SlideShare ist ein Scribd-Unternehmen logo
1 von 16
Downloaden Sie, um offline zu lesen
1
Design of Columns
Introduction
According to ACI Code 2.2, a structural element with a ratio of height-to-least lateral dimension
exceeding three used primarily to support compressive loads is defined as column. Columns
support vertical loads from the floor and roof slabs and transfer these loads to the footings.
Columns usually support compressive loads with or without bending. Depending on the
magnitude of the bending moment and the axial force, column behavior will vary from pure beam
action to pure column action.
Columns are classified as short or long depending on their slenderness ratios. Short columns
usually fail when their materials are overstressed and long columns usually fail due to buckling
which produces secondary moments resulting from the ∆−P effect.
Columns are classified according to the way they are reinforced into tied and spirally reinforced
columns. Columns are usually reinforced with longitudinal and transverse reinforcement. When
this transverse reinforcement is in the form of ties, the column is called “tied”. If the transverse
reinforcement is in the form of helical hoops, the column is called “spirally reinforced”.
Since failure of columns often cause extensive damage, they are designed with a higher factor of
safety than beams.
Types of Columns
Columns are divided into three types according to the way they are reinforced.
Tied Columns
A tied column, shown in Figure 1, is a column in which the longitudinal reinforcement bars are
tied together with separate smaller diameter transverse bars (ties) spaced at some interval along
the column height. These ties help to hold the longitudinal reinforcement bars in place during
construction and ensure stability of these bars against local buckling. The cross sections of such
columns are usually square, rectangular, or circular in shape. A minimum of four bars is used in
rectangular and circular cross sections.
2
Figure 1: Tied column
Spirally-Reinforced Columns
They are columns in which the longitudinal bars are arranged in a circle surrounded by a closely
spaced continuous spiral, shown in Figure 2. These columns are usually circular or square in
shape. A minimum of six bars is used for longitudinal reinforcement.
Figure 2: Spirally-reinforced column
Composite Columns
A composite column is a column made of structural steel shapes or pipes surrounded by or filled
by concrete with or without longitudinal reinforcement, shown in Figure 3.
3
Figure 3:Composite column
Behavior of Tied and Spirally-Reinforced Columns
Axial loading tests have proven that tied and spirally reinforced columns having the same cross-
sectional areas of concrete and steel reinforcement behave in the same manner up to the ultimate
load, as shown in Figure 4.a. At that load tied columns fail suddenly due to excessive cracking in
the concrete section followed by buckling of the longitudinal reinforcement between ties within
the failure region, as shown in Figure 4.b.
(a)
4
(b)
Figure 4: Failure of columns; (a) behavior of tied and spirally-
reinforced columns; (b) failure of columns
For spirally reinforced columns, once the ultimate load is reached, the concrete shell covering the
spiral starts to peel off. Only then, the spiral comes to action by providing a confining force to the
concrete core, thus enabling the column to sustain large deformations before final collapse occurs.
Factored Loads and Strength Reduction Factors
Factored Loads
Load factors for dead, live, wind or earthquake live loads combinations are shown in Table 1.
Table 1: Required Strength for simplified load combinations
Loads Required Strength Equation NO.
Dead (D) and Live (L) D4.1
LD 6.12.1 +
(1.1)
(1.2)
Dead (D), Live (L) and wind
(W)
LD 0.12.1 +
WD 8.02.1 +
LWD 0.16.12.1 ++
WD 6.19.0 +
(1.3)
(1.3)
(1.4)
(1.6)
Dead (D), Live (L) and
Earthquake (E)
ELD 0.10.12.1 ++
ED 0.19.0 +
(1.5)
(1.7)
Strength Reduction Factors
According to ACI 9.3.2 strength reduction factors Φ for compression-controlled sections are
given as follows:
• Members with spiral reinforcement Φ = 0.75
5
• Other reinforced members Φ = 0.65
The basic equation is given by
nu PP Φ≤ (1)
where
uP = factored axial load
Φ = strength reduction factor
nP = nominal axial load
Short Axially Loaded Columns
Figure 5: Uniaxial stress-strain curves for steel and concrete
When axial compressive loads are applied through the centroid of the cross section of a short
column, concrete and steel reinforcement are shortened by the same amount due to their
composite action. The ultimate load is attained when the reinforcement reaches its yield stress and
the concrete reaches its 28-day compressive strength simultaneously, shown in Figure 5.
From equilibrium of forces in the vertical direction,
nsncno PPP += ( 2)
or,
( ) yssgcno fAAAfP +−′= ( 3)
Where
noP = nominal axial capacity of section at zero eccentricity
ncP = nominal axial load carried by concrete
6
nsP = nominal axial load carried by steel reinforcement
gA = gross sectional area of column
sA = cross sectional area of reinforcement
cf ′ = concrete compressive strength at 28-days
Equation (3) yields larger values than those obtained from laboratory testing due to the better
quality of the tested concrete cylinders. Reducing the compressive strength in Equation (3) by 15
% gives results in close agreement with those obtained through testing schemes.
( ) yssgcno fAAAfP +−′= 85.0 (4)
The above equation is appropriate for determining axial load capacities of already designed
columns. Equation (4) could be modified to suit the process of designing columns through the
following substitution
ggs AA ρ=
where gρ is the reinforcement ratio
( ) ygggggcno fAAAfP ρρ +−′= 85.0
[ ])85.0(85.0 cygcgno fffAP ′−+′= ρ (5)
To account for accidental eccentricity resulting from misalignment of reinforcement, voids in the
concrete section, unbalanced moments in the beam, or misalignment of columns from one floor to
another, ACI Code R10.3.6 and R10.3.7 reduce the strength of tied columns by 20 % and spirally
reinforced columns by 15 %.
For capacity calculation of tied columns, the following equation is to be used;
( )[ ]yssgcu fAAA'f85.0)8.0(65.0P +−= , or
( )[ ]yssgcu fAAA'f85.052.0P +−= ] (6)
For capacity calculation of spirally reinforced columns, the following equation is to be used;
( )( )[ ( ) yssgcu fAAAfP +−′= 85.085.075.0 ], or
( )[ yssgcu fAAAfP +−′= 85.06375.0 ] (7)
For design purposes of tied and spirally reinforced columns respectively,
( )[ ]cygcgu 'f85.0f'f85.0A52.0P −+= ρ (8)
[ ( )cygcgu fffAP ′−+′= 85.085.06375.0 ρ ] (9)
7
Design of Spiral
Laboratory tests have proved that compressive strength of the concrete confined within a spiral is
increased due to the lateral pressure exerted on the concrete core by the spiral hoops, as shown in
Figure 6.
(b) (c)
Figure 6: (a) Influence of lateral pressure 2f on the ultimate
compressive strength; (b) lateral pressure on core; (c) lateral pressure
on spiral
The ultimate compressive strength of laterally pressured cylinders is given by
21 10.4 fff c +′= (10)
where
1f = compressive strength of test cylinders in biaxial compression at 28-days.
cf ′ = compressive strength of test cylinders in uniaxial compression at 28-days.
2f = applied horizontal pressure.
The spiral is proportioned so that additional compressive strength provided by the confining
action of the spiral is equal to the strength provided by the spalled concrete shell covering the
spiral when the spiral is stressed to its yield. This is given by
( ) ( )ccgc AfAAf 210.485.0 =−′
or,
( )
( ) 







−
′
=
−′
= 1
10.4
85.0
10.4
85.0
2
c
gc
c
cgc
A
Af
A
AAf
f (11)
where
(a)
8
gA = column’s gross sectional area
cA = area of concrete core based on a diameter measured out-to-out of spiral
Consider a concrete cylinder equal in depth to the pitch of the spiral S and neglect the slope of the
spiral. Cutting the cylinder vertically along a diameter gives the following equilibrium equation in
the horizontal direction as shown in Figure 7.
(a) (b)
Figure 7: (a) Free body diagram of core and spiral cut-along a diameter;
(b) one turn of spiral
22 fSDfa csys =
SD
fa
f
c
sys2
2 = (12)
where
sa = cross-sectional area of spiral
syf = yield stress of spiral
cD = core diameter = diameter minus twice the concrete cover
S = spiral’s pitch
Substituting Equation (12) into Equation (11)
( )
( )
c
c
sys
cgc A
SD
fa
AAf
210.4
85.0 =−′
SD
fa
A
Af
c
sys
c
gc
=





−




 ′
1
20.8
85.0
(13)
letting sρ be the ratio of volume of spiral reinforcement in one turn to volume of core inside it ,
or
SD
a
SD
Da
c
s
c
cs
s
4
)4/( 2
==
π
π
ρ
and
4
SD
a cs
s
ρ
= (14)
9
Substituting Equation (14) into Equation (13) gives
44
1
20.8
85.0 sys
c
sycs
c
gc
f
SD
fSD
A
Af ρρ
==







−




 ′
or,








−
′
= 1
41.0
c
g
sy
c
s
A
A
f
f
ρ (15)
The constant in the previous equation is replaced by 0.45 to get the equation given in ACI 9.10.3.
And 







−
′
= 1
45.0
c
g
sy
c
s
A
A
f
f
ρ (16)
Combining equations (14) and (16), the pitch of the spiral S is given as







 ′






−
=
sy
c
c
g
c
s
f
f
A
A
D
a
S
145.0
4
(17)
Columns Subjected To Pure Axial Tension
The strength under pure axial tension is computed assuming that the section is completely
cracked and subjected to a uniform strain equal to, or less than yε . The axial capacity of the
concrete is ignored and the axial strength in tension is given by the following equation.
ysu fAP Φ= (18)
where Φ is the strength reduction factor for axial tension = 0.90, and sA is the area of column
reinforcement.
Design Considerations
Maximum and Minimum Reinforcement Ratios
ACI Code 10.9.1 specifies that a minimum reinforcement ratio of 1 % is to be used in tied or
spirally reinforced columns. This minimum reinforcement is needed to safeguard against any
bending, reduce the effect of shrinkage and creep and enhance ductility of columns. Maximum
reinforcement ratio is limited to 8 % for columns in general to avoid honeycombing of concrete.
For compression member with a cross section larger than required by consideration of loading,
ACI Code 10.8.4 permits the minimum area of steel reinforcement to be based on the gross
sectional area required by analysis. The reduced sectional area is not to be less than one half the
actual cross sectional dimensions. In regions of high seismic risk, ACI Code 10.8.4 is not
applicable.
10
Minimum Number of Reinforcing Bars
ACI Code 10.9.2 specifies a minimum of four bars within rectangular or circular sections; or one
bar in each corner of the cross section for other shapes and a minimum of six bars in spirally
reinforced columns.
Clear Distance between Reinforcing Bars
ACI Code 7.6.3 and 7.6.4 specify that for tied or spirally reinforced columns, clear distance
between bars, shown in Figure 8, is not to be less than the larger of 1.50 times bar diameter or 4
cm. This is done to ensure free flow of concrete among reinforcing bars. The clear distance
limitations also apply to the clear distance between lap spliced bars and adjacent lap splices since
the maximum number of bars occurs at the splices.
Figure 8: Clear distance between bars
Concrete Protection Cover
ACI Code 7.7.1 specifies that for reinforced columns, the clear concrete cover is not to be taken
less than 4 cm for columns not exposed to weather or in contact with ground. It is essential for
protecting the reinforcement from corrosion or fire hazards.
Minimum Cross Sectional Dimensions
With the 1971 Code, minimum sizes for compression members were eliminated to allow wider
utilization of reinforced concrete compression members in smaller size and lightly loaded
structures, such as low-rise residential and light office buildings. When small sections are used,
there is a greater need for careful workmanship. For practical considerations, column dimensions
are taken as multiples of 5 cm.
Lateral Reinforcement
Ties are effective in restraining the longitudinal bars from buckling out through the surface of the
column, holding the reinforcement cage together during the construction process, confining the
concrete core and when columns are subjected to horizontal forces, they serve as shear
reinforcement. Spirals, on the other hand, serve in addition to these benefits in compensating for
the strength loss due to spalling of the outside concrete shell at ultimate column strength.
11
Ties
According to ACI Code 7.10.5.1, for longitudinal bars 32 mm or smaller, lateral ties 10 mm in
diameter are used. In our country and in some neighboring countries, ties 8 mm in diameter are
used in column construction.
Tests have proven that spacing between ties has no significant effect on ultimate strength of
columns.
ACI Code 7.10.5.2 specifies that vertical spacing of ties is not to exceed the smallest of:
§ 16 times longitudinal bar diameter.
§ 48 times tie diameter.
§ Least cross sectional dimension.
ACI Code 7.10.5.3 specifies that ties are arranged in such a way that every corner and alternate
longitudinal bar is to have lateral support provided by the corner of a tie with an included angle of
not more than 135 degrees. Besides, no longitudinal bar is to be farther than 15 cm clear on each
side along the tie from such a laterally supported bar. When longitudinal bars are located around
the perimeter of a circle, circular ties are used. Figure 9.a shows a number of tie and spiral
arrangements.
12
Figure 9.a: Tie and spiral arrangements
13
Spirals
According to ACI Code 7.10.4.2 spirals not less than 10 mm in diameter are to be used in cast-in-
place construction. The clear pitch of the spiral is not to be less than 2.5 cm and not more than 7.5
cm as dictated by ACI Code 7.10.4.3. The smaller limit is set to ensure flow of concrete between
spiral hoops while the larger limit is set to ensure effective confinement of concrete core. The
diameter of the spiral could be changed to ensure that the spacing lies within the specified limits.
Bundled Bars
For isolated situations requiring heavy concentration of reinforcement, bundles of standard bar
sizes can save space and reduce congestion for placement and compaction of concrete. Bundling
of parallel reinforcing bars in contact is permitted but only if ties enclose such bundles.
According to ACI Code 7.6.6, groups of parallel reinforcing bars bundled in contact to act as one
unit are limited to four in any one bundle, as shown in Figure 9.b.
Figure 9.b: Bundled bars
Column Reinforcement Details
When column offset are necessary, longitudinal bars may be bent subject to the following
limitations.
1. Slope of the inclined portion of an offset bar with axis of column must not exceed 1 in 6,
shown in Figure 10.
14
Figure 10: Offset Bars
2. Portion of bar above and below the offset must be parallel to axis of column.
3. Horizontal support at offset bends must be provided by lateral ties, spirals, or parts of the
floor construction. Ties or spirals, if used, shall be placed not more than 15 cm from points of
bend. Horizontal support provided must be designed to resist 1.5 times the horizontal
component of the computed force in the inclined portion of an offset bar.
4. Offset bars must be bent before placement in the forms.
5. When a column face is offset 7.5 cm ,or more, longitudinal column bars parallel to and near
the face must not be offset bent. Separate dowels, lap spliced with the longitudinal bars
adjacent to the offset column faces, must be provided as shown in Figure 11. In some cases, a
column might be offset 7.5 cm or more on some faces, and less than 7.5 cm on the remaining
faces, which could possibly result in some offset bent longitudinal column bars and some
separate dowels being used in the same column.
Figure 11: Separated Dowels
15
Column Lateral Reinforcement
Ties
In tied reinforced concrete columns, ties must be located at no more than half a tie spacing above
the floor or footing and at no more than half a tie spacing below the lowest horizontal
reinforcement in the slab or drop panel above. If beams or brackets frame from four directions
into a column, ties may be terminated not more than 7.5 cm below the lowest horizontal
reinforcement in the shallowest of such beams or brackets, shown in Figure 12.
(a) (b)
Figure 12: Beams on all column faces
Spirals
Spiral reinforcement must extend from the top of footing or slab in any story to the level of the
lowest horizontal reinforcement in slabs, drop panels, or beams above. If beams or brackets do
not frame into all sides of the column, ties must extend above the top of the spiral to the bottom of
the slab or drop panel, shown in Figure 13.
(a) (b)
Figure 13: Beams on all column faces
16
Design Procedure for Short Axially Loaded Columns
1. Evaluate the factored axial load uP acting on the column.
2. Decide on a reinforcement ratio gρ that satisfies ACI Code limits. Usually a 1 % ratio is
chosen for economic considerations.
3. From equations (8) or (9) for tied and spirally reinforced columns respectively, determine the
gross sectional area gA of the concrete section.
4. Choose the dimensions of the cross section based on its shape. For rectangular sections, the
ratio of the longer to shorter side is recommended to not exceed 3.
5. Readjust the reinforcement ratio by substituting the actual cross sectional area in Equations
(8) or (9). This ratio has to fall within the specified code limits.
6. Calculate the needed area of longitudinal reinforcement ratio based on the adjusted reinforced
ratio and the chosen concrete dimensions.
7. From reinforcement tables, choose the number and diameters of needed reinforcing bars. For
rectangular sections, a minimum of four bars is needed, while a minimum of six bars is used
for circular columns.
8. Design the lateral reinforcement according to the type of column, either ties or spirals, as
explained in the previous sections of this chapter.
9. Check whether the spacing between longitudinal reinforcing bars satisfies ACI Code
requirements.
10. Draw the designed section showing concrete dimensions and with required longitudinal and
lateral reinforcement.

Weitere ähnliche Inhalte

Was ist angesagt?

Design of combined footing ppt
Design of combined footing pptDesign of combined footing ppt
Design of combined footing pptBharti Shinde
 
Calulation of deflection and crack width according to is 456 2000
Calulation of deflection and crack width according to is 456 2000Calulation of deflection and crack width according to is 456 2000
Calulation of deflection and crack width according to is 456 2000Vikas Mehta
 
23-Design of Column Base Plates (Steel Structural Design & Prof. Shehab Mourad)
23-Design of Column Base Plates (Steel Structural Design & Prof. Shehab Mourad)23-Design of Column Base Plates (Steel Structural Design & Prof. Shehab Mourad)
23-Design of Column Base Plates (Steel Structural Design & Prof. Shehab Mourad)Hossam Shafiq II
 
Moment Distribution Method
Moment Distribution MethodMoment Distribution Method
Moment Distribution MethodBhavik A Shah
 
Principle of virtual work and unit load method
Principle of virtual work and unit load methodPrinciple of virtual work and unit load method
Principle of virtual work and unit load methodMahdi Damghani
 
Design and Detailing of RC Deep beams as per IS 456-2000
Design and Detailing of RC Deep beams as per IS 456-2000Design and Detailing of RC Deep beams as per IS 456-2000
Design and Detailing of RC Deep beams as per IS 456-2000VVIETCIVIL
 
Design of R.C.C Beam
Design of R.C.C BeamDesign of R.C.C Beam
Design of R.C.C BeamAr. Aakansha
 
Seismic Design Of Structures Project
Seismic Design Of Structures ProjectSeismic Design Of Structures Project
Seismic Design Of Structures ProjectGunjan Shetye
 
Uniaxial Column Design
Uniaxial Column DesignUniaxial Column Design
Uniaxial Column DesignIkhtiar Khan
 
Moment Resisting Frame.pdf
Moment Resisting Frame.pdfMoment Resisting Frame.pdf
Moment Resisting Frame.pdfZeinab Awada
 
Surface Structures, including SAP2000
Surface Structures, including SAP2000Surface Structures, including SAP2000
Surface Structures, including SAP2000Wolfgang Schueller
 
Shear Force And Bending Moment Diagram For Frames
Shear Force And Bending Moment Diagram For FramesShear Force And Bending Moment Diagram For Frames
Shear Force And Bending Moment Diagram For FramesAmr Hamed
 
Chapter 2 design loads(3)
Chapter 2 design loads(3)Chapter 2 design loads(3)
Chapter 2 design loads(3)FahadYaqoob7
 

Was ist angesagt? (20)

Design of combined footing ppt
Design of combined footing pptDesign of combined footing ppt
Design of combined footing ppt
 
Doubly reinforced beam]
Doubly reinforced beam]Doubly reinforced beam]
Doubly reinforced beam]
 
T beam TYPES
T beam TYPEST beam TYPES
T beam TYPES
 
Bs8110 design notes
Bs8110 design notesBs8110 design notes
Bs8110 design notes
 
Calulation of deflection and crack width according to is 456 2000
Calulation of deflection and crack width according to is 456 2000Calulation of deflection and crack width according to is 456 2000
Calulation of deflection and crack width according to is 456 2000
 
23-Design of Column Base Plates (Steel Structural Design & Prof. Shehab Mourad)
23-Design of Column Base Plates (Steel Structural Design & Prof. Shehab Mourad)23-Design of Column Base Plates (Steel Structural Design & Prof. Shehab Mourad)
23-Design of Column Base Plates (Steel Structural Design & Prof. Shehab Mourad)
 
Moment Distribution Method
Moment Distribution MethodMoment Distribution Method
Moment Distribution Method
 
report
reportreport
report
 
Principle of virtual work and unit load method
Principle of virtual work and unit load methodPrinciple of virtual work and unit load method
Principle of virtual work and unit load method
 
Design and Detailing of RC Deep beams as per IS 456-2000
Design and Detailing of RC Deep beams as per IS 456-2000Design and Detailing of RC Deep beams as per IS 456-2000
Design and Detailing of RC Deep beams as per IS 456-2000
 
Design of R.C.C Beam
Design of R.C.C BeamDesign of R.C.C Beam
Design of R.C.C Beam
 
Seismic Design Of Structures Project
Seismic Design Of Structures ProjectSeismic Design Of Structures Project
Seismic Design Of Structures Project
 
Uniaxial Column Design
Uniaxial Column DesignUniaxial Column Design
Uniaxial Column Design
 
Moment Resisting Frame.pdf
Moment Resisting Frame.pdfMoment Resisting Frame.pdf
Moment Resisting Frame.pdf
 
Surface Structures, including SAP2000
Surface Structures, including SAP2000Surface Structures, including SAP2000
Surface Structures, including SAP2000
 
Reinfored beam
Reinfored beamReinfored beam
Reinfored beam
 
2911 1 4
2911 1 42911 1 4
2911 1 4
 
Deep beams
Deep beams Deep beams
Deep beams
 
Shear Force And Bending Moment Diagram For Frames
Shear Force And Bending Moment Diagram For FramesShear Force And Bending Moment Diagram For Frames
Shear Force And Bending Moment Diagram For Frames
 
Chapter 2 design loads(3)
Chapter 2 design loads(3)Chapter 2 design loads(3)
Chapter 2 design loads(3)
 

Ähnlich wie Design for Short Axially Loaded Columns ACI318

Design of short columns using helical reinforcement
Design of short columns using helical reinforcementDesign of short columns using helical reinforcement
Design of short columns using helical reinforcementshivam gautam
 
Design of compression members
Design of compression membersDesign of compression members
Design of compression membersSabna Thilakan
 
Columns lecture#1
Columns lecture#1Columns lecture#1
Columns lecture#1Irfan Malik
 
ResearchPoster_Davis_2013
ResearchPoster_Davis_2013ResearchPoster_Davis_2013
ResearchPoster_Davis_2013Emmanuel Flores
 
column and it's types
column and it's  types column and it's  types
column and it's types Asi Mahar
 
Deflections in PT elements pt structure for all pt slabs in civil industry.pdf
Deflections in PT elements pt structure for all pt slabs in civil industry.pdfDeflections in PT elements pt structure for all pt slabs in civil industry.pdf
Deflections in PT elements pt structure for all pt slabs in civil industry.pdfvijayvijay327286
 
Behavior Of Castellated Composite Beam Subjected To Cyclic Loads
Behavior Of Castellated Composite Beam Subjected To Cyclic LoadsBehavior Of Castellated Composite Beam Subjected To Cyclic Loads
Behavior Of Castellated Composite Beam Subjected To Cyclic Loadsirjes
 
Seismic optimization of an I shaped shear link damper in EBF and CBF systems
Seismic optimization of an I shaped shear link damper in EBF and CBF systemsSeismic optimization of an I shaped shear link damper in EBF and CBF systems
Seismic optimization of an I shaped shear link damper in EBF and CBF systemsIRJET Journal
 
Design of columns axial load as per IS 456-2000
Design of columns  axial load as per IS 456-2000Design of columns  axial load as per IS 456-2000
Design of columns axial load as per IS 456-2000PraveenKumar Shanmugam
 
Compression member
Compression memberCompression member
Compression memberVikas Mehta
 
rectangular and section analysis in bending and shear
rectangular and section analysis in bending and shearrectangular and section analysis in bending and shear
rectangular and section analysis in bending and shearqueripan
 
Column uniaxial axial loaded column design
Column  uniaxial axial loaded column designColumn  uniaxial axial loaded column design
Column uniaxial axial loaded column designUmarSaba1
 

Ähnlich wie Design for Short Axially Loaded Columns ACI318 (20)

Design of short columns using helical reinforcement
Design of short columns using helical reinforcementDesign of short columns using helical reinforcement
Design of short columns using helical reinforcement
 
Column design.ppt
Column design.pptColumn design.ppt
Column design.ppt
 
I012274853
I012274853I012274853
I012274853
 
U01232170177
U01232170177U01232170177
U01232170177
 
Design of compression members
Design of compression membersDesign of compression members
Design of compression members
 
Columns lecture#1
Columns lecture#1Columns lecture#1
Columns lecture#1
 
Column
ColumnColumn
Column
 
Ch 8.pdf
Ch 8.pdfCh 8.pdf
Ch 8.pdf
 
ResearchPoster_Davis_2013
ResearchPoster_Davis_2013ResearchPoster_Davis_2013
ResearchPoster_Davis_2013
 
column and it's types
column and it's  types column and it's  types
column and it's types
 
Compression member
Compression memberCompression member
Compression member
 
Column design1
Column design1Column design1
Column design1
 
Deflections in PT elements pt structure for all pt slabs in civil industry.pdf
Deflections in PT elements pt structure for all pt slabs in civil industry.pdfDeflections in PT elements pt structure for all pt slabs in civil industry.pdf
Deflections in PT elements pt structure for all pt slabs in civil industry.pdf
 
Behavior Of Castellated Composite Beam Subjected To Cyclic Loads
Behavior Of Castellated Composite Beam Subjected To Cyclic LoadsBehavior Of Castellated Composite Beam Subjected To Cyclic Loads
Behavior Of Castellated Composite Beam Subjected To Cyclic Loads
 
Seismic optimization of an I shaped shear link damper in EBF and CBF systems
Seismic optimization of an I shaped shear link damper in EBF and CBF systemsSeismic optimization of an I shaped shear link damper in EBF and CBF systems
Seismic optimization of an I shaped shear link damper in EBF and CBF systems
 
Chapter 1
Chapter 1Chapter 1
Chapter 1
 
Design of columns axial load as per IS 456-2000
Design of columns  axial load as per IS 456-2000Design of columns  axial load as per IS 456-2000
Design of columns axial load as per IS 456-2000
 
Compression member
Compression memberCompression member
Compression member
 
rectangular and section analysis in bending and shear
rectangular and section analysis in bending and shearrectangular and section analysis in bending and shear
rectangular and section analysis in bending and shear
 
Column uniaxial axial loaded column design
Column  uniaxial axial loaded column designColumn  uniaxial axial loaded column design
Column uniaxial axial loaded column design
 

Kürzlich hochgeladen

Call Girls Jalaun Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Jalaun Just Call 8617370543 Top Class Call Girl Service AvailableCall Girls Jalaun Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Jalaun Just Call 8617370543 Top Class Call Girl Service AvailableNitya salvi
 
Pondicherry Escorts Service Girl ^ 9332606886, WhatsApp Anytime Pondicherry
Pondicherry Escorts Service Girl ^ 9332606886, WhatsApp Anytime PondicherryPondicherry Escorts Service Girl ^ 9332606886, WhatsApp Anytime Pondicherry
Pondicherry Escorts Service Girl ^ 9332606886, WhatsApp Anytime Pondicherrymeghakumariji156
 
Abortion pills in Riyadh +966572737505 <> buy cytotec <> unwanted kit Saudi A...
Abortion pills in Riyadh +966572737505 <> buy cytotec <> unwanted kit Saudi A...Abortion pills in Riyadh +966572737505 <> buy cytotec <> unwanted kit Saudi A...
Abortion pills in Riyadh +966572737505 <> buy cytotec <> unwanted kit Saudi A...samsungultra782445
 
Resume all my skills and educations and achievement
Resume all my skills and educations and  achievement Resume all my skills and educations and  achievement
Resume all my skills and educations and achievement 210303105569
 
Madhyamgram \ (Genuine) Escort Service Kolkata | Service-oriented sexy call g...
Madhyamgram \ (Genuine) Escort Service Kolkata | Service-oriented sexy call g...Madhyamgram \ (Genuine) Escort Service Kolkata | Service-oriented sexy call g...
Madhyamgram \ (Genuine) Escort Service Kolkata | Service-oriented sexy call g...HyderabadDolls
 
Top profile Call Girls In eluru [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In eluru [ 7014168258 ] Call Me For Genuine Models We ...Top profile Call Girls In eluru [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In eluru [ 7014168258 ] Call Me For Genuine Models We ...gajnagarg
 
cholilithiasis, cholecystitis,gall bladdder .pdf
cholilithiasis, cholecystitis,gall bladdder .pdfcholilithiasis, cholecystitis,gall bladdder .pdf
cholilithiasis, cholecystitis,gall bladdder .pdfRawalRafiqLeghari
 
Branding in the Psychedelic Landscape Report.pdf
Branding in the Psychedelic Landscape Report.pdfBranding in the Psychedelic Landscape Report.pdf
Branding in the Psychedelic Landscape Report.pdfAlexandra Plesner
 
Just Call Vip call girls Kasganj Escorts ☎️8617370543 Two shot with one girl ...
Just Call Vip call girls Kasganj Escorts ☎️8617370543 Two shot with one girl ...Just Call Vip call girls Kasganj Escorts ☎️8617370543 Two shot with one girl ...
Just Call Vip call girls Kasganj Escorts ☎️8617370543 Two shot with one girl ...Nitya salvi
 
Top profile Call Girls In Mysore [ 7014168258 ] Call Me For Genuine Models We...
Top profile Call Girls In Mysore [ 7014168258 ] Call Me For Genuine Models We...Top profile Call Girls In Mysore [ 7014168258 ] Call Me For Genuine Models We...
Top profile Call Girls In Mysore [ 7014168258 ] Call Me For Genuine Models We...gajnagarg
 
Mohanlalganj ! Call Girls in Lucknow - 450+ Call Girl Cash Payment 9548273370...
Mohanlalganj ! Call Girls in Lucknow - 450+ Call Girl Cash Payment 9548273370...Mohanlalganj ! Call Girls in Lucknow - 450+ Call Girl Cash Payment 9548273370...
Mohanlalganj ! Call Girls in Lucknow - 450+ Call Girl Cash Payment 9548273370...gargpaaro
 
Top profile Call Girls In fatehgarh [ 7014168258 ] Call Me For Genuine Models...
Top profile Call Girls In fatehgarh [ 7014168258 ] Call Me For Genuine Models...Top profile Call Girls In fatehgarh [ 7014168258 ] Call Me For Genuine Models...
Top profile Call Girls In fatehgarh [ 7014168258 ] Call Me For Genuine Models...gajnagarg
 
Top profile Call Girls In Mau [ 7014168258 ] Call Me For Genuine Models We ar...
Top profile Call Girls In Mau [ 7014168258 ] Call Me For Genuine Models We ar...Top profile Call Girls In Mau [ 7014168258 ] Call Me For Genuine Models We ar...
Top profile Call Girls In Mau [ 7014168258 ] Call Me For Genuine Models We ar...nirzagarg
 
一比一定(购)滑铁卢大学毕业证(UW毕业证)成绩单学位证
一比一定(购)滑铁卢大学毕业证(UW毕业证)成绩单学位证一比一定(购)滑铁卢大学毕业证(UW毕业证)成绩单学位证
一比一定(购)滑铁卢大学毕业证(UW毕业证)成绩单学位证wpkuukw
 
Call Girls In Ratnagiri Escorts ☎️8617370543 🔝 💃 Enjoy 24/7 Escort Service En...
Call Girls In Ratnagiri Escorts ☎️8617370543 🔝 💃 Enjoy 24/7 Escort Service En...Call Girls In Ratnagiri Escorts ☎️8617370543 🔝 💃 Enjoy 24/7 Escort Service En...
Call Girls In Ratnagiri Escorts ☎️8617370543 🔝 💃 Enjoy 24/7 Escort Service En...Nitya salvi
 
How to Create a Productive Workspace Trends and Tips.pdf
How to Create a Productive Workspace Trends and Tips.pdfHow to Create a Productive Workspace Trends and Tips.pdf
How to Create a Productive Workspace Trends and Tips.pdfOffice Furniture Plus - Irving
 
LANDSCAPE ARCHITECTURE PORTFOLIO - MAREK MITACEK
LANDSCAPE ARCHITECTURE PORTFOLIO - MAREK MITACEKLANDSCAPE ARCHITECTURE PORTFOLIO - MAREK MITACEK
LANDSCAPE ARCHITECTURE PORTFOLIO - MAREK MITACEKMarekMitek1
 
Just Call Vip call girls Fatehpur Escorts ☎️8617370543 Two shot with one girl...
Just Call Vip call girls Fatehpur Escorts ☎️8617370543 Two shot with one girl...Just Call Vip call girls Fatehpur Escorts ☎️8617370543 Two shot with one girl...
Just Call Vip call girls Fatehpur Escorts ☎️8617370543 Two shot with one girl...Nitya salvi
 
Sweety Planet Packaging Design Process Book.pptx
Sweety Planet Packaging Design Process Book.pptxSweety Planet Packaging Design Process Book.pptx
Sweety Planet Packaging Design Process Book.pptxbingyichin04
 

Kürzlich hochgeladen (20)

Call Girls Jalaun Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Jalaun Just Call 8617370543 Top Class Call Girl Service AvailableCall Girls Jalaun Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Jalaun Just Call 8617370543 Top Class Call Girl Service Available
 
Pondicherry Escorts Service Girl ^ 9332606886, WhatsApp Anytime Pondicherry
Pondicherry Escorts Service Girl ^ 9332606886, WhatsApp Anytime PondicherryPondicherry Escorts Service Girl ^ 9332606886, WhatsApp Anytime Pondicherry
Pondicherry Escorts Service Girl ^ 9332606886, WhatsApp Anytime Pondicherry
 
Abortion pills in Riyadh +966572737505 <> buy cytotec <> unwanted kit Saudi A...
Abortion pills in Riyadh +966572737505 <> buy cytotec <> unwanted kit Saudi A...Abortion pills in Riyadh +966572737505 <> buy cytotec <> unwanted kit Saudi A...
Abortion pills in Riyadh +966572737505 <> buy cytotec <> unwanted kit Saudi A...
 
Resume all my skills and educations and achievement
Resume all my skills and educations and  achievement Resume all my skills and educations and  achievement
Resume all my skills and educations and achievement
 
Madhyamgram \ (Genuine) Escort Service Kolkata | Service-oriented sexy call g...
Madhyamgram \ (Genuine) Escort Service Kolkata | Service-oriented sexy call g...Madhyamgram \ (Genuine) Escort Service Kolkata | Service-oriented sexy call g...
Madhyamgram \ (Genuine) Escort Service Kolkata | Service-oriented sexy call g...
 
Top profile Call Girls In eluru [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In eluru [ 7014168258 ] Call Me For Genuine Models We ...Top profile Call Girls In eluru [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In eluru [ 7014168258 ] Call Me For Genuine Models We ...
 
cholilithiasis, cholecystitis,gall bladdder .pdf
cholilithiasis, cholecystitis,gall bladdder .pdfcholilithiasis, cholecystitis,gall bladdder .pdf
cholilithiasis, cholecystitis,gall bladdder .pdf
 
Branding in the Psychedelic Landscape Report.pdf
Branding in the Psychedelic Landscape Report.pdfBranding in the Psychedelic Landscape Report.pdf
Branding in the Psychedelic Landscape Report.pdf
 
Just Call Vip call girls Kasganj Escorts ☎️8617370543 Two shot with one girl ...
Just Call Vip call girls Kasganj Escorts ☎️8617370543 Two shot with one girl ...Just Call Vip call girls Kasganj Escorts ☎️8617370543 Two shot with one girl ...
Just Call Vip call girls Kasganj Escorts ☎️8617370543 Two shot with one girl ...
 
Top profile Call Girls In Mysore [ 7014168258 ] Call Me For Genuine Models We...
Top profile Call Girls In Mysore [ 7014168258 ] Call Me For Genuine Models We...Top profile Call Girls In Mysore [ 7014168258 ] Call Me For Genuine Models We...
Top profile Call Girls In Mysore [ 7014168258 ] Call Me For Genuine Models We...
 
Mohanlalganj ! Call Girls in Lucknow - 450+ Call Girl Cash Payment 9548273370...
Mohanlalganj ! Call Girls in Lucknow - 450+ Call Girl Cash Payment 9548273370...Mohanlalganj ! Call Girls in Lucknow - 450+ Call Girl Cash Payment 9548273370...
Mohanlalganj ! Call Girls in Lucknow - 450+ Call Girl Cash Payment 9548273370...
 
Top profile Call Girls In fatehgarh [ 7014168258 ] Call Me For Genuine Models...
Top profile Call Girls In fatehgarh [ 7014168258 ] Call Me For Genuine Models...Top profile Call Girls In fatehgarh [ 7014168258 ] Call Me For Genuine Models...
Top profile Call Girls In fatehgarh [ 7014168258 ] Call Me For Genuine Models...
 
Top profile Call Girls In Mau [ 7014168258 ] Call Me For Genuine Models We ar...
Top profile Call Girls In Mau [ 7014168258 ] Call Me For Genuine Models We ar...Top profile Call Girls In Mau [ 7014168258 ] Call Me For Genuine Models We ar...
Top profile Call Girls In Mau [ 7014168258 ] Call Me For Genuine Models We ar...
 
一比一定(购)滑铁卢大学毕业证(UW毕业证)成绩单学位证
一比一定(购)滑铁卢大学毕业证(UW毕业证)成绩单学位证一比一定(购)滑铁卢大学毕业证(UW毕业证)成绩单学位证
一比一定(购)滑铁卢大学毕业证(UW毕业证)成绩单学位证
 
Call Girls In Ratnagiri Escorts ☎️8617370543 🔝 💃 Enjoy 24/7 Escort Service En...
Call Girls In Ratnagiri Escorts ☎️8617370543 🔝 💃 Enjoy 24/7 Escort Service En...Call Girls In Ratnagiri Escorts ☎️8617370543 🔝 💃 Enjoy 24/7 Escort Service En...
Call Girls In Ratnagiri Escorts ☎️8617370543 🔝 💃 Enjoy 24/7 Escort Service En...
 
How to Create a Productive Workspace Trends and Tips.pdf
How to Create a Productive Workspace Trends and Tips.pdfHow to Create a Productive Workspace Trends and Tips.pdf
How to Create a Productive Workspace Trends and Tips.pdf
 
LANDSCAPE ARCHITECTURE PORTFOLIO - MAREK MITACEK
LANDSCAPE ARCHITECTURE PORTFOLIO - MAREK MITACEKLANDSCAPE ARCHITECTURE PORTFOLIO - MAREK MITACEK
LANDSCAPE ARCHITECTURE PORTFOLIO - MAREK MITACEK
 
Abortion Pills in Oman (+918133066128) Cytotec clinic buy Oman Muscat
Abortion Pills in Oman (+918133066128) Cytotec clinic buy Oman MuscatAbortion Pills in Oman (+918133066128) Cytotec clinic buy Oman Muscat
Abortion Pills in Oman (+918133066128) Cytotec clinic buy Oman Muscat
 
Just Call Vip call girls Fatehpur Escorts ☎️8617370543 Two shot with one girl...
Just Call Vip call girls Fatehpur Escorts ☎️8617370543 Two shot with one girl...Just Call Vip call girls Fatehpur Escorts ☎️8617370543 Two shot with one girl...
Just Call Vip call girls Fatehpur Escorts ☎️8617370543 Two shot with one girl...
 
Sweety Planet Packaging Design Process Book.pptx
Sweety Planet Packaging Design Process Book.pptxSweety Planet Packaging Design Process Book.pptx
Sweety Planet Packaging Design Process Book.pptx
 

Design for Short Axially Loaded Columns ACI318

  • 1. 1 Design of Columns Introduction According to ACI Code 2.2, a structural element with a ratio of height-to-least lateral dimension exceeding three used primarily to support compressive loads is defined as column. Columns support vertical loads from the floor and roof slabs and transfer these loads to the footings. Columns usually support compressive loads with or without bending. Depending on the magnitude of the bending moment and the axial force, column behavior will vary from pure beam action to pure column action. Columns are classified as short or long depending on their slenderness ratios. Short columns usually fail when their materials are overstressed and long columns usually fail due to buckling which produces secondary moments resulting from the ∆−P effect. Columns are classified according to the way they are reinforced into tied and spirally reinforced columns. Columns are usually reinforced with longitudinal and transverse reinforcement. When this transverse reinforcement is in the form of ties, the column is called “tied”. If the transverse reinforcement is in the form of helical hoops, the column is called “spirally reinforced”. Since failure of columns often cause extensive damage, they are designed with a higher factor of safety than beams. Types of Columns Columns are divided into three types according to the way they are reinforced. Tied Columns A tied column, shown in Figure 1, is a column in which the longitudinal reinforcement bars are tied together with separate smaller diameter transverse bars (ties) spaced at some interval along the column height. These ties help to hold the longitudinal reinforcement bars in place during construction and ensure stability of these bars against local buckling. The cross sections of such columns are usually square, rectangular, or circular in shape. A minimum of four bars is used in rectangular and circular cross sections.
  • 2. 2 Figure 1: Tied column Spirally-Reinforced Columns They are columns in which the longitudinal bars are arranged in a circle surrounded by a closely spaced continuous spiral, shown in Figure 2. These columns are usually circular or square in shape. A minimum of six bars is used for longitudinal reinforcement. Figure 2: Spirally-reinforced column Composite Columns A composite column is a column made of structural steel shapes or pipes surrounded by or filled by concrete with or without longitudinal reinforcement, shown in Figure 3.
  • 3. 3 Figure 3:Composite column Behavior of Tied and Spirally-Reinforced Columns Axial loading tests have proven that tied and spirally reinforced columns having the same cross- sectional areas of concrete and steel reinforcement behave in the same manner up to the ultimate load, as shown in Figure 4.a. At that load tied columns fail suddenly due to excessive cracking in the concrete section followed by buckling of the longitudinal reinforcement between ties within the failure region, as shown in Figure 4.b. (a)
  • 4. 4 (b) Figure 4: Failure of columns; (a) behavior of tied and spirally- reinforced columns; (b) failure of columns For spirally reinforced columns, once the ultimate load is reached, the concrete shell covering the spiral starts to peel off. Only then, the spiral comes to action by providing a confining force to the concrete core, thus enabling the column to sustain large deformations before final collapse occurs. Factored Loads and Strength Reduction Factors Factored Loads Load factors for dead, live, wind or earthquake live loads combinations are shown in Table 1. Table 1: Required Strength for simplified load combinations Loads Required Strength Equation NO. Dead (D) and Live (L) D4.1 LD 6.12.1 + (1.1) (1.2) Dead (D), Live (L) and wind (W) LD 0.12.1 + WD 8.02.1 + LWD 0.16.12.1 ++ WD 6.19.0 + (1.3) (1.3) (1.4) (1.6) Dead (D), Live (L) and Earthquake (E) ELD 0.10.12.1 ++ ED 0.19.0 + (1.5) (1.7) Strength Reduction Factors According to ACI 9.3.2 strength reduction factors Φ for compression-controlled sections are given as follows: • Members with spiral reinforcement Φ = 0.75
  • 5. 5 • Other reinforced members Φ = 0.65 The basic equation is given by nu PP Φ≤ (1) where uP = factored axial load Φ = strength reduction factor nP = nominal axial load Short Axially Loaded Columns Figure 5: Uniaxial stress-strain curves for steel and concrete When axial compressive loads are applied through the centroid of the cross section of a short column, concrete and steel reinforcement are shortened by the same amount due to their composite action. The ultimate load is attained when the reinforcement reaches its yield stress and the concrete reaches its 28-day compressive strength simultaneously, shown in Figure 5. From equilibrium of forces in the vertical direction, nsncno PPP += ( 2) or, ( ) yssgcno fAAAfP +−′= ( 3) Where noP = nominal axial capacity of section at zero eccentricity ncP = nominal axial load carried by concrete
  • 6. 6 nsP = nominal axial load carried by steel reinforcement gA = gross sectional area of column sA = cross sectional area of reinforcement cf ′ = concrete compressive strength at 28-days Equation (3) yields larger values than those obtained from laboratory testing due to the better quality of the tested concrete cylinders. Reducing the compressive strength in Equation (3) by 15 % gives results in close agreement with those obtained through testing schemes. ( ) yssgcno fAAAfP +−′= 85.0 (4) The above equation is appropriate for determining axial load capacities of already designed columns. Equation (4) could be modified to suit the process of designing columns through the following substitution ggs AA ρ= where gρ is the reinforcement ratio ( ) ygggggcno fAAAfP ρρ +−′= 85.0 [ ])85.0(85.0 cygcgno fffAP ′−+′= ρ (5) To account for accidental eccentricity resulting from misalignment of reinforcement, voids in the concrete section, unbalanced moments in the beam, or misalignment of columns from one floor to another, ACI Code R10.3.6 and R10.3.7 reduce the strength of tied columns by 20 % and spirally reinforced columns by 15 %. For capacity calculation of tied columns, the following equation is to be used; ( )[ ]yssgcu fAAA'f85.0)8.0(65.0P +−= , or ( )[ ]yssgcu fAAA'f85.052.0P +−= ] (6) For capacity calculation of spirally reinforced columns, the following equation is to be used; ( )( )[ ( ) yssgcu fAAAfP +−′= 85.085.075.0 ], or ( )[ yssgcu fAAAfP +−′= 85.06375.0 ] (7) For design purposes of tied and spirally reinforced columns respectively, ( )[ ]cygcgu 'f85.0f'f85.0A52.0P −+= ρ (8) [ ( )cygcgu fffAP ′−+′= 85.085.06375.0 ρ ] (9)
  • 7. 7 Design of Spiral Laboratory tests have proved that compressive strength of the concrete confined within a spiral is increased due to the lateral pressure exerted on the concrete core by the spiral hoops, as shown in Figure 6. (b) (c) Figure 6: (a) Influence of lateral pressure 2f on the ultimate compressive strength; (b) lateral pressure on core; (c) lateral pressure on spiral The ultimate compressive strength of laterally pressured cylinders is given by 21 10.4 fff c +′= (10) where 1f = compressive strength of test cylinders in biaxial compression at 28-days. cf ′ = compressive strength of test cylinders in uniaxial compression at 28-days. 2f = applied horizontal pressure. The spiral is proportioned so that additional compressive strength provided by the confining action of the spiral is equal to the strength provided by the spalled concrete shell covering the spiral when the spiral is stressed to its yield. This is given by ( ) ( )ccgc AfAAf 210.485.0 =−′ or, ( ) ( )         − ′ = −′ = 1 10.4 85.0 10.4 85.0 2 c gc c cgc A Af A AAf f (11) where (a)
  • 8. 8 gA = column’s gross sectional area cA = area of concrete core based on a diameter measured out-to-out of spiral Consider a concrete cylinder equal in depth to the pitch of the spiral S and neglect the slope of the spiral. Cutting the cylinder vertically along a diameter gives the following equilibrium equation in the horizontal direction as shown in Figure 7. (a) (b) Figure 7: (a) Free body diagram of core and spiral cut-along a diameter; (b) one turn of spiral 22 fSDfa csys = SD fa f c sys2 2 = (12) where sa = cross-sectional area of spiral syf = yield stress of spiral cD = core diameter = diameter minus twice the concrete cover S = spiral’s pitch Substituting Equation (12) into Equation (11) ( ) ( ) c c sys cgc A SD fa AAf 210.4 85.0 =−′ SD fa A Af c sys c gc =      −      ′ 1 20.8 85.0 (13) letting sρ be the ratio of volume of spiral reinforcement in one turn to volume of core inside it , or SD a SD Da c s c cs s 4 )4/( 2 == π π ρ and 4 SD a cs s ρ = (14)
  • 9. 9 Substituting Equation (14) into Equation (13) gives 44 1 20.8 85.0 sys c sycs c gc f SD fSD A Af ρρ ==        −      ′ or,         − ′ = 1 41.0 c g sy c s A A f f ρ (15) The constant in the previous equation is replaced by 0.45 to get the equation given in ACI 9.10.3. And         − ′ = 1 45.0 c g sy c s A A f f ρ (16) Combining equations (14) and (16), the pitch of the spiral S is given as         ′       − = sy c c g c s f f A A D a S 145.0 4 (17) Columns Subjected To Pure Axial Tension The strength under pure axial tension is computed assuming that the section is completely cracked and subjected to a uniform strain equal to, or less than yε . The axial capacity of the concrete is ignored and the axial strength in tension is given by the following equation. ysu fAP Φ= (18) where Φ is the strength reduction factor for axial tension = 0.90, and sA is the area of column reinforcement. Design Considerations Maximum and Minimum Reinforcement Ratios ACI Code 10.9.1 specifies that a minimum reinforcement ratio of 1 % is to be used in tied or spirally reinforced columns. This minimum reinforcement is needed to safeguard against any bending, reduce the effect of shrinkage and creep and enhance ductility of columns. Maximum reinforcement ratio is limited to 8 % for columns in general to avoid honeycombing of concrete. For compression member with a cross section larger than required by consideration of loading, ACI Code 10.8.4 permits the minimum area of steel reinforcement to be based on the gross sectional area required by analysis. The reduced sectional area is not to be less than one half the actual cross sectional dimensions. In regions of high seismic risk, ACI Code 10.8.4 is not applicable.
  • 10. 10 Minimum Number of Reinforcing Bars ACI Code 10.9.2 specifies a minimum of four bars within rectangular or circular sections; or one bar in each corner of the cross section for other shapes and a minimum of six bars in spirally reinforced columns. Clear Distance between Reinforcing Bars ACI Code 7.6.3 and 7.6.4 specify that for tied or spirally reinforced columns, clear distance between bars, shown in Figure 8, is not to be less than the larger of 1.50 times bar diameter or 4 cm. This is done to ensure free flow of concrete among reinforcing bars. The clear distance limitations also apply to the clear distance between lap spliced bars and adjacent lap splices since the maximum number of bars occurs at the splices. Figure 8: Clear distance between bars Concrete Protection Cover ACI Code 7.7.1 specifies that for reinforced columns, the clear concrete cover is not to be taken less than 4 cm for columns not exposed to weather or in contact with ground. It is essential for protecting the reinforcement from corrosion or fire hazards. Minimum Cross Sectional Dimensions With the 1971 Code, minimum sizes for compression members were eliminated to allow wider utilization of reinforced concrete compression members in smaller size and lightly loaded structures, such as low-rise residential and light office buildings. When small sections are used, there is a greater need for careful workmanship. For practical considerations, column dimensions are taken as multiples of 5 cm. Lateral Reinforcement Ties are effective in restraining the longitudinal bars from buckling out through the surface of the column, holding the reinforcement cage together during the construction process, confining the concrete core and when columns are subjected to horizontal forces, they serve as shear reinforcement. Spirals, on the other hand, serve in addition to these benefits in compensating for the strength loss due to spalling of the outside concrete shell at ultimate column strength.
  • 11. 11 Ties According to ACI Code 7.10.5.1, for longitudinal bars 32 mm or smaller, lateral ties 10 mm in diameter are used. In our country and in some neighboring countries, ties 8 mm in diameter are used in column construction. Tests have proven that spacing between ties has no significant effect on ultimate strength of columns. ACI Code 7.10.5.2 specifies that vertical spacing of ties is not to exceed the smallest of: § 16 times longitudinal bar diameter. § 48 times tie diameter. § Least cross sectional dimension. ACI Code 7.10.5.3 specifies that ties are arranged in such a way that every corner and alternate longitudinal bar is to have lateral support provided by the corner of a tie with an included angle of not more than 135 degrees. Besides, no longitudinal bar is to be farther than 15 cm clear on each side along the tie from such a laterally supported bar. When longitudinal bars are located around the perimeter of a circle, circular ties are used. Figure 9.a shows a number of tie and spiral arrangements.
  • 12. 12 Figure 9.a: Tie and spiral arrangements
  • 13. 13 Spirals According to ACI Code 7.10.4.2 spirals not less than 10 mm in diameter are to be used in cast-in- place construction. The clear pitch of the spiral is not to be less than 2.5 cm and not more than 7.5 cm as dictated by ACI Code 7.10.4.3. The smaller limit is set to ensure flow of concrete between spiral hoops while the larger limit is set to ensure effective confinement of concrete core. The diameter of the spiral could be changed to ensure that the spacing lies within the specified limits. Bundled Bars For isolated situations requiring heavy concentration of reinforcement, bundles of standard bar sizes can save space and reduce congestion for placement and compaction of concrete. Bundling of parallel reinforcing bars in contact is permitted but only if ties enclose such bundles. According to ACI Code 7.6.6, groups of parallel reinforcing bars bundled in contact to act as one unit are limited to four in any one bundle, as shown in Figure 9.b. Figure 9.b: Bundled bars Column Reinforcement Details When column offset are necessary, longitudinal bars may be bent subject to the following limitations. 1. Slope of the inclined portion of an offset bar with axis of column must not exceed 1 in 6, shown in Figure 10.
  • 14. 14 Figure 10: Offset Bars 2. Portion of bar above and below the offset must be parallel to axis of column. 3. Horizontal support at offset bends must be provided by lateral ties, spirals, or parts of the floor construction. Ties or spirals, if used, shall be placed not more than 15 cm from points of bend. Horizontal support provided must be designed to resist 1.5 times the horizontal component of the computed force in the inclined portion of an offset bar. 4. Offset bars must be bent before placement in the forms. 5. When a column face is offset 7.5 cm ,or more, longitudinal column bars parallel to and near the face must not be offset bent. Separate dowels, lap spliced with the longitudinal bars adjacent to the offset column faces, must be provided as shown in Figure 11. In some cases, a column might be offset 7.5 cm or more on some faces, and less than 7.5 cm on the remaining faces, which could possibly result in some offset bent longitudinal column bars and some separate dowels being used in the same column. Figure 11: Separated Dowels
  • 15. 15 Column Lateral Reinforcement Ties In tied reinforced concrete columns, ties must be located at no more than half a tie spacing above the floor or footing and at no more than half a tie spacing below the lowest horizontal reinforcement in the slab or drop panel above. If beams or brackets frame from four directions into a column, ties may be terminated not more than 7.5 cm below the lowest horizontal reinforcement in the shallowest of such beams or brackets, shown in Figure 12. (a) (b) Figure 12: Beams on all column faces Spirals Spiral reinforcement must extend from the top of footing or slab in any story to the level of the lowest horizontal reinforcement in slabs, drop panels, or beams above. If beams or brackets do not frame into all sides of the column, ties must extend above the top of the spiral to the bottom of the slab or drop panel, shown in Figure 13. (a) (b) Figure 13: Beams on all column faces
  • 16. 16 Design Procedure for Short Axially Loaded Columns 1. Evaluate the factored axial load uP acting on the column. 2. Decide on a reinforcement ratio gρ that satisfies ACI Code limits. Usually a 1 % ratio is chosen for economic considerations. 3. From equations (8) or (9) for tied and spirally reinforced columns respectively, determine the gross sectional area gA of the concrete section. 4. Choose the dimensions of the cross section based on its shape. For rectangular sections, the ratio of the longer to shorter side is recommended to not exceed 3. 5. Readjust the reinforcement ratio by substituting the actual cross sectional area in Equations (8) or (9). This ratio has to fall within the specified code limits. 6. Calculate the needed area of longitudinal reinforcement ratio based on the adjusted reinforced ratio and the chosen concrete dimensions. 7. From reinforcement tables, choose the number and diameters of needed reinforcing bars. For rectangular sections, a minimum of four bars is needed, while a minimum of six bars is used for circular columns. 8. Design the lateral reinforcement according to the type of column, either ties or spirals, as explained in the previous sections of this chapter. 9. Check whether the spacing between longitudinal reinforcing bars satisfies ACI Code requirements. 10. Draw the designed section showing concrete dimensions and with required longitudinal and lateral reinforcement.