SlideShare ist ein Scribd-Unternehmen logo
1 von 26
Chapter 1- Static engineering systems
 1.1 Simply supported beams
  1.1.1   determination of shear force
  1.1.2   bending moment and stress due to bending
  1.1.3   radius of curvature in simply supported beams subjected to
          concentrated and uniformly distributed loads
  1.1.4   eccentric loading of columns
  1.1.5   stress distribution
  1.1.6   middle third rule


  1.2 Beams and columns
  1.2.1   elastic section modulus for beams
  1.2.2   standard section tables for rolled steel beams
  1.2.3   selection of standard sections (eg slenderness ratio for
          compression members, standard section and allowable
          stress tables for rolled steel columns, selection of standard
          sections)
                                                                          1
Stresses in beams


•   Stresses in the beam are functions of x and y
•   If we were to cut a beam at a point x, we would find a distribution of
    direct stresses σ(y) and shear stresses σxy(y)
•   Summing these individual moments over the area of the cross-section is
    the definition of the moment resultant M,


•   Summing the shear stresses on the cross-section is the definition of the
    shear resultant V,

•   The sum of all direct stresses acting on the cross-section is known as N,

                                                                         2
• Direct stress distribution in the beam due to bending



• Note that the bending stress in beam theory is linear
  through the beam thickness. The maximum bending
  stress occurs at the point furthest away from the neutral
  axis, y = c




                                                              3
Flexure formula




•                                  
    Stresses calculated from the flexure formula are called bending
    stresses or flexural stresses.
                                                 

•   The maximum tensile and compressive bending stresses occur at
    points (c1 and c2) furthest from the neutral surface




•   where S1 and S2 are called section moduli (units: in3, m3) of the cross-
    sectional area. Section moduli are commonly listed in design
                                                                           4
    handbooks
Euler’s Formula for Pin-Ended Beams

       v           v
  v
               v       v




           l
                           Putting



 l v




                                     5
6
7
8
Design of columns under centric loads

                          • Experimental data demonstrate
                              - for large Le/k σcr follows 
                                          le /r,
                (le/k)2         Euler’s formula and depends 
                                upon E but not σY.
                             - for small L/k σcr is 
                                         le e/r,
                               determined by the yield 
                               strength σY and not E.

                            - for intermediate Le/k σcr 
                                               le /r,
                              depends on both σY and E.  




                                                            9
• For Le/r > Cc
                                              l e/k
        Structural Steel
                                                      π 2E                σ
                                           σ cr =                  σ all = cr
American Inst. of Steel Construction                ( Le/kr ) 2           FS
                                                      l /
                                           FS = 1.92


                                              l e/k
                                        • For Le/r > Cc
                                                       ( Le /kr ) 2 
                                                           le /                    σ
                                           σ cr = σ Y 1 −      2 
                                                                            σ all = cr
                                                      
                                                           2Cc                  FS
                                                                            3
                                               5 3 Le/kr 1  Le/k 
                                                   l /       l /r
                                           FS = + e −  e 
                                               3 8 Cc    8  Cc 
                                                                 

                                 le/k   • At Le/k = Cc
                                             le /r
                                                                        2
                                                                   2 2π E
                                           σ cr = 1 σ Y           Cc =
                                                  2                    σY
                                                                                 10
Sample problem
                                       SOLUTION:
                                       • With the diameter unknown, the 
                                         slenderness ration can not be evaluated.  
                                         Must make an assumption on which 
                                         slenderness ratio regime to utilize.

                                       • Calculate required diameter for 
                                         assumed slenderness ratio regime.

                                       • Evaluate slenderness ratio and verify 
                                         initial assumption.  Repeat if 
Using the aluminum alloy2014-T6,         necessary.
determine the smallest diameter rod 
which can be used to support the centric 
load P = 60 kN if  a) L = 750 mm,  
b) L = 300 mm
                                                                              11
• For L = 750 mm, assume L/r > 55

                          • Determine cylinder radius:
                                     P 372 × 103 MPa
                              σ all = =
                                     A     ( L r)2
                              60 × 103 N       372 × 103 MPa
                                      2
                                           =                  2
                                                                  c = 18.44 mm
                                 πc              0.750 m 
                                                         
                                                 c/2 

                          • Check slenderness ratio assumption:
c = cylinder radius
                              L   L     750mm
r = radius of  gyration         =    =            = 81.3 > 55
                              r c / 2 (18.44 mm )
      I   πc 4 4 c          assumption was correct
 =      =     2
                =
      A    πc     2
                              d = 2c = 36.9 mm
                                                                                 12
• For L = 300 mm, assume L/r < 55

• Determine cylinder radius:
               P              L 
    σ all =     = 212 − 1.585  MPa
               A              r 
     60 × 103 N                 0.3 m      6
                  = 212 − 1.585        × 10 Pa
        πc 2                    c / 2 
     c = 12.00 mm

• Check slenderness ratio assumption:
     L   L     300 mm
       =    =            = 50 < 55
     r c / 2 (12.00 mm )

  assumption was correct
     d = 2c = 24.0 mm
                                                     13
Eccentric loading of columns
• Generally, columns are designed so
  that the axial load is inline with the
  column
• There are situations that the load will
  be off center and cause a bending in
  the column in addition to the
                                            Pin-Pin Column 
  compression. This type of loading is
  called eccentric load                     with Eccentric 
                                            Axial Load 
• When a column is load off center,
  bending can be sever problem and
  may be more important than the
  compression stress or buckling                     14
Analysis of eccentric loads
• At the cut surface, there will be both an internal
  moment, m, and the axial load P. This partial
  section of the column must still be equilibrium,
  and moments can be summed at the cut
  surface, giving,
     ΣM = 0
     m + P (e + v) = 0

• bending in a structure can be modeled as m =
  EI d2v/dx2, giving
      EI d2v/dx2 + Pv = -Pe

• This is a classical differential equation that can
  be solved using the general solution,
       v = C2 sin kx + C1 cos kx - e
  where k = (P/EI)0.5. The constants C1 and C2 can
  be determined using the boundary conditions          15
•   First, the deflection, v=0, at x = 0
          0 = C2 0 + C1 1 - e
       C1 = e
•   The second boundary condition specifies the deflection, v=0, at X = L
          0 = C2 sin kL + e cos kL - e
          C2=e tan (kL/2)




•   Maximum deflection
     – The maximum deflection occurs at the column center, x = L/2, since both
       ends are pinned.




                                                                             16
Maximum stress: secant formula
• Unlike basic column buckling, eccentric
  loaded columns bend and must
  withstand both bending stresses and
  axial compression stresses.
• The axial load P, will produce a
  compression stress P/A. Since the load
  P is not at the center, it will cause a
  bending stress My/I.


•    The maximum moment, Mmax, is at
    the mid-point of the column (x = L/2),
        Mmax = P (e + vmax)

                                             17
• Combining the above equations gives




• But I = Ar2. This gives the final form of the secant formula as



• The stress maximum, σmax, is generally the yield stress or
  allowable stress of the column material, which is known.
• The geometry of the column, length L, area A, radius of
  gyration r, and maximum distance from the neutral axis c
  are also known. The eccentricity, e, and material stiffness,
  E, are considered known.
                                                              18
19
Design of columns under an eccentric load
                     • An eccentric load P can be replaced by a 
                       centric load P and a couple M = Pe.

                     • Normal stresses can be found from 
                       superposing the stresses due to the 
                       centric load and couple,
                        σ = σ centric + σ bending
                                  P Mc
                        σ max =    +
                                  A I

                     • Allowable stress method:
                        P Mc
                         +   ≤ σ all
                        A I

                     • Interaction method:
                             P A               Mc I
                                        +                     ≤1
                        ( σ all ) centric ( σ all ) bending
                                                                   20
Example
          The uniform column consists of an 8-ft section 
          of structural tubing having the cross-section 
          shown.

          a) Using Euler’s formula and a factor of safety 
             of two, determine the allowable centric load 
             for the column and the corresponding 
             normal stress.
          b) Assuming that the allowable load, found in 
             part a, is applied at a point 0.75 in. from the 
             geometric axis of the column, determine the 
             horizontal deflection of the top of the 
             column and the maximum normal stress in 
             the column.



                                                       21
SOLUTION:
• Maximum allowable centric load:
- Effective length,
   Le = 2( 8 ft ) = 16 ft = 192 in.


- Critical load,

   Pcr =
           π 2 EI
               =
                       (              )(
                    π 2 29 × 106  psi 8.0 in 4   )
             2
            Le              (192 in ) 2
       = 62.1 kips

- Allowable load,
         P     62.1 kips          Pall = 31.1 kips
   Pall = cr =
         FS        2
      P      31.1 kips
   σ = all =                      σ = 8.79 ksi
       A     3.54 in 2                               22
• Eccentric load:
 - End deflection,
             π P  
     ym = e sec       
                 2 P  − 1
                   cr   
                         π  
        = ( 0.075 in ) sec  − 1
                        2 2 
     ym = 0.939 in.


 - Maximum normal stress,
           P  ec  π P 
    σm =     1 + 2 sec
                        2 P 
                               
           A r            cr  

          31.1 kips  ( 0.75 in )( 2 in )  π 
        =         2 
                     1+                  sec     
          3.54 in       (1.50 in ) 2        2 2 

    σ m = 22.0 ksi
                                              23
Example
Determine the maximum flexural stress produced by a resisting Moment Mr of
+5000ft.lb if the beam has cross section shown in the figure.




 Locate the neutral axis from the bottom end




                                                                             24
25
• Work out the rest of example here




                                      26

Weitere ähnliche Inhalte

Was ist angesagt?

Resonance in series and parallel circuits
Resonance in series and parallel circuitsResonance in series and parallel circuits
Resonance in series and parallel circuitshardikpanchal424
 
Resonant Response of RLC Circuits
Resonant Response of RLC Circuits Resonant Response of RLC Circuits
Resonant Response of RLC Circuits Sachin Mehta
 
Resonance in parallel rlc circuit
Resonance in parallel rlc circuitResonance in parallel rlc circuit
Resonance in parallel rlc circuitShivam Gupta
 
Alternating Current -12 isc 2017 ( investigatory Project)
Alternating Current -12 isc 2017 ( investigatory Project) Alternating Current -12 isc 2017 ( investigatory Project)
Alternating Current -12 isc 2017 ( investigatory Project) Student
 
Review of ac fundamentals
Review of ac fundamentalsReview of ac fundamentals
Review of ac fundamentalsMeenakumari R
 
Q-Factor In Series and Parallel AC Circuits
Q-Factor In Series and Parallel AC CircuitsQ-Factor In Series and Parallel AC Circuits
Q-Factor In Series and Parallel AC CircuitsSurbhi Yadav
 
generation of ac voltage
generation of ac voltagegeneration of ac voltage
generation of ac voltage2461998
 
Rc and rl differentiator and integrator circuit
Rc and rl differentiator and integrator circuitRc and rl differentiator and integrator circuit
Rc and rl differentiator and integrator circuittaranjeet10
 
resonance circuits
 resonance circuits resonance circuits
resonance circuitsvishal gupta
 

Was ist angesagt? (19)

Resonance in series and parallel circuits
Resonance in series and parallel circuitsResonance in series and parallel circuits
Resonance in series and parallel circuits
 
Resonant Response of RLC Circuits
Resonant Response of RLC Circuits Resonant Response of RLC Circuits
Resonant Response of RLC Circuits
 
R-L-C circuit
R-L-C circuitR-L-C circuit
R-L-C circuit
 
Chapter 1
Chapter 1Chapter 1
Chapter 1
 
Resonance in parallel rlc circuit
Resonance in parallel rlc circuitResonance in parallel rlc circuit
Resonance in parallel rlc circuit
 
Alternating Current -12 isc 2017 ( investigatory Project)
Alternating Current -12 isc 2017 ( investigatory Project) Alternating Current -12 isc 2017 ( investigatory Project)
Alternating Current -12 isc 2017 ( investigatory Project)
 
Review of ac fundamentals
Review of ac fundamentalsReview of ac fundamentals
Review of ac fundamentals
 
Q-Factor In Series and Parallel AC Circuits
Q-Factor In Series and Parallel AC CircuitsQ-Factor In Series and Parallel AC Circuits
Q-Factor In Series and Parallel AC Circuits
 
A.c circuits
A.c circuitsA.c circuits
A.c circuits
 
Series parallel ac rlc networks
Series parallel ac rlc networksSeries parallel ac rlc networks
Series parallel ac rlc networks
 
Ac fundamentals
Ac fundamentalsAc fundamentals
Ac fundamentals
 
ac circuit
ac circuitac circuit
ac circuit
 
generation of ac voltage
generation of ac voltagegeneration of ac voltage
generation of ac voltage
 
Rc and rl differentiator and integrator circuit
Rc and rl differentiator and integrator circuitRc and rl differentiator and integrator circuit
Rc and rl differentiator and integrator circuit
 
Series parallel ac networks
Series parallel ac networksSeries parallel ac networks
Series parallel ac networks
 
Ac circuits
Ac circuitsAc circuits
Ac circuits
 
Ch10 ln
Ch10 lnCh10 ln
Ch10 ln
 
resonance circuits
 resonance circuits resonance circuits
resonance circuits
 
Floyd chap 11 ac fundamentals
Floyd chap 11 ac fundamentalsFloyd chap 11 ac fundamentals
Floyd chap 11 ac fundamentals
 

Andere mochten auch

Engineering science lesson 3
Engineering science lesson 3Engineering science lesson 3
Engineering science lesson 3Shahid Aaqil
 
Engineering science lesson 1
Engineering science lesson 1Engineering science lesson 1
Engineering science lesson 1Shahid Aaqil
 
Engineering science lesson 2
Engineering science lesson 2Engineering science lesson 2
Engineering science lesson 2Shahid Aaqil
 
Engineering science lesson 4
Engineering science lesson 4Engineering science lesson 4
Engineering science lesson 4Shahid Aaqil
 
Engineering science lesson 1
Engineering science lesson 1Engineering science lesson 1
Engineering science lesson 1Shahid Aaqil
 
Engineering science lesson 6 1
Engineering science lesson 6 1Engineering science lesson 6 1
Engineering science lesson 6 1Shahid Aaqil
 
Ch 2 Linear Motion
Ch 2 Linear MotionCh 2 Linear Motion
Ch 2 Linear Motionhursmi
 
Engineering science lesson 7
Engineering science lesson 7Engineering science lesson 7
Engineering science lesson 7Shahid Aaqil
 

Andere mochten auch (10)

Engineering science lesson 3
Engineering science lesson 3Engineering science lesson 3
Engineering science lesson 3
 
Engineering science lesson 1
Engineering science lesson 1Engineering science lesson 1
Engineering science lesson 1
 
Engineering science lesson 2
Engineering science lesson 2Engineering science lesson 2
Engineering science lesson 2
 
Edexcel HND Unit- Engineering Science (Nqf L4)
Edexcel HND Unit- Engineering Science (Nqf L4)Edexcel HND Unit- Engineering Science (Nqf L4)
Edexcel HND Unit- Engineering Science (Nqf L4)
 
Engineering science lesson 4
Engineering science lesson 4Engineering science lesson 4
Engineering science lesson 4
 
Engineering science lesson 1
Engineering science lesson 1Engineering science lesson 1
Engineering science lesson 1
 
Engineering science lesson 6 1
Engineering science lesson 6 1Engineering science lesson 6 1
Engineering science lesson 6 1
 
Ch 2 Linear Motion
Ch 2 Linear MotionCh 2 Linear Motion
Ch 2 Linear Motion
 
Characteristics Of The Materials
Characteristics Of The MaterialsCharacteristics Of The Materials
Characteristics Of The Materials
 
Engineering science lesson 7
Engineering science lesson 7Engineering science lesson 7
Engineering science lesson 7
 

Ähnlich wie Engineering science lesson 5

12 ac bridges rev 3 080423
12 ac  bridges rev 3 08042312 ac  bridges rev 3 080423
12 ac bridges rev 3 080423Iqxca AzmYani
 
Dynamic model of pmsm dal y.ohm
Dynamic model of pmsm dal y.ohmDynamic model of pmsm dal y.ohm
Dynamic model of pmsm dal y.ohmwarluck88
 
Dynamic model of pmsm (lq and la)
Dynamic model of pmsm  (lq and la)Dynamic model of pmsm  (lq and la)
Dynamic model of pmsm (lq and la)warluck88
 
Torsional vibrations and buckling of thin WALLED BEAMS
Torsional vibrations and buckling of thin WALLED BEAMSTorsional vibrations and buckling of thin WALLED BEAMS
Torsional vibrations and buckling of thin WALLED BEAMSSRINIVASULU N V
 
Pvp 61030 Perl Bernstein Linked In
Pvp 61030 Perl Bernstein Linked InPvp 61030 Perl Bernstein Linked In
Pvp 61030 Perl Bernstein Linked Invadimbern
 
Uniten iccbt 08 a serviceability approach to the design of scc beams
Uniten iccbt 08 a serviceability approach to the design of scc beamsUniten iccbt 08 a serviceability approach to the design of scc beams
Uniten iccbt 08 a serviceability approach to the design of scc beamsYf Chong
 
Mcrowave and Radar engineering
Mcrowave and Radar engineeringMcrowave and Radar engineering
Mcrowave and Radar engineeringPriyanka Anni
 
Waveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxWaveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxPawanKumar391848
 
Packed Bed Reactor Lumped
Packed Bed Reactor LumpedPacked Bed Reactor Lumped
Packed Bed Reactor Lumpedgauravkakran
 
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010Colm Connaughton
 
A Comparison Of Vlsi Interconnect Models
A Comparison Of Vlsi Interconnect ModelsA Comparison Of Vlsi Interconnect Models
A Comparison Of Vlsi Interconnect Modelshappybhatia
 

Ähnlich wie Engineering science lesson 5 (20)

ECNG 6503 #1
ECNG 6503 #1 ECNG 6503 #1
ECNG 6503 #1
 
Aes
AesAes
Aes
 
SA-I_Column & Strut
SA-I_Column & StrutSA-I_Column & Strut
SA-I_Column & Strut
 
12 ac bridges rev 3 080423
12 ac  bridges rev 3 08042312 ac  bridges rev 3 080423
12 ac bridges rev 3 080423
 
Dynamic model of pmsm dal y.ohm
Dynamic model of pmsm dal y.ohmDynamic model of pmsm dal y.ohm
Dynamic model of pmsm dal y.ohm
 
Dynamic model of pmsm (lq and la)
Dynamic model of pmsm  (lq and la)Dynamic model of pmsm  (lq and la)
Dynamic model of pmsm (lq and la)
 
Torsional vibrations and buckling of thin WALLED BEAMS
Torsional vibrations and buckling of thin WALLED BEAMSTorsional vibrations and buckling of thin WALLED BEAMS
Torsional vibrations and buckling of thin WALLED BEAMS
 
Pvp 61030 Perl Bernstein Linked In
Pvp 61030 Perl Bernstein Linked InPvp 61030 Perl Bernstein Linked In
Pvp 61030 Perl Bernstein Linked In
 
column and strut
column and strutcolumn and strut
column and strut
 
#26 Key
#26 Key#26 Key
#26 Key
 
99995069.ppt
99995069.ppt99995069.ppt
99995069.ppt
 
Uniten iccbt 08 a serviceability approach to the design of scc beams
Uniten iccbt 08 a serviceability approach to the design of scc beamsUniten iccbt 08 a serviceability approach to the design of scc beams
Uniten iccbt 08 a serviceability approach to the design of scc beams
 
Ch5 epfm
Ch5 epfmCh5 epfm
Ch5 epfm
 
Mcrowave and Radar engineering
Mcrowave and Radar engineeringMcrowave and Radar engineering
Mcrowave and Radar engineering
 
Complex strains (2nd year)
Complex strains (2nd year)Complex strains (2nd year)
Complex strains (2nd year)
 
Waveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxWaveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptx
 
Packed Bed Reactor Lumped
Packed Bed Reactor LumpedPacked Bed Reactor Lumped
Packed Bed Reactor Lumped
 
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010
 
Systems power point
Systems power pointSystems power point
Systems power point
 
A Comparison Of Vlsi Interconnect Models
A Comparison Of Vlsi Interconnect ModelsA Comparison Of Vlsi Interconnect Models
A Comparison Of Vlsi Interconnect Models
 

Mehr von Shahid Aaqil

Engineering science lesson 11
Engineering science lesson 11Engineering science lesson 11
Engineering science lesson 11Shahid Aaqil
 
Engineering science lesson 10
Engineering science lesson 10Engineering science lesson 10
Engineering science lesson 10Shahid Aaqil
 
Engineering science lesson 8 1
Engineering science lesson 8 1Engineering science lesson 8 1
Engineering science lesson 8 1Shahid Aaqil
 
Engineering science lesson 8
Engineering science lesson 8Engineering science lesson 8
Engineering science lesson 8Shahid Aaqil
 
Engineering science lesson 6 2
Engineering science lesson 6 2Engineering science lesson 6 2
Engineering science lesson 6 2Shahid Aaqil
 
Engineering science presentation final
Engineering science presentation finalEngineering science presentation final
Engineering science presentation finalShahid Aaqil
 
Engineering science lesson 4
Engineering science lesson 4Engineering science lesson 4
Engineering science lesson 4Shahid Aaqil
 
Engineering science lesson 5
Engineering science lesson 5Engineering science lesson 5
Engineering science lesson 5Shahid Aaqil
 

Mehr von Shahid Aaqil (8)

Engineering science lesson 11
Engineering science lesson 11Engineering science lesson 11
Engineering science lesson 11
 
Engineering science lesson 10
Engineering science lesson 10Engineering science lesson 10
Engineering science lesson 10
 
Engineering science lesson 8 1
Engineering science lesson 8 1Engineering science lesson 8 1
Engineering science lesson 8 1
 
Engineering science lesson 8
Engineering science lesson 8Engineering science lesson 8
Engineering science lesson 8
 
Engineering science lesson 6 2
Engineering science lesson 6 2Engineering science lesson 6 2
Engineering science lesson 6 2
 
Engineering science presentation final
Engineering science presentation finalEngineering science presentation final
Engineering science presentation final
 
Engineering science lesson 4
Engineering science lesson 4Engineering science lesson 4
Engineering science lesson 4
 
Engineering science lesson 5
Engineering science lesson 5Engineering science lesson 5
Engineering science lesson 5
 

Kürzlich hochgeladen

The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingTeacherCyreneCayanan
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024Janet Corral
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 

Kürzlich hochgeladen (20)

The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 

Engineering science lesson 5

  • 1. Chapter 1- Static engineering systems 1.1 Simply supported beams 1.1.1 determination of shear force 1.1.2 bending moment and stress due to bending 1.1.3 radius of curvature in simply supported beams subjected to concentrated and uniformly distributed loads 1.1.4 eccentric loading of columns 1.1.5 stress distribution 1.1.6 middle third rule 1.2 Beams and columns 1.2.1 elastic section modulus for beams 1.2.2 standard section tables for rolled steel beams 1.2.3 selection of standard sections (eg slenderness ratio for compression members, standard section and allowable stress tables for rolled steel columns, selection of standard sections) 1
  • 2. Stresses in beams • Stresses in the beam are functions of x and y • If we were to cut a beam at a point x, we would find a distribution of direct stresses σ(y) and shear stresses σxy(y) • Summing these individual moments over the area of the cross-section is the definition of the moment resultant M, • Summing the shear stresses on the cross-section is the definition of the shear resultant V, • The sum of all direct stresses acting on the cross-section is known as N, 2
  • 3. • Direct stress distribution in the beam due to bending • Note that the bending stress in beam theory is linear through the beam thickness. The maximum bending stress occurs at the point furthest away from the neutral axis, y = c 3
  • 4. Flexure formula •   Stresses calculated from the flexure formula are called bending stresses or flexural stresses.               • The maximum tensile and compressive bending stresses occur at points (c1 and c2) furthest from the neutral surface • where S1 and S2 are called section moduli (units: in3, m3) of the cross- sectional area. Section moduli are commonly listed in design 4 handbooks
  • 5. Euler’s Formula for Pin-Ended Beams v v v v v l Putting l v 5
  • 6. 6
  • 7. 7
  • 8. 8
  • 9. Design of columns under centric loads • Experimental data demonstrate - for large Le/k σcr follows  le /r, (le/k)2 Euler’s formula and depends  upon E but not σY. - for small L/k σcr is  le e/r, determined by the yield  strength σY and not E. - for intermediate Le/k σcr  le /r, depends on both σY and E.   9
  • 10. • For Le/r > Cc l e/k Structural Steel π 2E σ σ cr = σ all = cr American Inst. of Steel Construction ( Le/kr ) 2 FS l / FS = 1.92 l e/k • For Le/r > Cc  ( Le /kr ) 2  le / σ σ cr = σ Y 1 − 2  σ all = cr   2Cc   FS 3 5 3 Le/kr 1  Le/k  l / l /r FS = + e −  e  3 8 Cc 8  Cc    le/k • At Le/k = Cc le /r 2 2 2π E σ cr = 1 σ Y Cc = 2 σY 10
  • 11. Sample problem SOLUTION: • With the diameter unknown, the  slenderness ration can not be evaluated.   Must make an assumption on which  slenderness ratio regime to utilize. • Calculate required diameter for  assumed slenderness ratio regime. • Evaluate slenderness ratio and verify  initial assumption.  Repeat if  Using the aluminum alloy2014-T6,  necessary. determine the smallest diameter rod  which can be used to support the centric  load P = 60 kN if  a) L = 750 mm,   b) L = 300 mm 11
  • 12. • For L = 750 mm, assume L/r > 55 • Determine cylinder radius: P 372 × 103 MPa σ all = = A ( L r)2 60 × 103 N 372 × 103 MPa 2 = 2 c = 18.44 mm πc  0.750 m     c/2  • Check slenderness ratio assumption: c = cylinder radius L L 750mm r = radius of  gyration = = = 81.3 > 55 r c / 2 (18.44 mm ) I πc 4 4 c assumption was correct = = 2 = A πc 2 d = 2c = 36.9 mm 12
  • 13. • For L = 300 mm, assume L/r < 55 • Determine cylinder radius: P   L  σ all = = 212 − 1.585  MPa A   r  60 × 103 N   0.3 m  6 = 212 − 1.585  × 10 Pa πc 2   c / 2  c = 12.00 mm • Check slenderness ratio assumption: L L 300 mm = = = 50 < 55 r c / 2 (12.00 mm ) assumption was correct d = 2c = 24.0 mm 13
  • 14. Eccentric loading of columns • Generally, columns are designed so that the axial load is inline with the column • There are situations that the load will be off center and cause a bending in the column in addition to the Pin-Pin Column  compression. This type of loading is called eccentric load with Eccentric  Axial Load  • When a column is load off center, bending can be sever problem and may be more important than the compression stress or buckling 14
  • 15. Analysis of eccentric loads • At the cut surface, there will be both an internal moment, m, and the axial load P. This partial section of the column must still be equilibrium, and moments can be summed at the cut surface, giving, ΣM = 0 m + P (e + v) = 0 • bending in a structure can be modeled as m = EI d2v/dx2, giving EI d2v/dx2 + Pv = -Pe • This is a classical differential equation that can be solved using the general solution, v = C2 sin kx + C1 cos kx - e where k = (P/EI)0.5. The constants C1 and C2 can be determined using the boundary conditions 15
  • 16. First, the deflection, v=0, at x = 0 0 = C2 0 + C1 1 - e C1 = e • The second boundary condition specifies the deflection, v=0, at X = L 0 = C2 sin kL + e cos kL - e C2=e tan (kL/2) • Maximum deflection – The maximum deflection occurs at the column center, x = L/2, since both ends are pinned. 16
  • 17. Maximum stress: secant formula • Unlike basic column buckling, eccentric loaded columns bend and must withstand both bending stresses and axial compression stresses. • The axial load P, will produce a compression stress P/A. Since the load P is not at the center, it will cause a bending stress My/I. • The maximum moment, Mmax, is at the mid-point of the column (x = L/2), Mmax = P (e + vmax) 17
  • 18. • Combining the above equations gives • But I = Ar2. This gives the final form of the secant formula as • The stress maximum, σmax, is generally the yield stress or allowable stress of the column material, which is known. • The geometry of the column, length L, area A, radius of gyration r, and maximum distance from the neutral axis c are also known. The eccentricity, e, and material stiffness, E, are considered known. 18
  • 19. 19
  • 20. Design of columns under an eccentric load • An eccentric load P can be replaced by a  centric load P and a couple M = Pe. • Normal stresses can be found from  superposing the stresses due to the  centric load and couple, σ = σ centric + σ bending P Mc σ max = + A I • Allowable stress method: P Mc + ≤ σ all A I • Interaction method: P A Mc I + ≤1 ( σ all ) centric ( σ all ) bending 20
  • 21. Example The uniform column consists of an 8-ft section  of structural tubing having the cross-section  shown. a) Using Euler’s formula and a factor of safety  of two, determine the allowable centric load  for the column and the corresponding  normal stress. b) Assuming that the allowable load, found in  part a, is applied at a point 0.75 in. from the  geometric axis of the column, determine the  horizontal deflection of the top of the  column and the maximum normal stress in  the column. 21
  • 22. SOLUTION: • Maximum allowable centric load: - Effective length, Le = 2( 8 ft ) = 16 ft = 192 in. - Critical load, Pcr = π 2 EI = ( )( π 2 29 × 106  psi 8.0 in 4 ) 2 Le (192 in ) 2 = 62.1 kips - Allowable load, P 62.1 kips Pall = 31.1 kips Pall = cr = FS 2 P 31.1 kips σ = all = σ = 8.79 ksi A 3.54 in 2 22
  • 23. • Eccentric load: - End deflection,  π P   ym = e sec   2 P  − 1   cr     π   = ( 0.075 in ) sec  − 1  2 2  ym = 0.939 in. - Maximum normal stress, P  ec  π P  σm = 1 + 2 sec  2 P   A r  cr   31.1 kips  ( 0.75 in )( 2 in )  π  = 2  1+ sec  3.54 in  (1.50 in ) 2  2 2  σ m = 22.0 ksi 23
  • 24. Example Determine the maximum flexural stress produced by a resisting Moment Mr of +5000ft.lb if the beam has cross section shown in the figure. Locate the neutral axis from the bottom end 24
  • 25. 25
  • 26. • Work out the rest of example here 26