SlideShare ist ein Scribd-Unternehmen logo
1 von 39
Downloaden Sie, um offline zu lesen
Quantitative norm convergence
of some ergodic averages
Vjekoslav Kovaˇc (University of Zagreb)
Probabilistic Aspects of Harmonic Analysis
Bedlewo, April 30, 2014
1. Motivation: Several commuting transformations
Multiple averages
Mn(f1, f2, . . . , fr ) :=
1
n
n−1
k=0
(f1 ◦ Tk
1 )(f2 ◦ Tk
2 ) · · · (fr ◦ Tk
r )
1. Motivation: Several commuting transformations
Multiple averages
Mn(f1, f2, . . . , fr ) :=
1
n
n−1
k=0
(f1 ◦ Tk
1 )(f2 ◦ Tk
2 ) · · · (fr ◦ Tk
r )
(X, F, µ) a probability space
T1, T2, . . . , Tr : X → X commuting, measure preserving:
Ti Tj = Tj Ti , µ T−1
i (E) = µ(E) for E ∈ F
f1, f2, . . . , fr ∈ L∞
1. Motivation: Several commuting transformations
Multiple averages
Mn(f1, f2, . . . , fr ) :=
1
n
n−1
k=0
(f1 ◦ Tk
1 )(f2 ◦ Tk
2 ) · · · (fr ◦ Tk
r )
(X, F, µ) a probability space
T1, T2, . . . , Tr : X → X commuting, measure preserving:
Ti Tj = Tj Ti , µ T−1
i (E) = µ(E) for E ∈ F
f1, f2, . . . , fr ∈ L∞
Motivation:
Furstenberg and Katznelson, 1978
(multidimensional Szemer´edi’s theorem)
1. Motivation: Several commuting transformations
Multiple averages
Mn(f1, f2, . . . , fr ) :=
1
n
n−1
k=0
(f1 ◦ Tk
1 )(f2 ◦ Tk
2 ) · · · (fr ◦ Tk
r )
Convergence in L2
as n → ∞:
r = 1 von Neumann, 1930
r = 2 Conze and Lesigne, 1984
r ≥ 3 Tao, 2008
generalizations Austin, 2010; Walsh, 2012
1. Motivation: Several commuting transformations
Multiple averages
Mn(f1, f2, . . . , fr ) :=
1
n
n−1
k=0
(f1 ◦ Tk
1 )(f2 ◦ Tk
2 ) · · · (fr ◦ Tk
r )
Convergence a.e. as n → ∞:
r = 1 Birkhoff, 1931
r ≥ 2 a long-standing open problem Calder´on?
r = 2 and T2 = Tm
1 , m ∈ Z Bourgain, 1990
many other partial results
We do not discuss a.e. convergence here
1. Motivation: Several commuting transformations
Single averages
Mn(f ) :=
1
n
n−1
k=0
f ◦ Tk
Quantify L2
convergence of the sequence:
control the number of jumps in the norm
bound the norm-variation
1. Motivation: Several commuting transformations
Single averages
Mn(f ) :=
1
n
n−1
k=0
f ◦ Tk
Theorem (Jones, Ostrovskii, and Rosenblatt, 1996, p = 2;
Jones, Kaufman, Rosenblatt, and Wierdl, 1998, p ≥ 2)
sup
n0<n1<···<nm
m
j=1
Mnj−1 (f ) − Mnj (f )
p
Lp ≤ Cp f p
Lp
1. Motivation: Several commuting transformations
Single averages
Mn(f ) :=
1
n
n−1
k=0
f ◦ Tk
Theorem (Jones, Ostrovskii, and Rosenblatt, 1996, p = 2;
Jones, Kaufman, Rosenblatt, and Wierdl, 1998, p ≥ 2)
sup
n0<n1<···<nm
m
j=1
Mnj−1 (f ) − Mnj (f )
p
Lp ≤ Cp f p
Lp
Consequence:
Mn(f )
∞
n=0
has O ε−p f p
Lp jumps of size ≥ ε in the Lp
norm
Avigad and Rute, 2013 in more general Banach spaces
1. Motivation: Several commuting transformations
Double averages
Mn(f , g) :=
1
n
n−1
k=0
(f ◦ Sk
)(g ◦ Tk
)
Avigad and Rute, 2012 asked for any (reasonable/explicit)
quantitative estimates of norm convergence of multiple averages
1. Motivation: Several commuting transformations
Double averages
Mn(f , g) :=
1
n
n−1
k=0
(f ◦ Sk
)(g ◦ Tk
)
Avigad and Rute, 2012 asked for any (reasonable/explicit)
quantitative estimates of norm convergence of multiple averages
Partial results:
T = Sm, m ∈ Z Bourgain, 1990; Demeter, 2007
variational estimate for the dyadic model of BHT
Do, Oberlin, and Palsson, 2012
2. The result: Commuting Aω
actions
”Cantor group” model of the integers
Aω
:=
∞
k=1
A = A ⊕ A ⊕ · · ·
for some finite abelian group A
2. The result: Commuting Aω
actions
”Cantor group” model of the integers
Aω
:=
∞
k=1
A = A ⊕ A ⊕ · · ·
for some finite abelian group A
Typically: A = Z/dZ
Aω
= a = (ak)∞
k=1 : (∃k0)(∀k > k0)(ak = 0)
2. The result: Commuting Aω
actions
”Cantor group” model of the integers
Aω
:=
∞
k=1
A = A ⊕ A ⊕ · · ·
for some finite abelian group A
Typically: A = Z/dZ
Aω
= a = (ak)∞
k=1 : (∃k0)(∀k > k0)(ak = 0)
Følner sequence (Fn)∞
n=1: limn→∞
|(a+Fn) Fn|
|Fn| = 0
The most natural choice:
Fn = a = (ak)∞
k=1 : (∀k > n)(ak = 0) ∼= An
2. The result: Commuting Aω
actions
”Cantor group” model of the integers
Aω
:=
∞
k=1
A = A ⊕ A ⊕ · · ·
for some finite abelian group A
S = (Sa)a∈Aω and T = (Ta)a∈Aω commuting measure preserving
Aω-actions on a probability space (X, F, µ):
Sa, Ta : X → X are measurable
S0 = T0 = id, SaSb = Sa+b, TaTb = Ta+b, SaTb = TbSa
µ(SaE) = µ(E) = µ(TaE) for a ∈ Aω, E ∈ F
2. The result: Commuting Aω
actions
Toy-model of double averages
Mn(f , g) :=
1
|Fn|
a∈Fn
(f ◦ Sa
)(g ◦ Ta
)
2. The result: Commuting Aω
actions
Toy-model of double averages
Mn(f , g) :=
1
|Fn|
a∈Fn
(f ◦ Sa
)(g ◦ Ta
)
Such multiple averages have already appeared in the literature:
general countable amenable group Bergelson, McCutcheon,
and Zhang, 1997; Zorin-Kranich, 2011; Austin, 2013
“powers” of the same action of (Z/pZ)ω, p prime
Bergelson, Tao, and Ziegler, 2013
Note: All known convergence results are only qualitative or
extremely weakly quantitative in nature
2. The result: Commuting Aω
actions
Toy-model of double averages
Mn(f , g) :=
1
|Fn|
a∈Fn
(f ◦ Sa
)(g ◦ Ta
)
Theorem (K., 2014) p ≥ 2
sup
n0<n1<···<nm
m
j=1
Mnj−1 (f , g) − Mnj (f , g)
p
Lp ≤ Cp f p
L2p g p
L2p
2. The result: Commuting Aω
actions
Toy-model of double averages
Mn(f , g) :=
1
|Fn|
a∈Fn
(f ◦ Sa
)(g ◦ Ta
)
Theorem (K., 2014) p ≥ 2
sup
n0<n1<···<nm
m
j=1
Mnj−1 (f , g) − Mnj (f , g)
p
Lp ≤ Cp f p
L2p g p
L2p
Consequences:
f L2p = g L2p =1 ⇒ O ε−p ε-jumps in Lp
, p ≥ 2
f L∞ = g L∞ =1 ⇒ O(ε−max{p,2}) ε-jumps in Lp
, p ≥ 1
3. The proof: Cantor group structure on R+
G := (ak)k∈Z ∈ AZ
: (∃k0)(∀k > k0)(ak = 0)
Ultrametric:
ρ (ak)k∈Z, (bk)k∈Z :=
dk if k is the largest s.t. ak = bk
0 if (ak)k∈Z = (bk)k∈Z
Haar measure: λG
3. The proof: Cantor group structure on R+
G := (ak)k∈Z ∈ AZ
: (∃k0)(∀k > k0)(ak = 0)
Ultrametric:
ρ (ak)k∈Z, (bk)k∈Z :=
dk if k is the largest s.t. ak = bk
0 if (ak)k∈Z = (bk)k∈Z
Haar measure: λG
Transfer the structure to R+ = [0, ∞):
Φ: G → R+, Φ: (ak)k∈Z → k∈Z akdk,
Ψ: R+ → G, Ψ: t → d−kt mod d k∈Z
x ⊕ y := Φ Ψ(x) + Ψ(y)
A = Z/dZ ⇒ ⊕ is addition in base d without carrying over digits
3. The proof: Averages for functions on R+
Bilinear averages d = |A|
Ak(F, G)(x, y) := dk
[0,d−k )
F(x ⊕ t, y)G(x, y ⊕ t) dt
3. The proof: Averages for functions on R+
Bilinear averages d = |A|
Ak(F, G)(x, y) := dk
[0,d−k )
F(x ⊕ t, y)G(x, y ⊕ t) dt
Proposition p ≥ 2, k0 < k1 < . . . < km integers
m−1
j=0
Akj+1
(F, G) − Akj
(F, G)
p
Lp
(R2
+)
≤ Cp F p
L2p
(R2
+)
G p
L2p
(R2
+)
3. The proof: Averages for functions on R+
Proposition p ≥ 2, k0 < k1 < . . . < km integers
m−1
j=0
Akj+1
(F, G) − Akj
(F, G)
p
Lp
(R2
+)
≤ Cp F p
L2p
(R2
+)
G p
L2p
(R2
+)
Reductions:
Fix k0 < k1 < . . . < km
Assume that p ≥ 2 is an integer
Otherwise use complex interpolation of
L2p
× L2p
→ p
(Lp
) = Lp
( p
)
Assume F, G ≥ 0 ⇒ Ak(F, G) ≥ 0
Otherwise split into positive/negative, real/complex parts
3. The proof: Averages for functions on R+
Lemma
For p ≥ 2 and a, b ∈ R:
|a − b|p
p |a|p
− |b|p
− p(a − b)b|b|p−2
3. The proof: Averages for functions on R+
Lemma
For p ≥ 2 and a, b ∈ R:
|a − b|p
p |a|p
− |b|p
− p(a − b)b|b|p−2
Proof
Assume a = b = 0 and p > 2; substitute t = a−b
b = 0
θ(t) :=
|1 + t|p − 1 − pt
|t|p
Bernoulli’s inequality: θ(t) > 0 for t = 0
L’Hˆopital’s rule: limt→0 θ(t) = +∞, limt→±∞ θ(t) = 1
⇒ θ(t) ≥ cp > 0 for t = 0
3. The proof: Averages for functions on R+
Proposition p ≥ 2, k0 < k1 < . . . < km integers
m−1
j=0
Akj+1
(F, G) − Akj
(F, G)
p
Lp
(R2
+)
≤ Cp F p
L2p
(R2
+)
G p
L2p
(R2
+)
Apply the lemma with
a = Akj+1
(F, G)(x, y) ≥ 0, b = Akj
(F, G)(x, y) ≥ 0
3. The proof: Averages for functions on R+
Proposition p ≥ 2, k0 < k1 < . . . < km integers
m−1
j=0
Akj+1
(F, G) − Akj
(F, G)
p
Lp
(R2
+)
≤ Cp F p
L2p
(R2
+)
G p
L2p
(R2
+)
Apply the lemma with
a = Akj+1
(F, G)(x, y) ≥ 0, b = Akj
(F, G)(x, y) ≥ 0
Sum over j = 0, 1, . . . , m − 1 and telescope:
m−1
j=0
Akj+1
(F, G)(x, y) − Akj
(F, G)(x, y)
p
p Akm (F, G)(x, y)p
− Ak0 (F, G)(x, y)p
− p
m−1
j=0
Akj+1
(F, G)(x, y) − Akj
(F, G)(x, y) Akj
(F, G)(x, y)p−1
3. The proof: Averages for functions on R+
Proposition p ≥ 2, k0 < k1 < . . . < km integers
m−1
j=0
Akj+1
(F, G) − Akj
(F, G)
p
Lp
(R2
+)
≤ Cp F p
L2p
(R2
+)
G p
L2p
(R2
+)
Integrate in (x, y) over R2
+:
LHS p Akm (F, G) p
Lp
(R2
+)
+ |Λ(F, G)|
where
Λ(F, G) :=
m−1
j=0 R2
+
Akj+1
(F, G)(x, y) − Akj
(F, G)(x, y)
Akj
(F, G)(x, y)p−1
dxdy
3. The proof: Averages for functions on R+
Proposition p ≥ 2, k0 < k1 < . . . < km integers
m−1
j=0
Akj+1
(F, G) − Akj
(F, G)
p
Lp
(R2
+)
≤ Cp F p
L2p
(R2
+)
G p
L2p
(R2
+)
Expand out, denoting ϕk := dk1[0,d−k ):
Λ(F, G) =
m−1
j=0 Rp+2
+
F(x⊕t1, y) · · · F(x⊕tp, y) G(x, y ⊕t1) · · · G(x, y ⊕tp)
ϕkj+1
(t1) − ϕkj
(t1) ϕkj
(t2) · · · ϕkj
(tp) dxdydt1 · · · dtp
It suffices to prove:
|Λ(F, G)| p F p
L2p(R2
+)
G p
L2p(R2
+)
3. The proof: Averages for functions on R+
Claim
|Λ(F, G)| p F p
L2p
(R2
+)
G p
L2p
(R2
+)
Substitute:
zi = x ⊕ y ⊕ ti , F(z, y) := F(z y, y), G(z, x) := G(x, z x)
ti = zi x y, F(x ⊕ ti , y) := F(zi , y), G(x, y ⊕ ti ) := G(zi , x)
Write:
ϕkj+1
− ϕkj
=
kj+1−1
r=kj
d−1
s=1
dr
h
(s)
[0,d−r )
h
(s)
I , s = 0, 1, . . . , d −1 d-adic Haar wavelets (L∞
-normalized)
3. The proof: Averages for functions on R+
Claim
|Λ(F, G)| p F p
L2p
(R2
+)
G p
L2p
(R2
+)
Λ(F, G) =
m−1
j=0
kj+1−1
r=kj
d−1
s=1 Rp+2
+
F(z1, y) · · · F(zp, y) G(z1, x) · · · G(zp, x)
dr+(p−1)kj
h
(s)
[0,d−r )(z1 x y)
1[0,d−kj )(z2 x y) · · · 1[0,d−kj )(zp x y)
dxdydz1 · · · dzp
Split the integrals in x and y using d-adic intervals I and J
Use the character property of 1I and h
(s)
I
separates zi , x, and y
3. The proof: Averages for functions on R+
Claim
|Λ(F, G)| p F p
L2p
(R2
+)
G p
L2p
(R2
+)
Λ(F, G) =
m−1
j=0
kj+1−1
r=kj
d−1
s=1 I,J∈I, |I|=|J|=d−r
K:=I⊕J, L:=dr−kj K
dr+(p−1)kj
Rp+2
+
F(z1, y) · · · F(zp, y) G(z1, x) · · · G(zp, x)
h
(s)
I (x)h
(s)
J (y)h
(s)
K (z1)1L(z2) · · · 1L(zp) dxdydz1 · · · dzp
Λ is reminiscent of perfect dyadic entangled multilinear dyadic
Calder´on-Zygmund operators K. and Thiele, 2013
3. The proof: Averages for functions on R+
Claim
|Λ(F, G)| p F p
L2p
(R2
+)
G p
L2p
(R2
+)
In short:
Cauchy-Schwarzing: |Λ(F, G)| ≤ Θ(F)1/2 Θ(G)1/2
Telescoping:
Θ(F) + Θ(F)
≥0
= Ξkm (F) − Ξk0 (F)
≥0
Bounding a single-scale average:
Ξkm (F) ≤ F 2p
L2p
(R2
+)
= F 2p
L2p
(R2
+)
3. The proof: The transfer argument
Claim
X
m
j=1
Mnj−1 (f , g)−Mnj (f , g)
p
dµ p
X
|f |2p
+|g|2p
dµ
We use the Calder´on transference principle
≡ the reverse Furstenberg correspondence principle
3. The proof: The transfer argument
Claim
X
m
j=1
Mnj−1 (f , g)−Mnj (f , g)
p
dµ p
X
|f |2p
+|g|2p
dµ
Use the ergodic decomposition of invariant measures for
general group actions Varadarajan, 1963
⇒ Enough to prove the claim when the action
(SaTb)(a,b)∈Aω×Aω of Aω ×Aω on (X, F, µ) is ergodic
Express the integrals as limits of discrete averages using the
pointwise ergodic theorem for Aω ×Aω Lindenstrauss, 2001
Define F(a, b) := f (SaTbx0), G(a, b) := g(SaTbx0),
x0 is a generic point; extend F and G to R+ as “step”
functions; apply the proposition
4. Possible future work
Open problem: double averages, Z+-actions or Z-actions
Mn(f , g) :=
1
n
n−1
k=0
(f ◦ Sk
)(g ◦ Tk
)
sup
n0<n1<···<nm
m
j=1
Mnj−1 (f , g) − Mnj (f , g)
p
Lp ≤ Cp f p
L2p g p
L2p
4. Possible future work
Open problem: double averages, Z+-actions or Z-actions
Mn(f , g) :=
1
n
n−1
k=0
(f ◦ Sk
)(g ◦ Tk
)
sup
n0<n1<···<nm
m
j=1
Mnj−1 (f , g) − Mnj (f , g)
p
Lp ≤ Cp f p
L2p g p
L2p
Open problem: triple averages, “powers” of a single Aω-action
Mn(f , g, h) :=
1
|Fn|
a∈Fn
(f ◦ Tc1a
)(g ◦ Tc2a
)(h ◦ Tc3a
), c1, c2, c3 ∈ Z
sup
n0<···<nm
m
j=1
Mnj−1
(f , g, h) − Mnj
(f , g, h)
p
Lp ≤ Cp f p
L3p g p
L3p h p
L3p
Thank you!
Thank you for your attention!

Weitere ähnliche Inhalte

Was ist angesagt?

Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013
Jurgen Riedel
 

Was ist angesagt? (20)

A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operatorsA T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
 
On maximal and variational Fourier restriction
On maximal and variational Fourier restrictionOn maximal and variational Fourier restriction
On maximal and variational Fourier restriction
 
A sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentialsA sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentials
 
Tales on two commuting transformations or flows
Tales on two commuting transformations or flowsTales on two commuting transformations or flows
Tales on two commuting transformations or flows
 
Some Examples of Scaling Sets
Some Examples of Scaling SetsSome Examples of Scaling Sets
Some Examples of Scaling Sets
 
Scattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisScattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysis
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurations
 
Density theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsDensity theorems for Euclidean point configurations
Density theorems for Euclidean point configurations
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cube
 
Multilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureMultilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structure
 
A Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeA Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cube
 
Paraproducts with general dilations
Paraproducts with general dilationsParaproducts with general dilations
Paraproducts with general dilations
 
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
 
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
2018 MUMS Fall Course - Bayesian inference for model calibration in UQ - Ralp...
2018 MUMS Fall Course - Bayesian inference for model calibration in UQ - Ralp...2018 MUMS Fall Course - Bayesian inference for model calibration in UQ - Ralp...
2018 MUMS Fall Course - Bayesian inference for model calibration in UQ - Ralp...
 
Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli...
 Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli... Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli...
 

Ähnlich wie Quantitative norm convergence of some ergodic averages

Lecture 4 - Growth of Functions (1).ppt
Lecture 4 - Growth of Functions (1).pptLecture 4 - Growth of Functions (1).ppt
Lecture 4 - Growth of Functions (1).ppt
ZohairMughal1
 
On the-approximate-solution-of-a-nonlinear-singular-integral-equation
On the-approximate-solution-of-a-nonlinear-singular-integral-equationOn the-approximate-solution-of-a-nonlinear-singular-integral-equation
On the-approximate-solution-of-a-nonlinear-singular-integral-equation
Cemal Ardil
 

Ähnlich wie Quantitative norm convergence of some ergodic averages (20)

Lecture 4 - Growth of Functions (1).ppt
Lecture 4 - Growth of Functions (1).pptLecture 4 - Growth of Functions (1).ppt
Lecture 4 - Growth of Functions (1).ppt
 
Lecture 4 - Growth of Functions.ppt
Lecture 4 - Growth of Functions.pptLecture 4 - Growth of Functions.ppt
Lecture 4 - Growth of Functions.ppt
 
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
 
MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化
 
Improving estimates for discrete polynomial averaging operators
Improving estimates for discrete polynomial averaging operatorsImproving estimates for discrete polynomial averaging operators
Improving estimates for discrete polynomial averaging operators
 
1531 fourier series- integrals and trans
1531 fourier series- integrals and trans1531 fourier series- integrals and trans
1531 fourier series- integrals and trans
 
Functions limits and continuity
Functions limits and continuityFunctions limits and continuity
Functions limits and continuity
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuity
 
Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics
 
Docslide.us 2002 formulae-and-tables
Docslide.us 2002 formulae-and-tablesDocslide.us 2002 formulae-and-tables
Docslide.us 2002 formulae-and-tables
 
Ece3075 a 8
Ece3075 a 8Ece3075 a 8
Ece3075 a 8
 
Group theory notes
Group theory notesGroup theory notes
Group theory notes
 
Number theory lecture (part 2)
Number theory lecture (part 2)Number theory lecture (part 2)
Number theory lecture (part 2)
 
On the-approximate-solution-of-a-nonlinear-singular-integral-equation
On the-approximate-solution-of-a-nonlinear-singular-integral-equationOn the-approximate-solution-of-a-nonlinear-singular-integral-equation
On the-approximate-solution-of-a-nonlinear-singular-integral-equation
 
Composite functions
Composite functionsComposite functions
Composite functions
 
lecture6.ppt
lecture6.pptlecture6.ppt
lecture6.ppt
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
 
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
 
Best Approximation in Real Linear 2-Normed Spaces
Best Approximation in Real Linear 2-Normed SpacesBest Approximation in Real Linear 2-Normed Spaces
Best Approximation in Real Linear 2-Normed Spaces
 
A Fibonacci-like universe expansion on time-scale
A Fibonacci-like universe expansion on time-scaleA Fibonacci-like universe expansion on time-scale
A Fibonacci-like universe expansion on time-scale
 

Kürzlich hochgeladen

Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
PirithiRaju
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
PirithiRaju
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Lokesh Kothari
 

Kürzlich hochgeladen (20)

Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLKochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdf
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdf
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 

Quantitative norm convergence of some ergodic averages

  • 1. Quantitative norm convergence of some ergodic averages Vjekoslav Kovaˇc (University of Zagreb) Probabilistic Aspects of Harmonic Analysis Bedlewo, April 30, 2014
  • 2. 1. Motivation: Several commuting transformations Multiple averages Mn(f1, f2, . . . , fr ) := 1 n n−1 k=0 (f1 ◦ Tk 1 )(f2 ◦ Tk 2 ) · · · (fr ◦ Tk r )
  • 3. 1. Motivation: Several commuting transformations Multiple averages Mn(f1, f2, . . . , fr ) := 1 n n−1 k=0 (f1 ◦ Tk 1 )(f2 ◦ Tk 2 ) · · · (fr ◦ Tk r ) (X, F, µ) a probability space T1, T2, . . . , Tr : X → X commuting, measure preserving: Ti Tj = Tj Ti , µ T−1 i (E) = µ(E) for E ∈ F f1, f2, . . . , fr ∈ L∞
  • 4. 1. Motivation: Several commuting transformations Multiple averages Mn(f1, f2, . . . , fr ) := 1 n n−1 k=0 (f1 ◦ Tk 1 )(f2 ◦ Tk 2 ) · · · (fr ◦ Tk r ) (X, F, µ) a probability space T1, T2, . . . , Tr : X → X commuting, measure preserving: Ti Tj = Tj Ti , µ T−1 i (E) = µ(E) for E ∈ F f1, f2, . . . , fr ∈ L∞ Motivation: Furstenberg and Katznelson, 1978 (multidimensional Szemer´edi’s theorem)
  • 5. 1. Motivation: Several commuting transformations Multiple averages Mn(f1, f2, . . . , fr ) := 1 n n−1 k=0 (f1 ◦ Tk 1 )(f2 ◦ Tk 2 ) · · · (fr ◦ Tk r ) Convergence in L2 as n → ∞: r = 1 von Neumann, 1930 r = 2 Conze and Lesigne, 1984 r ≥ 3 Tao, 2008 generalizations Austin, 2010; Walsh, 2012
  • 6. 1. Motivation: Several commuting transformations Multiple averages Mn(f1, f2, . . . , fr ) := 1 n n−1 k=0 (f1 ◦ Tk 1 )(f2 ◦ Tk 2 ) · · · (fr ◦ Tk r ) Convergence a.e. as n → ∞: r = 1 Birkhoff, 1931 r ≥ 2 a long-standing open problem Calder´on? r = 2 and T2 = Tm 1 , m ∈ Z Bourgain, 1990 many other partial results We do not discuss a.e. convergence here
  • 7. 1. Motivation: Several commuting transformations Single averages Mn(f ) := 1 n n−1 k=0 f ◦ Tk Quantify L2 convergence of the sequence: control the number of jumps in the norm bound the norm-variation
  • 8. 1. Motivation: Several commuting transformations Single averages Mn(f ) := 1 n n−1 k=0 f ◦ Tk Theorem (Jones, Ostrovskii, and Rosenblatt, 1996, p = 2; Jones, Kaufman, Rosenblatt, and Wierdl, 1998, p ≥ 2) sup n0<n1<···<nm m j=1 Mnj−1 (f ) − Mnj (f ) p Lp ≤ Cp f p Lp
  • 9. 1. Motivation: Several commuting transformations Single averages Mn(f ) := 1 n n−1 k=0 f ◦ Tk Theorem (Jones, Ostrovskii, and Rosenblatt, 1996, p = 2; Jones, Kaufman, Rosenblatt, and Wierdl, 1998, p ≥ 2) sup n0<n1<···<nm m j=1 Mnj−1 (f ) − Mnj (f ) p Lp ≤ Cp f p Lp Consequence: Mn(f ) ∞ n=0 has O ε−p f p Lp jumps of size ≥ ε in the Lp norm Avigad and Rute, 2013 in more general Banach spaces
  • 10. 1. Motivation: Several commuting transformations Double averages Mn(f , g) := 1 n n−1 k=0 (f ◦ Sk )(g ◦ Tk ) Avigad and Rute, 2012 asked for any (reasonable/explicit) quantitative estimates of norm convergence of multiple averages
  • 11. 1. Motivation: Several commuting transformations Double averages Mn(f , g) := 1 n n−1 k=0 (f ◦ Sk )(g ◦ Tk ) Avigad and Rute, 2012 asked for any (reasonable/explicit) quantitative estimates of norm convergence of multiple averages Partial results: T = Sm, m ∈ Z Bourgain, 1990; Demeter, 2007 variational estimate for the dyadic model of BHT Do, Oberlin, and Palsson, 2012
  • 12. 2. The result: Commuting Aω actions ”Cantor group” model of the integers Aω := ∞ k=1 A = A ⊕ A ⊕ · · · for some finite abelian group A
  • 13. 2. The result: Commuting Aω actions ”Cantor group” model of the integers Aω := ∞ k=1 A = A ⊕ A ⊕ · · · for some finite abelian group A Typically: A = Z/dZ Aω = a = (ak)∞ k=1 : (∃k0)(∀k > k0)(ak = 0)
  • 14. 2. The result: Commuting Aω actions ”Cantor group” model of the integers Aω := ∞ k=1 A = A ⊕ A ⊕ · · · for some finite abelian group A Typically: A = Z/dZ Aω = a = (ak)∞ k=1 : (∃k0)(∀k > k0)(ak = 0) Følner sequence (Fn)∞ n=1: limn→∞ |(a+Fn) Fn| |Fn| = 0 The most natural choice: Fn = a = (ak)∞ k=1 : (∀k > n)(ak = 0) ∼= An
  • 15. 2. The result: Commuting Aω actions ”Cantor group” model of the integers Aω := ∞ k=1 A = A ⊕ A ⊕ · · · for some finite abelian group A S = (Sa)a∈Aω and T = (Ta)a∈Aω commuting measure preserving Aω-actions on a probability space (X, F, µ): Sa, Ta : X → X are measurable S0 = T0 = id, SaSb = Sa+b, TaTb = Ta+b, SaTb = TbSa µ(SaE) = µ(E) = µ(TaE) for a ∈ Aω, E ∈ F
  • 16. 2. The result: Commuting Aω actions Toy-model of double averages Mn(f , g) := 1 |Fn| a∈Fn (f ◦ Sa )(g ◦ Ta )
  • 17. 2. The result: Commuting Aω actions Toy-model of double averages Mn(f , g) := 1 |Fn| a∈Fn (f ◦ Sa )(g ◦ Ta ) Such multiple averages have already appeared in the literature: general countable amenable group Bergelson, McCutcheon, and Zhang, 1997; Zorin-Kranich, 2011; Austin, 2013 “powers” of the same action of (Z/pZ)ω, p prime Bergelson, Tao, and Ziegler, 2013 Note: All known convergence results are only qualitative or extremely weakly quantitative in nature
  • 18. 2. The result: Commuting Aω actions Toy-model of double averages Mn(f , g) := 1 |Fn| a∈Fn (f ◦ Sa )(g ◦ Ta ) Theorem (K., 2014) p ≥ 2 sup n0<n1<···<nm m j=1 Mnj−1 (f , g) − Mnj (f , g) p Lp ≤ Cp f p L2p g p L2p
  • 19. 2. The result: Commuting Aω actions Toy-model of double averages Mn(f , g) := 1 |Fn| a∈Fn (f ◦ Sa )(g ◦ Ta ) Theorem (K., 2014) p ≥ 2 sup n0<n1<···<nm m j=1 Mnj−1 (f , g) − Mnj (f , g) p Lp ≤ Cp f p L2p g p L2p Consequences: f L2p = g L2p =1 ⇒ O ε−p ε-jumps in Lp , p ≥ 2 f L∞ = g L∞ =1 ⇒ O(ε−max{p,2}) ε-jumps in Lp , p ≥ 1
  • 20. 3. The proof: Cantor group structure on R+ G := (ak)k∈Z ∈ AZ : (∃k0)(∀k > k0)(ak = 0) Ultrametric: ρ (ak)k∈Z, (bk)k∈Z := dk if k is the largest s.t. ak = bk 0 if (ak)k∈Z = (bk)k∈Z Haar measure: λG
  • 21. 3. The proof: Cantor group structure on R+ G := (ak)k∈Z ∈ AZ : (∃k0)(∀k > k0)(ak = 0) Ultrametric: ρ (ak)k∈Z, (bk)k∈Z := dk if k is the largest s.t. ak = bk 0 if (ak)k∈Z = (bk)k∈Z Haar measure: λG Transfer the structure to R+ = [0, ∞): Φ: G → R+, Φ: (ak)k∈Z → k∈Z akdk, Ψ: R+ → G, Ψ: t → d−kt mod d k∈Z x ⊕ y := Φ Ψ(x) + Ψ(y) A = Z/dZ ⇒ ⊕ is addition in base d without carrying over digits
  • 22. 3. The proof: Averages for functions on R+ Bilinear averages d = |A| Ak(F, G)(x, y) := dk [0,d−k ) F(x ⊕ t, y)G(x, y ⊕ t) dt
  • 23. 3. The proof: Averages for functions on R+ Bilinear averages d = |A| Ak(F, G)(x, y) := dk [0,d−k ) F(x ⊕ t, y)G(x, y ⊕ t) dt Proposition p ≥ 2, k0 < k1 < . . . < km integers m−1 j=0 Akj+1 (F, G) − Akj (F, G) p Lp (R2 +) ≤ Cp F p L2p (R2 +) G p L2p (R2 +)
  • 24. 3. The proof: Averages for functions on R+ Proposition p ≥ 2, k0 < k1 < . . . < km integers m−1 j=0 Akj+1 (F, G) − Akj (F, G) p Lp (R2 +) ≤ Cp F p L2p (R2 +) G p L2p (R2 +) Reductions: Fix k0 < k1 < . . . < km Assume that p ≥ 2 is an integer Otherwise use complex interpolation of L2p × L2p → p (Lp ) = Lp ( p ) Assume F, G ≥ 0 ⇒ Ak(F, G) ≥ 0 Otherwise split into positive/negative, real/complex parts
  • 25. 3. The proof: Averages for functions on R+ Lemma For p ≥ 2 and a, b ∈ R: |a − b|p p |a|p − |b|p − p(a − b)b|b|p−2
  • 26. 3. The proof: Averages for functions on R+ Lemma For p ≥ 2 and a, b ∈ R: |a − b|p p |a|p − |b|p − p(a − b)b|b|p−2 Proof Assume a = b = 0 and p > 2; substitute t = a−b b = 0 θ(t) := |1 + t|p − 1 − pt |t|p Bernoulli’s inequality: θ(t) > 0 for t = 0 L’Hˆopital’s rule: limt→0 θ(t) = +∞, limt→±∞ θ(t) = 1 ⇒ θ(t) ≥ cp > 0 for t = 0
  • 27. 3. The proof: Averages for functions on R+ Proposition p ≥ 2, k0 < k1 < . . . < km integers m−1 j=0 Akj+1 (F, G) − Akj (F, G) p Lp (R2 +) ≤ Cp F p L2p (R2 +) G p L2p (R2 +) Apply the lemma with a = Akj+1 (F, G)(x, y) ≥ 0, b = Akj (F, G)(x, y) ≥ 0
  • 28. 3. The proof: Averages for functions on R+ Proposition p ≥ 2, k0 < k1 < . . . < km integers m−1 j=0 Akj+1 (F, G) − Akj (F, G) p Lp (R2 +) ≤ Cp F p L2p (R2 +) G p L2p (R2 +) Apply the lemma with a = Akj+1 (F, G)(x, y) ≥ 0, b = Akj (F, G)(x, y) ≥ 0 Sum over j = 0, 1, . . . , m − 1 and telescope: m−1 j=0 Akj+1 (F, G)(x, y) − Akj (F, G)(x, y) p p Akm (F, G)(x, y)p − Ak0 (F, G)(x, y)p − p m−1 j=0 Akj+1 (F, G)(x, y) − Akj (F, G)(x, y) Akj (F, G)(x, y)p−1
  • 29. 3. The proof: Averages for functions on R+ Proposition p ≥ 2, k0 < k1 < . . . < km integers m−1 j=0 Akj+1 (F, G) − Akj (F, G) p Lp (R2 +) ≤ Cp F p L2p (R2 +) G p L2p (R2 +) Integrate in (x, y) over R2 +: LHS p Akm (F, G) p Lp (R2 +) + |Λ(F, G)| where Λ(F, G) := m−1 j=0 R2 + Akj+1 (F, G)(x, y) − Akj (F, G)(x, y) Akj (F, G)(x, y)p−1 dxdy
  • 30. 3. The proof: Averages for functions on R+ Proposition p ≥ 2, k0 < k1 < . . . < km integers m−1 j=0 Akj+1 (F, G) − Akj (F, G) p Lp (R2 +) ≤ Cp F p L2p (R2 +) G p L2p (R2 +) Expand out, denoting ϕk := dk1[0,d−k ): Λ(F, G) = m−1 j=0 Rp+2 + F(x⊕t1, y) · · · F(x⊕tp, y) G(x, y ⊕t1) · · · G(x, y ⊕tp) ϕkj+1 (t1) − ϕkj (t1) ϕkj (t2) · · · ϕkj (tp) dxdydt1 · · · dtp It suffices to prove: |Λ(F, G)| p F p L2p(R2 +) G p L2p(R2 +)
  • 31. 3. The proof: Averages for functions on R+ Claim |Λ(F, G)| p F p L2p (R2 +) G p L2p (R2 +) Substitute: zi = x ⊕ y ⊕ ti , F(z, y) := F(z y, y), G(z, x) := G(x, z x) ti = zi x y, F(x ⊕ ti , y) := F(zi , y), G(x, y ⊕ ti ) := G(zi , x) Write: ϕkj+1 − ϕkj = kj+1−1 r=kj d−1 s=1 dr h (s) [0,d−r ) h (s) I , s = 0, 1, . . . , d −1 d-adic Haar wavelets (L∞ -normalized)
  • 32. 3. The proof: Averages for functions on R+ Claim |Λ(F, G)| p F p L2p (R2 +) G p L2p (R2 +) Λ(F, G) = m−1 j=0 kj+1−1 r=kj d−1 s=1 Rp+2 + F(z1, y) · · · F(zp, y) G(z1, x) · · · G(zp, x) dr+(p−1)kj h (s) [0,d−r )(z1 x y) 1[0,d−kj )(z2 x y) · · · 1[0,d−kj )(zp x y) dxdydz1 · · · dzp Split the integrals in x and y using d-adic intervals I and J Use the character property of 1I and h (s) I separates zi , x, and y
  • 33. 3. The proof: Averages for functions on R+ Claim |Λ(F, G)| p F p L2p (R2 +) G p L2p (R2 +) Λ(F, G) = m−1 j=0 kj+1−1 r=kj d−1 s=1 I,J∈I, |I|=|J|=d−r K:=I⊕J, L:=dr−kj K dr+(p−1)kj Rp+2 + F(z1, y) · · · F(zp, y) G(z1, x) · · · G(zp, x) h (s) I (x)h (s) J (y)h (s) K (z1)1L(z2) · · · 1L(zp) dxdydz1 · · · dzp Λ is reminiscent of perfect dyadic entangled multilinear dyadic Calder´on-Zygmund operators K. and Thiele, 2013
  • 34. 3. The proof: Averages for functions on R+ Claim |Λ(F, G)| p F p L2p (R2 +) G p L2p (R2 +) In short: Cauchy-Schwarzing: |Λ(F, G)| ≤ Θ(F)1/2 Θ(G)1/2 Telescoping: Θ(F) + Θ(F) ≥0 = Ξkm (F) − Ξk0 (F) ≥0 Bounding a single-scale average: Ξkm (F) ≤ F 2p L2p (R2 +) = F 2p L2p (R2 +)
  • 35. 3. The proof: The transfer argument Claim X m j=1 Mnj−1 (f , g)−Mnj (f , g) p dµ p X |f |2p +|g|2p dµ We use the Calder´on transference principle ≡ the reverse Furstenberg correspondence principle
  • 36. 3. The proof: The transfer argument Claim X m j=1 Mnj−1 (f , g)−Mnj (f , g) p dµ p X |f |2p +|g|2p dµ Use the ergodic decomposition of invariant measures for general group actions Varadarajan, 1963 ⇒ Enough to prove the claim when the action (SaTb)(a,b)∈Aω×Aω of Aω ×Aω on (X, F, µ) is ergodic Express the integrals as limits of discrete averages using the pointwise ergodic theorem for Aω ×Aω Lindenstrauss, 2001 Define F(a, b) := f (SaTbx0), G(a, b) := g(SaTbx0), x0 is a generic point; extend F and G to R+ as “step” functions; apply the proposition
  • 37. 4. Possible future work Open problem: double averages, Z+-actions or Z-actions Mn(f , g) := 1 n n−1 k=0 (f ◦ Sk )(g ◦ Tk ) sup n0<n1<···<nm m j=1 Mnj−1 (f , g) − Mnj (f , g) p Lp ≤ Cp f p L2p g p L2p
  • 38. 4. Possible future work Open problem: double averages, Z+-actions or Z-actions Mn(f , g) := 1 n n−1 k=0 (f ◦ Sk )(g ◦ Tk ) sup n0<n1<···<nm m j=1 Mnj−1 (f , g) − Mnj (f , g) p Lp ≤ Cp f p L2p g p L2p Open problem: triple averages, “powers” of a single Aω-action Mn(f , g, h) := 1 |Fn| a∈Fn (f ◦ Tc1a )(g ◦ Tc2a )(h ◦ Tc3a ), c1, c2, c3 ∈ Z sup n0<···<nm m j=1 Mnj−1 (f , g, h) − Mnj (f , g, h) p Lp ≤ Cp f p L3p g p L3p h p L3p
  • 39. Thank you! Thank you for your attention!