SlideShare ist ein Scribd-Unternehmen logo
1 von 46
Laminar unsteady flow and heat transfer in confined channel flow past square bars arranged side by side Professor Alvaro Valencia Universidad de Chile Department of Mechanical Engineering
Motivation ,[object Object],[object Object],[object Object],[object Object],Streaklines around a square bar for Re=250, and Re=1000 Davis, (1984)
Turbulent flow near a wall, Re=22000, experimental results, Bosch ( 1995) Numerical results, k-   turbulence model
Anti-phase and in-phase vortex shedding around cylinders  Re=200 G/d=2.4 Williamson, (1985)
Wake interference of a row of normal flat plates arranged side by side in a uniform flow, Hayashi, (1986) ,[object Object],[object Object],[object Object],[object Object]
Numerical simulation of laminar flow around two square bars arranged side by side  with free flow condition. Bosch (1995) Re c =100 G/H c =0,2 1 bar behavior
Re c =100 G/H c =0,75 Bistable vortex shedding For G/d >1.5   synchronization of the vortex shedding in anti-phase or  in-phase
Geometry of the computational domain ,[object Object],[object Object],[object Object]
Mathematical formulation ,[object Object],[object Object],[object Object],The variables were non-dimensionalized with Uo, H, and To.
Boundary Conditions ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Boundary conditions ,[object Object]
Numerical solution technique ,[object Object],[object Object],[object Object],[object Object],[object Object]
Grid selection ,[object Object],[object Object],[object Object],[object Object]
 
      *: Strouhal numbers St, Drag coefficient and Lift coefficient are based here on the maximum flow veliocity 53.6 8.52 0.61 23.39 1.39 0.140 26 208x1040 53.1 8.52 0.60 22.54 1.40 0.139 24 192x960 52.7 8.51 0.58 21.52 1.41 0.139 22 176x880 52.4 8.51 0.56 20.17 1.42 0.138 20 160x800 52.0 8.50 0.54 18.64 1.43 0.137 18 144x720 51.7 8.50 0.51 16.76 1.44 0.135 16 128x640 51.3 8.49 0.48 14.58 1.45 0.133 14 112x560 51.1 8.47 0.43 11.96 1.47 0.131 12 96x480 50.8 8.45 0.36 8.93 1.48 0.128 10 80x400 50.7 8.43 0.29 5.82 1.50 0.124 8 64x320 48.9 8.40 0.13 0.19 1.46 0.118 6 48x240 47.9 8.26 0.00 0.00 3.06 0.000 4 32x160 1000x f Nu  Cl* 1000x  Cd* Cd* St* CV on bar Grid size
Grid size
Grid size
Grid size
Conclusion on grid selection ,[object Object]
Cases studied ,[object Object],[object Object],[object Object],[object Object],[object Object]
Flow pattern (11 – 4)
Flow pattern (3)
Flow pattern (2)
Flow pattern (1)
Instantaneous temperature field Case 1
Instantaneous local skin friction coefficient on the channel walls.  Case 1   Cf=   / (1/2  Uo**2)     :  wall shear stress Inferior wall Superior wall
Local skin friction coefficient on the inferior channel wall.  Cases 11 to 6
Local skin friction coefficient on the channel walls. Cases 5 to 1 Superior wall Inferior wall
Local Nusselt numbers: Cases 11 to 6
Local Nusselt numbers: Cases 5 to 1 Inferior wall Superior wall
Frequency: Case (2) Velocity U, Position: 2Hc behind the bar   Inferior bar Superior bar
Frequency: Case (2) Velocity V, Position: 2Hc behind the bar   Inferior bar Superior bar
Frequency: Case (2) Drag coefficients Inferior bar Superior bar
Frequency: Case (2)   Lift Coefficients Inferior bar Superior bar
Strouhal numbers and Frequencies St=fd/Uo Struhal number F=fH/Uo  non dimesional frequency F: frequency  of Velocity V  St=F/8
Dominant frequency of the flow low frequency modulation in cases: G=0.0625, 0.09375, and 0.125H  f G/H=0 = 1.14
Skin friction coefficient on channel wall   Cf=   / (1/2  Uo**2)     :  wall shear stress
Drag coefficients for the lower and superior bar   Cd=D/(1/2  Uo**2)d Cd G/H=0  =5
Lift coefficients: lower bar, superior bar   Cl=L/(1/2  Uo**2)d
Mean Nusselt number : inferior wall and superior wall    Nu=hH/k  q=h  T wall heat flux nu G/H=0 =11
Apparent friction factor   f=  PH/(Uo**2)L f G/H=0 = 0.164
Mean Heat Transfer enhancement and Pressure drop increase Nuo and fo for a plane channel without built-in square bars Nu 0 =  7,68  and  f 0 = 0,01496   Nu with 1 square bar=8.52 f with 1 square bar =0.053
Conclusions ,[object Object],[object Object]
[object Object]
[object Object]
References [1] H. Suzuki, Y. Inoue, T. Nishimura, K. Fukutani, k. Suzuki,  Unsteady flow in a channel obstructed by a square rod (crisscross motion of vortex). International Journal of  Heat and Fluid Flow 14 (1993) 2-9. [2] A. K. Saha, K. Muralidhar, G. Biswas, Transition and chaos in two-dimensional flow past a square cylinder, Journal of Engineering Mechanics, 126, (2000), 523-532. [3] M. Breuer, J. Bernsdorf, T. Zeiser, F. Durst, Accurate computations of the laminar flow past a square cylinder based on two different methods: lattice-Boltzmann and finite-volume, International Journal of Heat and Fluid Flow, 21, (2000), 186-196. [4] J. L Rosales, A. Ortega, J.A.C. Humphrey, A numerical simulation of the convective heat transfer in confined channel flow past square cylinders: comparison of inline and offset tandem pairs, International Journal of Heat and Mass Transfer, 44, (2001), 587-603. [5] K. Tatsutani, R. Devarakonda, J.A.C. Humphrey, Unsteady flow and heat transfer for cylinder pairs in a channel,  International  Journal of Heat and Mass Transfer,  36, (1993), 3311-3328. [6] A. Valencia, Numerical study of self-sustained oscillatory flows and heat transfer in channels with a tandem of transverse vortex generators, Heat and Mass Transfer, 33, (1998), 465-470. [7] D. Sumner, S.J. Price, M.P. Païdoussis, Flow-pattern identification for two staggered circular cylinders in cross-flow, Journal of Fluid Mechanics, 411, (2000), 263-303. [8] C.H.K. Williamson, Evolution of a single wake behind a pair of bluff bodies, Journal of Fluid Mechanics, 159, (1985), 1-18. [9] J.J. Miau, H.B. Wang, J.H. Chou, Flopping phenomenon of flow behind two plates placed side-by-side normal to the flow direction, Fluid Dynamics Research, 17, (1996), 311-328. [10] M. Hayashi, A. Sakurai, Wake interference of a row of normal flat plates arranged side by side in a uniform flow, Journal of Fluid Mechanics, 164, (1986), 1-25. [11] S.C. Luo, L.L. Li, D.A. Shah, Aerodynamic stability of the downstream of two tandem square-section cylinders, Journal of Wind Engineering and Industrial Aerodynamics, 79, (1999), 79-103. [12] G. Bosch, Experimentelle und theoretische Untersuchung der instationären Strömung um zylindrische Strukturen, Ph.D. Dissertation, Universität Fridericiana zu Karlsruhe, Germany, (1995). [13] S. Patankar, Numerical heat transfer and fluid flow, Hemisphere Publishing Co., New York, (1980). [14] J.P. van Doormaal, G.D. Raithby, Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numerical Heat Transfer, 7,  (1984), 147-163.

Weitere ähnliche Inhalte

Was ist angesagt?

Fluid dynamics
Fluid dynamicsFluid dynamics
Fluid dynamics
Cik Minn
 

Was ist angesagt? (20)

Boundary layer theory
Boundary layer theoryBoundary layer theory
Boundary layer theory
 
Fluid dynamic
Fluid dynamicFluid dynamic
Fluid dynamic
 
Boundary layer theory
Boundary layer theoryBoundary layer theory
Boundary layer theory
 
Drag force & Lift
Drag force & LiftDrag force & Lift
Drag force & Lift
 
Fluid mechanics
Fluid mechanicsFluid mechanics
Fluid mechanics
 
Fluid Kinematics
Fluid KinematicsFluid Kinematics
Fluid Kinematics
 
Fluid statics of fluid mechanic
Fluid statics of fluid mechanicFluid statics of fluid mechanic
Fluid statics of fluid mechanic
 
Fluid dynamics 1
Fluid dynamics 1Fluid dynamics 1
Fluid dynamics 1
 
Reynolds number
Reynolds numberReynolds number
Reynolds number
 
Boundary layer
Boundary layerBoundary layer
Boundary layer
 
Concept of Boundary Layer
Concept of Boundary LayerConcept of Boundary Layer
Concept of Boundary Layer
 
What is laminar flow updated for slideshare
What is laminar flow updated for slideshareWhat is laminar flow updated for slideshare
What is laminar flow updated for slideshare
 
Fluids and their properties
Fluids and their propertiesFluids and their properties
Fluids and their properties
 
Fluid kinematics and dynamics
Fluid kinematics and dynamicsFluid kinematics and dynamics
Fluid kinematics and dynamics
 
Properties of Fluids
Properties of FluidsProperties of Fluids
Properties of Fluids
 
Newtons law of viscosity
Newtons law of viscosityNewtons law of viscosity
Newtons law of viscosity
 
Reynolds Number And Experiment
Reynolds Number And ExperimentReynolds Number And Experiment
Reynolds Number And Experiment
 
Fluid kinematics
Fluid kinematicsFluid kinematics
Fluid kinematics
 
Applied fluid mechanics flows & applications
Applied fluid mechanics flows & applicationsApplied fluid mechanics flows & applications
Applied fluid mechanics flows & applications
 
Fluid dynamics
Fluid dynamicsFluid dynamics
Fluid dynamics
 

Ähnlich wie Laminar Flow

Experimental study of natural convection heat transfer in an
Experimental study of natural convection heat transfer in anExperimental study of natural convection heat transfer in an
Experimental study of natural convection heat transfer in an
Alexander Decker
 
Pressure and heat transfer over a series of in line non-circular ducts in a p...
Pressure and heat transfer over a series of in line non-circular ducts in a p...Pressure and heat transfer over a series of in line non-circular ducts in a p...
Pressure and heat transfer over a series of in line non-circular ducts in a p...
Carnegie Mellon University
 

Ähnlich wie Laminar Flow (20)

Numerical Analysis of heat transfer in a channel Wit in clined baffles
Numerical Analysis of heat transfer in a channel Wit in clined bafflesNumerical Analysis of heat transfer in a channel Wit in clined baffles
Numerical Analysis of heat transfer in a channel Wit in clined baffles
 
Abaqus CFD-Sample Problems
Abaqus CFD-Sample ProblemsAbaqus CFD-Sample Problems
Abaqus CFD-Sample Problems
 
IJHMT_2016
IJHMT_2016IJHMT_2016
IJHMT_2016
 
Numerical study of heat transfer in pulsating turbulent air flow
Numerical study of heat transfer in pulsating turbulent air flowNumerical study of heat transfer in pulsating turbulent air flow
Numerical study of heat transfer in pulsating turbulent air flow
 
IJERA
IJERAIJERA
IJERA
 
Thermal and fluid characteristics of three-layer microchannels heat sinks
Thermal and fluid characteristics of three-layer microchannels heat sinksThermal and fluid characteristics of three-layer microchannels heat sinks
Thermal and fluid characteristics of three-layer microchannels heat sinks
 
technoloTwo dimensional numerical simulation of the combined heat transfer in...
technoloTwo dimensional numerical simulation of the combined heat transfer in...technoloTwo dimensional numerical simulation of the combined heat transfer in...
technoloTwo dimensional numerical simulation of the combined heat transfer in...
 
IRJET- Computational Fluid Dymamic Analysis Natural Convection Flow through S...
IRJET- Computational Fluid Dymamic Analysis Natural Convection Flow through S...IRJET- Computational Fluid Dymamic Analysis Natural Convection Flow through S...
IRJET- Computational Fluid Dymamic Analysis Natural Convection Flow through S...
 
Experimental study of natural convection heat transfer in an
Experimental study of natural convection heat transfer in anExperimental study of natural convection heat transfer in an
Experimental study of natural convection heat transfer in an
 
NATURAL CONVECTION HEAT TRANSFER INSIDE INCLINED OPEN CYLINDER
NATURAL CONVECTION HEAT TRANSFER INSIDE INCLINED OPEN CYLINDERNATURAL CONVECTION HEAT TRANSFER INSIDE INCLINED OPEN CYLINDER
NATURAL CONVECTION HEAT TRANSFER INSIDE INCLINED OPEN CYLINDER
 
Effect of couple stress fluid on mhd peristaltic motion and
Effect of couple stress fluid on mhd peristaltic motion andEffect of couple stress fluid on mhd peristaltic motion and
Effect of couple stress fluid on mhd peristaltic motion and
 
FINAL2 PPT3
FINAL2 PPT3FINAL2 PPT3
FINAL2 PPT3
 
Pressure and Heat Transfer over a Series of In-line Non-Circular Ducts in a P...
Pressure and Heat Transfer over a Series of In-line Non-Circular Ducts in a P...Pressure and Heat Transfer over a Series of In-line Non-Circular Ducts in a P...
Pressure and Heat Transfer over a Series of In-line Non-Circular Ducts in a P...
 
Pressure and heat transfer over a series of in line non-circular ducts in a p...
Pressure and heat transfer over a series of in line non-circular ducts in a p...Pressure and heat transfer over a series of in line non-circular ducts in a p...
Pressure and heat transfer over a series of in line non-circular ducts in a p...
 
13055193.ppt This is heat sink material.
13055193.ppt This is heat sink material.13055193.ppt This is heat sink material.
13055193.ppt This is heat sink material.
 
2392-3449
2392-34492392-3449
2392-3449
 
Convective heat transfer and pressure drop in v corrugated
Convective heat transfer and pressure drop in v corrugatedConvective heat transfer and pressure drop in v corrugated
Convective heat transfer and pressure drop in v corrugated
 
ISOPE2021_elSheshtawy.pptx
ISOPE2021_elSheshtawy.pptxISOPE2021_elSheshtawy.pptx
ISOPE2021_elSheshtawy.pptx
 
Lf3619161920
Lf3619161920Lf3619161920
Lf3619161920
 
Comparative Analysis Fully Developed Turbulent Flow in Various Arbitrary Cros...
Comparative Analysis Fully Developed Turbulent Flow in Various Arbitrary Cros...Comparative Analysis Fully Developed Turbulent Flow in Various Arbitrary Cros...
Comparative Analysis Fully Developed Turbulent Flow in Various Arbitrary Cros...
 

Mehr von Alvaro Valencia (7)

CFD en modelo de Aneurisma Basilar
CFD en modelo de Aneurisma  BasilarCFD en modelo de Aneurisma  Basilar
CFD en modelo de Aneurisma Basilar
 
Flujo turbulento
Flujo turbulentoFlujo turbulento
Flujo turbulento
 
Chorros
ChorrosChorros
Chorros
 
Flujo 2 Cilindros
Flujo 2 CilindrosFlujo 2 Cilindros
Flujo 2 Cilindros
 
Canal con generadores de vortices
Canal con generadores de vorticesCanal con generadores de vortices
Canal con generadores de vortices
 
Burbujas ideales
Burbujas idealesBurbujas ideales
Burbujas ideales
 
Aneurismas cerebrales
Aneurismas cerebralesAneurismas cerebrales
Aneurismas cerebrales
 

Kürzlich hochgeladen

Kürzlich hochgeladen (20)

Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 

Laminar Flow

  • 1. Laminar unsteady flow and heat transfer in confined channel flow past square bars arranged side by side Professor Alvaro Valencia Universidad de Chile Department of Mechanical Engineering
  • 2.
  • 3. Turbulent flow near a wall, Re=22000, experimental results, Bosch ( 1995) Numerical results, k-  turbulence model
  • 4. Anti-phase and in-phase vortex shedding around cylinders Re=200 G/d=2.4 Williamson, (1985)
  • 5.
  • 6. Numerical simulation of laminar flow around two square bars arranged side by side with free flow condition. Bosch (1995) Re c =100 G/H c =0,2 1 bar behavior
  • 7. Re c =100 G/H c =0,75 Bistable vortex shedding For G/d >1.5  synchronization of the vortex shedding in anti-phase or in-phase
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.  
  • 15.       *: Strouhal numbers St, Drag coefficient and Lift coefficient are based here on the maximum flow veliocity 53.6 8.52 0.61 23.39 1.39 0.140 26 208x1040 53.1 8.52 0.60 22.54 1.40 0.139 24 192x960 52.7 8.51 0.58 21.52 1.41 0.139 22 176x880 52.4 8.51 0.56 20.17 1.42 0.138 20 160x800 52.0 8.50 0.54 18.64 1.43 0.137 18 144x720 51.7 8.50 0.51 16.76 1.44 0.135 16 128x640 51.3 8.49 0.48 14.58 1.45 0.133 14 112x560 51.1 8.47 0.43 11.96 1.47 0.131 12 96x480 50.8 8.45 0.36 8.93 1.48 0.128 10 80x400 50.7 8.43 0.29 5.82 1.50 0.124 8 64x320 48.9 8.40 0.13 0.19 1.46 0.118 6 48x240 47.9 8.26 0.00 0.00 3.06 0.000 4 32x160 1000x f Nu  Cl* 1000x  Cd* Cd* St* CV on bar Grid size
  • 19.
  • 20.
  • 26. Instantaneous local skin friction coefficient on the channel walls. Case 1 Cf=  / (1/2  Uo**2)  : wall shear stress Inferior wall Superior wall
  • 27. Local skin friction coefficient on the inferior channel wall. Cases 11 to 6
  • 28. Local skin friction coefficient on the channel walls. Cases 5 to 1 Superior wall Inferior wall
  • 29. Local Nusselt numbers: Cases 11 to 6
  • 30. Local Nusselt numbers: Cases 5 to 1 Inferior wall Superior wall
  • 31. Frequency: Case (2) Velocity U, Position: 2Hc behind the bar Inferior bar Superior bar
  • 32. Frequency: Case (2) Velocity V, Position: 2Hc behind the bar Inferior bar Superior bar
  • 33. Frequency: Case (2) Drag coefficients Inferior bar Superior bar
  • 34. Frequency: Case (2) Lift Coefficients Inferior bar Superior bar
  • 35. Strouhal numbers and Frequencies St=fd/Uo Struhal number F=fH/Uo non dimesional frequency F: frequency of Velocity V St=F/8
  • 36. Dominant frequency of the flow low frequency modulation in cases: G=0.0625, 0.09375, and 0.125H f G/H=0 = 1.14
  • 37. Skin friction coefficient on channel wall Cf=  / (1/2  Uo**2)  : wall shear stress
  • 38. Drag coefficients for the lower and superior bar Cd=D/(1/2  Uo**2)d Cd G/H=0 =5
  • 39. Lift coefficients: lower bar, superior bar Cl=L/(1/2  Uo**2)d
  • 40. Mean Nusselt number : inferior wall and superior wall Nu=hH/k q=h  T wall heat flux nu G/H=0 =11
  • 41. Apparent friction factor f=  PH/(Uo**2)L f G/H=0 = 0.164
  • 42. Mean Heat Transfer enhancement and Pressure drop increase Nuo and fo for a plane channel without built-in square bars Nu 0 = 7,68 and f 0 = 0,01496 Nu with 1 square bar=8.52 f with 1 square bar =0.053
  • 43.
  • 44.
  • 45.
  • 46. References [1] H. Suzuki, Y. Inoue, T. Nishimura, K. Fukutani, k. Suzuki, Unsteady flow in a channel obstructed by a square rod (crisscross motion of vortex). International Journal of Heat and Fluid Flow 14 (1993) 2-9. [2] A. K. Saha, K. Muralidhar, G. Biswas, Transition and chaos in two-dimensional flow past a square cylinder, Journal of Engineering Mechanics, 126, (2000), 523-532. [3] M. Breuer, J. Bernsdorf, T. Zeiser, F. Durst, Accurate computations of the laminar flow past a square cylinder based on two different methods: lattice-Boltzmann and finite-volume, International Journal of Heat and Fluid Flow, 21, (2000), 186-196. [4] J. L Rosales, A. Ortega, J.A.C. Humphrey, A numerical simulation of the convective heat transfer in confined channel flow past square cylinders: comparison of inline and offset tandem pairs, International Journal of Heat and Mass Transfer, 44, (2001), 587-603. [5] K. Tatsutani, R. Devarakonda, J.A.C. Humphrey, Unsteady flow and heat transfer for cylinder pairs in a channel, International Journal of Heat and Mass Transfer, 36, (1993), 3311-3328. [6] A. Valencia, Numerical study of self-sustained oscillatory flows and heat transfer in channels with a tandem of transverse vortex generators, Heat and Mass Transfer, 33, (1998), 465-470. [7] D. Sumner, S.J. Price, M.P. Païdoussis, Flow-pattern identification for two staggered circular cylinders in cross-flow, Journal of Fluid Mechanics, 411, (2000), 263-303. [8] C.H.K. Williamson, Evolution of a single wake behind a pair of bluff bodies, Journal of Fluid Mechanics, 159, (1985), 1-18. [9] J.J. Miau, H.B. Wang, J.H. Chou, Flopping phenomenon of flow behind two plates placed side-by-side normal to the flow direction, Fluid Dynamics Research, 17, (1996), 311-328. [10] M. Hayashi, A. Sakurai, Wake interference of a row of normal flat plates arranged side by side in a uniform flow, Journal of Fluid Mechanics, 164, (1986), 1-25. [11] S.C. Luo, L.L. Li, D.A. Shah, Aerodynamic stability of the downstream of two tandem square-section cylinders, Journal of Wind Engineering and Industrial Aerodynamics, 79, (1999), 79-103. [12] G. Bosch, Experimentelle und theoretische Untersuchung der instationären Strömung um zylindrische Strukturen, Ph.D. Dissertation, Universität Fridericiana zu Karlsruhe, Germany, (1995). [13] S. Patankar, Numerical heat transfer and fluid flow, Hemisphere Publishing Co., New York, (1980). [14] J.P. van Doormaal, G.D. Raithby, Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numerical Heat Transfer, 7, (1984), 147-163.