SlideShare ist ein Scribd-Unternehmen logo
1 von 2
Chapter 4 Solution to Problems
Question #1.
A C-band earth station has an antenna with a transmit gain of 54 dB. The transmitter output
power is set to 100 W at a frequency of 6.100 GHz. The signal is received by a satellite at a
distance of 37,500 km by an antenna with a gain of 26 dB. The signal is then routed to a
transponder with a noise temperature of 500 K, a bandwidth of 36 MHz, and a gain of 110 dB.

   a. Calculate the path loss at 6.1 GHz. Wavelength is 0.04918 m.

Answer: Path loss = 20 log ( 4    R / ) = 20 log ( 4      37,500    103 / 0.04918) dB
Lp = 199.6 dB

b. Calculate the power at the output port (sometimes called the output waveguide flange) of the
satellite antenna, in dBW.

Answer: Uplink power budget gives
Pr = Pt + Gt + Gr - Lp dBW
= 20 + 54 + 26 – 199.6 = -99.6 dBW

c. Calculate the noise power at the transponder input, in dBW, in a bandwidth of 36 MHz.
Answer: N = k Ts BN = -228.6 + 27 + 75.6 = -126.0 dBW

d. Calculate the C/N ratio, in dB, in the transponder.
Answer: C/N = Pr – N = -99.6 + 126.0 = 26.4 dB

e. Calculate the carrier power, in dBW and in watts, at the transponder output.
Answer: The gain of the transponder is 110 dB. Output power is
Pt = Pr + G = -99.6 + 110 = 10.4 dBW or 101.04 = 11.0 W.

2. The satellite in Question #1 above serves the 48 contiguous states of the US. The antenna
on the satellite transmits at a frequency of 3875 MHz to an earth station at a distance of 39,000
km. The antenna has a 6o E-W beamwidth and a 3o N-S beamwidth. The receiving earth station
has an antenna with a gain of 53 dB and a system noise temperature of 100 K and is located at
4-2
the edge of the coverage zone of the satellite antenna. (Assume antenna gain is 3 dB lower than
in the center of the beam)
Ignore your result for transponder output power in Question 1 above. Assume the
transponder carrier power is 10 W at the input port of the transmit antenna on the satellite.

   a. Calculate the gain of the satellite antenna in the direction of the receiving earth station.

[Use the approximate formula G = 33,000/(product of beamwidths).]
Answer: G = 33,000 / ( 6 x 3) = 1833 or 32.6 dB on axis.
Hence satellite antenna gain towards earth station is 32.6 – 3 = 29.6 dB.
b. Calculate the carrier power received by the earth station, in dBW.
Answer: Calculate the path loss at 3.875GHz. Wavelength is 0.07742 m.
Path loss = 20 log ( 4 R / ) = 20 log ( 4      39,000 103 / 0.07742) dB
Lp = 196.0 dB
Downlink power budget gives
Pr = Pt + Gt + Gr - Lp dBW
= 10 + 29.6 + 53 – 196.0 = -103.4 dBW

c. Calculate the noise power of the earth station in 36 MHz bandwidth.
Answer: N = k Ts BN = -228.6 + 20 + 75.6 = -133.0 dBW

d. Hence find the C/N in dB for the earth station.
Answer: C/N = Pr – N = -103.4 + 133.0 = 29.6 dB

Weitere ähnliche Inhalte

Was ist angesagt?

Lecture 15 probabilidad de error y ber en señales bandabase binaria
Lecture 15 probabilidad de error y ber en señales bandabase binariaLecture 15 probabilidad de error y ber en señales bandabase binaria
Lecture 15 probabilidad de error y ber en señales bandabase binarianica2009
 
RF Basics & Getting Started Guide by Anaren
RF Basics & Getting Started Guide by AnarenRF Basics & Getting Started Guide by Anaren
RF Basics & Getting Started Guide by AnarenAnaren, Inc.
 
Lecture 7 probabilidad de error de transmisión pcm. formateo de señales dpcm,...
Lecture 7 probabilidad de error de transmisión pcm. formateo de señales dpcm,...Lecture 7 probabilidad de error de transmisión pcm. formateo de señales dpcm,...
Lecture 7 probabilidad de error de transmisión pcm. formateo de señales dpcm,...nica2009
 
Monopulse tracking radar
Monopulse tracking radarMonopulse tracking radar
Monopulse tracking radarAshok Selsan
 
Probabilidad de error de símbolo m pam modificado
Probabilidad de error de símbolo m pam modificadoProbabilidad de error de símbolo m pam modificado
Probabilidad de error de símbolo m pam modificadoPato Villacis
 
Chap 5 (small scale fading)
Chap 5 (small scale fading)Chap 5 (small scale fading)
Chap 5 (small scale fading)asadkhan1327
 
Enlace satelital y estaciones terrestres
Enlace satelital y estaciones terrestresEnlace satelital y estaciones terrestres
Enlace satelital y estaciones terrestresmaria noriega
 
Link budget calculation
Link budget calculationLink budget calculation
Link budget calculationsitimunirah88
 
chap1 transmission-generalités
chap1 transmission-generalitéschap1 transmission-generalités
chap1 transmission-generalitésBAKKOURY Jamila
 
Baseband shaping for data transmission
Baseband shaping for data transmissionBaseband shaping for data transmission
Baseband shaping for data transmissionsparamita
 
Link Power Budget Calculation and Propagation Factors for Satellite COmmunica...
Link Power Budget Calculation and Propagation Factors for Satellite COmmunica...Link Power Budget Calculation and Propagation Factors for Satellite COmmunica...
Link Power Budget Calculation and Propagation Factors for Satellite COmmunica...THANDAIAH PRABU
 
5.SONET/SDH Red óptica síncrona
5.SONET/SDH Red óptica síncrona5.SONET/SDH Red óptica síncrona
5.SONET/SDH Red óptica síncronaEdison Coimbra G.
 
Radar system components and system design
Radar system components and system designRadar system components and system design
Radar system components and system designvagheshp
 

Was ist angesagt? (20)

Lecture 15 probabilidad de error y ber en señales bandabase binaria
Lecture 15 probabilidad de error y ber en señales bandabase binariaLecture 15 probabilidad de error y ber en señales bandabase binaria
Lecture 15 probabilidad de error y ber en señales bandabase binaria
 
Presentation on satellite antenna
Presentation on satellite antennaPresentation on satellite antenna
Presentation on satellite antenna
 
Antenna Parameters Part 2
Antenna Parameters Part 2Antenna Parameters Part 2
Antenna Parameters Part 2
 
RF Basics & Getting Started Guide by Anaren
RF Basics & Getting Started Guide by AnarenRF Basics & Getting Started Guide by Anaren
RF Basics & Getting Started Guide by Anaren
 
Microwave link budget
Microwave link budgetMicrowave link budget
Microwave link budget
 
Lecture 7 probabilidad de error de transmisión pcm. formateo de señales dpcm,...
Lecture 7 probabilidad de error de transmisión pcm. formateo de señales dpcm,...Lecture 7 probabilidad de error de transmisión pcm. formateo de señales dpcm,...
Lecture 7 probabilidad de error de transmisión pcm. formateo de señales dpcm,...
 
Redes de acceso
Redes de accesoRedes de acceso
Redes de acceso
 
Monopulse tracking radar
Monopulse tracking radarMonopulse tracking radar
Monopulse tracking radar
 
Probabilidad de error de símbolo m pam modificado
Probabilidad de error de símbolo m pam modificadoProbabilidad de error de símbolo m pam modificado
Probabilidad de error de símbolo m pam modificado
 
Chap 5 (small scale fading)
Chap 5 (small scale fading)Chap 5 (small scale fading)
Chap 5 (small scale fading)
 
Baseband Digital Data Transmission
Baseband Digital Data TransmissionBaseband Digital Data Transmission
Baseband Digital Data Transmission
 
Enlace satelital y estaciones terrestres
Enlace satelital y estaciones terrestresEnlace satelital y estaciones terrestres
Enlace satelital y estaciones terrestres
 
Link budget calculation
Link budget calculationLink budget calculation
Link budget calculation
 
chap1 transmission-generalités
chap1 transmission-generalitéschap1 transmission-generalités
chap1 transmission-generalités
 
Frequency Modulation
Frequency ModulationFrequency Modulation
Frequency Modulation
 
Baseband shaping for data transmission
Baseband shaping for data transmissionBaseband shaping for data transmission
Baseband shaping for data transmission
 
Link Power Budget Calculation and Propagation Factors for Satellite COmmunica...
Link Power Budget Calculation and Propagation Factors for Satellite COmmunica...Link Power Budget Calculation and Propagation Factors for Satellite COmmunica...
Link Power Budget Calculation and Propagation Factors for Satellite COmmunica...
 
5.SONET/SDH Red óptica síncrona
5.SONET/SDH Red óptica síncrona5.SONET/SDH Red óptica síncrona
5.SONET/SDH Red óptica síncrona
 
PDH
PDHPDH
PDH
 
Radar system components and system design
Radar system components and system designRadar system components and system design
Radar system components and system design
 

Ähnlich wie Chapter 4 solution to problems

Lecture Notes: EEEE6490345 RF And Microwave Electronics - Radio Communicatio...
Lecture Notes:  EEEE6490345 RF And Microwave Electronics - Radio Communicatio...Lecture Notes:  EEEE6490345 RF And Microwave Electronics - Radio Communicatio...
Lecture Notes: EEEE6490345 RF And Microwave Electronics - Radio Communicatio...AIMST University
 
SatCom_Numerical Probloms.pptx
SatCom_Numerical Probloms.pptxSatCom_Numerical Probloms.pptx
SatCom_Numerical Probloms.pptxEshP1
 
Project 3 “Satellite Link Budgets and PE”
Project 3 “Satellite Link Budgets and PE”Project 3 “Satellite Link Budgets and PE”
Project 3 “Satellite Link Budgets and PE”Danish Bangash
 
Rf propagation in a nutshell
Rf propagation in a nutshellRf propagation in a nutshell
Rf propagation in a nutshellIzah Asmadi
 
Earth station Parameters
Earth station ParametersEarth station Parameters
Earth station ParametersJenil. Jacob
 
N 4-antennas propagation
N 4-antennas propagationN 4-antennas propagation
N 4-antennas propagation15010192
 
850 MHz & 900 MHz Co-Existence
850 MHz & 900 MHz Co-Existence850 MHz & 900 MHz Co-Existence
850 MHz & 900 MHz Co-ExistenceSitha Sok
 
Lect 11.regenerative repeaters
Lect 11.regenerative repeatersLect 11.regenerative repeaters
Lect 11.regenerative repeatersNebiye Slmn
 
Antennas propagation
Antennas propagationAntennas propagation
Antennas propagationhrishi_tiwary
 
Lecture2 antennas and propagation
Lecture2 antennas and propagationLecture2 antennas and propagation
Lecture2 antennas and propagationYahya Alzidi
 
Lecture2 antennas and propagation
Lecture2 antennas and propagationLecture2 antennas and propagation
Lecture2 antennas and propagationYahya Alzidi
 
Satellite Link Budget_Course_Sofia_2017_Lisi
Satellite Link Budget_Course_Sofia_2017_LisiSatellite Link Budget_Course_Sofia_2017_Lisi
Satellite Link Budget_Course_Sofia_2017_LisiMarco Lisi
 
Large Scale Fading and Network Deployment.pdf
Large	Scale	Fading	and Network Deployment.pdfLarge	Scale	Fading	and Network Deployment.pdf
Large Scale Fading and Network Deployment.pdfmshanajoel6
 

Ähnlich wie Chapter 4 solution to problems (20)

Lecture Notes: EEEE6490345 RF And Microwave Electronics - Radio Communicatio...
Lecture Notes:  EEEE6490345 RF And Microwave Electronics - Radio Communicatio...Lecture Notes:  EEEE6490345 RF And Microwave Electronics - Radio Communicatio...
Lecture Notes: EEEE6490345 RF And Microwave Electronics - Radio Communicatio...
 
Chapter3
Chapter3Chapter3
Chapter3
 
blake sample-problems
blake sample-problemsblake sample-problems
blake sample-problems
 
SatCom_Numerical Probloms.pptx
SatCom_Numerical Probloms.pptxSatCom_Numerical Probloms.pptx
SatCom_Numerical Probloms.pptx
 
Project 3 “Satellite Link Budgets and PE”
Project 3 “Satellite Link Budgets and PE”Project 3 “Satellite Link Budgets and PE”
Project 3 “Satellite Link Budgets and PE”
 
Chapter#5
Chapter#5Chapter#5
Chapter#5
 
Rf propagation in a nutshell
Rf propagation in a nutshellRf propagation in a nutshell
Rf propagation in a nutshell
 
Satellite link design
Satellite link designSatellite link design
Satellite link design
 
bcs_unit-6.ppt
bcs_unit-6.pptbcs_unit-6.ppt
bcs_unit-6.ppt
 
Earth station Parameters
Earth station ParametersEarth station Parameters
Earth station Parameters
 
N 4-antennas propagation
N 4-antennas propagationN 4-antennas propagation
N 4-antennas propagation
 
850 MHz & 900 MHz Co-Existence
850 MHz & 900 MHz Co-Existence850 MHz & 900 MHz Co-Existence
850 MHz & 900 MHz Co-Existence
 
Lect 11.regenerative repeaters
Lect 11.regenerative repeatersLect 11.regenerative repeaters
Lect 11.regenerative repeaters
 
Earlang ejercicios
Earlang ejerciciosEarlang ejercicios
Earlang ejercicios
 
Antennas propagation
Antennas propagationAntennas propagation
Antennas propagation
 
Lecture2 antennas and propagation
Lecture2 antennas and propagationLecture2 antennas and propagation
Lecture2 antennas and propagation
 
Lecture2 antennas and propagation
Lecture2 antennas and propagationLecture2 antennas and propagation
Lecture2 antennas and propagation
 
Satellite Link Budget_Course_Sofia_2017_Lisi
Satellite Link Budget_Course_Sofia_2017_LisiSatellite Link Budget_Course_Sofia_2017_Lisi
Satellite Link Budget_Course_Sofia_2017_Lisi
 
Large Scale Fading and Network Deployment.pdf
Large	Scale	Fading	and Network Deployment.pdfLarge	Scale	Fading	and Network Deployment.pdf
Large Scale Fading and Network Deployment.pdf
 
Radio Link budget
Radio Link budgetRadio Link budget
Radio Link budget
 

Chapter 4 solution to problems

  • 1. Chapter 4 Solution to Problems Question #1. A C-band earth station has an antenna with a transmit gain of 54 dB. The transmitter output power is set to 100 W at a frequency of 6.100 GHz. The signal is received by a satellite at a distance of 37,500 km by an antenna with a gain of 26 dB. The signal is then routed to a transponder with a noise temperature of 500 K, a bandwidth of 36 MHz, and a gain of 110 dB. a. Calculate the path loss at 6.1 GHz. Wavelength is 0.04918 m. Answer: Path loss = 20 log ( 4 R / ) = 20 log ( 4 37,500 103 / 0.04918) dB Lp = 199.6 dB b. Calculate the power at the output port (sometimes called the output waveguide flange) of the satellite antenna, in dBW. Answer: Uplink power budget gives Pr = Pt + Gt + Gr - Lp dBW = 20 + 54 + 26 – 199.6 = -99.6 dBW c. Calculate the noise power at the transponder input, in dBW, in a bandwidth of 36 MHz. Answer: N = k Ts BN = -228.6 + 27 + 75.6 = -126.0 dBW d. Calculate the C/N ratio, in dB, in the transponder. Answer: C/N = Pr – N = -99.6 + 126.0 = 26.4 dB e. Calculate the carrier power, in dBW and in watts, at the transponder output. Answer: The gain of the transponder is 110 dB. Output power is Pt = Pr + G = -99.6 + 110 = 10.4 dBW or 101.04 = 11.0 W. 2. The satellite in Question #1 above serves the 48 contiguous states of the US. The antenna on the satellite transmits at a frequency of 3875 MHz to an earth station at a distance of 39,000 km. The antenna has a 6o E-W beamwidth and a 3o N-S beamwidth. The receiving earth station has an antenna with a gain of 53 dB and a system noise temperature of 100 K and is located at 4-2 the edge of the coverage zone of the satellite antenna. (Assume antenna gain is 3 dB lower than in the center of the beam) Ignore your result for transponder output power in Question 1 above. Assume the transponder carrier power is 10 W at the input port of the transmit antenna on the satellite. a. Calculate the gain of the satellite antenna in the direction of the receiving earth station. [Use the approximate formula G = 33,000/(product of beamwidths).] Answer: G = 33,000 / ( 6 x 3) = 1833 or 32.6 dB on axis. Hence satellite antenna gain towards earth station is 32.6 – 3 = 29.6 dB.
  • 2. b. Calculate the carrier power received by the earth station, in dBW. Answer: Calculate the path loss at 3.875GHz. Wavelength is 0.07742 m. Path loss = 20 log ( 4 R / ) = 20 log ( 4 39,000 103 / 0.07742) dB Lp = 196.0 dB Downlink power budget gives Pr = Pt + Gt + Gr - Lp dBW = 10 + 29.6 + 53 – 196.0 = -103.4 dBW c. Calculate the noise power of the earth station in 36 MHz bandwidth. Answer: N = k Ts BN = -228.6 + 20 + 75.6 = -133.0 dBW d. Hence find the C/N in dB for the earth station. Answer: C/N = Pr – N = -103.4 + 133.0 = 29.6 dB