting mechanical stress; Optimization the technological process, Decreasing length of channel 1. INTRODUCTION One of intensively solved problems of the solid-state electronics is decreasing of elements of in- tegrated circuits and their discrete analogs [1-7]. To solve this problem attracted an interest wide- ly used laser and microwave types of annealing [8-14]. These types of annealing leads to genera- tion of inhomogeneous distribution of temperature. In this situation one can obtain increasing of sharpness of p-n-junctions with increasing of homogeneity of dopant distribution in enriched area [8-14]. The first effects give us possibility to decrease switching time of p-n-junction and value of local overheats during operating of the device or to manufacture more shallow p-n-junction with fixed maximal value of local overheat. An alternative approach to laser and microwave types of annealing one can use native inhomogeneity of heterostructure and optimization of annealing of dopant and/or radiation defects to manufacture diffusive –junction and implanted-junction rectifi- ers [12-18]. It is known, that radiation processing of materials is also leads to modification of dis- tribution of dopant concentration [19]. The radiation processing could be also used to increase of sharpness of p-n-junctions with increasing of homogeneity of dopant distribution in enriched area [20, 21]. Distribution of dopant concentration is also depends on mechanical stress in heterostruc- ture [15]. In this paper we consider a field-effect heterotransistor. Manufacturing of the transistor based on combination of main ideas of Refs. [5] and [12-18]. Framework the combination we consider a
  • 2. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015 32 heterostructure with a substrate and an epitaxial layer with several sections. Some dopants have been infused or implanted into the section to produce required types of conductivity. Farther we consider optimal annealing of dopant and/or radiation defects. Manufacturing of the transistor has been considered in details in Ref. [17]. Main aim of the present paper is analysis of influence of mechanical stress on length of channel of the field-effect transistor. Fig. 1. Heterostructure with substrate and epitaxial layer with two or three sections a1a2-a1Lx-a2-a1 c1 c1 c2 oxide source drain gate c3 Fig. 2. Heterostructure with substrate and epitaxial layer with two or three sections. Sectional view
  • 3. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015 33 2. METHOD OF SOLUTION To solve our aim we determine spatio-temporal distribution of concentration of dopant in the con- sidered heterostructure and make the analysis. We determine spatio-temporal distribution of con- centration of dopant with account mechanical stress by solving the second Fick’s law [1-4,22,23] ( ) ( ) ( ) ( ) +      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ = ∂ ∂ z tzyxC D zy tzyxC D yx tzyxC D xt tzyxC ,,,,,,,,,,,, (1) ( ) ( ) ( ) ( )       ∫∇ ∂ ∂ Ω+      ∫∇ ∂ ∂ Ω+ zz L S S L S S WdtWyxCtzyx Tk D y WdtWyxCtzyx Tk D x 00 ,,,,,,,,,,,, µµ with boundary and initial conditions ( ) 0 ,,, 0 = ∂ ∂ =x x tzyxC , ( ) 0 ,,, = ∂ ∂ = xLx x tzyxC , ( ) 0 ,,, 0 = ∂ ∂ =y y tzyxC , ( ) 0 ,,, = ∂ ∂ = yLx y tzyxC , ( ) 0 ,,, 0 = ∂ ∂ =z z tzyxC , ( ) 0 ,,, = ∂ ∂ = zLx z tzyxC , C(x,y,z,0)=fC(x,y,z). Here C(x,y,z,t) is the spatio-temporal distribution of concentration of dopant; Ω is the atomic vo- lume; ∇S is the operators of surficial gradient; ( )∫ zL zdtzyxC 0 ,,, is the surficial concentration of dopant on interface between layers of heterostructure; µ(x,y,z,t) is the chemical potential; D and DS are coefficients of volumetric and surficial (due to mechanical stress) of diffusion. Values of the diffusion coefficients depend on properties of materials of heterostructure, speed of heating and cooling of heterostructure, spatio-temporal distribution of concentration of dopant. Concen- traional dependence of dopant diffusion coefficients have been approximated by the following relations [24] ( ) ( ) ( )      += TzyxP tzyxC TzyxDD L ,,, ,,, 1,,, γ γ ξ , ( ) ( ) ( )      += TzyxP tzyxC TzyxDD SLSS ,,, ,,, 1,,, γ γ ξ . (2) Here DL (x,y,z,T) and DLS (x,y,z,T) are spatial (due to inhomogeneity of heterostructure) and tem- perature (due to Arrhenius law) dependences of dopant diffusion coefficients; T is the temperature of annealing; P (x,y,z,T) is the limit of solubility of dopant; parameter γ could be integer in the following interval γ ∈[1,3] [24]; V (x,y,z,t) is the spatio-temporal distribution of concentration of radiation of vacancies; V* is the equilibrium distribution of vacancies. Concentrational depen- dence of dopant diffusion coefficients has been discussed in details in [24]. Chemical potential could be determine by the following relation [22] µ=E(z)Ωσij[uij(x,y,z,t)+uji(x,y,z,t)]/2, (3) where E is the Young modulus; σij is the stress tensor;         ∂ ∂ + ∂ ∂ = i j j i ij x u x u u 2 1 is the deformation tensor; ui, uj are the components ux(x,y,z,t), uy(x,y,z,t) and uz(x,y,z,t) of the displacement vector ( )tzyxu ,,, r ; xi, xj are the coordinates x, y, z. Relation (3) could be transform to the following form
  • 4. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015 34 ( ) ( ) ( ) ( ) ( )     ×         ∂ ∂ + ∂ ∂         ∂ ∂ + ∂ ∂ = i j j i i j j i x tzyxu x tzyxu x tzyxu x tzyxu tzyx ,,,,,, 2 1,,,,,, ,,,µ ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]     −−      − ∂ ∂ − +− Ω × ij k kij ij TtzyxTzzK x tzyxu z z zE δβε σ δσ δε 000 ,,,3 ,,, 212 , where σ is the Poisson coefficient; ε0=(as-aEL)/aEL is the mismatch strain; as, aEL are the lattice spacings for substrate and epitaxial layer, respectively; K is the modulus of uniform compression; β is the coefficient of thermal expansion; Tr is the equilibrium temperature, which coincide (for our case) with room temperature. Components of displacement vector could be obtained by solv- ing of the following equations [23] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )           ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ z tzyx y tzyx x tzyx t tzyxu z z tzyx y tzyx x tzyx t tzyxu z z tzyx y tzyx x tzyx t tzyxu z zzzyzxz yzyyyxy xzxyxxx ,,,,,,,,,,,, ,,,,,,,,,,,, ,,,,,,,,,,,, 2 2 2 2 2 2 σσσ ρ σσσ ρ σσσ ρ where ( ) ( )[ ] ( ) ( ) ( ) ( ) × ∂ ∂ +         ∂ ∂ − ∂ ∂ + ∂ ∂ + = k k ij k kij i j j i ij x tzyxu x tzyxu x tzyxu x tzyxu z zE ,,,,,, 3 ,,,,,, 12 δ δ σ σ ( ) ( ) ( ) ( )[ ]rTtzyxTzKzzK −−× ,,,β , ρ (z) is the density of materials, δij is the Kronecker sym- bol. With account of the relation the last system of equation takes the form ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ( ) + ∂∂ ∂       + −+ ∂ ∂       + += ∂ ∂ yx tzyxu z zE zK x tzyxu z zE zK t tzyxu z yxx ,,, 13 ,,, 16 5,,, 2 2 2 2 2 σσ ρ ( ) ( )[ ] ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ×− ∂∂ ∂       + ++         ∂ ∂ + ∂ ∂ + + zK zx tzyxu z zE zK z tzyxu y tzyxu z zE zzy ,,, 13 ,,,,,, 12 2 2 2 2 2 σσ ( ) ( ) x tzyxT z ∂ ∂ × ,,, β ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) + ∂ ∂ −         ∂∂ ∂ + ∂ ∂ + = ∂ ∂ y tzyxT zKz yx tzyxu x tzyxu z zE t tzyxu z xyy ,,,,,,,,, 12 ,,, 2 2 2 2 2 β σ ρ ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ( ) ( ) + ∂ ∂       + + +               ∂ ∂ + ∂ ∂ +∂ ∂ + 2 2 ,,, 112 5,,,,,, 12 y tzyxu zK z zE y tzyxu z tzyxu z zE z yzy σσ ( ) ( ) ( )[ ] ( ) ( ) ( ) yx tzyxu zK zy tzyxu z zE zK yy ∂∂ ∂ + ∂∂ ∂       + −+ ,,,,,, 16 22 σ (4) ( ) ( ) ( ) ( ) ( ) ( ) ×         ∂∂ ∂ + ∂∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ zy tzyxu zx tzyxu y tzyxu x tzyxu t tzyxu z yxzzz ,,,,,,,,,,,,,,, 22 2 2 2 2 2 2 ρ
  • 5. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015 35 ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) × ∂ ∂ −               ∂ ∂ + ∂ ∂ + ∂ ∂ ∂ ∂ + + × z tzyxT z tzyxu y tzyxu x tzyxu zK zz zE xyx ,,,,,,,,,,,, 12 σ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )               ∂ ∂ − ∂ ∂ − ∂ ∂ − ∂ ∂ +∂ ∂ +× z tzyxu y tzyxu x tzyxu z tzyxu z zE z zzK zyxz ,,,,,,,,,,,, 6 16 1 σ β . Conditions for the displacement vector could be written as ( ) 0 ,,,0 = ∂ ∂ x tzyu r ; ( ) 0 ,,, = ∂ ∂ x tzyLu x r ; ( ) 0 ,,0, = ∂ ∂ y tzxu r ; ( ) 0 ,,, = ∂ ∂ y tzLxu y r ; ( ) 0 ,0,, = ∂ ∂ z tyxu r ; ( ) 0 ,,, = ∂ ∂ z tLyxu z r ; ( ) 00,,, uzyxu rr = ; ( ) 0,,, uzyxu rr =∞ . Farther let us analyze spatio-temporal distribution of temperature during annealing of dopant. We determine spatio-temporal distribution of temperature as solution of the second law of Fourier [25] ( ) ( ) ( ) ( ) ( ) +      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ = ∂ ∂ z tzyxT zy tzyxT yx tzyxT xt tzyxT Tc ,,,,,,,,,,,, λλλ ( )tzyxp ,,,+ (5) with boundary and initial conditions ( ) 0 ,,, 0 = ∂ ∂ =x x tzyxT , ( ) 0 ,,, = ∂ ∂ = xLx x tzyxT , ( ) 0 ,,, 0 = ∂ ∂ =y y tzyxT , ( ) 0 ,,, = ∂ ∂ = yLx y tzyxT , ( ) 0 ,,, 0 = ∂ ∂ =z z tzyxT , ( ) 0 ,,, = ∂ ∂ = zLx z tzyxT , T (x,y,z,0)=fT (x,y,z). Here λ is the heat conduction coefficient. Value of the coefficient depends on materials of hetero- structure and temperature. Temperature dependence of heat conduction coefficient in most inter- est area could be approximated by the following function: λ(x,y,z,T)=λass(x,y,z)[1+µ Td ϕ / Tϕ (x,y,z,t)] (see, for example, [25]). c(T)=cass[1-ϑ exp(-T(x,y,z,t)/Td)] is the heat capacitance; Td is the Debye temperature [25]. The temperature T(x,y,z,t) is approximately equal or larger, than Debye temperature Td for most interesting for us temperature interval. In this situation one can write the following approximate relation: c(T)≈cass. p(x,y,z,t) is the volumetric density of heat, which escapes in the heterostructure. Framework the paper it is attracted an interest microwave annealing of dopant. This approach leads to generation inhomogenous distribution of temperature [12-14,26]. Such distribution of temperature gives us possibility to increase sharpness of p-n- junctions with increasing of homogeneity of dopant distribution in enriched area. In this situation it is practicably to choose frequency of electro-magnetic field. After this choosing thickness of scin-layer should be approximately equal to thickness of epitaxial layer. First of all we calculate spatio-temporal distribution of temperature. We calculate spatio-temporal distribution of temperature by using recently introduce approach [15, 17,18]. Framework the ap- proach we transform approximation of thermal diffusivity α ass(x,y,z) =λass(x,y,z)/cass =α0ass[1+εT gT(x,y,z)]. Farther we determine solution of Eqs. (5) as the following power series ( ) ( )∑ ∑= ∞ = ∞ =0 0 ,,,,,, i j ij ji T tzyxTtzyxT µε . (6)
  • 6. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015 36 Substitution of the series into Eq.(6) gives us possibility to obtain system of equations for the ini- tial-order approximation of temperature T00(x,y,z,t) and corrections for them Tij(x,y,z,t) (i≥1, j≥1). The equations are presented in the Appendix. Substitution of the series (6) in boundary and initial conditions for spatio-temporal distribution of temperature gives us possibility to obtain boundary and initial conditions for the functions Tij(x,y,z,t) (i≥0, j≥0). The conditions are presented in the Appendix. Solutions of the equations for the functions Tij(x,y,z,t) (i≥0, j≥0) have been obtain as the second-order approximation on the parameters ε and µ by standard approaches [28,29] and presented in the Appendix. Recently we obtain, that the second-order approximation is enough good approximation to make qualitative analysis and to obtain some quantitative results (see, for example, [15,17,18]). Analytical results have allowed to identify and to illustrate the main depen- dence. To check our results obtained we used numerical approaches. Farther let us estimate components of the displacement vector. The components could be obtained by using the same approach as for calculation distribution of temperature. However, relations for components could by calculated in shorter form by using method of averaging of function correc- tions [12-14,16,27]. It is practicably to transform differential equations of system (4) to integro- differential form. The integral equations are presented in the Appendix. We determine the first- order approximations of components of the displacement vector by replacement the required functions uβ(x,y,z,t) on their average values αuβ1. The average values αuβ1 have been calculated by the following relations αus1=Ms1/4LΘ, (7) where ( )∫ ∫ ∫ ∫= Θ − −0 0 ,,, x x y y zL L L L L isis tdxdydzdtzyxuM . The replacement leads to the following results ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )    −∫ ∫ ∂ ∂ −−∫ ∫ ∂ ∂ = ∞ t zz x dwd x wyxT wwKtdwd x wyxT wwKttzyxu 0 00 0 1 ,,,,,, ,,, τ τ βττ τ α ( )] 101 ,,, uxxux twyx αφα +Φ− , ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )    −∫ ∫ ∂ ∂ −−∫ ∫ ∂ ∂ = ∞ t zz y dwd y wyxT wwKtdwd y wyxT wwKttzyxu 0 00 0 1 ,,,,,, ,,, τ τ βττ τ α ( )] 101 ,,, uyyuy twyx αφα +Φ− , ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )    −∫ ∫ ∂ ∂ −∫ ∫ ∂ ∂ = ∞ t zz z dwd w wyxT wwKtdwd w wyxT wwKttzyxu 0 00 0 1 ,,,,,, ,,, τ τ βττ τ α ( )] 101 ,,, zzuz twyx αφα +Φ− . Substitution of the above relations into relations (7) gives us possibility to obtain values of the parameters αuβ1. Appropriate relations could be written as ( ) ( )[ ] ( ) ( )∫ − ΘΧ−∞Χ Θ= zL z xxz ux zdzzLL L 0 3 20 1 8 ρ α , ( ) ( )[ ] ( ) ( )∫ − ΘΧ−∞Χ Θ= zL z yyz uy zdzzLL L 0 3 20 1 8 ρ α , ( ) ( )[ ] ( ) ( )∫ − ΘΧ−∞ΧΘ = zL z zzz uz zdzzLL L 0 3 20 1 8 ρ α , where ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∫ ∫ ∂ ∂ −      Θ +=ΘΧ Θ − −0 0 ,,, 1 x x y y zL L L L L z i is dxdydzd s zyxT zzKzL t τ τ χ .
  • 7. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015 37 The second-order approximations of components of the displacement vector by replacement of the required functions uβ(x,y,z,t) on the following sums αus2+us1(x,y,z,t), where αus2=(Mus2-Mus1)/ 4L3 Θ. Results of calculations of the second-order approximations us2(x,y,z,t) and their average values αus2 are presented in the Appendix, because the relations are bulky. Spatio-temporal distribution of concentration of dopant we obtain by solving the Eq.(1). To solve the equations we used recently introduce approach [15,17,18] and transform approximations of dopant diffusion coefficients DL (x,y,z,T) and DSL (x,y,z, T) to the following form: DL(x,y,z,T)=D0L[1+ε L gL(x,y,z,T)] and DSL(x,y,z,T)=D0SL[1+ εSLgSL(x,y,z,T)]. We also introduce the following dimensionless parameter: ω = D0SL/ D0L. In this situation the Eq.(1) takes the form ( ) ( )[ ] ( ) ( ) ( ) ( )    × ∂ ∂ ∂ ∂ +       ∂ ∂       ++ ∂ ∂ = ∂ ∂ y tzyxC yx tzyxC TzP tzyxC Tzg x D t tzyxC LLL ,,,,,, , ,,, 1,1 ,,, 0 γ γ ξε ( )[ ] ( ) ( ) ( )[ ] ( ) ( )   ×      ++ ∂ ∂ +          ++× TzyxP tzyxC Tzyxg z DD TzyxP tzyxC Tzg LLLLLL ,,, ,,, 1,,,1 ,,, ,,, 1,1 00 γ γ γ γ ξεξε ( ) ( )[ ] ( ) ( ) ( )    ×∫      ++ ∂ ∂ Ω+    ∂ ∂ × zL SLSLSL WdtWyxC TzP tzyxC Tzg x D z tzyxC 0 0 ,,, , ,,, 1,1 ,,, γ γ ξεω (8) ( ) ( ) ( ) ( ) ( )       ∫ ∇       + ∂ ∂ Ω+   ∇ × zL S SLL S WdtWyxC Tk tzyx TzP tzyxC y DD Tk tzyx 0 00 ,,, ,,, , ,,, 1 ,,, µ ξω µ γ γ . We determine solution of Eq.(1) as the following power series ( ) ( )∑ ∑ ∑= ∞ = ∞ = ∞ =0 0 0 ,,,,,, i j k ijk kji L tzyxCtzyxC ωξε . (9) Substitution of the series into Eq.(8) gives us possibility to obtain systems of equations for initial- order approximation of concentration of dopant C000(x,y,z,t) and corrections for them Cijk(x, y,z,t) (i ≥1, j ≥1, k≥1).The equations are presented in the Appendix. Substitution of the series into ap- propriate boundary and initial conditions gives us possibility to obtain boundary and initial condi- tions for all functions Cijk(x,y,z,t) (i ≥0, j ≥0, k ≥0). Solutions of equations for the functions Cijk(x,y,z,t) (i≥0, j≥0, k≥0) have been calculated by standard approaches [28,29] and presented in the Appendix. Analysis of spatio-temporal distributions of concentrations of dopant and radiation defects has been done analytically by using the second-order approximations framework recently introduced power series. The approximation is enough good approximation to make qualitative analysis and to obtain some quantitative results. All obtained analytical results have been checked by compari- son with results, calculated by numerical simulation. 3. DISCUSSION In this section we analyzed redistribution of dopant under influence of mechanical stress based on relations calculated in previous section. Fig. 3 show spatio-temporal distribution of concentration of dopant in a homogenous sample (curve 1) and in heterostructure with negative and positive value of the mismatch strain ε0 (curve 2 and 3, respectively). The figure shows, that manufactur- ing field-effect heterotransistors gives us possibility to make more compact field-effect transistors in direction, which is parallel to interface between layers of heterostructure. As a consequence of
  • 8. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015 38 the increasing of compactness one can obtain decreasing of length of channel of field- effect tran- sistor and increasing of density of the transistors in integrated circuits. It should be noted, that presents of interface between layers of heterostructure give us possibility to manufacture more thin transistors [17]. x, y C(x,Θ),C(y,Θ) 2 3 1 Fig. 3. Distributions of concentration of dopant in directions, which is perpendicular to interface between layers of heterostructure. Curve 1 is a dopant distribution in a homogenous sample. Curve 2 corresponds to negative value of the mismatch strain. Curve 3 corresponds to positive value of the mismatch strain 4. CONCLUSION In this paper we consider possibility to decrease length of channel of field-effect transistor by us- ing mechanical stress in heterostructure. At the same time with decreasing of the length it could be increased density of transistors in integrated circuits. ACKNOWLEDGEMENTS This work is supported by the contract 11.G34.31.0066 of the Russian Federation Government, Scientific School of Russia SSR-339.2014.2 and educational fellowship for scientific research. REFERENCES [1] I.P. Stepanenko. Basis of Microelectronics (Soviet Radio, Moscow, 1980). [2] A.G. Alexenko, I.I. Shagurin. Microcircuitry (Radio and communication, Moscow, 1990). [3] V.G. Gusev, Yu.M. Gusev. Electronics. (Moscow: Vysshaya shkola, 1991, in Russian). [4] V.I. Lachin, N.S. Savelov. Electronics (Phoenix, Rostov-na-Donu, 2001). [5] A. Kerentsev, V. Lanin. "Constructive-technological features of MOSFET-transistors" Power Elec- tronics. Issue 1. P. 34-38 (2008). [6] A.N. Andronov, N.T. Bagraev, L.E. Klyachkin, S.V. Robozerov. "Ultrashallow p+−n junc-tions in silicon (100): electron-beam diagnostics of sub-surface region" Semiconductors. Vol.32 (2). P. 137- 144 (1998). [7] S.T. Shishiyanu, T.S. Shishiyanu, S.K. Railyan. "Shallow p−n junctions in Si prepared by pulse pho- ton annealing" Semiconductors. Vol.36 (5). P. 611-617 (2002). [8] V.I. Mazhukin, V.V. Nosov, U. Semmler. "Study of heat and thermoelastic fields in semiconductors at pulsed processing" Mathematical modeling. Vol. 12 (2), 75 (2000). [9] K.K. Ong, K.L. Pey, P.S. Lee, A.T.S. Wee, X.C. Wang, Y.F. Chong. "Dopant distribution in the re- crystallization transient at the maximum melt depth induced by laser annealing" Appl. Phys. Lett. Vol. 89 (17), 172111 (2006).
  • 9. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015 39 [10] J. A. Sharp, N. E. B. Cowern, R. P. Webb, K. J. Kirkby, D. Giubertoni, S. Genarro, M. Bersani, M. A. Foad, F. Cristiano, P. F. Fazzini. "Deactivation of ultrashallow boron implants in preamorphized sili- con after nonmelt laser annealing with multiple scans" Appl.Phys. Lett. Vol. 89, 192105 (2006). [11] Yu.V. Bykov, A.G. Yeremeev, N.A. Zharova, I.V. Plotnikov, K.I. Rybakov, M.N. Drozdov, Yu.N. Drozdov, V.D. Skupov. "Diffusion processes in semiconductor structures during microwave anneal- ing" Radiophysics and Quantum Electronics. Vol. 43 (3). P. 836-843 (2003). [12] E.L. Pankratov. "Redistribution of dopant during microwave annealing of a multilayer structure for production p-n-junction" J. Appl. Phys. Vol. 103 (6). P. 064320-064330 (2008). [13] E.L. Pankratov. "Optimization of near-surficial annealing for decreasing of depth of p-n-junction in semiconductor heterostructure" Proc. of SPIE. Vol. 7521, 75211D (2010). [14] E.L. Pankratov. "Decreasing of depth of implanted-junction rectifier in semiconductor heterostructure by optimized laser annealing" J. Comp. Theor. Nanoscience. Vol. 7 (1). P. 289-295 (2010). [15] E.L. Pankratov. "Influence of mechanical stress in semiconductor heterostructure on density of p-n- junctions" Applied Nanoscience. Vol. 2 (1). P. 71-89 (2012). [16] E.L. Pankratov, E.A. Bulaeva. "Application of native inhomogeneities to increase compactness of vertical field-effect transistors" J. Comp. Theor. Nanoscience. Vol. 10 (4). P. 888-893 (2013). [17] E.L. Pankratov, E.A. Bulaeva. "An approach to decrease dimensions of field-effect transistors " Uni- versal Journal of Materials Science. Vol. 1 (1). P.6-11 (2013). [18] E.L. Pankratov, E.A. Bulaeva. "Doping of materials during manufacture p-n-junctions and bipolar transistors. Analytical approaches to model technological approaches and ways of optimization of dis- tributions of dopants" Reviews in Theoretical Science. Vol. 1 (1). P. 58-82 (2013). [19] V.V. Kozlivsky. Modification of semiconductors by proton beams (Nauka, Sant-Peterburg, 2003, in Russian). [20] E.L. Pankratov. "Decreasing of depth of p-n-junction in a semiconductor heterostructure by serial radiation processing and microwave annealing" J. Comp. Theor. Nanoscience. Vol. 9 (1). P. 41-49 (2012). [21] E.L. Pankratov, E.A. Bulaeva. "Increasing of sharpness of diffusion-junction heterorectifier by using radiation processing" Int. J. Nanoscience. Vol. 11 (5). P. 1250028-1--1250028-8 (2012). [22] Y.W. Zhang, A.F. Bower. "Numerical simulations of islands formation in a coherent strained epitaxial thin film system" Journal of the Mechanics and Physics of Solids. Vol. 47 (11). P. 2273-2297 (1999). [23] L.D. Landau, E.M. Lefshits. Theoretical physics. 7 (Theory of elasticity) (Physmatlit, Moscow, 2001, in Russian). [24] Z.Yu. Gotra. Technology of microelectronic devices (Radio and communication, Moscow, 1991). [25] K.V. Shalimova. Physics of semiconductors (Moscow: Energoatomizdat, 1985, in Rus-sian). [26] V.E. Kuz’michev. Laws and formulas of physics. Kiev: Naukova Dumka, 1989 (in Russian). [27] Yu.D. Sokolov. About the definition of dynamic forces in the mine lifting Applied Mechanics. Vol.1 (1). P. 23-35 (1955). [28] A.N. Tikhonov, A.A. Samarskii. The mathematical physics equations (Moscow, Nauka 1972) (in Russian). [29] H.S. Carslaw, J.C. Jaeger. Conduction of heat in solids (Oxford University Press, 1964). APPENDIX Equations for functions Tij(x,y,z,t) (i≥0, j≥0) ( ) ( ) ( ) ( ) ( ) ass ass tzyxp z tzyxT y tzyxT x tzyxT t tzyxT ν α ,,,,,,,,,,,,,,, 2 00 2 2 00 2 2 00 2 0 00 +      ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ ( ) ( ) ( ) ( ) +      ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 0 2 2 0 2 2 0 2 0 0 ,,,,,,,,,,,, z tzyxT y tzyxT x tzyxT t tzyxT iii ass i α ( ) ( ) ( ) ( ) ( ) ( )             ∂ ∂ ∂ ∂ + ∂ ∂ + ∂ ∂ + −−− z tzyxT zg zy tzyxT xg x tzyxT zg i T i T i Tass ,,,,,,,,, 10 2 10 2 2 10 2 0α , i≥1
  • 10. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015 40 ( ) ( ) ( ) ( ) ( ) ×+      ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ tzyxT T z tzyxT y tzyxT x tzyxT t tzyxT dass ass ,,, ,,,,,,,,,,,, 00 0 2 01 2 2 01 2 2 01 2 0 01 ϕ ϕ α α ( ) ( ) ( ) ( ) ( )     +      ∂ ∂ −      ∂ ∂ + ∂ ∂ + ∂ ∂ × 2 00 00 0 2 00 2 2 00 2 2 00 2 ,,, ,,, ,,,,,,,,, x tzyxT tzyxT T z tzyxT y tzyxT x tzyxT dass ϕ ϕ α ( ) ( )           ∂ ∂ +      ∂ ∂ + 2 00 2 00 ,,,,,, z tzyxT y tzyxT ( ) ( ) ( ) ( ) ( ) ×+      ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ tzyxT T z tzyxT y tzyxT x tzyxT t tzyxT dass ass ,,, ,,,,,,,,,,,, 00 0 2 02 2 2 02 2 2 02 2 0 02 ϕ ϕ α α ( ) ( ) ( ) ( ) ( )    × ∂ ∂ −      ∂ ∂ + ∂ ∂ + ∂ ∂ × + x tzyxT tzyxT T z tzyxT y tzyxT x tzyxT dass ,,, ,,, ,,,,,,,,, 00 1 00 0 2 01 2 2 01 2 2 01 2 ϕ ϕ αϕ ( ) ( ) ( ) ( ) ( )    ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ + ∂ ∂ × z tzyxT z tzyxT y tzyxT y tzyxT x tzyxT ,,,,,,,,,,,,,,, 0100010001 ( ) ( ) ( ) ( ) ( ) ( ) ( )    ×+ ∂ ∂ + ∂ ∂ = ∂ ∂ Tzyxg x tzyxT Tzyxg tzyxT tzyxT x tzyxT t tzyxT TTass ,,, ,,, ,,, ,,, ,,,,,,,,, 2 00 2 00 01 2 11 2 0 11 α ( ) ( ) ( ) ( ) ( )     +      ∂ ∂ ∂ ∂ +           ∂ ∂ ∂ ∂ + ∂ ∂ × x tzyxT Tzyxg xz tzyxT Tzyxg zy tzyxT TassT ,,, ,,, ,,, ,,, ,,, 01 0 00 2 00 2 α ( ) ( )[ ] ( ) ( )[ ] ( ) +    ∂ ∂ ++ ∂ ∂ ++ ∂ ∂ + assTT z tzyxT Tzyxg y tzyxT Tzyxg x tzyxT 02 01 2 2 01 2 2 01 2 ,,, ,,,1 ,,, ,,,1 ,,, α ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×      ∂ ∂ + ∂ ∂ + ∂ ∂ + +++ 2 00 2 1 00 10 2 00 2 1 00 10 2 00 2 1 00 10 ,,, ,,, ,,,,,, ,,, ,,,,,, ,,, ,,, z tzyxT tzyxT tzyxT y tzyxT tzyxT tzyxT x tzyxT tzyxT tzyxT ϕϕϕ ( ) ( ) ( ) ( ) ( ) ×+      ∂ ∂ + ∂ ∂ + ∂ ∂ +× tzyxT T z tzyxT y tzyxT x tzyxT tzyxT T T dassdass dass ,,, ,,,,,,,,, ,,, 00 0 2 10 2 2 10 2 2 10 2 00 0 0 ϕ ϕ ϕ ϕ ϕ αα α ( ) ( ) ( ) ( ) ( ) ( ) −               ∂ ∂ ∂ ∂ + ∂ ∂ + ∂ ∂ × z tzyxT Tzyxg zy tzyxT Tzyxg x tzyxT Tzyxg TTT ,,, ,,, ,,, ,,, ,,, ,,, 00 2 10 2 2 10 2 ( ) ( ) ( ) ( ) ( ) ( ) ×      ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ − z tzyxT z tzyxT y tzyxT y tzyxT x tzyxT x tzyxT ,,,,,,,,,,,,,,,,,, 001000100010 ( ) ( ) ( ) ( ) ( ) ( ) ×               ∂ ∂ +      ∂ ∂ +      ∂ ∂ −× ++ 2 00 2 00 2 00 1 00 1 00 0 ,,,,,,,,, ,,, ,,, ,,, z tzyxT y tzyxT x tzyxT tzyxT Tzyxg tzyxT T Tdass ϕϕ ϕ αϕ ϕ ϕα dass T0× . Conditions for the functions Tij(x,y,z,t) (i≥0, j≥0) ( ) 0 ,,, 0 = ∂ ∂ =x ij x tzyxT , ( ) 0 ,,, = ∂ ∂ = xLx ij x tzyxT , ( ) 0 ,,, 0 = ∂ ∂ =y ij y tzyxT , ( ) 0 ,,, = ∂ ∂ = yLx ij y tzyxT , ( ) 0 ,,, 0 = ∂ ∂ =z ij z tzyxT , ( ) 0 ,,, = ∂ ∂ = zLx ij z tzyxT , T00(x,y,z,0)=fT(x,y,z), Tij(x,y,z,0)=0, i≥1, j≥1. Solutions of the equations for the functions Tij(x,y,z,t) (i≥0, j≥0) with account appropriate boun- dary and initial conditions could be written as
  • 11. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015 41 ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫+∫ ∫ ∫= ∞ =1 00 0 0 00 2 ,, 1 ,,, n L nnTnnn zyx L L L T zyx xx y z uctezcycxc LLL udvdwdwvuf LLL tzyxT ( ) ( ) ( ) ( ) ×+∫ ∫ ∫ ∫+∫ ∫× zyx t L L L asszyx L L Tnn LLL dudvdwd wvup LLL udvdwdwvufwcvc x y zy z 2,,,1 ,, 0 0 0 00 0 τ ν τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∑ ∫ ∫ ∫ ∫−× ∞ =1 0 0 0 0 ,,, n t L L L ass nnnnTnTnnn x y z dudvdwd wvup wcvcucetezcycxc τ ν τ τ , where cn(χ)=cos(πnχ/L), ( )                 ++−= 2220 22 111 exp zyx assnT LLL tnte απ ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫−= ∞ =1 0 0 0 0 2 0 0 ,,,2,,, n t L L L TnnnnTnTnnn zyx ass i x y z Twvugwcvcusetezcycxcn LLL tzyxT τ απ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫−+ ∂ ∂ × ∞ = − 1 0 0 0 2 010 2 ,,, n t L L nnnTnTnnn zyx assi x y vsucetezcycxcn LLL dudvdwd u wvuT τ απ τ τ ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑+∫ ∂ ∂ × ∞ = − 1 2 0 0 10 2 ,,, ,,, n nTnnn zyx ass L i nT tezcycxcn LLL dudvdwd v wvuT wcTwvug z απ τ τ ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∫ ∫ ∂ ∂ −× − t L L L i TnnnnT x y z dudvdwd w wvuT Twvugwsvcuce 0 0 0 0 10 ,,, ,,, τ τ τ , i≥1, where sn(χ)=sin(πnχ/L); ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫ ∂ ∂ −= ∞ =1 0 0 0 0 2 00 2 2001 ,,,2 ,,, n t L L L nnnTnTnnn zyx d ass x y z u wvuT vcusetezcycxcn LLL T tzyxT τ τ π α ϕ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫−+× ∞ =1 0 0 0 0 20 00 2 ,,, n t L L L nnnnTnTnnn zyx d assn x y z wcvsucetezcycxcn LLL T wvuT dudvdwd wc τ π α τ τ ϕ ϕ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−+ ∂ ∂ × ∞ =1 0 0 0 20 00 2 00 2 2 ,,, ,,, n t L L nnnTnTnnn zyx d ass x y vcucetezcycxcn LLL T wvuT dudvdwd v wvuT τ π α τ ττ ϕ ϕ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫−−∫ ∂ ∂ × ∞ =1 0 0 0 0 00 2 00 2 2 ,,, ,,, n t L nnTnTnnn zyx ass d L n xz ucetezcycxc LLL T wvuT dudvdwd u wvuT ws τ αϕ τ ττ ϕ ϕ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ −−∫ ∫       ∂ ∂ × ∞ = + 1 0 0 0 0 1 00 2 00 2 ,,, ,,, n t nTnTnnn zyx dass L L nn etezcycxc LLL T wvuT dudvdwd u wvuT wcvc y z τ α ϕ τ ττ ϕ ϕ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑−∫ ∫ ∫       ∂ ∂ × ∞ = + 1 0 0 0 0 1 00 2 00 2 ,,, ,,, n nTnnn zyx ass d L L L nnn tezcycxc LLL T wvuT dudvdwd v wvuT wcvcuc x y z αϕ τ ττ ϕ ϕ ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫       ∂ ∂ −× + t L L L nnnnT x y z wvuT dudvdwd w wvuT wcvcuce 0 0 0 0 1 00 2 00 ,,, ,,, τ ττ τ ϕ ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫ ∂ ∂ −= ∞ =1 0 0 0 0 2 01 2 2002 ,,,2 ,,, n t L L L nnnTnTnnn zyx d ass x y z u wvuT vcusetezcycxcn LLL T tzyxT τ τ π α ϕ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫−+× ∞ =1 0 0 0 0 20 00 2 ,,, n t L L L nnnnTnTnnn zyx d assn x y z wcvsucetezcycxcn LLL T wvuT dudvdwd wc τ π α τ τ ϕ ϕ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ×∫ ∫−+ ∂ ∂ × ∞ =1 0 0 20 00 2 01 2 2 ,,, ,,, n t L nnTnTnnn zyx d ass x ucetezcycxcn LLL T wvuT dudvdwd v wvuT τ π α τ ττ ϕ ϕ
  • 12. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015 42 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ −−∫ ∫ ∂ ∂ × ∞ =1 0 2 0 0 0 00 2 01 2 2 ,,, ,,, n t nTnTnnn zyx ass L L nn etezcycxc LLLwvuT dudvdwd w wvuT wsvc y z τ απ τ ττ ϕ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑−∫ ∫ ∫ ∂ ∂ ∂ ∂ × ∞ = + 1 2 0 0 0 0 1 00 0100 2 ,,, ,,,,,, n n zyx ass d L L L nnnd xc LLL T wvuT dudvdwd u wvuT u wvuT wcvcucT x y z απ τ τττ ϕ ϕ ϕ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) −∫ ∫ ∫ ∫ ∂ ∂ ∂ ∂ −× + t L L L nnnnTnTnn x y z wvuT dudvdwd v wvuT v wvuT wcvcucetezcyc 0 0 0 0 1 00 0100 ,,, ,,,,,, τ τττ τ ϕ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∑ ×∫ ∫ ∫ ∫ ∂ ∂ ∂ ∂ −− ∞ = + 10 0 0 0 1 00 0100 2 0 ,,, ,,,,,, 2 n t L L L nnnnT zyx assd x y z wvuT dudvdwd w wvuT w wvuT wcvcuce LLL T τ τττ τ α π ϕ ϕ ( ) ( ) ( ) ( )tezcycxc nTnnn× ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∑ ∫ ∫ ∫ ∫    × ∂ ∂ −= ∞ =1 0 0 0 0 2 00 2 0 11 ,,,2 ,,, n t L L L nnnnTnTnnn zyx ass x y z w wvuT wcvcucetezcycxc LLL tzyxT τ τ α ( ) ( ) ( ) ( ) ( ) ( ) ( ) +           ∂ ∂ ∂ ∂ + ∂ ∂ +× τ τ τττ dudvdwd wvuT wvuT w wvuT wg wv wvuT TwvugTwvug TTT ,,, ,,,,,,,,, ,,,,,, 00 0100 2 00 2 ( ) ( )[ ] ( ) ( ) ( ) +           ∂ ∂ ∂ ∂ + ∂ ∂ ++ ∂ ∂ × τ τττ dudvdwd w wvuT Twvug wv wvuT Twvug u wvuT TT ,,, ,,, ,,, ,,,1 ,,, 01 2 01 2 2 01 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∑ ∫ ∫ ∫ ∫    + ∂ ∂ −+ ∞ = + 1 0 0 0 0 2 00 2 1 00 100 ,,, ,,, ,,, 2 n t L L L nnnTnTnnn zyx dass x y z u wvuT wvuT wvuT vcucetezcycxc LLL T τ τ τ τ α ϕ ϕ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×+   ∂ ∂ + ∂ ∂ × ++ yx ass n LL dudvdwdwc w wvuT wvuT wvuT v wvuT wvuT wvuT 0 2 00 2 1 00 10 2 00 2 1 00 10 ,,, ,,, ,,,,,, ,,, ,,, α τ τ τ ττ τ τ ϕϕ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∑ ×∫ ∫ ∫ ∫       ∂ ∂ + ∂ ∂ + ∂ ∂ −× ∞ =10 0 0 0 2 10 2 2 10 2 2 10 2 ,,,,,,,,, 2 n t L L L nnnnT z d x y z w wvuT v wvuT u wvuT wcvcuce L T τττ τ ϕ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫−+× ∞ =1 0 0 0 0 00 22 ,,, n t L L nnnTnTnnn zyx dass nTnnn x y vcucetezcycxc LLL T tezcycxc wvuT dudvdwd τ α τ τ ϕ ϕ ( ) ( ) ( ) ( ) ( ) ( )∫     ×+      ∂ ∂ ∂ ∂ + ∂ ∂ × zL TTTn Twvug w wvuT Twvug wu wvuT Twvugwc 0 00 2 00 2 ,,, ,,, ,,, ,,, ,,, ττ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−−    ∂ ∂ × ∞ =1 0 0 0 0 00 2 00 2 2 ,,, ,,, n t L L nnnTnTnnn zyx dass x y vcucetezcycxc LLL T wvuT dudvdwd v wvuT τ α ϕ τ ττ ϕ ϕ ( ) ( ) ( ) ( ) ( )∫               ∂ ∂ +      ∂ ∂ +      ∂ ∂ × + zL n wvuT dudvdwd w wvuT v wvuT u wvuT wc 0 1 00 2 00 2 00 2 00 ,,, ,,,,,,,,, τ ττττ ϕ . Integro-differential form of equations of systems (4) could be written as ( ) ( ) ( ) ( ) ( ) ( )     ∫ ∫ ×         ∂∂ ∂ − ∂∂ ∂ − ∂ ∂ −+= t z zyx xx wx wyxu yx wyxu x wyxu ttzyxutzyxu 0 0 22 2 2 ,,,,,,,,, 5,,,,,, τττ τφ ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) −∫ ∫ +        ∂∂ ∂ − ∂∂ ∂ − ∂ ∂ − + × ∞ 0 0 22 2 2 1 ,,,,,,,,, 5 616 z zyx d w wdwE wx wyxu yx wyxu x wyxut w dwdwE τ σ τττ σ τ ( ) ( ) ( ) ( ) ( ) ∫ ∫    + ∂∂ ∂ +∫ ∫         ∂∂ ∂ + ∂∂ ∂ + ∂ ∂ − ∞ t z x z zyx yx wyxu dwd wx wyxu yx wyxu x wyxu wKt 0 0 2 0 0 22 2 2 ,,, 2 1,,,,,,,,, τ τ τττ
  • 13. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015 43 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫         ∂ ∂ + ∂∂ ∂ −+− +    ∂ ∂ + t z yxy w wyxu wx wyxu tdt w wdwE y wyxu 0 0 2 22 2 2 ,,,,,, 2 1 1 ,,, ττ τττ σ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫    + ∂∂ ∂ −∫ ∫ +        ∂ ∂ + ∂∂ ∂ − + × ∞∞ 0 0 2 0 0 2 22 ,,, 1 ,,,,,, 21 z x z yx wx wyxu d w wdwE y wyxu yx wyxut d w wdwE τ τ σ ττ τ σ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫+∫ ∫ ∂ ∂ −− +    ∂ ∂ + ∞ 0 00 0 2 2 ,,, 21 ,,, zt z y wKtdwd x wyxT wKwt t d w wdwE w wyxu τ τ βττ σ τ ( ) ( ) ( ) ( ) ( ) ( )−Φ−∫ ∫ ∂ ∂ −+ ∂ ∂ × tzyxdwd wyxu wtdwd x wyxT w x t z x ,,, ,,,,,, 1 0 0 2 2 τ τ τ ρττ τ β ( ) ( )    ∫ ∫ ∂ ∂ − ∞ 0 0 2 2 ,,,z x dwd wyxu wt τ τ τ ρ , ( ) ( ) ( ) ( ) ( ) ( ) ( )    ×−∫ ∫ +        ∂∂ ∂ + ∂ ∂ −+= 21 ,,,,,, 2 1 ,,,,,, 0 0 2 2 2 t d w wdwE yx wyxu x wyxu ttzyxutzyxu t z xy yy τ σ ττ τφ ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫     − ∂∂ ∂ − ∂ ∂ +∫ ∫ +        ∂∂ ∂ + ∂ ∂ × ∞ t z xy z xy yx wyxu y wyxu d w wdwE yx wyxu x wyxu 0 0 2 2 2 0 0 2 2 2 ,,,,,, 5 6 1 1 ,,,,,, ττ τ σ ττ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫         ∂∂ ∂ − ∂∂ ∂ − ∂ ∂ −− +    ∂∂ ∂ − ∞ 0 0 22 2 22 ,,,,,,,,, 5 1 ,,, z zxyz wy wyxu yx wyxu y wyxu dt w wdwE wy wyxu τττ ττ σ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) +∫ ∫ ∂ ∂ +∫ ∫ ∂ ∂ −− + × ∞ 0 00 0 ,,,,,, 61 zt z dwd y wyxT wKwtdwd y wyxT wwKt t d w wdwE τ τ βτ τ βττ σ ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫−∫ ∫         ∂∂ ∂ + ∂ ∂ + ∂∂ ∂ −+ ∞ 0 00 0 2 2 22 ,,,,,,,,, zt z yyy wKtdwd wy wyxu y wyxu yx wyxu wKt τ τττ τ ( ) ( ) ( ) ( ) ( ) ∫    + ∂ ∂ −+         ∂∂ ∂ + ∂ ∂ + ∂∂ ∂ × t yyyy z zyxu tdwd wy wyxu y wyxu yx wyxu 0 2 2 22 ,,,,,,,,,,,, τ ττ τττ ( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( ) +∫       ∂ ∂ + ∂ ∂ + − +    ∂ ∂ + ∞ 0 ,,,,,, 1212 ,,, τ ττ σσ τ τ d y zyxu z zyxu z zEt z zE d y zyxu zyz ( ) ( ) ( ) ( ) ( ) ( )     Φ−∫ ∫ ∂ ∂ −−∫ ∫ ∂ ∂ + ∞ tzyxdwd wyxu wtdwd wyxu w y t z y z y ,,, ,,,,,, 1 0 0 2 2 0 0 2 2 τ τ τ ρττ τ τ ρ , ( ) ( ) ( ) ( ) ( ) ( ) ( )    ×−∫ ∫ +       ∂∂ ∂ + ∂ ∂ −+= 21 ,,,,,, 2 1 ,,,,,, 0 0 2 2 2 t d w wdwE wx wyxu x wyxu ttzyxutzyxu t z xz zz τ σ ττ τφ ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫         ∂∂ ∂ + ∂ ∂ +∫ ∫ +       ∂∂ ∂ + ∂ ∂ × ∞ t z yz z xz wy wyxu y wyxu d w wdwE wx wyxu x wyxu 0 0 2 2 2 0 0 2 2 2 ,,,,,, 1 ,,,,,, ττ τ σ ττ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∫ ∫−−∫ ∫ +        ∂∂ ∂ + ∂ ∂ − − + × ∞ t zz yz wtd w wdwE wy wyxu y wyxut d t w wdwE 0 00 0 2 2 2 1 ,,,,,, 221 βττ σ ττ τ τ σ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫    − ∂ ∂ −+∫ ∫ ∂ ∂ + ∂ ∂ × ∞ t z z z zyxu tdwd w wyxT wwKtdwd w wyxT wK 00 0 ,,, 5 ,,,,,, τ ττ τ βτ τ ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ∫    − ∂ ∂ − ∂ ∂ + − +    ∂ ∂ − ∂ ∂ − ∞ 0 ,,,,,, 5 116 ,,,,,, x zyxu z zyxu z zE z zE d y zyxu x zyxu xzyx ττ σσ τ ττ
  • 14. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015 44 ( ) ( ) ( ) ( ) ( ) ( ) −∫       ∂ ∂ + ∂ ∂ + ∂ ∂ −+   ∂ ∂ − t zyxy d z zyxu y zyxu x zyxu tzK t d y zyxu 0 ,,,,,,,,, 6 ,,, τ τττ ττ τ ( ) ( ) ( ) ( ) ( )     Φ−∫       ∂ ∂ + ∂ ∂ + ∂ ∂ − ∞ tzyxd z zyxu y zyxu x zyxu zKt z zyx ,,, ,,,,,,,,, 1 0 τ τττ , where ( ) ( ) ( )[ ]∫=Φ z i is wdtwyxuwtzyx s 0 ,,,,,, ρ , s=x,y,z, φ=L/Θ2 E0, E0 is the average value of Young modulus. The second-order approximations of components of displacement vector could be written as ( ) ( ) ( ) ( ) ( )     ∫ ∫     − ∂∂ ∂ − ∂ ∂ −++= t z yx xuxx yx wyxu x wyxu ttzyxutzyxu 0 0 1 2 2 1 2 1122 ,,,,,, 5 6 1 ,,,,,, ττ τφα ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ ×         ∂∂ ∂ − ∂∂ ∂ − ∂ ∂ − +    ∂∂ ∂ − ∞ 0 0 1 2 1 2 2 1 2 1 2 ,,,,,,,,, 5 1 ,,, z zyxz wx wyxu yx wyxu x wyxu d w wdwE wx wyxu τττ τ σ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) −∫ ∫         ∂∂ ∂ + ∂∂ ∂ + ∂ ∂ −+ + × t z zyx dwd wx wyxu yx wyxu x wyxu wKt t d w wdwE 0 0 1 2 1 2 2 1 2 ,,,,,,,,, 61 τ τττ ττ σ ( ) ( ) ( ) ( ) ( ) ∫ ∫    + ∂∂ ∂ +∫ ∫         ∂∂ ∂ + ∂∂ ∂ + ∂ ∂ − ∞ t z x z zyx yx wyxu dwd wx wyxu yx wyxu x wyxu wKt 0 0 1 2 0 0 1 2 1 2 2 1 2 ,,,,,,,,,,,, τ τ τττ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ +        ∂ ∂ + ∂∂ ∂ + − +    ∂ ∂ + t z yxy w wdwE y wyxu yx wyxu d t w wdwE y wyxu 0 0 2 1 2 1 2 2 1 2 1 ,,,,,, 2 1 21 ,,, σ ττ τ τ σ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ + −∫ ∫ +        ∂ ∂ + ∂∂ ∂ −+−× ∞ 0 00 0 2 1 2 1 2 121 ,,,,,, 2 1 zt z yx w wEt d w wdwE w wyxu wx wyxu tdt σ τ σ ττ τττ ( ) ( ) ( ) ( ) ×∫ ∫         ∂ ∂ + ∂∂ ∂ −         ∂ ∂ + ∂∂ ∂ × ∞ 0 0 2 1 2 1 2 2 1 2 1 2 ,,,,,, 2 ,,,,,, z yxyx w wyxu wx wyxut dwd y wyxu yx wyxu ττ τ ττ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (∫ −∫ ∂ ∂ −∫ ∫ ∂ ∂ + + × ∞ t zz twd x wyxT wwKdwd x wyxT wKwtd w wdwE 0 00 0 ,,,,,, 1 τ χτ τ χτ σ ) ( ) ( ) ( ) ( ) ( ) −∫ ∫ ∂ ∂ +∫ ∫ ∂ ∂ −−− ∞ 0 0 2 1 2 0 0 2 1 2 ,,,,,, z x t z x dwd wyxu wtdwd wyxu wtd τ τ τ ρτ τ τ ρτττ ( ) ( )}tzyxtzyx xxux ,,,,,, 102 Φ−Φ−α , ( ) ( ) ( ) ( ) ( ) ( )    −∫ ∫ +        ∂∂ ∂ + ∂ ∂− ++= t z xy yuyy d w wdwE yx wyxu x wyxut tzyxutzyxu 0 0 1 2 2 1 2 122 1 ,,,,,, 2 ,,,,,, τ σ τττ α ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫     − ∂∂ ∂ − ∂ ∂ +∫ ∫ +        ∂∂ ∂ + ∂ ∂ − ∞ t z xy z xy yx wyxu y wyxu d w wdwE yx wyxu x wyxut 0 0 1 2 2 1 2 0 0 1 2 2 1 2 ,,,,,, 5 1 ,,,,,, 2 ττ τ σ ττ ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫         ∂∂ ∂ − ∂∂ ∂ − ∂ ∂ − − +    ∂∂ ∂ − ∞ 0 0 1 2 1 2 2 1 2 1 2 ,,,,,,,,, 5 61 ,,, z zxyz wy wyxu yx wyxu y wyxu d t w wdwE wy wyxu τττ τ τ σ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) −∫ ∫ ∂ ∂ +∫ ∫ ∂ ∂ −− + × ∞ 0 00 0 ,,,,,, 61 zt z dwd y wyxT wwKtdwd y wyxT wKwt t d w wdwE τ τ χτ τ χττ σ
  • 15. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015 45 ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ×−∫ ∫         ∂∂ ∂ + ∂ ∂ + ∂∂ ∂ −− ∞ 0 00 0 1 2 2 1 2 1 2 ,,,,,,,,, zt z yyy wKtdwd wy wyxu y wyxu yx wyxu wKt τ τττ τ ( ) ( ) ( ) ( ) ( ) ∫    + ∂ ∂ −+         ∂∂ ∂ + ∂ ∂ + ∂∂ ∂ × t yyyy z zyxu tdwd wy wyxu y wyxu yx wyxu 0 11 2 2 1 2 1 2 ,,, 2 1,,,,,,,,, τ ττ τττ ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ×−∫       ∂ ∂ + ∂ ∂ + − +    ∂ ∂ + ∞ 2 0 111 ,,,,,, 121 ,,, uy zyz d y zyxu z zyxu z zEt z zE d y zyxu ατ ττ σσ τ τ ( ) ( )} 110 ,,,,,, φtzyxtzyx yy Φ−Φ× , ( ) ( ) ( ) ( ) ( ) ( )    ×∫ ∫ +       ∂∂ ∂ + ∂ ∂ ++= t z xz zzz w wdwE wx wyxu x wyxu tzyxutzyxu 0 0 1 2 2 1 2 1122 1 ,,,,,, 2 1 ,,,,,, σ ττ φα ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫    + ∂ ∂ −+∫ ∫ +       ∂∂ ∂ + ∂ ∂ −−× ∞ t z z z xz y wyxu td w wdwE wx wyxu x wyxut dt 0 0 2 1 2 0 0 1 2 2 1 2 ,,, 2 1 1 ,,,,,, 2 τ ττ σ ττ ττ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫    + ∂ ∂ −∫ ∫ ∂ ∂ −− +    ∂∂ ∂ + ∞ 0 0 2 1 2 0 0 1 2 ,,,,,, 1 ,,, z z t z y y wyxu dwd w wyxT wwKtd w wdwE wy wyxu τ τ τ χττ σ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( )×∫ − + +∫ ∫ ∂ ∂ + +    ∂∂ ∂ + ∞ tz y t z zE dwd w wyxT wwKt t d w wdwE wy wyxu 00 0 1 2 16 ,,, 21 ,,, τ σ τ τ χτ σ τ ( ) ( ) ( ) ( ) ( ) ∫    − ∂ ∂ − ∂ ∂ −      ∂ ∂ − ∂ ∂ − ∂ ∂ × ∞ 0 11111 ,,,,,, 5 6 ,,,,,,,,, 5 x zyxu z zyxut d y zyxu x zyxu z zyxu xzyxz ττ τ τττ ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ×∫       ∂ ∂ + ∂ ∂ + ∂ ∂ −+ +    ∂ ∂ − t zyxy d z zyxu y zyxu x zyxu t z zEt d y zyxu 0 1111 ,,,,,,,,, 16 ,,, τ τττ τ σ τ τ ( ) ( ) ( ) ( ) ( ) ( )−Φ−∫       ∂ ∂ + ∂ ∂ + ∂ ∂ −× ∞ tzyxd z zyxu y zyxu x zyxu zKtzK zz zyx ,,, ,,,,,,,,, 02 0 111 ατ τττ ( )}tzyxz ,,,1Φ− . Calculation of the average values αuβ2 leads to the following results ( ) ( ) ( ) ( ) ( ) ( ) (     ∫ ∫ ∫ ∫ − +        ∂∂ ∂ − ∂∂ ∂ − ∂ ∂ −Θ= Θ 0 0 0 0 1 2 1 2 2 1 2 2 2 1 ,,,,,,,,, 5 12 1 x y zL L L z zyx zux L z zdzE zx tzyxu yx tzyxu x tzyxu tL σ α ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫ + −         ∂∂ ∂ − ∂∂ ∂ − ∂ ∂Θ −− ∞ 0 0 0 0 1 2 1 2 2 1 22 1 ,,,,,,,,, 5 12 x y zL L L zzyx z zL zx tzyxu yx tzyxu x tzyxu zEtdxdydz σ ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫         ∂∂ ∂ + ∂∂ ∂ + ∂ ∂ −−Θ+× Θ 0 0 0 0 1 2 1 2 2 1 2 2 ,,,,,,,,, 2 1 x y zL L L zyx z zx tzyxu yx tzyxu x tzyxu zLttdxdydzd ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫         ∂∂ ∂ + ∂∂ ∂ + ∂ ∂ − Θ −× ∞ 0 0 0 0 1 2 1 2 2 1 22 ,,,,,,,,, 2 x y zL L L zyx z zx tzyxu yx tzyxu x tzyxu zLtdxdydzdzK ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫ + −         ∂ ∂ + ∂∂ ∂ −Θ+× Θ 0 0 0 0 2 1 2 1 2 2 1 ,,,,,, 2 1 x y zL L L zyx ydzd z zL y tzyxu yx tzyxu zEttdxdydzdzK σ
  • 16. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015 46 ( ) ( ) ( ) ( ) ( ) ( ) × Θ −∫ ∫ ∫ ∫ +        ∂ ∂ + ∂∂ ∂ −−Θ+× Θ 41 ,,,,,, 2 1 2 0 0 0 0 2 1 2 1 2 2 x y zL L L yx z tdxdyd z zdzE z tzyxu zx tzyxu zLttdxd σ ( )( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫ × + − −Θ+∫ ∫ ∫ ∫         ∂ ∂ + ∂∂ ∂ + − × Θ∞ 0 0 0 0 2 0 0 0 0 2 1 2 1 2 14 1,,,,,, 1 x y zx y z L L L z L L L yxz z zL ttdxdydzd y tzyxu yx tzyxu z zL zE σσ ( ) ( ) ( ) ( ) ( ) ( )×∫ ∫ ∫ ∫ ∂ ∂ −+         ∂ ∂ + ∂∂ ∂ × ∞ 0 0 0 0 2 1 2 2 1 2 1 2 ,,, 2 ,,,,,, x y zL L L x z yx t tzyxuz zLtdxdydzdzE z tzyxu zx tzyxu ρ ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫ − Θ +∫ ∫ ∫ ∫ −−Θ−Θ× ∞Θ 0 0 0 0 2 0 0 0 0 1 2 2 ,,, x y zx y z L L L z L L L xz zLtdxdydzdtzyxuzzLttdxdydzd ρ ( ) ( ) ( ) ( ) ( )     ∫ −Θ    ΘΧ−∞Χ Θ + ∂ ∂ × zL zxx x zdzzLLtdxdydzd t tzyxu 0 20 2 2 1 2 4 2 1 2 ,,, ρ , ( ) ( ) ( ) ( ) ( ) ( )     × Θ −∫ ∫ ∫ ∫         ∂∂ ∂ + ∂ ∂ + − −Θ= Θ 2 ,,,,,, 12 1 2 0 0 0 0 1 2 2 1 2 2 2 x y zL L L xyz zuy tdxdydzd yx tzyxu x tzyxu z zL zEL σ τα ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫ + − +∫ ∫ ∫ ∫         ∂∂ ∂ + ∂ ∂ + − × Θ∞ 0 0 0 00 0 0 0 1 2 2 1 2 112 1,,,,,, 1 x y zx y z L L L z L L L xyz z zL zEtdxdydzd yx tzyxu x tzyxu z zL zE σσ ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫ Θ −−Θ         ∂∂ ∂ − ∂∂ ∂ − ∂ ∂ × ∞ 0 0 0 0 2 21 2 1 2 2 1 2 12 ,,,,,,,,, 5 x y zL L L zxy zEtdxdydzd zy tzyxu yx tzyxu y tzyxu τ ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫−Θ+         ∂∂ ∂ − ∂∂ ∂ − ∂ ∂ + − × Θ 0 0 0 0 21 2 1 2 2 1 2 2 ,,,,,,,,, 5 1 x y zL L L zxyz zK ttdxdydzd zy tzyxu yx tzyxu y tzyxu z zL σ ( ) ( ) ( ) ( ) ( )( )×∫ ∫ ∫ ∫ −−         ∂∂ ∂ + ∂ ∂ + ∂∂ ∂ −× ∞ 0 0 0 0 1 2 2 1 2 1 2 ,,,,,,,,, x y zL L L z yyy z zLzKtdxdydzd zy tzyxu y tzyxu yx tzyxu zL ( ) ( ) ( ) ( ) ∫ ∫ ∫ ∫    + ∂ ∂ +         ∂∂ ∂ + ∂ ∂ + ∂∂ ∂Θ × Θ 0 0 0 0 11 2 2 1 2 1 22 ,,, 2 1,,,,,,,,, 2 x y zL L L yyyy z tzyxu tdxdydzd zy tzyxu y tzyxu yx tzyxu ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫ +       ∂ ∂ + ∂ ∂Θ −−Θ +    ∂ ∂ + ∞ 0 0 0 0 11 2 21 1 ,,,,,, 21 ,,, x y zL L L zyz z zdzE y tzyxu z tzyxu tdxdyd z zdzE y tzyxu σ τ σ ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫ ∂ ∂Θ +∫ ∫ ∫ ∫ ∂ ∂ −Θ−× ∞Θ 0 0 0 0 2 1 22 0 0 0 0 2 1 2 2 ,,, 2 ,,, 2 1 x y zx y z L L L y L L L y t tzyxu tdxdydzd t tzyxu zttdxdyd ρ ( ) ( ) ( ) ( ) ( ) ( ) ×   ∞Χ Θ+ ΘΧ −∫ ∫ ∫ ∫ −−× Θ 22 ,,, 022 0 0 0 0 1 yy L L L yz x y z tdxdydzdtzyxuzzLtdxdydzdz ρρ ( ) ( ) 1 0 4 −     ∫ −Θ× zL z zdzzLL ρ , ( ) ( ) ( ) ( ) ( ) ( )     × Θ −∫ ∫ ∫ ∫       ∂∂ ∂ + ∂ ∂ + − −Θ= Θ 2 ,,,,,, 12 1 2 0 0 0 0 1 2 2 1 2 2 2 x y zL L L xzz zz tdxdydzd zx tzyxu x tzyxu z zL zEtL σ α ( )( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫−Θ+∫ ∫ ∫ ∫       ∂∂ ∂ + ∂ ∂ + − × Θ∞ 0 0 0 0 2 0 0 0 0 1 2 2 1 2 2 1,,,,,, 1 x y zx y z L L LL L L xzz zEttdxdydzd zx tzyxu x tzyxu z zL zE σ ( ) ( ) ( ) ( ) ∫ ∫ ∫ ∫ ×         ∂∂ ∂ + ∂ ∂ −         ∂∂ ∂ + ∂ ∂ × ∞ 0 0 0 0 1 2 2 1 2 1 2 2 1 2 ,,,,,,,,,,,, x y zL L L yzyz zy tzyxu y tzyxu tdxdydzd zy tzyxu y tzyxu
  • 17. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015 47 ( ) ( ) ( )[ ] ( ) ( ) ( ) ∫ ∫ ∫ ∫ ×      ∂ ∂ − ∂ ∂ − ∂ ∂ + + − Θ× Θ 0 0 0 0 1112 ,,,,,,,,, 5 12 1 12 x y zL L L yxzz y tzyxu x tzyxu z tzyxu tdxdydzd z zLzE σ ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∫ ∫ ×      ∂ ∂ − ∂ ∂ − ∂ ∂Θ −−Θ + × ∞ 0 0 0 0 111 2 2 ,,,,,,,,, 5 121 x y zL L L yxz y tzyxu x tzyxu z tzyxu tdtxdyd z zdzE σ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫       ∂ ∂ + ∂ ∂ + ∂ ∂ −Θ+ + × Θ 0 0 0 0 1112 ,,,,,,,,, 21 x y zL L L zyx z tzyxu y tzyxu x tzyxuzK ttdxdyd z zdzE σ ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫       ∂ ∂ + ∂ ∂ + ∂ ∂Θ − ΘΧ −× ∞ 0 0 0 0 111 2 2 ,,,,,,,,, 22 x y zL L L zyxz z tzyxu y tzyxu x tzyxu zKtdxdydzd ( ) ( ) ( ) ( ) ( ) ×    ∫ −   ∞Χ Θ+∫ ∫ ∫ ∫ −−× Θ zx y z L z z L L L zz zLtdxdydzdztzyxuzLtdxdydzd 0 02 0 0 0 0 1 4 2 ,,, ρ ( ) } 1− Θ× Lzdzρ . System of equations for the functions Cijk(x,y,z,t) (i≥0, j≥0, k≥0) could be written as ( ) ( ) ( ) ( )       ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 000 2 2 000 2 2 000 2 0 000 ,,,,,,,,,,,, z tzyxC y tzyxC x tzyxC D t tzyxC L ; ( ) ( ) ( ) ( ) ( )         +      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ = ∂ ∂ −− y tzyxC Tzg yx tzyxC Tzg x D t tzyxC i L i LL i ,,, , ,,, , ,,, 100100 0 00 ( ) ( ) ( ) ( ) ( )           ∂ ∂ + ∂ ∂ + ∂ ∂ +           ∂ ∂ ∂ ∂ + − 2 00 2 2 00 2 2 00 2 100 ,,,,,,,,,,,, , z tzyxC y tzyxC x tzyxC z tzyxC Tzg z iiii L , i≥1; ( ) ( ) ( ) ( ) +      ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 010 2 2 010 2 2 010 2 0 010 ,,,,,,,,,,,, z tzyxC y tzyxC x tzyxC D t tzyxC L ( ) ( ) ( ) ( ) ( ) ( )     +      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ + y tzyxC TzyxP tzyxC yx tzyxC TzyxP tzyxC x D L ,,, ,,, ,,,,,, ,,, ,,, 000000000000 0 γ γ γ γ ( ) ( ) ( )          ∂ ∂ ∂ ∂ + z tzyxC TzyxP tzyxC z ,,, ,,, ,,, 000000 γ γ ; ( ) ( ) ( ) ( ) ×+      ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ LL D z tzyxC y tzyxC x tzyxC D t tzyxC 02 020 2 2 020 2 2 020 2 0 020 ,,,,,,,,,,,, ( ) ( ) ( ) ( ) ( ) ( )        × ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ × − y tzyxC tzyxC yy tzyxC TzyxP tzyxC tzyxC x ,,, ,,, ,,, ,,, ,,, ,,, 000 010 000 1 000 010 γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )   × ∂ ∂ +           ∂ ∂ ∂ ∂ +   × −− TzyxP tzyxC x D z tzyxC TzyxP tzyxC tzyxC zTzyxP tzyxC L ,,, ,,,,,, ,,, ,,, ,,, ,,, ,,, 000 0 000 1 000 010 1 000 γ γ γ γ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( )           ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ +   ∂ ∂ × z tzyxC TzyxP tzyxC zy tzyxC TzyxP tzyxC yx tzyxC ,,, ,,, ,,,,,, ,,, ,,,,,, 010000010000010 γ γ γ γ ; ( ) ( ) ( ) ( ) +      ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 001 2 2 001 2 2 001 2 0 001 ,,,,,,,,,,,, z tzyxC y tzyxC x tzyxC D t tzyxC L
  • 18. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015 48 ( )[ ] ( ) ( ) ( ) ( ) +         ∇ ∫      ++ ∂ ∂ Ω+ Tk tzyx WdtWyxC TzyxP tzyxC Tzyxg x D S L SLSLSSL z ,,, ,,, ,,, ,,, 1,,,1 0 000 000 0 µ ξε γ γ ( )[ ] ( ) ( ) ( ) ( )         ∇ ∫      ++ ∂ ∂ Ω+ Tk tzyx WdtWyxC TzyxP tzyxC Tzyxg y D S L SLSLSSL z ,,, ,,, ,,, ,,, 1,,,1 0 000 000 0 µ ξε γ γ ; ( ) ( ) ( ) ( ) +      ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 002 2 2 002 2 2 002 2 0 002 ,,,,,,,,,,,, z tzyxC y tzyxC x tzyxC D t tzyxC L ( )[ ] ( ) ( ) ( ) ( ) +         ∇ ∫      ++ ∂ ∂ Ω+ Tk tzyx WdtWyxC TzyxP tzyxC Tzyxg x D S L SLSLSSL z ,,, ,,, ,,, ,,, 1,,,1 0 001 000 0 µ ξε γ γ ( )[ ] ( ) ( ) ( ) ( ) +         ∇ ∫      ++ ∂ ∂ Ω+ Tk tzyx WdtWyxC TzyxP tzyxC Tzyxg y D S L SLSLSSL z ,,, ,,, ,,, ,,, 1,,,1 0 001 000 0 µ ξε γ γ ( )[ ] ( ) ( ) ( ) ( )     ×∫      ++ ∂ ∂ Ω+ − zL SLSLSSL WdtWyxC TzyxP tzyxC tzyxCTzyxg x D 0 000 1 000 0010 ,,, ,,, ,,, ,,,1,,,1 γ γ γ ξε ( ) ( ) ( ) ( ) ( ) ( ) ×    ∫ ∇       + ∂ ∂ +   ∇ × − zL S S S WdtWyxC Tk tzyx TzyxP tzyxC tzyxC yTk tzyx 0 000 1 000 001 ,,, ,,, ,,, ,,, ,,,1 ,,, µ ξ µ γ γ γ ( )[ ]} SLLSLS DTzyxg 0,,,1 Ω+× ε ; ( ) ( ) ( ) ( ) ( )        × ∂ ∂ ∂ ∂ +      ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ x tzyxC xz tzyxC y tzyxC x tzyxC D t tzyxC L ,,,,,,,,,,,,,,, 010 2 110 2 2 110 2 2 110 2 0 110 ( ) ( ) ( ) ( ) ( ) +           ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ +     × LLLL D z tzyxC Tzyxg zy tzyxC Tzyxg y Tzyxg 0 010010 ,,, ,,, ,,, ,,,,,, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )       × ∂ ∂ +      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ + TzyxP tzyxC zy tzyxC TzyxP tzyxC yx tzyxC TzyxP tzyxC x ,,, ,,,,,, ,,, ,,,,,, ,,, ,,, 000100000100000 γ γ γ γ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( )       × ∂ ∂ +      ∂ ∂ ∂ ∂ +        ∂ ∂ × −− TzyxP tzyxC yx tzyxC TzyxP tzyxC tzyxC x D z tzyxC L ,,, ,,,,,, ,,, ,,, ,,, ,,, 1 000000 1 000 1000 100 γ γ γ γ ( ) ( ) ( ) ( ) ( ) ( ) LD z tzyxC TzyxP tzyxC tzyxC zy tzyxC tzyxC 0 000 1 000 100 000 100 ,,, ,,, ,,, ,,, ,,, ,,,           ∂ ∂ ∂ ∂ +   ∂ ∂ × − γ γ ; ( ) ( ) ( ) ( ) ( )        × ∂ ∂ ∂ ∂ +      ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ y tzyxC xz tzyxC y tzyxC x tzyxC D t tzyxC L ,,,,,,,,,,,,,,, 000 2 100 2 2 100 2 2 100 2 0 101 ( ) ( ) ( ) ( ) ( ) +           ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ +     × LLLL D z tzyxC Tzyxg zy tzyxC Tzyxg y Tzyxg 0 000000 ,,, ,,, ,,, ,,,,,, ( )[ ] ( ) ( ) ( ) ( )    ×∫      ++ ∂ ∂ Ω+ − zL SLSLSSL WdtWyxC TzP tzyxC tzyxCTzyxg x D 0 100 1 000 1000 ,,, , ,,, ,,,1,,,1 γ γ ξε ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( )[ ] ( )    ×∫+ ∂ ∂ +   ∇ ∫× ×           ++ ∂ ∂ Ω+   ∇ × − zz L LSLS S L SLSLSSL S WdtWyxCTzyxg xTk tzyx WdtWyxC TzP tzyxC tzyxCTzyxg y D Tk tzyx 0 100 0 100 1 000 1000 ,,,,,,1 ,,, ,,, , ,,, ,,,1,,,1 ,,, ε µ ξε µ γ γ
  • 19. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015 49 ( ) ( ) ( )[ ] ( )    × ∇ + ∂ ∂ +Ω    ∫ ∇ × Tk tzyx Tzyxg y DWdtWyxC Tk tzyx S LSLSSL L S z ,,, ,,,1,,, ,,, 0 0 100 µ ε µ ( ) ( ) SL LL DWdtWyxCWdtWyxC zz 0 0 100 0 100 ,,,,,, Ω    ∫∫× ; ( ) ( ) ( ) ( ) ( ) ( )      × ∂ ∂ +      ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ TzyxP tzyxC xz tzyxC y tzyxC x tzyxC D t tzyxC L ,,, ,,,,,,,,,,,,,,, 000 2 011 2 2 011 2 2 011 2 0 011 γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) +           ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ +   ∂ ∂ × LD z tzyxC TzyxP tzyxC zy tzyxC TzyxP tzyxC yx tzyxC 0 001000001000001 ,,, ,,, ,,,,,, ,,, ,,,,,, γ γ γ γ ( ) ( ) ( ) ( ) ( ) ( )        × ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ + − y tzyxC tzyxC yx tzyxC TzyxP tzyxC tzyxC x D L ,,, ,,, ,,, ,,, ,,, ,,, 000 001 000 1 000 0010 γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( )    × ∇ ∂ ∂ +           ∂ ∂ ∂ ∂ +   × −− Tk tzyx xz tzyxC TzyxP tzyxC tzyxC zTzyxP tzyxC S ,,,,,, ,,, ,,, ,,, ,,, ,,, 000 1 000 001 1 000 µ γ γ γ γ ( )[ ] ( ) ( ) ( ) ( )×   ∇ ∂ ∂ +Ω    ∫      ++× Tk tzyx x DWdtWyxC TzyxP tzyxC Tzyxg S SL L SLSLS z ,,, ,,, ,,, ,,, 1,,,1 0 0 010 000 µ ξε γ γ ( )[ ] ( ) ( ) ( ) ( ) ×Ω+Ω    ∫      ++× − SLSL L SLSLS DDWdtWyxC TzyxP tzyxC tzyxCTzyxg z 00 0 000 1 000 010 ,,, ,,, ,,, ,,,1,,,1 γ γ ξε ( )[ ] ( ) ( ) ( ) ( ) ( )         ∫ ∇       ++ ∂ ∂ × − zL S SLSLS WdtWyxC Tk tzyx TzyxP tzyxC tzyxCTzyxg y 0 000 1 000 010 ,,, ,,, ,,, ,,, ,,,1,,,1 µ ξε γ γ . Boundary and initial conditions for functions Cijk(x,t) (i≥0, j≥0, k≥0) could be written as ( ) 0 ,,, 0 = =x ijk x tzyxC ∂ ∂ ; ( ) 0 ,,, = = xLx ijk x tzyxC ∂ ∂ ; ( ) 0 ,,, 0 = =y ijk y tzyxC ∂ ∂ ; ( ) 0 ,,, = = yLy ijk y tzyxC ∂ ∂ ; ( ) 0 ,,, 0 = =z ijk z tzyxC ∂ ∂ ; ( ) 0 ,,, = = zLz ijk z tzyxC ∂ ∂ ; C000(x,y,z,0)=fC (x,y,z); Cijk(x,y,z,0)=0. Solutions of equations for functions Cijk(x,t) (i≥0, j≥0, k≥0) could be written as ( ) ( ) ( ) ( ) ( )∑+= ∞ =1 0 000 2 ,,, n nCnnnnC zyxzyx C tezcycxcF LLLLLL F tzyxC , where ( )                 ++−= 2220 22 111 exp zyx LnC LLL tDnte π , ( ) ( ) ( ) ( )∫ ∫ ∫= x y zL L L CnnnnC udvdwdwvufwcvcucF 0 0 0 ,, ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫−−= ∞ =1 0 0 0 0 2 0 00 ,,, 2 ,,, n t L L L LnnnCnCnnnnC zyx L i x y z TwvugvcusetezcycxcFn LLL D tzyxC τ π ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫−− ∂ ∂ × ∞ = − 1 0 0 2 0100 2,,, n t L nnCnCnnnnC zyx Li n x ucetezcycxcFn LLL D dudvdwd u wvuC wc τ π τ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑−∫ ∫ ∂ ∂ × ∞ = − 1 2 0 0 0 100 2,,, ,,, n nCnnn zyx L L L i Lnn tezcycxc LLL D dudvdwd v wvuC Twvugwcvs y z π τ τ
  • 20. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015 50 ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∫ ∫ ∂ ∂ −× − t L L L i LnnnnCnC x y z dudvdwd w wvuC TwvugwsvcuceFn 0 0 0 0 100 ,,, ,,, τ τ τ , i≥1; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫−−= ∞ =1 0 0 0 0 000 2 0 010 ,,, ,,,2 ,,, n t L L L nnnCnCnnnnC zyx L x y z TwvuP wvuC vcusetezcycxcFn LLL D tzyxC γ γ τ τ π ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫−− ∂ ∂ × ∞ =1 0 0 2 0000 2,,, n t L nnCnCnnnnC zyx L n x ucetezcycxcFn LLL D dudvdwd u wvuC wc τ π τ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑−∫ ∫ ∫ ∂ ∂ × ∞ =1 2 0 0 0 0 000000 2,,, ,,, ,,, n nn zyx L L L L nnn ycxcn LLL D dudvdwd v wvuC TwvuP wvuC wcwcvs y z z π τ ττ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∫ ∫ ∂ ∂ −× t L L L nnnnCnCnnC x y z dudvdwd w wvuC TwvuP wvuC wsvcucetezcF 0 0 0 0 000000 ,,, ,,, ,,, τ ττ τ γ γ ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫−−= ∞ =1 0 0 0 0 0102 0 020 ,,, 2 ,,, n t L L L nnnCnCnnnnC zyx L x y z wvuCvcusetezcycxcFn LLL D tzyxC ττ π ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑− ∂ ∂ × ∞ = − 1 2 0000 1 000 2,,, ,,, ,,, n nCnnnnC zyx L n tezcycxcFn LLL D dudvdwd u wvuC TwvuP wvuC wc π τ ττ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) −∫ ∫ ∫ ∫ ∂ ∂ −× −t L L L nnnnC x y z dudvdwd v wvuC TwvuP wvuC wvuCwcvcuse 0 0 0 0 000 1 000 010 ,,, ,,, ,,, ,,, τ ττ ττ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫−− ∞ = − 1 0 0 0 0 1 000 010 ,,, ,,, ,,, n t L L L nnnnCnCnnnnC x y z TwvuP wvuC wvuCwcvcusetezcycxcFn γ γ τ ττ ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ −− ∂ ∂ × ∞ =1 0 2 0000 2 0 2,,,2 n t nCnCnnnnC zyx L zyx L etezcycxcFn LLL D dudvdwd w wvuC LLL D τ π τ τπ ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑−∫ ∫ ∫ ∂ ∂ × ∞ =1 2 0 0 0 0 010000 2,,, ,,, ,,, n nnC zyx L L L L nnn xcFn LLL D dudvdwd u wvuC TwvuP wvuC wcvcus x y z π τ ττ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) −∫ ∫ ∫ ∫ ∂ ∂ −× t L L L nnnnCnCnn x y z dudvdwd v wvuC TwvuP wvuC wcvsucetezcyc 0 0 0 0 010000 ,,, ,,, ,,, τ ττ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫ ∂ ∂ −− ∞ =1 0 0 0 0 010000 2 0 ,,, ,,, ,,,2 n t L L L nnnnCnC zyx L x y z dudvdwd w wvuC TwvuP wvuC wsvcuceFn LLL D τ ττ τ π γ γ ( ) ( ) ( ) ( )tezcycxc nCnnn× ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫ ∇ − Ω −= ∞ =1 0 0 0 0 2 0 001 ,,,2 ,,, n t L L L S nnCnCnnnnC zyx L x y z Tk wvu usetezcycxcFn LLL D tzyxC τµ τ π ( )[ ] ( ) ( ) ( ) ( ) ( ) −∫      ++× ττ τ ξε γ γ dudvdvcwdwcWdWvuC TwvuP wvuC Twvug nn L SLSLS z 0 000 000 ,,, ,,, ,,, 1,,,1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫ ∫− Ω − ∞ =1 0 0 0 0 0 0002 0 ,,, 2 n t L L L L nnnnCnCnnnnC zyx L x y z z WdWvuCwcvsucetezcycxcFn LLL D ττ π ( )[ ] ( ) ( ) ( ) τ τµτ ξε γ γ dudvdwd Tk wvu TwP wvuC Twvug S SLSLS ,,, , ,,, 1,,,1 000 ∇       ++× ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫ ∇ − Ω −= ∞ =1 0 0 0 0 2 0 002 ,,,2 ,,, n t L L L S nnnCnCnnnnC zyx L x y z Tk wvu vcusetezcycxcFn LLL D tzyxC τµ τ π ( )[ ] ( ) ( ) ( ) ( ) × Ω −∫      ++× zyx L n L SLSLS LLL D dudvdwdwcWdWvuC TwvuP wvuC Twvug z 2 0 0 001 000 ,,, ,,, ,,, 1,,,1 π ττ τ ξε γ γ
  • 21. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015 51 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫ ∫ ∇ −× ∞ =1 0 0 0 0 0 001 ,,, ,,, n t L L L L S nnnnCnCnnnnC x y z z WdWvuC Tk wvu wcvsucetezcycxcFn τ τµ τ ( )[ ] ( ) ( ) ( ) ( ) ( )×∑ Ω −      ++× ∞ =1 2 0000 2 ,,, ,,, 1,,,12 n nnnnC zyx L SLSLS zcycxcF LLL D dudvdwd TwvuP wvuC Twvug π τ τ ξε γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫ ∫      +−× −t L L L L SnnnnCnC x y z z WdWvuC TwvuP wvuC tzyxCwcvcuseten 0 0 0 0 0 000 1 000 001 ,,, ,,, ,,, ,,,1 τ τ ξτ γ γ γ ( )[ ] ( ) ( ) ( ) ( ) ( ) ×∑ Ω − ∇ +× ∞ =1 2 02,,, ,,,1 n nCnnnnC zyx LS LSLS tezcycxcF LLL D dudvdwd Tk wvu Twvug π τ τµ ε ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫ ×∫      + ∇ × −t L L L L S S nnn x y z z WdWvuC TwP wvuC tzyxC Tk wvu wcvcusn 0 0 0 0 0 000 1 000 001 ,,, , ,,, ,,,1 ,,, τ τ ξ τµ γ γ γ ( )[ ] ( ) ττε deudvdwdTwvug nCLSLS −+× ,,,1 ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫−−= ∞ =1 0 0 0 0 2 0 110 ,,, 2 ,,, n t L L L LnnnCnCnnnnC zyx L x y z TwvugvcusetezcycxcFn LLL D tzyxC τ π ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫−− ∂ ∂ × ∞ =1 0 0 2 0010 2,,, n t L nnCnCnnnnC zyx L n x ucetezcycxcFn LLL D dudvdwd u wvuC wc τ π τ τ ( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ×−∫ ∫ ∂ ∂ × ∞ =1 2 0 0 0 010 2,,, ,,, n nnnnC zyx L L L Lnn zcycxcFn LLL D dudvdwd v wvuC Twvugwcvs y z π τ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×−∫ ∫ ∫ ∫ ∂ ∂ −× zyx L t L L L LnnnnCnC LLL D dudvdwd w wvuC Twvugwsvcucete x y z 2 0 0 0 0 0 010 2,,, ,,, π τ τ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫−× ∞ =1 0 0 0 0 100 ,,,,,, n t L L L LnnnnCnCnnnnC x y z wvuCTwvugwcvcusetezcycxcFn ττ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑− ∂ ∂ × ∞ = − 1 2 0000 1 000 2,,, ,,, ,,, n nCnnnnC zyx L tezcycxcFn LLL D dudvdwd u wvuC TwvuP wvuC π τ ττ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∫ ∫ ∫ ∫ ∂ ∂ −× −t L L L LnnnC x y z v wvuC TwvuP wvuC wvuCTwvugvsuce 0 0 0 0 000 1 000 100 ,,, ,,, ,,, ,,,,,, ττ ττ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫−−× ∞ =1 0 0 0 2 02 n t L L nnnCnCnnnnC zyx L n x y vcucetezcycxcFn LLL D dudvdwdwc τ π τ ( ) ( ) ( ) ( ) ( ) ( ) −∫ ∂ ∂ × − zL Ln dudvdwd w wvuC TwvuP wvuC wvuCTwvugws 0 000 1 000 100 ,,, ,,, ,,, ,,,,,, τ ττ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫−− ∞ =1 0 0 0 0 2 0 ,,, 2 n t L L L LnnnnCnCnnnnC zyx L x y z TwvugwcvcusetezcycxcFn LLL D τ π ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑− ∂ ∂ × ∞ =1 2 0100000 2,,, ,,, ,,, n nCnnn zyx L tezcycxcn LLL D dudvdwd u wvuC TwvuP wvuC π τ ττ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∫ ∫ ∫ ∫ ∂ ∂ −× t L L L LnnnCnC x y z vdwd u wvuC TwvuP wvuC TwvugwcvseF 0 0 0 0 100000 ,,, ,,, ,,, ,,, ττ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫−−× ∞ =1 0 0 0 0 2 02 n t L L L nnnnCnCnnnnC zyx L n x y z wsvcucetezcycxcFn LLL D duduc τ π τ ( ) ( ) ( ) ( ) τ ττ γ γ dudvdwd u wvuC TwP wvuC TwvugL ∂ ∂ × ,,, , ,,, ,,, 100000 ;
  • 22. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015 52 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫−−= ∞ =1 0 0 0 0 2 0 101 ,,, 2 ,,, n t L L L LnnnCnCnnnnC zyx L x y z TwvugvcusetezcycxcFn LLL D tzyxC τ π ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫−− ∂ ∂ × ∞ =1 0 0 2 0000 2,,, n t L nnCnCnnnnC zyx L n x ucetezcycxcF LLL D dudvdwd u wvuC wc τ π τ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑−∫ ∫ ∫ ∂ ∂ × ∞ =1 2 0 0 0 0 000 2,,, ,,, n nn zyx L L L L Lnnn ycxcn LLL D dudvdwd v wvuC Twvugwcwcvsn y z z π τ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) −∫ ∫ ∫ ∫ ∂ ∂ −× t L L L LnnnnCnCnnC x y z dudvdwd w wvuC TwvugwsvcucetezcF 0 0 0 0 000 ,,, ,,, τ τ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]×∑ ∫ ∫ ∫ ∫ +−Ω− ∞ =1 0 0 0 0 2 0 ,,,1 2 n t L L L LSLSnnnCnCnnnnC zyx L x y z TwvugvcusetezcycxcFn LLL D ετ π ( ) ( ) ( ) ( ) ( ) − ∇ ∫      + ∇ × τ τµ τ τ ξ τµ γ γ dudvdwd Tk wvu WdWvuC TwvuP wvuC Tk wvu S L S S z ,,, ,,, ,,, ,,, 1 ,,, 0 100 000 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]∑ ∫ ∫ ∫ ∫ ×+−Ω− ∞ =1 0 0 0 0 2 0 ,,,1 2 n t L L L LSLSnnnCnCnnnnC zyx L x y z TwvugvcusetezcycxcFn LLL D ετ π ( ) ( ) ( ) ( ) ( ) ( ) −∫ ∇       +× − ττ τµτ τξ γ γ dudvdwdWdWvuC Tk wvu TwvuP wvuC wvuCwc zL S Sn 0 000 1 000 100 ,,, ,,, ,,, ,,, ,,,1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]×∑ ∫ ∫ ∫ ∫ +−Ω− ∞ =1 0 0 0 0 2 0 ,,,1 2 n t L L L LSLSnnnCnCnnnnC zyx L x y z TwvugvsucetezcycxcFn LLL D ετ π ( ) ( ) ( ) ( ) ( ) ( ) ττ τ τξ τµ γ γ dudvdwdWdWvuC TwvuP wvuC wvuC Tk wvu wc zL S S n ∫      + ∇ × − 0 000 1 000 100 ,,, ,,, ,,, ,,,1 ,,, ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫−−= ∞ =1 0 0 0 0 000 2 0 011 ,,, ,,,2 ,,, n t L L L nnnCnCnnnnC zyx L x y z TwvuP wvuC vcusetezcycxcFn LLL D tzyxC γ γ τ τ π ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫−− ∂ ∂ × ∞ =1 0 0 2 0001 2,,, n t L nnCnCnnnnC zyx L n x ucetezcycxcFn LLL D dudvdwd u wvuC wc τ π τ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑−∫ ∫ ∫ ∂ ∂ × ∞ =1 2 0 0 0 0 001000 2,,, ,,, ,,, n nnnC zyx L L L L nnn ycxcFn LLL D dudvdwd v wvuC TwvuP wvuC wcwcvs y z z π τ ττ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×−∫ ∫ ∫ ∫ ∂ ∂ −× zyx L t L L L nnnnCnCn LLL D dudvdwd w wvuC TwvuP wvuC wsvcucetezc x y z 2 0 0 0 0 0 001000 2,,, ,,, ,,, π τ ττ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫ ∂ ∂ −× ∞ = − 1 0 0 0 0 000 1 000 001 ,,, ,,, ,,, ,,, n t L L L nnnnCnC x y z dudvdwd u wvuC TwvuP wvuC wvuCwcvcuseF τ ττ ττ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫−−× ∞ =1 0 0 0 0 0012 0 ,,, 2 n t L L L nnnCnCnnn zyx L nCnnn x y z wvuCvsucetezcycxc LLL D tezcycxcn ττ π ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑− ∂ ∂ × ∞ = − 1 2 0000 1 000 2,,, ,,, ,,, n nCnnn zyx L nnC tezcycxcn LLL D dudvdwd v wvuC TwvuP wvuC wcFn π τ ττ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) −∫ ∫ ∫ ∫ ∂ ∂ −× −t L L L nnnnCnC x y z dudvdwd w wvuC TwvuP wvuC wvuCwsvcuceF 0 0 0 0 000 1 000 001 ,,, ,,, ,,, ,,, τ ττ ττ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]×∑ ∫ ∫ ∫ ∫ +−Ω− ∞ =1 0 0 0 0 2 0 ,,,1 2 n t L L L LSLSnnnnCnCnnnnC zyx L x y z TwvugwcvcusetezcycxcFn LLL D ετ π
  • 23. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015 53 ( ) ( ) ( ) ( ) ×∑Ω−∫ ∇       +× ∞ =1 2 0 0 010 000 2 ,,, ,,, ,,, ,,, 1 n nC zyx L L S S F LLL D dudvdwdWdWvuC Tk wvu TwvuP wvuC z π ττ τµτ ξ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ×∫ ∫ ∫ ∫       ++−× t L L L SLSLSnnnCnCnnn x y z TwvuP wvuC Twvugvsucetezcycxcn 0 0 0 0 000 ,,, ,,, 1,,,1 γ γ τ ξετ ( ) ( ) ( ) ( ) ( ) ( )∑ ×Ω−∫ ∇ × ∞ =1 2 0 0 010 2 ,,, ,,, n nnnnC zyx L L S n zcycxcF LLL D dudvdwdWdWvuC Tk wvu wc z π ττ τµ ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ×∫ ∫ ∫ ∫       ++−× −t L L L SLSLSnnnnCnC x y z TwvuP wvuC wvuCTwgwcvcuseten 0 0 0 0 1 000 010 ,,, ,,, ,,,1,1 γ γ τ τξετ ( ) ( ) ( ) ( ) ( ) ( ) ×∑Ω−∫ ∇ × ∞ =1 2 0 0 000 2 ,,, ,,, n nCnnn zyx L L S tezcycxcn LLL D dudvdwdWdWvuC Tk wvu z π ττ τµ ( ) ( ) ( ) ( ) ( )[ ] ( ) ×∫ ∫ ∫ ∫ ∫+−× t L L L L LSLSnnnnCnC x y z z WdWvuCTwvugwcvsuceF 0 0 0 0 0 000 ,,,,,,1 τετ ( ) ( ) ( ) ( ) τ τµτ τξ γ γ dudvdwd Tk wvu TwP wvuC wvuC S S ,,, , ,,, ,,,1 1 000 010 ∇       +× − . Author Pankratov Evgeny Leonidovich was born at 1977. From 1985 to 1995 he was educated in a secondary school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University: from 1995 to 1999 it was bachelor course in Radiophysics, from 1999 to 2001 it was master course in Ra- diophysics with specialization in Statistical Radiophysics, from 2001 to 2004 it was PhD course in Radio- physics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of Micro- structures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny Novgo- rod State University of Architecture and Civil Engineering. Now E.L. Pankratov is in his Full Doctor course in Radiophysical Department of Nizhny Novgorod State University. He has 96 published papers in area of his researches. Bulaeva Elena Alexeevna was born at 1991. From 1997 to 2007 she was educated in secondary school of village Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school “Center for gifted children”. From 2009 she is a student of Nizhny Novgorod State University of Architec- ture and Civil Engineering (spatiality “Assessment and management of real estate”). At the same time she is a student of courses “Translator in the field of professional communication” and “Design (interior art)” in the University. E.A. Bulaeva was a contributor of grant of President of Russia (grant № MK-548.2010.2). She has 29 published papers in area of her researches.