SlideShare ist ein Scribd-Unternehmen logo
1 von 107
Downloaden Sie, um offline zu lesen
Explainable AI for identifying
regional climate change patterns
@ZLabe
Zachary M. Labe
Postdoc at Princeton University and NOAA GFDL
13 January 2023 – University of Leeds
Scientific Machine Learning Community (SciML)
https://zacklabe.com/
• Do it better
• e.g., parameterizations in climate models are not
perfect, use ML to make them more accurate
• Do it faster
• e.g., code in climate models is very slow (but we
know the right answer) - use ML methods to speed
things up
• Do something new
• e.g., go looking for non-linear relationships you
didn’t know were there
Very relevant for
research: may be
slower and worse,
but can still learn
something
WHY SHOULD WE CONSIDER
MACHINE LEARNING?
GROWING DATA
Today’s weather or climate
scientist is far more likely to be
debugging code written in
Python… than to be poring over
satellite images or releasing
radiosondes.
“
D. Irving| Bulletin of the American Meteorological Society| 2016
Machine learning for weather
IDENTIFYING SEVERE THUNDERSTORMS
Molina et al. 2021
Toms et al. 2021
CLASSIFYING PHASE OF MADDEN-JULLIAN OSCILLATION
SATELLITE DETECTION
Lee et al. 2021
DETECTING TORNADOES
McGovern et al. 2019
Machine learning for climate
FINDING FORECASTS OF OPPORTUNITY
Mayer and Barnes, 2021
PREDICTING CLIMATE MODES OF VARIABILITY
Gordon et al. 2021
TIMING OF CLIMATE CHANGE
Barnes et al. 2019
Machine learning for oceanography
CLASSIFYING ARCTIC OCEAN ACIDIFICATION
Krasting et al. 2022
TRACK AND REVEAL DEEP WATER MASSES
Sonnewald and Lguensat, 2021
ESTIMATING OCEAN SURFACE CURRENTS
Sinha and Abernathey, 2021
INPUT
[DATA]
PREDICTION
Machine
Learning
INPUT
[DATA]
PREDICTION
~Statistical
Algorithm~
INPUT
[DATA]
PREDICTION
Machine
Learning
TEMPERATURE
TEMPERATURE
We know some metadata…
+ What year is it?
+ Where did it come from?
We know some metadata…
+ What year is it?
+ Where did it come from?
[Labe and Barnes, 2022; ESS]
TEMPERATURE
TEMPERATURE
Neural network learns nonlinear
combinations of forced climate
patterns to identify the year
We know some metadata…
+ What year is it?
+ Where did it come from?
[Labe and Barnes, 2022; ESS]
----ANN----
2 Hidden Layers
10 Nodes each
Ridge Regularization
Early Stopping
[e.g., Barnes et al. 2019, 2020]
[e.g., Labe and Barnes, 2021]
TIMING OF EMERGENCE
(COMBINED VARIABLES)
RESPONSES TO
EXTERNAL CLIMATE
FORCINGS
PATTERNS OF
CLIMATE INDICATORS
[e.g., Rader et al. 2022]
Surface Temperature Map Precipitation Map
+
TEMPERATURE
We know some metadata…
+ What year is it?
+ Where did it come from?
[Labe and Barnes, 2022; ESS]
----ANN----
2 Hidden Layers
10 Nodes each
Ridge Regularization
Early Stopping
[e.g., Barnes et al. 2019, 2020]
[e.g., Labe and Barnes, 2021]
TIMING OF EMERGENCE
(COMBINED VARIABLES)
RESPONSES TO
EXTERNAL CLIMATE
FORCINGS
PATTERNS OF
CLIMATE INDICATORS
Surface Temperature Map Precipitation Map
+
TEMPERATURE
[e.g., Rader et al. 2022]
We know some metadata…
+ What year is it?
+ Where did it come from?
[Labe and Barnes, 2022; ESS]
THE REAL WORLD
(Observations)
What is the annual mean temperature of Earth?
What is the annual mean temperature of Earth?
THE REAL WORLD
(Observations)
Anomaly is relative to 1951-1980
What is the annual mean temperature of Earth?
THE REAL WORLD
(Observations)
Let’s run a
climate model
What is the annual mean temperature of Earth?
THE REAL WORLD
(Observations)
Let’s run a
climate model
again
What is the annual mean temperature of Earth?
THE REAL WORLD
(Observations)
Let’s run a
climate model
again & again
What is the annual mean temperature of Earth?
THE REAL WORLD
(Observations)
CLIMATE MODEL
ENSEMBLES
What is the annual mean temperature of Earth?
THE REAL WORLD
(Observations)
CLIMATE MODEL
ENSEMBLES
Range of ensembles
= internal variability (noise)
Mean of ensembles
= forced response (climate change)
What is the annual mean temperature of Earth?
Range of ensembles
= internal variability (noise)
Mean of ensembles
= forced response (climate change)
But let’s remove
climate change…
What is the annual mean temperature of Earth?
Range of ensembles
= internal variability (noise)
Mean of ensembles
= forced response (climate change)
After removing the
forced response…
anomalies/noise!
What is the annual mean temperature of Earth?
• Increasing greenhouse gases (CO2, CH4, N2O)
• Changes in industrial aerosols (SO4, BC, OC)
• Changes in biomass burning (aerosols)
• Changes in land-use & land-cover (albedo)
What is the annual mean temperature of Earth?
• Increasing greenhouse gases (CO2, CH4, N2O)
• Changes in industrial aerosols (SO4, BC, OC)
• Changes in biomass burning (aerosols)
• Changes in land-use & land-cover (albedo)
Plus everything else…
(Natural/internal variability)
What is the annual mean temperature of Earth?
Greenhouse gases fixed to 1920 levels
All forcings (CESM-LE)
Industrial aerosols fixed to 1920 levels
[Deser et al. 2020, JCLI]
Fully-coupled CESM1.1
20 Ensemble Members
Run from 1920-2080
Observations
So what?
Greenhouse gases = warming
Aerosols = ?? (though mostly cooling)
What are the relative responses
between greenhouse gas
and aerosol forcing?
Surface Temperature Map
ARTIFICIAL NEURAL NETWORK (ANN)
INPUT LAYER
Surface Temperature Map
ARTIFICIAL NEURAL NETWORK (ANN)
INPUT LAYER
HIDDEN LAYERS
OUTPUT LAYER
Surface Temperature Map
“2000-2009”
DECADE CLASS
“2070-2079”
“1920-1929”
ARTIFICIAL NEURAL NETWORK (ANN)
INPUT LAYER
HIDDEN LAYERS
OUTPUT LAYER
Surface Temperature Map
“2000-2009”
DECADE CLASS
“2070-2079”
“1920-1929”
BACK-PROPAGATE THROUGH NETWORK = EXPLAINABLE AI
ARTIFICIAL NEURAL NETWORK (ANN)
INPUT LAYER
HIDDEN LAYERS
OUTPUT LAYER
Layer-wise Relevance Propagation
Surface Temperature Map
“2000-2009”
DECADE CLASS
“2070-2079”
“1920-1929”
BACK-PROPAGATE THROUGH NETWORK = EXPLAINABLE AI
ARTIFICIAL NEURAL NETWORK (ANN)
[Barnes et al. 2020, JAMES]
[Labe and Barnes 2021, JAMES]
LAYER-WISE RELEVANCE PROPAGATION (LRP)
Volcano
Great White
Shark
Timber
Wolf
Image Classification LRP
https://heatmapping.org/
LRP heatmaps show regions
of “relevance” that
contribute to the neural
network’s decision-making
process for a sample
belonging to a particular
output category
Neural Network
WHY
WHY
WHY
Backpropagation – LRP
LAYER-WISE RELEVANCE PROPAGATION (LRP)
Volcano
Great White
Shark
Timber
Wolf
Image Classification LRP
https://heatmapping.org/
LRP heatmaps show regions
of “relevance” that
contribute to the neural
network’s decision-making
process for a sample
belonging to a particular
output category
Neural Network
WHY
WHY
WHY
Backpropagation – LRP
LAYER-WISE RELEVANCE PROPAGATION (LRP)
Volcano
Great White
Shark
Timber
Wolf
Image Classification LRP
https://heatmapping.org/
LRP heatmaps show regions
of “relevance” that
contribute to the neural
network’s decision-making
process for a sample
belonging to a particular
output category
Neural Network
Backpropagation – LRP
WHY
WHY
WHY
LAYER-WISE RELEVANCE PROPAGATION (LRP)
Image Classification LRP
https://heatmapping.org/
NOT PERFECT
Crock
Pot
Neural Network
Backpropagation – LRP
WHY
[Adapted from Adebayo et al., 2020]
EXPLAINABLE AI IS
NOT PERFECT
THERE ARE MANY
METHODS
[Adapted from Adebayo et al., 2020]
THERE ARE MANY
METHODS
EXPLAINABLE AI IS
NOT PERFECT
Visualizing something we already know…
Neural
Network
[0] La Niña [1] El Niño
[Toms et al. 2020, JAMES]
Input a map of sea surface temperatures
Visualizing something we already know…
Input maps of sea surface
temperatures to identify
El Niño or La Niña
Use ‘LRP’ to see how the
neural network is making
its decision
[Toms et al. 2020, JAMES]
Layer-wise Relevance Propagation
Composite Observations
LRP [Relevance]
SST Anomaly [°C]
0.00 0.75
0.0 1.5
-1.5
INPUT LAYER
HIDDEN LAYERS
OUTPUT LAYER
Layer-wise Relevance Propagation
Surface Temperature Map
“2000-2009”
DECADE CLASS
“2070-2079”
“1920-1929”
BACK-PROPAGATE THROUGH NETWORK = EXPLAINABLE AI
ARTIFICIAL NEURAL NETWORK (ANN)
[Barnes et al. 2020, JAMES]
[Labe and Barnes 2021, JAMES]
1960-1999: ANNUAL MEAN TEMPERATURE TRENDS
Greenhouse gases fixed
to 1920 levels
[AEROSOLS PREVAIL]
Industrial aerosols fixed
to 1920 levels
[GREENHOUSE GASES PREVAIL]
All forcings
[STANDARD CESM-LE]
DATA
1960-1999: ANNUAL MEAN TEMPERATURE TRENDS
Greenhouse gases fixed
to 1920 levels
[AEROSOLS PREVAIL]
Industrial aerosols fixed
to 1920 levels
[GREENHOUSE GASES PREVAIL]
All forcings
[STANDARD CESM-LE]
DATA
1960-1999: ANNUAL MEAN TEMPERATURE TRENDS
Greenhouse gases fixed
to 1920 levels
[AEROSOLS PREVAIL]
Industrial aerosols fixed
to 1920 levels
[GREENHOUSE GASES PREVAIL]
All forcings
[STANDARD CESM-LE]
DATA
1960-1999: ANNUAL MEAN TEMPERATURE TRENDS
Greenhouse gases fixed
to 1920 levels
[AEROSOLS PREVAIL]
Industrial aerosols fixed
to 1920 levels
[GREENHOUSE GASES PREVAIL]
All forcings
[STANDARD CESM-LE]
DATA
CLIMATE MODEL DATA PREDICT THE YEAR FROM MAPS OF TEMPERATURE
AEROSOLS
PREVAIL
GREENHOUSE GASES
PREVAIL
STANDARD
CLIMATE MODEL
[Labe and Barnes 2021, JAMES]
OBSERVATIONS PREDICT THE YEAR FROM MAPS OF TEMPERATURE
AEROSOLS
PREVAIL
GREENHOUSE GASES
PREVAIL
STANDARD
CLIMATE MODEL
[Labe and Barnes 2021, JAMES]
OBSERVATIONS
SLOPES
PREDICT THE YEAR FROM MAPS OF TEMPERATURE
AEROSOLS
PREVAIL
GREENHOUSE GASES
PREVAIL
STANDARD
CLIMATE MODEL
[Labe and Barnes 2021, JAMES]
[Labe
and
Barnes
2021,
JAMES]
ARE THE RESULTS ROBUST?
YES!
COMBINATIONS OF TRAINING/TESTING DATA
HOW DID THE ANN
MAKE ITS
PREDICTIONS?
HOW DID THE ANN
MAKE ITS
PREDICTIONS?
WHY IS THERE
GREATER SKILL
FOR GHG+?
RESULTS FROM LRP
[Labe and Barnes 2021, JAMES]
Low High
RESULTS FROM LRP
[Labe and Barnes 2021, JAMES]
Low High
RESULTS FROM LRP
[Labe and Barnes 2021, JAMES]
Low High
RESULTS FROM LRP
[Labe and Barnes 2021, JAMES]
Low High
Higher LRP values indicate greater relevance
for the ANN’s prediction
AVERAGED OVER 1960-2039
Aerosol-driven
Greenhouse gas-driven
All forcings
Low High
[Labe and Barnes 2021, JAMES]
Greenhouse gas-driven
Aerosol-driven
All forcings
AVERAGED OVER 1960-2039
[Labe and Barnes 2021, JAMES]
DISTRIBUTIONS OF LRP
AVERAGED OVER 1960-2039
[Labe and Barnes 2021, JAMES]
DISTRIBUTIONS OF LRP
AVERAGED OVER 1960-2039
[Labe and Barnes 2021, JAMES]
Earth is warming!
OBSERVATIONS
Adapted
from
Peings
et
al.
2018,
ERL
AA
UTW
LENS
Stratosphere
Troposphere
2100-2070
minus
1981-2010
Antarctic Equator Arctic
CLIMATE MODEL PROJECTION
https://www.realclimate.org/index.php/climate-model-projections-compared-to-observations/
Climate models exhibit 2x as much
warming as observations…
TMT = tropical mid-troposphere
[Po-Chedley
et
al.
2022,
PNAS]
PREDICT:
INTERNAL + EXTERNAL
COMPONENTS
[Po-Chedley et al. 2022, PNAS]
Partial least squares regression with CMIP6 large ensembles (test observations)
[Po-Chedley et al. 2022, PNAS]
UNDERSTANDING OUR
PREDICTIONS
–
Patterns of internal variability
(e.g., Interdecadal Pacific
Oscillation)
[Po-Chedley et al. 2022, PNAS]
Earth is warming!
https://research.noaa.gov/article/ArtMID/587/ArticleID/2756/Simulated-
geoengineering-evaluation-cooler-planet-but-with-side-effects
Could we detect whether we were under the
influence of stratospheric aerosol injection (SAI)
using regional climate patterns?
TEMPERATURE
YEAR 2045
SAI? SAI?
PRECIPITATION
YEAR 2045
SAI? SAI?
LET’S TRY ANOMALIES
YEAR 2045
PROJECTIONS OF
TEMPERATURE
[Labe et al. 2023, EarthArXiv]
PROJECTIONS OF
PRECIPITATION
[Labe et al. 2023, EarthArXiv]
CAN WE DETECT A SAI WORLD?
LOGISTIC REGRESSION [Labe et al. 2023, EarthArXiv]
CLIMATOLOGICAL MAPS OF ARISE-SAI-1.5 IN 2050-2069
MEAN STATE
[Labe et al. 2023, EarthArXiv]
DECADAL TRENDS
TEMPERATURE [Labe et al. 2023, EarthArXiv]
DECADAL TRENDS
TEMPERATURE [Labe et al. 2023, EarthArXiv]
DECADAL TRENDS
PRECIPITATION [Labe et al. 2023, EarthArXiv]
DECADAL TRENDS
PRECIPITATION [Labe et al. 2023, EarthArXiv]
N
Y
HIDDEN LAYERS
INPUT LAYER
INPUT LAYER
SAI WORLD?
or
or
map of near-surface temperature
map of near-surface temperature
map of total precipitation
map of total precipitation
Years Since
SAI Injection
OUTPUT
LOGISTIC
REGRESSION
ARTIFICAL
NEURAL
NETWORK
softmax
[Labe et al. 2023, EarthArXiv]
N
Y
HIDDEN LAYERS
INPUT LAYER
INPUT LAYER
SAI WORLD?
or
or
map of near-surface temperature
map of near-surface temperature
map of total precipitation
map of total precipitation
Years Since
SAI Injection
OUTPUT
LOGISTIC
REGRESSION
ARTIFICAL
NEURAL
NETWORK
softmax
[Labe et al. 2023, EarthArXiv]
CAN WE DETECT A SAI WORLD?
[Labe et al. 2023, EarthArXiv]
[Labe et al. 2023, EarthArXiv]
[Labe et al. 2023, EarthArXiv]
Central
Africa
[Labe et al. 2023, EarthArXiv]
HOW DID THE ML MODEL KNOW?
[Labe et al. 2023, EarthArXiv]
…Using regional climate patterns!
[Labe et al. 2023, EarthArXiv]
CAN WE DETECT A SAI WORLD?
[Labe et al. 2023, EarthArXiv]
N
Y
HIDDEN LAYERS
INPUT LAYER
INPUT LAYER
SAI WORLD?
or
or
map of near-surface temperature
map of near-surface temperature
map of total precipitation
map of total precipitation
Years Since
SAI Injection
OUTPUT
LOGISTIC
REGRESSION
ARTIFICAL
NEURAL
NETWORK
softmax
[Labe et al. 2023, EarthArXiv]
TEMPERATURE
[Labe et al. 2023, EarthArXiv]
INPUT
[DATA]
PREDICTION
Machine
Learning
Explainable AI
Learn new
science!
MACHINE LEARNING IS JUST
ANOTHER TOOL TO ADD TO OUR
WORKFLOW.
1)
MACHINE LEARNING IS
NO LONGER A BLACK BOX.
2)
WE CAN LEARN NEW SCIENCE
FROM EXPLAINABLE AI.
3)
KEY POINTS
1. Machine learning is just another tool to add to our scientific workflow
2. We can use explainable AI (XAI) methods to peer into the black box of machine learning
3. We can learn new science by using XAI methods in conjunction with existing statistical tools
Zachary Labe
zachary.labe@noaa.gov
Labe, Z.M. and E.A. Barnes (2021), Detecting climate signals using explainable AI with single-forcing
large ensembles. Journal of Advances in Modeling Earth Systems, DOI: 10.1029/2021MS002464
Po-Chedley, S., J.T. Fasullo, N. Siler, Z.M. Labe, E.A. Barnes, C.J.W. Bonfils, and B.D. Santer (2022). Internal
variability and forcing influence model-satellite differences in the rate of tropical tropospheric
warming. Proceedings of the National Academy of Sciences, DOI: 10.1073/pnas.2209431119
Labe, Z.M., E.A. Barnes, and J.W. Hurrell (2023). Identifying the regional emergence of climate patterns
in a simulation of stratospheric aerosol injection. EarthArXiv, DOI: 10.31223/X5394Z
Explainable AI for identifying regional climate change patterns

Weitere ähnliche Inhalte

Was ist angesagt?

Artificial Intelligence (AI) and Climate Change
Artificial Intelligence (AI) and Climate ChangeArtificial Intelligence (AI) and Climate Change
Artificial Intelligence (AI) and Climate ChangeMilad Jahandideh
 
The Future of AI is Generative not Discriminative 5/26/2021
The Future of AI is Generative not Discriminative 5/26/2021The Future of AI is Generative not Discriminative 5/26/2021
The Future of AI is Generative not Discriminative 5/26/2021Steve Omohundro
 
Big Data [sorry] & Data Science: What Does a Data Scientist Do?
Big Data [sorry] & Data Science: What Does a Data Scientist Do?Big Data [sorry] & Data Science: What Does a Data Scientist Do?
Big Data [sorry] & Data Science: What Does a Data Scientist Do?Data Science London
 
Machine Learning Interpretability
Machine Learning InterpretabilityMachine Learning Interpretability
Machine Learning Interpretabilityinovex GmbH
 
Machine Learning Platformization & AutoML: Adopting ML at Scale in the Enterp...
Machine Learning Platformization & AutoML: Adopting ML at Scale in the Enterp...Machine Learning Platformization & AutoML: Adopting ML at Scale in the Enterp...
Machine Learning Platformization & AutoML: Adopting ML at Scale in the Enterp...Ed Fernandez
 
Intro to Machine Learning & AI
Intro to Machine Learning & AIIntro to Machine Learning & AI
Intro to Machine Learning & AIMostafa Elsheikh
 
Bring Satellite and Drone Imagery into your Data Science Workflows
Bring Satellite and Drone Imagery into your Data Science WorkflowsBring Satellite and Drone Imagery into your Data Science Workflows
Bring Satellite and Drone Imagery into your Data Science WorkflowsDatabricks
 
An introduction to Deep Learning
An introduction to Deep LearningAn introduction to Deep Learning
An introduction to Deep LearningJulien SIMON
 
Explainable AI in Industry (FAT* 2020 Tutorial)
Explainable AI in Industry (FAT* 2020 Tutorial)Explainable AI in Industry (FAT* 2020 Tutorial)
Explainable AI in Industry (FAT* 2020 Tutorial)Krishnaram Kenthapadi
 
Explainable Machine Learning (Explainable ML)
Explainable Machine Learning (Explainable ML)Explainable Machine Learning (Explainable ML)
Explainable Machine Learning (Explainable ML)Hayim Makabee
 
Explainable AI in Industry (WWW 2020 Tutorial)
Explainable AI in Industry (WWW 2020 Tutorial)Explainable AI in Industry (WWW 2020 Tutorial)
Explainable AI in Industry (WWW 2020 Tutorial)Krishnaram Kenthapadi
 
Artificial Intelligence and Future of Work
Artificial Intelligence and Future of WorkArtificial Intelligence and Future of Work
Artificial Intelligence and Future of WorkOleksandr Krakovetskyi
 
What Is Data Science? Data Science Course - Data Science Tutorial For Beginne...
What Is Data Science? Data Science Course - Data Science Tutorial For Beginne...What Is Data Science? Data Science Course - Data Science Tutorial For Beginne...
What Is Data Science? Data Science Course - Data Science Tutorial For Beginne...Edureka!
 
Impact of Generative AI in Cybersecurity - How can ISO/IEC 27032 help?
Impact of Generative AI in Cybersecurity - How can ISO/IEC 27032 help?Impact of Generative AI in Cybersecurity - How can ISO/IEC 27032 help?
Impact of Generative AI in Cybersecurity - How can ISO/IEC 27032 help?PECB
 
Generative AI: Past, Present, and Future – A Practitioner's Perspective
Generative AI: Past, Present, and Future – A Practitioner's PerspectiveGenerative AI: Past, Present, and Future – A Practitioner's Perspective
Generative AI: Past, Present, and Future – A Practitioner's PerspectiveHuahai Yang
 
Robust Filtering Schemes for Machine Learning Systems to Defend Adversarial A...
Robust Filtering Schemes for Machine Learning Systems to Defend Adversarial A...Robust Filtering Schemes for Machine Learning Systems to Defend Adversarial A...
Robust Filtering Schemes for Machine Learning Systems to Defend Adversarial A...Kishor Datta Gupta
 
Prepare your data for machine learning
Prepare your data for machine learningPrepare your data for machine learning
Prepare your data for machine learningIvo Andreev
 
How to Become a Data Scientist
How to Become a Data ScientistHow to Become a Data Scientist
How to Become a Data Scientistryanorban
 

Was ist angesagt? (20)

Explainable AI
Explainable AIExplainable AI
Explainable AI
 
Artificial Intelligence (AI) and Climate Change
Artificial Intelligence (AI) and Climate ChangeArtificial Intelligence (AI) and Climate Change
Artificial Intelligence (AI) and Climate Change
 
The Future of AI is Generative not Discriminative 5/26/2021
The Future of AI is Generative not Discriminative 5/26/2021The Future of AI is Generative not Discriminative 5/26/2021
The Future of AI is Generative not Discriminative 5/26/2021
 
Big Data [sorry] & Data Science: What Does a Data Scientist Do?
Big Data [sorry] & Data Science: What Does a Data Scientist Do?Big Data [sorry] & Data Science: What Does a Data Scientist Do?
Big Data [sorry] & Data Science: What Does a Data Scientist Do?
 
Machine Learning Interpretability
Machine Learning InterpretabilityMachine Learning Interpretability
Machine Learning Interpretability
 
Machine Learning Platformization & AutoML: Adopting ML at Scale in the Enterp...
Machine Learning Platformization & AutoML: Adopting ML at Scale in the Enterp...Machine Learning Platformization & AutoML: Adopting ML at Scale in the Enterp...
Machine Learning Platformization & AutoML: Adopting ML at Scale in the Enterp...
 
Intro to Machine Learning & AI
Intro to Machine Learning & AIIntro to Machine Learning & AI
Intro to Machine Learning & AI
 
Bring Satellite and Drone Imagery into your Data Science Workflows
Bring Satellite and Drone Imagery into your Data Science WorkflowsBring Satellite and Drone Imagery into your Data Science Workflows
Bring Satellite and Drone Imagery into your Data Science Workflows
 
An introduction to Deep Learning
An introduction to Deep LearningAn introduction to Deep Learning
An introduction to Deep Learning
 
Explainable AI in Industry (FAT* 2020 Tutorial)
Explainable AI in Industry (FAT* 2020 Tutorial)Explainable AI in Industry (FAT* 2020 Tutorial)
Explainable AI in Industry (FAT* 2020 Tutorial)
 
Explainable Machine Learning (Explainable ML)
Explainable Machine Learning (Explainable ML)Explainable Machine Learning (Explainable ML)
Explainable Machine Learning (Explainable ML)
 
Explainable AI in Industry (WWW 2020 Tutorial)
Explainable AI in Industry (WWW 2020 Tutorial)Explainable AI in Industry (WWW 2020 Tutorial)
Explainable AI in Industry (WWW 2020 Tutorial)
 
Artificial Intelligence and Future of Work
Artificial Intelligence and Future of WorkArtificial Intelligence and Future of Work
Artificial Intelligence and Future of Work
 
What Is Data Science? Data Science Course - Data Science Tutorial For Beginne...
What Is Data Science? Data Science Course - Data Science Tutorial For Beginne...What Is Data Science? Data Science Course - Data Science Tutorial For Beginne...
What Is Data Science? Data Science Course - Data Science Tutorial For Beginne...
 
Impact of Generative AI in Cybersecurity - How can ISO/IEC 27032 help?
Impact of Generative AI in Cybersecurity - How can ISO/IEC 27032 help?Impact of Generative AI in Cybersecurity - How can ISO/IEC 27032 help?
Impact of Generative AI in Cybersecurity - How can ISO/IEC 27032 help?
 
Explainable AI (XAI)
Explainable AI (XAI)Explainable AI (XAI)
Explainable AI (XAI)
 
Generative AI: Past, Present, and Future – A Practitioner's Perspective
Generative AI: Past, Present, and Future – A Practitioner's PerspectiveGenerative AI: Past, Present, and Future – A Practitioner's Perspective
Generative AI: Past, Present, and Future – A Practitioner's Perspective
 
Robust Filtering Schemes for Machine Learning Systems to Defend Adversarial A...
Robust Filtering Schemes for Machine Learning Systems to Defend Adversarial A...Robust Filtering Schemes for Machine Learning Systems to Defend Adversarial A...
Robust Filtering Schemes for Machine Learning Systems to Defend Adversarial A...
 
Prepare your data for machine learning
Prepare your data for machine learningPrepare your data for machine learning
Prepare your data for machine learning
 
How to Become a Data Scientist
How to Become a Data ScientistHow to Become a Data Scientist
How to Become a Data Scientist
 

Ähnlich wie Explainable AI for identifying regional climate change patterns

Assessing climate variability and change with explainable neural networks
Assessing climate variability and change with explainable neural networksAssessing climate variability and change with explainable neural networks
Assessing climate variability and change with explainable neural networksZachary Labe
 
Forced climate signals with explainable AI and large ensembles
Forced climate signals with explainable AI and large ensemblesForced climate signals with explainable AI and large ensembles
Forced climate signals with explainable AI and large ensemblesZachary Labe
 
Applications of machine learning for climate change and variability
Applications of machine learning for climate change and variabilityApplications of machine learning for climate change and variability
Applications of machine learning for climate change and variabilityZachary Labe
 
Using neural networks to explore regional climate patterns in single-forcing ...
Using neural networks to explore regional climate patterns in single-forcing ...Using neural networks to explore regional climate patterns in single-forcing ...
Using neural networks to explore regional climate patterns in single-forcing ...Zachary Labe
 
Exploring climate change signals with explainable AI
Exploring climate change signals with explainable AIExploring climate change signals with explainable AI
Exploring climate change signals with explainable AIZachary Labe
 
Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...
Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...
Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...Zachary Labe
 
Distinguishing the regional emergence of United States summer temperatures be...
Distinguishing the regional emergence of United States summer temperatures be...Distinguishing the regional emergence of United States summer temperatures be...
Distinguishing the regional emergence of United States summer temperatures be...Zachary Labe
 
Climate Signals in CESM1 Single-Forcing Large Ensembles Revealed by Explainab...
Climate Signals in CESM1 Single-Forcing Large Ensembles Revealed by Explainab...Climate Signals in CESM1 Single-Forcing Large Ensembles Revealed by Explainab...
Climate Signals in CESM1 Single-Forcing Large Ensembles Revealed by Explainab...Zachary Labe
 
Revealing climate change signals with explainable AI
Revealing climate change signals with explainable AIRevealing climate change signals with explainable AI
Revealing climate change signals with explainable AIZachary Labe
 
Climate change extremes by season in the United States
Climate change extremes by season in the United StatesClimate change extremes by season in the United States
Climate change extremes by season in the United StatesZachary Labe
 
Exploring explainable machine learning for detecting changes in climate
Exploring explainable machine learning for detecting changes in climateExploring explainable machine learning for detecting changes in climate
Exploring explainable machine learning for detecting changes in climateZachary Labe
 
Using explainable machine learning for evaluating patterns of climate change
Using explainable machine learning for evaluating patterns of climate changeUsing explainable machine learning for evaluating patterns of climate change
Using explainable machine learning for evaluating patterns of climate changeZachary Labe
 
Evaluating and communicating Arctic climate change projection
Evaluating and communicating Arctic climate change projectionEvaluating and communicating Arctic climate change projection
Evaluating and communicating Arctic climate change projectionZachary Labe
 
Learning new climate science by thinking creatively with machine learning
Learning new climate science by thinking creatively with machine learningLearning new climate science by thinking creatively with machine learning
Learning new climate science by thinking creatively with machine learningZachary Labe
 
Learning new climate science by opening the machine learning black box
Learning new climate science by opening the machine learning black boxLearning new climate science by opening the machine learning black box
Learning new climate science by opening the machine learning black boxZachary Labe
 
Explainable AI approach for evaluating climate models in the Arctic
Explainable AI approach for evaluating climate models in the ArcticExplainable AI approach for evaluating climate models in the Arctic
Explainable AI approach for evaluating climate models in the ArcticZachary Labe
 
Machine learning for evaluating climate model projections
Machine learning for evaluating climate model projectionsMachine learning for evaluating climate model projections
Machine learning for evaluating climate model projectionsZachary Labe
 
Using artificial neural networks to predict temporary slowdowns in global war...
Using artificial neural networks to predict temporary slowdowns in global war...Using artificial neural networks to predict temporary slowdowns in global war...
Using artificial neural networks to predict temporary slowdowns in global war...Zachary Labe
 
Explainable neural networks for evaluating patterns of climate change and var...
Explainable neural networks for evaluating patterns of climate change and var...Explainable neural networks for evaluating patterns of climate change and var...
Explainable neural networks for evaluating patterns of climate change and var...Zachary Labe
 
Exploring climate model large ensembles with explainable neural networks
Exploring climate model large ensembles with explainable neural networksExploring climate model large ensembles with explainable neural networks
Exploring climate model large ensembles with explainable neural networksZachary Labe
 

Ähnlich wie Explainable AI for identifying regional climate change patterns (20)

Assessing climate variability and change with explainable neural networks
Assessing climate variability and change with explainable neural networksAssessing climate variability and change with explainable neural networks
Assessing climate variability and change with explainable neural networks
 
Forced climate signals with explainable AI and large ensembles
Forced climate signals with explainable AI and large ensemblesForced climate signals with explainable AI and large ensembles
Forced climate signals with explainable AI and large ensembles
 
Applications of machine learning for climate change and variability
Applications of machine learning for climate change and variabilityApplications of machine learning for climate change and variability
Applications of machine learning for climate change and variability
 
Using neural networks to explore regional climate patterns in single-forcing ...
Using neural networks to explore regional climate patterns in single-forcing ...Using neural networks to explore regional climate patterns in single-forcing ...
Using neural networks to explore regional climate patterns in single-forcing ...
 
Exploring climate change signals with explainable AI
Exploring climate change signals with explainable AIExploring climate change signals with explainable AI
Exploring climate change signals with explainable AI
 
Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...
Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...
Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...
 
Distinguishing the regional emergence of United States summer temperatures be...
Distinguishing the regional emergence of United States summer temperatures be...Distinguishing the regional emergence of United States summer temperatures be...
Distinguishing the regional emergence of United States summer temperatures be...
 
Climate Signals in CESM1 Single-Forcing Large Ensembles Revealed by Explainab...
Climate Signals in CESM1 Single-Forcing Large Ensembles Revealed by Explainab...Climate Signals in CESM1 Single-Forcing Large Ensembles Revealed by Explainab...
Climate Signals in CESM1 Single-Forcing Large Ensembles Revealed by Explainab...
 
Revealing climate change signals with explainable AI
Revealing climate change signals with explainable AIRevealing climate change signals with explainable AI
Revealing climate change signals with explainable AI
 
Climate change extremes by season in the United States
Climate change extremes by season in the United StatesClimate change extremes by season in the United States
Climate change extremes by season in the United States
 
Exploring explainable machine learning for detecting changes in climate
Exploring explainable machine learning for detecting changes in climateExploring explainable machine learning for detecting changes in climate
Exploring explainable machine learning for detecting changes in climate
 
Using explainable machine learning for evaluating patterns of climate change
Using explainable machine learning for evaluating patterns of climate changeUsing explainable machine learning for evaluating patterns of climate change
Using explainable machine learning for evaluating patterns of climate change
 
Evaluating and communicating Arctic climate change projection
Evaluating and communicating Arctic climate change projectionEvaluating and communicating Arctic climate change projection
Evaluating and communicating Arctic climate change projection
 
Learning new climate science by thinking creatively with machine learning
Learning new climate science by thinking creatively with machine learningLearning new climate science by thinking creatively with machine learning
Learning new climate science by thinking creatively with machine learning
 
Learning new climate science by opening the machine learning black box
Learning new climate science by opening the machine learning black boxLearning new climate science by opening the machine learning black box
Learning new climate science by opening the machine learning black box
 
Explainable AI approach for evaluating climate models in the Arctic
Explainable AI approach for evaluating climate models in the ArcticExplainable AI approach for evaluating climate models in the Arctic
Explainable AI approach for evaluating climate models in the Arctic
 
Machine learning for evaluating climate model projections
Machine learning for evaluating climate model projectionsMachine learning for evaluating climate model projections
Machine learning for evaluating climate model projections
 
Using artificial neural networks to predict temporary slowdowns in global war...
Using artificial neural networks to predict temporary slowdowns in global war...Using artificial neural networks to predict temporary slowdowns in global war...
Using artificial neural networks to predict temporary slowdowns in global war...
 
Explainable neural networks for evaluating patterns of climate change and var...
Explainable neural networks for evaluating patterns of climate change and var...Explainable neural networks for evaluating patterns of climate change and var...
Explainable neural networks for evaluating patterns of climate change and var...
 
Exploring climate model large ensembles with explainable neural networks
Exploring climate model large ensembles with explainable neural networksExploring climate model large ensembles with explainable neural networks
Exploring climate model large ensembles with explainable neural networks
 

Mehr von Zachary Labe

Welcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work DayWelcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work DayZachary Labe
 
Explainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenariosExplainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenariosZachary Labe
 
Reexamining future projections of Arctic climate linkages
Reexamining future projections of Arctic climate linkagesReexamining future projections of Arctic climate linkages
Reexamining future projections of Arctic climate linkagesZachary Labe
 
Techniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online MediaTechniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online MediaZachary Labe
 
An intro to explainable AI for polar climate science
An intro to  explainable AI for  polar climate scienceAn intro to  explainable AI for  polar climate science
An intro to explainable AI for polar climate scienceZachary Labe
 
Using accessible data to communicate global climate change
Using accessible data to communicate global climate changeUsing accessible data to communicate global climate change
Using accessible data to communicate global climate changeZachary Labe
 
Water in a Frozen Arctic: Cross-Disciplinary Perspectives
Water in a Frozen Arctic: Cross-Disciplinary PerspectivesWater in a Frozen Arctic: Cross-Disciplinary Perspectives
Water in a Frozen Arctic: Cross-Disciplinary PerspectivesZachary Labe
 
data-driven approach to identifying key regions of change associated with fut...
data-driven approach to identifying key regions of change associated with fut...data-driven approach to identifying key regions of change associated with fut...
data-driven approach to identifying key regions of change associated with fut...Zachary Labe
 
Researching and Communicating Our Changing Climate
Researching and Communicating Our Changing ClimateResearching and Communicating Our Changing Climate
Researching and Communicating Our Changing ClimateZachary Labe
 
Revisiting projections of Arctic climate change linkages
Revisiting projections of Arctic climate change linkagesRevisiting projections of Arctic climate change linkages
Revisiting projections of Arctic climate change linkagesZachary Labe
 
Visualizing climate change through data
Visualizing climate change through dataVisualizing climate change through data
Visualizing climate change through dataZachary Labe
 
Using explainable machine learning to evaluate climate change projections
Using explainable machine learning to evaluate climate change projectionsUsing explainable machine learning to evaluate climate change projections
Using explainable machine learning to evaluate climate change projectionsZachary Labe
 
Contrasting polar climate change in the past, present, and future
Contrasting polar climate change in the past, present, and futureContrasting polar climate change in the past, present, and future
Contrasting polar climate change in the past, present, and futureZachary Labe
 
Guest Lecture: Our changing Arctic in the past and future
Guest Lecture: Our changing Arctic in the past and futureGuest Lecture: Our changing Arctic in the past and future
Guest Lecture: Our changing Arctic in the past and futureZachary Labe
 
Climate Projections - What Really is Business as Usual?
Climate Projections - What Really is Business as Usual?Climate Projections - What Really is Business as Usual?
Climate Projections - What Really is Business as Usual?Zachary Labe
 
Making effective science figures
Making effective science figuresMaking effective science figures
Making effective science figuresZachary Labe
 
Monitoring indicators of climate change through data-driven visualization
Monitoring indicators of climate change through data-driven visualizationMonitoring indicators of climate change through data-driven visualization
Monitoring indicators of climate change through data-driven visualizationZachary Labe
 
Techniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online MediaTechniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online MediaZachary Labe
 
Career pathways and research opportunities in the Earth sciences
Career pathways and research opportunities in the Earth sciencesCareer pathways and research opportunities in the Earth sciences
Career pathways and research opportunities in the Earth sciencesZachary Labe
 

Mehr von Zachary Labe (20)

Welcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work DayWelcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work Day
 
Explainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenariosExplainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenarios
 
Reexamining future projections of Arctic climate linkages
Reexamining future projections of Arctic climate linkagesReexamining future projections of Arctic climate linkages
Reexamining future projections of Arctic climate linkages
 
Techniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online MediaTechniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online Media
 
An intro to explainable AI for polar climate science
An intro to  explainable AI for  polar climate scienceAn intro to  explainable AI for  polar climate science
An intro to explainable AI for polar climate science
 
Using accessible data to communicate global climate change
Using accessible data to communicate global climate changeUsing accessible data to communicate global climate change
Using accessible data to communicate global climate change
 
Water in a Frozen Arctic: Cross-Disciplinary Perspectives
Water in a Frozen Arctic: Cross-Disciplinary PerspectivesWater in a Frozen Arctic: Cross-Disciplinary Perspectives
Water in a Frozen Arctic: Cross-Disciplinary Perspectives
 
data-driven approach to identifying key regions of change associated with fut...
data-driven approach to identifying key regions of change associated with fut...data-driven approach to identifying key regions of change associated with fut...
data-driven approach to identifying key regions of change associated with fut...
 
Researching and Communicating Our Changing Climate
Researching and Communicating Our Changing ClimateResearching and Communicating Our Changing Climate
Researching and Communicating Our Changing Climate
 
Revisiting projections of Arctic climate change linkages
Revisiting projections of Arctic climate change linkagesRevisiting projections of Arctic climate change linkages
Revisiting projections of Arctic climate change linkages
 
Visualizing climate change through data
Visualizing climate change through dataVisualizing climate change through data
Visualizing climate change through data
 
Using explainable machine learning to evaluate climate change projections
Using explainable machine learning to evaluate climate change projectionsUsing explainable machine learning to evaluate climate change projections
Using explainable machine learning to evaluate climate change projections
 
Contrasting polar climate change in the past, present, and future
Contrasting polar climate change in the past, present, and futureContrasting polar climate change in the past, present, and future
Contrasting polar climate change in the past, present, and future
 
Guest Lecture: Our changing Arctic in the past and future
Guest Lecture: Our changing Arctic in the past and futureGuest Lecture: Our changing Arctic in the past and future
Guest Lecture: Our changing Arctic in the past and future
 
Climate Projections - What Really is Business as Usual?
Climate Projections - What Really is Business as Usual?Climate Projections - What Really is Business as Usual?
Climate Projections - What Really is Business as Usual?
 
Making effective science figures
Making effective science figuresMaking effective science figures
Making effective science figures
 
Monitoring indicators of climate change through data-driven visualization
Monitoring indicators of climate change through data-driven visualizationMonitoring indicators of climate change through data-driven visualization
Monitoring indicators of climate change through data-driven visualization
 
Sea Ice Anomalies
Sea Ice AnomaliesSea Ice Anomalies
Sea Ice Anomalies
 
Techniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online MediaTechniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online Media
 
Career pathways and research opportunities in the Earth sciences
Career pathways and research opportunities in the Earth sciencesCareer pathways and research opportunities in the Earth sciences
Career pathways and research opportunities in the Earth sciences
 

Kürzlich hochgeladen

Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxCherry
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxMohamedFarag457087
 
Use of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxUse of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxRenuJangid3
 
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIADr. TATHAGAT KHOBRAGADE
 
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot GirlsKanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot GirlsDeepika Singh
 
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRingsTransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRingsSérgio Sacani
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.Cherry
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxseri bangash
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryAlex Henderson
 
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxClimate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxDiariAli
 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Serviceshivanisharma5244
 
Cot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNACot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNACherry
 
Site specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdfSite specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdfCherry
 
Role of AI in seed science Predictive modelling and Beyond.pptx
Role of AI in seed science  Predictive modelling and  Beyond.pptxRole of AI in seed science  Predictive modelling and  Beyond.pptx
Role of AI in seed science Predictive modelling and Beyond.pptxArvind Kumar
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learninglevieagacer
 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Cherry
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cherry
 
Concept of gene and Complementation test.pdf
Concept of gene and Complementation test.pdfConcept of gene and Complementation test.pdf
Concept of gene and Complementation test.pdfCherry
 

Kürzlich hochgeladen (20)

Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptx
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
 
Use of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxUse of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptx
 
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
 
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot GirlsKanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
 
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICEPATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
 
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRingsTransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
 
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxClimate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
 
Cot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNACot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNA
 
Site specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdfSite specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdf
 
Role of AI in seed science Predictive modelling and Beyond.pptx
Role of AI in seed science  Predictive modelling and  Beyond.pptxRole of AI in seed science  Predictive modelling and  Beyond.pptx
Role of AI in seed science Predictive modelling and Beyond.pptx
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
 
Concept of gene and Complementation test.pdf
Concept of gene and Complementation test.pdfConcept of gene and Complementation test.pdf
Concept of gene and Complementation test.pdf
 

Explainable AI for identifying regional climate change patterns

  • 1. Explainable AI for identifying regional climate change patterns @ZLabe Zachary M. Labe Postdoc at Princeton University and NOAA GFDL 13 January 2023 – University of Leeds Scientific Machine Learning Community (SciML) https://zacklabe.com/
  • 2. • Do it better • e.g., parameterizations in climate models are not perfect, use ML to make them more accurate • Do it faster • e.g., code in climate models is very slow (but we know the right answer) - use ML methods to speed things up • Do something new • e.g., go looking for non-linear relationships you didn’t know were there Very relevant for research: may be slower and worse, but can still learn something WHY SHOULD WE CONSIDER MACHINE LEARNING?
  • 4.
  • 5. Today’s weather or climate scientist is far more likely to be debugging code written in Python… than to be poring over satellite images or releasing radiosondes. “ D. Irving| Bulletin of the American Meteorological Society| 2016
  • 6. Machine learning for weather IDENTIFYING SEVERE THUNDERSTORMS Molina et al. 2021 Toms et al. 2021 CLASSIFYING PHASE OF MADDEN-JULLIAN OSCILLATION SATELLITE DETECTION Lee et al. 2021 DETECTING TORNADOES McGovern et al. 2019
  • 7. Machine learning for climate FINDING FORECASTS OF OPPORTUNITY Mayer and Barnes, 2021 PREDICTING CLIMATE MODES OF VARIABILITY Gordon et al. 2021 TIMING OF CLIMATE CHANGE Barnes et al. 2019
  • 8. Machine learning for oceanography CLASSIFYING ARCTIC OCEAN ACIDIFICATION Krasting et al. 2022 TRACK AND REVEAL DEEP WATER MASSES Sonnewald and Lguensat, 2021 ESTIMATING OCEAN SURFACE CURRENTS Sinha and Abernathey, 2021
  • 13. TEMPERATURE We know some metadata… + What year is it? + Where did it come from?
  • 14. We know some metadata… + What year is it? + Where did it come from? [Labe and Barnes, 2022; ESS] TEMPERATURE
  • 15. TEMPERATURE Neural network learns nonlinear combinations of forced climate patterns to identify the year We know some metadata… + What year is it? + Where did it come from? [Labe and Barnes, 2022; ESS]
  • 16. ----ANN---- 2 Hidden Layers 10 Nodes each Ridge Regularization Early Stopping [e.g., Barnes et al. 2019, 2020] [e.g., Labe and Barnes, 2021] TIMING OF EMERGENCE (COMBINED VARIABLES) RESPONSES TO EXTERNAL CLIMATE FORCINGS PATTERNS OF CLIMATE INDICATORS [e.g., Rader et al. 2022] Surface Temperature Map Precipitation Map + TEMPERATURE We know some metadata… + What year is it? + Where did it come from? [Labe and Barnes, 2022; ESS]
  • 17. ----ANN---- 2 Hidden Layers 10 Nodes each Ridge Regularization Early Stopping [e.g., Barnes et al. 2019, 2020] [e.g., Labe and Barnes, 2021] TIMING OF EMERGENCE (COMBINED VARIABLES) RESPONSES TO EXTERNAL CLIMATE FORCINGS PATTERNS OF CLIMATE INDICATORS Surface Temperature Map Precipitation Map + TEMPERATURE [e.g., Rader et al. 2022] We know some metadata… + What year is it? + Where did it come from? [Labe and Barnes, 2022; ESS]
  • 18. THE REAL WORLD (Observations) What is the annual mean temperature of Earth?
  • 19. What is the annual mean temperature of Earth? THE REAL WORLD (Observations) Anomaly is relative to 1951-1980
  • 20. What is the annual mean temperature of Earth? THE REAL WORLD (Observations) Let’s run a climate model
  • 21. What is the annual mean temperature of Earth? THE REAL WORLD (Observations) Let’s run a climate model again
  • 22. What is the annual mean temperature of Earth? THE REAL WORLD (Observations) Let’s run a climate model again & again
  • 23. What is the annual mean temperature of Earth? THE REAL WORLD (Observations) CLIMATE MODEL ENSEMBLES
  • 24. What is the annual mean temperature of Earth? THE REAL WORLD (Observations) CLIMATE MODEL ENSEMBLES Range of ensembles = internal variability (noise) Mean of ensembles = forced response (climate change)
  • 25. What is the annual mean temperature of Earth? Range of ensembles = internal variability (noise) Mean of ensembles = forced response (climate change) But let’s remove climate change…
  • 26. What is the annual mean temperature of Earth? Range of ensembles = internal variability (noise) Mean of ensembles = forced response (climate change) After removing the forced response… anomalies/noise!
  • 27. What is the annual mean temperature of Earth? • Increasing greenhouse gases (CO2, CH4, N2O) • Changes in industrial aerosols (SO4, BC, OC) • Changes in biomass burning (aerosols) • Changes in land-use & land-cover (albedo)
  • 28. What is the annual mean temperature of Earth? • Increasing greenhouse gases (CO2, CH4, N2O) • Changes in industrial aerosols (SO4, BC, OC) • Changes in biomass burning (aerosols) • Changes in land-use & land-cover (albedo) Plus everything else… (Natural/internal variability)
  • 29. What is the annual mean temperature of Earth?
  • 30. Greenhouse gases fixed to 1920 levels All forcings (CESM-LE) Industrial aerosols fixed to 1920 levels [Deser et al. 2020, JCLI] Fully-coupled CESM1.1 20 Ensemble Members Run from 1920-2080 Observations
  • 31. So what? Greenhouse gases = warming Aerosols = ?? (though mostly cooling) What are the relative responses between greenhouse gas and aerosol forcing?
  • 32. Surface Temperature Map ARTIFICIAL NEURAL NETWORK (ANN)
  • 33. INPUT LAYER Surface Temperature Map ARTIFICIAL NEURAL NETWORK (ANN)
  • 34. INPUT LAYER HIDDEN LAYERS OUTPUT LAYER Surface Temperature Map “2000-2009” DECADE CLASS “2070-2079” “1920-1929” ARTIFICIAL NEURAL NETWORK (ANN)
  • 35. INPUT LAYER HIDDEN LAYERS OUTPUT LAYER Surface Temperature Map “2000-2009” DECADE CLASS “2070-2079” “1920-1929” BACK-PROPAGATE THROUGH NETWORK = EXPLAINABLE AI ARTIFICIAL NEURAL NETWORK (ANN)
  • 36. INPUT LAYER HIDDEN LAYERS OUTPUT LAYER Layer-wise Relevance Propagation Surface Temperature Map “2000-2009” DECADE CLASS “2070-2079” “1920-1929” BACK-PROPAGATE THROUGH NETWORK = EXPLAINABLE AI ARTIFICIAL NEURAL NETWORK (ANN) [Barnes et al. 2020, JAMES] [Labe and Barnes 2021, JAMES]
  • 37. LAYER-WISE RELEVANCE PROPAGATION (LRP) Volcano Great White Shark Timber Wolf Image Classification LRP https://heatmapping.org/ LRP heatmaps show regions of “relevance” that contribute to the neural network’s decision-making process for a sample belonging to a particular output category Neural Network WHY WHY WHY Backpropagation – LRP
  • 38. LAYER-WISE RELEVANCE PROPAGATION (LRP) Volcano Great White Shark Timber Wolf Image Classification LRP https://heatmapping.org/ LRP heatmaps show regions of “relevance” that contribute to the neural network’s decision-making process for a sample belonging to a particular output category Neural Network WHY WHY WHY Backpropagation – LRP
  • 39. LAYER-WISE RELEVANCE PROPAGATION (LRP) Volcano Great White Shark Timber Wolf Image Classification LRP https://heatmapping.org/ LRP heatmaps show regions of “relevance” that contribute to the neural network’s decision-making process for a sample belonging to a particular output category Neural Network Backpropagation – LRP WHY WHY WHY
  • 40. LAYER-WISE RELEVANCE PROPAGATION (LRP) Image Classification LRP https://heatmapping.org/ NOT PERFECT Crock Pot Neural Network Backpropagation – LRP WHY
  • 41. [Adapted from Adebayo et al., 2020] EXPLAINABLE AI IS NOT PERFECT THERE ARE MANY METHODS
  • 42. [Adapted from Adebayo et al., 2020] THERE ARE MANY METHODS EXPLAINABLE AI IS NOT PERFECT
  • 43. Visualizing something we already know…
  • 44. Neural Network [0] La Niña [1] El Niño [Toms et al. 2020, JAMES] Input a map of sea surface temperatures
  • 45. Visualizing something we already know… Input maps of sea surface temperatures to identify El Niño or La Niña Use ‘LRP’ to see how the neural network is making its decision [Toms et al. 2020, JAMES] Layer-wise Relevance Propagation Composite Observations LRP [Relevance] SST Anomaly [°C] 0.00 0.75 0.0 1.5 -1.5
  • 46. INPUT LAYER HIDDEN LAYERS OUTPUT LAYER Layer-wise Relevance Propagation Surface Temperature Map “2000-2009” DECADE CLASS “2070-2079” “1920-1929” BACK-PROPAGATE THROUGH NETWORK = EXPLAINABLE AI ARTIFICIAL NEURAL NETWORK (ANN) [Barnes et al. 2020, JAMES] [Labe and Barnes 2021, JAMES]
  • 47. 1960-1999: ANNUAL MEAN TEMPERATURE TRENDS Greenhouse gases fixed to 1920 levels [AEROSOLS PREVAIL] Industrial aerosols fixed to 1920 levels [GREENHOUSE GASES PREVAIL] All forcings [STANDARD CESM-LE] DATA
  • 48. 1960-1999: ANNUAL MEAN TEMPERATURE TRENDS Greenhouse gases fixed to 1920 levels [AEROSOLS PREVAIL] Industrial aerosols fixed to 1920 levels [GREENHOUSE GASES PREVAIL] All forcings [STANDARD CESM-LE] DATA
  • 49. 1960-1999: ANNUAL MEAN TEMPERATURE TRENDS Greenhouse gases fixed to 1920 levels [AEROSOLS PREVAIL] Industrial aerosols fixed to 1920 levels [GREENHOUSE GASES PREVAIL] All forcings [STANDARD CESM-LE] DATA
  • 50. 1960-1999: ANNUAL MEAN TEMPERATURE TRENDS Greenhouse gases fixed to 1920 levels [AEROSOLS PREVAIL] Industrial aerosols fixed to 1920 levels [GREENHOUSE GASES PREVAIL] All forcings [STANDARD CESM-LE] DATA
  • 51. CLIMATE MODEL DATA PREDICT THE YEAR FROM MAPS OF TEMPERATURE AEROSOLS PREVAIL GREENHOUSE GASES PREVAIL STANDARD CLIMATE MODEL [Labe and Barnes 2021, JAMES]
  • 52. OBSERVATIONS PREDICT THE YEAR FROM MAPS OF TEMPERATURE AEROSOLS PREVAIL GREENHOUSE GASES PREVAIL STANDARD CLIMATE MODEL [Labe and Barnes 2021, JAMES]
  • 53. OBSERVATIONS SLOPES PREDICT THE YEAR FROM MAPS OF TEMPERATURE AEROSOLS PREVAIL GREENHOUSE GASES PREVAIL STANDARD CLIMATE MODEL [Labe and Barnes 2021, JAMES]
  • 54. [Labe and Barnes 2021, JAMES] ARE THE RESULTS ROBUST? YES! COMBINATIONS OF TRAINING/TESTING DATA
  • 55. HOW DID THE ANN MAKE ITS PREDICTIONS?
  • 56. HOW DID THE ANN MAKE ITS PREDICTIONS? WHY IS THERE GREATER SKILL FOR GHG+?
  • 57. RESULTS FROM LRP [Labe and Barnes 2021, JAMES] Low High
  • 58. RESULTS FROM LRP [Labe and Barnes 2021, JAMES] Low High
  • 59. RESULTS FROM LRP [Labe and Barnes 2021, JAMES] Low High
  • 60. RESULTS FROM LRP [Labe and Barnes 2021, JAMES] Low High
  • 61. Higher LRP values indicate greater relevance for the ANN’s prediction AVERAGED OVER 1960-2039 Aerosol-driven Greenhouse gas-driven All forcings Low High [Labe and Barnes 2021, JAMES]
  • 62. Greenhouse gas-driven Aerosol-driven All forcings AVERAGED OVER 1960-2039 [Labe and Barnes 2021, JAMES]
  • 63. DISTRIBUTIONS OF LRP AVERAGED OVER 1960-2039 [Labe and Barnes 2021, JAMES]
  • 64. DISTRIBUTIONS OF LRP AVERAGED OVER 1960-2039 [Labe and Barnes 2021, JAMES]
  • 70. [Po-Chedley et al. 2022, PNAS] Partial least squares regression with CMIP6 large ensembles (test observations)
  • 71. [Po-Chedley et al. 2022, PNAS] UNDERSTANDING OUR PREDICTIONS – Patterns of internal variability (e.g., Interdecadal Pacific Oscillation)
  • 72. [Po-Chedley et al. 2022, PNAS]
  • 74.
  • 75.
  • 77. Could we detect whether we were under the influence of stratospheric aerosol injection (SAI) using regional climate patterns?
  • 81.
  • 82.
  • 83. PROJECTIONS OF TEMPERATURE [Labe et al. 2023, EarthArXiv]
  • 84. PROJECTIONS OF PRECIPITATION [Labe et al. 2023, EarthArXiv]
  • 85. CAN WE DETECT A SAI WORLD? LOGISTIC REGRESSION [Labe et al. 2023, EarthArXiv]
  • 86. CLIMATOLOGICAL MAPS OF ARISE-SAI-1.5 IN 2050-2069 MEAN STATE [Labe et al. 2023, EarthArXiv]
  • 87. DECADAL TRENDS TEMPERATURE [Labe et al. 2023, EarthArXiv]
  • 88. DECADAL TRENDS TEMPERATURE [Labe et al. 2023, EarthArXiv]
  • 89. DECADAL TRENDS PRECIPITATION [Labe et al. 2023, EarthArXiv]
  • 90. DECADAL TRENDS PRECIPITATION [Labe et al. 2023, EarthArXiv]
  • 91. N Y HIDDEN LAYERS INPUT LAYER INPUT LAYER SAI WORLD? or or map of near-surface temperature map of near-surface temperature map of total precipitation map of total precipitation Years Since SAI Injection OUTPUT LOGISTIC REGRESSION ARTIFICAL NEURAL NETWORK softmax [Labe et al. 2023, EarthArXiv]
  • 92. N Y HIDDEN LAYERS INPUT LAYER INPUT LAYER SAI WORLD? or or map of near-surface temperature map of near-surface temperature map of total precipitation map of total precipitation Years Since SAI Injection OUTPUT LOGISTIC REGRESSION ARTIFICAL NEURAL NETWORK softmax [Labe et al. 2023, EarthArXiv]
  • 93. CAN WE DETECT A SAI WORLD? [Labe et al. 2023, EarthArXiv]
  • 94. [Labe et al. 2023, EarthArXiv]
  • 95. [Labe et al. 2023, EarthArXiv]
  • 96. Central Africa [Labe et al. 2023, EarthArXiv]
  • 97. HOW DID THE ML MODEL KNOW? [Labe et al. 2023, EarthArXiv]
  • 98. …Using regional climate patterns! [Labe et al. 2023, EarthArXiv]
  • 99. CAN WE DETECT A SAI WORLD? [Labe et al. 2023, EarthArXiv]
  • 100. N Y HIDDEN LAYERS INPUT LAYER INPUT LAYER SAI WORLD? or or map of near-surface temperature map of near-surface temperature map of total precipitation map of total precipitation Years Since SAI Injection OUTPUT LOGISTIC REGRESSION ARTIFICAL NEURAL NETWORK softmax [Labe et al. 2023, EarthArXiv]
  • 101. TEMPERATURE [Labe et al. 2023, EarthArXiv]
  • 103. MACHINE LEARNING IS JUST ANOTHER TOOL TO ADD TO OUR WORKFLOW. 1)
  • 104. MACHINE LEARNING IS NO LONGER A BLACK BOX. 2)
  • 105. WE CAN LEARN NEW SCIENCE FROM EXPLAINABLE AI. 3)
  • 106. KEY POINTS 1. Machine learning is just another tool to add to our scientific workflow 2. We can use explainable AI (XAI) methods to peer into the black box of machine learning 3. We can learn new science by using XAI methods in conjunction with existing statistical tools Zachary Labe zachary.labe@noaa.gov Labe, Z.M. and E.A. Barnes (2021), Detecting climate signals using explainable AI with single-forcing large ensembles. Journal of Advances in Modeling Earth Systems, DOI: 10.1029/2021MS002464 Po-Chedley, S., J.T. Fasullo, N. Siler, Z.M. Labe, E.A. Barnes, C.J.W. Bonfils, and B.D. Santer (2022). Internal variability and forcing influence model-satellite differences in the rate of tropical tropospheric warming. Proceedings of the National Academy of Sciences, DOI: 10.1073/pnas.2209431119 Labe, Z.M., E.A. Barnes, and J.W. Hurrell (2023). Identifying the regional emergence of climate patterns in a simulation of stratospheric aerosol injection. EarthArXiv, DOI: 10.31223/X5394Z