SlideShare ist ein Scribd-Unternehmen logo
1 von 79
Long-term safety of geological CO2 storage:
Lessons from Bravo Dome Natural CO2 reservoir
Marc A. Hesse
Department of Geological Sciences
Institute for Computational Engineering & Sciences
October 29, 2015
Marc A. Hesse UKCCSRC Workshop October 29, 2015 1 / 40
Outline
1 Introduction
Motivation
Bravo Dome natural CO2 field in New Mexico
2 Dissolution trapping at Bravo Dome
Magnitude of CO2 dissolution
Mechanism of solubility trapping at Bravo Dome
Rate of CO2 dissolution
3 Pressures in natural CO2 reservoirs
Reservoir compartmentalization
Origins of subhydrostatic pressures
4 Implications for geological CO2 storage
Marc A. Hesse UKCCSRC Workshop October 29, 2015 2 / 40
Acknowledgements
Funding:
National Science Foundation - Hydrologic Sciences
Department of Energy - Basic Energy Sciences
Energy Frontier Research Center:
Center for Frontiers in Subsurface Energy Security
Bravo Dome collaborators:
Kiran Sataye, Daria Ahkbari, Kimberly Lankford, Martin
Cassidy, Toti Larson, Dani Stoeckli, Changli Yuan, Gary
Pope, OXY Bravo Dome team
Papers:
Sathaye, Hesse, Cassidy & Stockli (2014) PNAS
Sathaye, Larson, & Hesse (201X) EPSL Ahkbari & Hesse
(201X) in prep
Marc A. Hesse UKCCSRC Workshop October 29, 2015 3 / 40
Outline
1 Introduction
Motivation
Bravo Dome natural CO2 field in New Mexico
2 Dissolution trapping at Bravo Dome
Magnitude of CO2 dissolution
Mechanism of solubility trapping at Bravo Dome
Rate of CO2 dissolution
3 Pressures in natural CO2 reservoirs
Reservoir compartmentalization
Origins of subhydrostatic pressures
4 Implications for geological CO2 storage
Marc A. Hesse UKCCSRC Workshop October 29, 2015 4 / 40
Outline
1 Introduction
Motivation
Bravo Dome natural CO2 field in New Mexico
2 Dissolution trapping at Bravo Dome
Magnitude of CO2 dissolution
Mechanism of solubility trapping at Bravo Dome
Rate of CO2 dissolution
3 Pressures in natural CO2 reservoirs
Reservoir compartmentalization
Origins of subhydrostatic pressures
4 Implications for geological CO2 storage
Marc A. Hesse UKCCSRC Workshop October 29, 2015 5 / 40
Trapping contribution and time-scales
IPCC special report Reservoir simulation Theoretical analysis
100
101
102
103
104
100%
80%
60%
40%
20%
0%
FractionofCO2
trapped
Time since injection [yrs]
free CO2
solubility trapping
residual trapping
mineral trapping
100%
80%
60%
40%
20%
0%
101
102
103
104
Time since injection [yrs]
FractionofCO2
trapped
free CO2
solubility trapping
residual trapping
mineral trapping
100%
80%
60%
40%
20%
0%
1 3 9
Injection periods [-]
FractionofCO2
trapped
solubility trapping
residual trapping
free CO2
Benson et al. (2005)
IPCC Special Report
Kumar et al. (2005)
SPE Journal, 10(3)
MacMinn et al. (2011)
J. Fluid Mech., 688
Marc A. Hesse UKCCSRC Workshop October 29, 2015 6 / 40
Trapping contribution and time-scales
IPCC special report Reservoir simulation Theoretical analysis
100
101
102
103
104
100%
80%
60%
40%
20%
0%
FractionofCO2
trapped
Time since injection [yrs]
free CO2
solubility trapping
residual trapping
mineral trapping
100%
80%
60%
40%
20%
0%
101
102
103
104
Time since injection [yrs]
FractionofCO2
trapped
free CO2
solubility trapping
residual trapping
mineral trapping
100%
80%
60%
40%
20%
0%
1 3 9
Injection periods [-]
FractionofCO2
trapped
solubility trapping
residual trapping
free CO2
Benson et al. (2005)
IPCC Special Report
Kumar et al. (2005)
SPE Journal, 10(3)
MacMinn et al. (2011)
J. Fluid Mech., 688
Constrain trapping rates at Bravo Dome using field observations!
Marc A. Hesse UKCCSRC Workshop October 29, 2015 6 / 40
Outline
1 Introduction
Motivation
Bravo Dome natural CO2 field in New Mexico
2 Dissolution trapping at Bravo Dome
Magnitude of CO2 dissolution
Mechanism of solubility trapping at Bravo Dome
Rate of CO2 dissolution
3 Pressures in natural CO2 reservoirs
Reservoir compartmentalization
Origins of subhydrostatic pressures
4 Implications for geological CO2 storage
Marc A. Hesse UKCCSRC Workshop October 29, 2015 7 / 40
Bravo Dome natural gas field, New Mexico
Marc A. Hesse UKCCSRC Workshop October 29, 2015 8 / 40
Introduction Bravo Dome, NM
The numbers:
Area: 3600 km2
Marc A. Hesse UKCCSRC Workshop October 29, 2015 9 / 40
Introduction Bravo Dome, NM
The numbers:
Area: 3600 km2
20 km
Marc A. Hesse UKCCSRC Workshop October 29, 2015 9 / 40
Introduction Bravo Dome, NM
The numbers:
Area: 3600 km2
Gas-water contact: 1700 km2
Marc A. Hesse UKCCSRC Workshop October 29, 2015 9 / 40
Introduction Bravo Dome, NM
The numbers:
Area: 3600 km2
Gas-water contact: 1700 km2
Reserves: 22 tcf (10 tcf)
Largest CO2 field.
Top 20 natural gas fields.
Marc A. Hesse UKCCSRC Workshop October 29, 2015 9 / 40
Introduction Bravo Dome, NM
The numbers:
Area: 3600 km2
Gas-water contact: 1700 km2
Reserves: 22 tcf (10 tcf)
Largest CO2 field.
Top 20 natural gas fields.
Essentially pure CO2
Marc A. Hesse UKCCSRC Workshop October 29, 2015 9 / 40
Introduction Bravo Dome, NM
The numbers:
Area: 3600 km2
Gas-water contact: 1700 km2
Reserves: 22 tcf (10 tcf)
Largest CO2 field.
Top 20 natural gas fields.
Essentially pure CO2
Origin: volcanic gas
(very high 3
He/4
He)
Marc A. Hesse UKCCSRC Workshop October 29, 2015 9 / 40
Data available at Bravo Dome, NM
788 wells
150 wells with digitized logs
42 cored wells
10 wells with stratigraphic logs
18 wells with noble gas/isotope data
3645 permeability and porosity
measurements
21 drainage capillary pressure curves
40 2D seismic lines
Best data set to constrain the magnitude and rate of solubility trapping.
Marc A. Hesse UKCCSRC Workshop October 29, 2015 10 / 40
Outline
1 Introduction
Motivation
Bravo Dome natural CO2 field in New Mexico
2 Dissolution trapping at Bravo Dome
Magnitude of CO2 dissolution
Mechanism of solubility trapping at Bravo Dome
Rate of CO2 dissolution
3 Pressures in natural CO2 reservoirs
Reservoir compartmentalization
Origins of subhydrostatic pressures
4 Implications for geological CO2 storage
Marc A. Hesse UKCCSRC Workshop October 29, 2015 11 / 40
Outline
1 Introduction
Motivation
Bravo Dome natural CO2 field in New Mexico
2 Dissolution trapping at Bravo Dome
Magnitude of CO2 dissolution
Mechanism of solubility trapping at Bravo Dome
Rate of CO2 dissolution
3 Pressures in natural CO2 reservoirs
Reservoir compartmentalization
Origins of subhydrostatic pressures
4 Implications for geological CO2 storage
Marc A. Hesse UKCCSRC Workshop October 29, 2015 12 / 40
Estimating dissolution from gas composition
Convective dissolution of CO2
CO2CO2
He He
CO2 CO2
Marc A. Hesse UKCCSRC Workshop October 29, 2015 13 / 40
Estimating dissolution from gas composition
Convective dissolution of CO2 CO2/3
He-ratio in the gas
CO2CO2
He He
CO2 CO2
0 5 10 15 20 25 30 35
0
2
4
6
8
10
12
14
16
18
time [hrs]
CO2
/Heingas[mol/mol]
Fraction dissolved: F = 1 −
[CO2/He]final
[CO2/He]initial
≈ 1 − 2
16 ≈ 0.9
Marc A. Hesse UKCCSRC Workshop October 29, 2015 13 / 40
Mapping geochemistry into the reservoir
Gas geochemistry:
Gilfillan et al. (2009) Nature, 458
Lollar & Ballentine (2009) Nature Geosci, 2(8)
Cassidy (2006) PhD Thesis U. Houston
Marc A. Hesse UKCCSRC Workshop October 29, 2015 14 / 40
Mapping geochemistry into the reservoir
Gas geochemistry: Compositional variation in the reservoir
2.5
3
3.5
4
4.5
5
0 10 20 30 40 50 60 70
Easting (km)
0
10
20
30
40
50
60
70
Northing(km)
CO2
/3
H109
[-]
8 MPa
Gilfillan et al. (2009) Nature, 458
Lollar & Ballentine (2009) Nature Geosci, 2(8)
Cassidy (2006) PhD Thesis U. Houston
Marc A. Hesse UKCCSRC Workshop October 29, 2015 14 / 40
Mapping geochemistry into the reservoir
Gas geochemistry: Compositional variation in the reservoir
10%
20%
30%
40%
50%
0 10 20 30 40 50 60 70
Easting (km)
0
10
20
30
40
50
60
70
Northing(km)
60%
0%
localfractionofgasdissolved
Gilfillan et al. (2009) Nature, 458
Lollar & Ballentine (2009) Nature Geosci, 2(8)
Cassidy (2006) PhD Thesis U. Houston
Marc A. Hesse UKCCSRC Workshop October 29, 2015 14 / 40
Gas mass per area: m = ¯φ ¯Sρ(¯p)h
Thickness
0 10 20 30 40 50 60 70
Easting (km)
0
10
20
30
40
50
60
70
Northing(km)
20
40
60
80
100
120
thicknessofgascolumn:h[m]
Marc A. Hesse UKCCSRC Workshop October 29, 2015 15 / 40
Gas mass per area: m = ¯φ ¯Sρ(¯p)h
Thickness Volume fraction
0 10 20 30 40 50 60 70
Easting (km)
0
10
20
30
40
50
60
70
Northing(km)
20
40
60
80
100
120
thicknessofgascolumn:h[m]
0
10
20
30
40
50
60
70
Northing(km)
4%
6%
8%
10%
12%
14%
16%
0 10 20 30 40 50 60 70
Easting (km)
gasvolumefraction:φS
Marc A. Hesse UKCCSRC Workshop October 29, 2015 15 / 40
Gas mass per area: m = ¯φ ¯Sρ(¯p)h
Thickness Volume fraction Density
0 10 20 30 40 50 60 70
Easting (km)
0
10
20
30
40
50
60
70
Northing(km)
20
40
60
80
100
120
thicknessofgascolumn:h[m]
0
10
20
30
40
50
60
70
Northing(km)
4%
6%
8%
10%
12%
14%
16%
0 10 20 30 40 50 60 70
Easting (km)
gasvolumefraction:φS
0 10 20 30 40 50 60 70
0
10
20
30
40
50
60
70
Easting (km)
Northing(km)
100
200
300
400
500
600
700
800
gasdensity[kg/m3
]
Marc A. Hesse UKCCSRC Workshop October 29, 2015 15 / 40
Gas mass per area: m = ¯φ ¯Sρ(¯p)h
Thickness Volume fraction Density Mass
0 10 20 30 40 50 60 70
Easting (km)
0
10
20
30
40
50
60
70
Northing(km)
20
40
60
80
100
120
thicknessofgascolumn:h[m]
0
10
20
30
40
50
60
70
Northing(km)
4%
6%
8%
10%
12%
14%
16%
0 10 20 30 40 50 60 70
Easting (km)
gasvolumefraction:φS
0 10 20 30 40 50 60 70
0
10
20
30
40
50
60
70
Easting (km)
Northing(km)
100
200
300
400
500
600
700
800
gasdensity[kg/m3
]
0 10 20 30 40 50 60 70
0
10
20
30
40
50
60
70
Easting (km)
Northing(km)
100
200
300
400
500
600
700
800
900
1000
1100
0
gasmassperunitarea[kg/m2
]
Marc A. Hesse UKCCSRC Workshop October 29, 2015 15 / 40
Gas mass per area: m = ¯φ ¯Sρ(¯p)h
Thickness Volume fraction Density Mass
0 10 20 30 40 50 60 70
Easting (km)
0
10
20
30
40
50
60
70
Northing(km)
20
40
60
80
100
120
thicknessofgascolumn:h[m]
0
10
20
30
40
50
60
70
Northing(km)
4%
6%
8%
10%
12%
14%
16%
0 10 20 30 40 50 60 70
Easting (km)
gasvolumefraction:φS
0 10 20 30 40 50 60 70
0
10
20
30
40
50
60
70
Easting (km)
Northing(km)
100
200
300
400
500
600
700
800
gasdensity[kg/m3
]
0 10 20 30 40 50 60 70
0
10
20
30
40
50
60
70
Easting (km)
Northing(km)
100
200
300
400
500
600
700
800
900
1000
1100
0
gasmassperunitarea[kg/m2
]
Large spatial variations that need to be accounted for in mass balance.
Marc A. Hesse UKCCSRC Workshop October 29, 2015 15 / 40
Estimate of the local change in mass: ∆m
∆M = ∆m dxdy ≈ (1/F − 1) mf dxdy.
Mass/area: mf Fraction dissolved: F
0 10 20 30 40 50 60 70
0
10
20
30
40
50
60
70
Easting (km)
Northing(km)
100
200
300
400
500
600
700
800
900
1000
1100
0
gasmassperunitarea[kg/m2
]
10%
20%
30%
40%
50%
0 10 20 30 40 50 60 70
Easting (km)
0
10
20
30
40
50
60
70
Northing(km)
60%
0%
localfractionofgasdissolvedMarc A. Hesse UKCCSRC Workshop October 29, 2015 16 / 40
Estimate of the local change in mass: ∆m
∆M = ∆m dxdy ≈ (1/F − 1) mf dxdy.
Mass/area: mf Fraction dissolved: F Change in mass, ∆m
0 10 20 30 40 50 60 70
0
10
20
30
40
50
60
70
Easting (km)
Northing(km)
100
200
300
400
500
600
700
800
900
1000
1100
0
gasmassperunitarea[kg/m2
]
10%
20%
30%
40%
50%
0 10 20 30 40 50 60 70
Easting (km)
0
10
20
30
40
50
60
70
Northing(km)
60%
0%
localfractionofgasdissolved
50
100
150
200
250
300
350
400
450
0
0 10 20 30 40 50 60 70
Easting (km)
0
10
20
30
40
50
60
70
Northing(km)
masslossperunitarea[kg/m2
]
Marc A. Hesse UKCCSRC Workshop October 29, 2015 16 / 40
Estimate of the local change in mass: ∆m
∆M = ∆m dxdy ≈ (1/F − 1) mf dxdy.
Mass/area: mf Fraction dissolved: F Change in mass, ∆m
0 10 20 30 40 50 60 70
0
10
20
30
40
50
60
70
Easting (km)
Northing(km)
100
200
300
400
500
600
700
800
900
1000
1100
0
gasmassperunitarea[kg/m2
]
10%
20%
30%
40%
50%
0 10 20 30 40 50 60 70
Easting (km)
0
10
20
30
40
50
60
70
Northing(km)
60%
0%
localfractionofgasdissolved
50
100
150
200
250
300
350
400
450
0
0 10 20 30 40 50 60 70
Easting (km)
0
10
20
30
40
50
60
70
Northing(km)
masslossperunitarea[kg/m2
]
As expected, mf is low where F is high → global fraction dissolved is less!
Marc A. Hesse UKCCSRC Workshop October 29, 2015 16 / 40
Magnitude of CO2 dissolution at Bravo Dome
1 Mass of gas dissolved at Bravo Dome:
∆M = 366 ± 122 MtCO2.
Equivalent to 65 years of emissions
from US coal power plant.
2 Total mass of CO2 emplaced at Bravo
Dome is Mt = 1.6 ± 0.7GtCO2.
Equivalent to annual global volcanic
CO2 emissions.
3 At Bravo Dome only 22%±7% of
the emplaced CO2 have dissolved.
Much less than the maximum local
dissolution in NE.
free CO2
77%
dissolved
CO2
23%
Marc A. Hesse UKCCSRC Workshop October 29, 2015 17 / 40
Magnitude of CO2 dissolution at Bravo Dome
1 Mass of gas dissolved at Bravo Dome:
∆M = 366 ± 122 MtCO2.
Equivalent to 65 years of emissions
from US coal power plant.
2 Total mass of CO2 emplaced at Bravo
Dome is Mt = 1.6 ± 0.7GtCO2.
Equivalent to annual global volcanic
CO2 emissions.
3 At Bravo Dome only 22%±7% of
the emplaced CO2 have dissolved.
Much less than the maximum local
dissolution in NE.
free CO2
77%
dissolved
CO2
23%
Uncertainty is mainly due to variations in height of gas column!
Marc A. Hesse UKCCSRC Workshop October 29, 2015 17 / 40
Outline
1 Introduction
Motivation
Bravo Dome natural CO2 field in New Mexico
2 Dissolution trapping at Bravo Dome
Magnitude of CO2 dissolution
Mechanism of solubility trapping at Bravo Dome
Rate of CO2 dissolution
3 Pressures in natural CO2 reservoirs
Reservoir compartmentalization
Origins of subhydrostatic pressures
4 Implications for geological CO2 storage
Marc A. Hesse UKCCSRC Workshop October 29, 2015 18 / 40
Stratigraphic architecture of reservoir
Porosity and permeability
10-2
10-1
100
101
102
103
0
100
200
[mD]
n = 3546
0 0.1 0.2 0.3
0
100
200
[-]
Marc A. Hesse UKCCSRC Workshop October 29, 2015 19 / 40
Stratigraphic architecture of reservoir
Porosity and permeability
10-2
10-1
100
101
102
103
0
100
200
[mD]
n = 3546
0 0.1 0.2 0.3
0
100
200
[-]
sandsilt
Marc A. Hesse UKCCSRC Workshop October 29, 2015 19 / 40
Stratigraphic architecture of reservoir
Porosity and permeability
10-2
10-1
100
101
102
103
0
100
200
[mD]
n = 3546
0 0.1 0.2 0.3
0
100
200
[-]
42 mD
Marc A. Hesse UKCCSRC Workshop October 29, 2015 19 / 40
Stratigraphic architecture of reservoir
Porosity and permeability Capillary entry pressure
10-2
10-1
100
101
102
103
0
100
200
[mD]
n = 3546
0 0.1 0.2 0.3
0
100
200
[-]
42 mD
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.5
1.0
1.5
2.0
2.5
[MPa]
[-]
siltstone
sandstone
Marc A. Hesse UKCCSRC Workshop October 29, 2015 19 / 40
Stratigraphic architecture of reservoir
Porosity and permeability Capillary entry pressure
10-2
10-1
100
101
102
103
0
100
200
[mD]
n = 3546
0 0.1 0.2 0.3
0
100
200
[-]
42 mD
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.5
1.0
1.5
2.0
2.5
[MPa]
[-]
siltstone
sandstone
High capillary entry pressure prevents CO2 entry into the siltstone.
Marc A. Hesse UKCCSRC Workshop October 29, 2015 19 / 40
Dissolution into residual brine during emplacement
0 0.1 0.25
695
705
715
725
735
745
φ, φg
[-]
silt}
} sand
B 5 15 25 35 45 55 65 B’
500
600
700
800
900
granitic basement
brine
elevation[m]
source
distance along cross-section [km]
anhydrite
Marc A. Hesse UKCCSRC Workshop October 29, 2015 20 / 40
Dissolution into residual brine during emplacement
0 0.1 0.25
695
705
715
725
735
745
φ, φg
[-]
silt}
} sand
B 5 15 25 35 45 55 65 B’
500
600
700
800
900
granitic basement
brine
elevation[m]
source
distance along cross-section [km]
anhydrite
Marc A. Hesse UKCCSRC Workshop October 29, 2015 20 / 40
Dissolution into residual brine during emplacement
0 0.1 0.25
695
705
715
725
735
745
φ, φg
[-]
silt}
} sand
B 5 15 25 35 45 55 65 B’
500
600
700
800
900
granitic basement
brine
elevation[m]
source
distance along cross-section [km]
anhydrite
Marc A. Hesse UKCCSRC Workshop October 29, 2015 20 / 40
Dissolution into residual brine during emplacement
0 0.1 0.25
695
705
715
725
735
745
φ, φg
[-]
silt}
} sand
B 5 15 25 35 45 55 65 B’
500
600
700
800
900
granitic basement
brine
elevation[m]
source
distance along cross-section [km]
anhydrite
Marc A. Hesse UKCCSRC Workshop October 29, 2015 20 / 40
Dissolution into residual brine during emplacement
0 0.1 0.25
695
705
715
725
735
745
φ, φg
[-]
silt}
} sand
B 5 15 25 35 45 55 65 B’
500
600
700
800
900
granitic basement
brine
elevation[m]
source
distance along cross-section [km]
anhydrite
Marc A. Hesse UKCCSRC Workshop October 29, 2015 20 / 40
Dissolution into residual brine during emplacement
0 0.1 0.25
695
705
715
725
735
745
φ, φg
[-]
silt}
} sand
B 5 15 25 35 45 55 65 B’
500
600
700
800
900
granitic basement
brine
elevation[m]
source
distance along cross-section [km]
anhydrite
0 20 40 60 80 100 120
0
0.2
0.4
0.6
0.8
1
1.2
Pressure [bar]
CO2solubility[
mol
kg
]
Bravo Dome Measurments
Duan et al. (2003): pure water
Duan et al. (2003): 2 molal NaCl
Easting (km)
Northing(km)
0 25 50 75
0
25
50
75
0
50
100
150
CO2(aq)
[kg/m2
]
Marc A. Hesse UKCCSRC Workshop October 29, 2015 20 / 40
How much dissolved during emplacement
Main reservoir segment Map of Bravo Dome: NE reservoir segment:
residual
brine 53%
aquifer 47%
10%
20%
30%
40%
50%
0 10 20 30 40 50 60 70
Easting (km)
0
10
20
30
40
50
60
70
Northing(km)
60%
0%
localfractionofgasdissolved
residual
brine 14%
aquifer 86%
1 Significant amounts dissolved into ’residual brine’ during emplacement.
Highlights positive effect of heterogeneity on dissolution!
2 Significant amounts dissolved into underlying aquifer after emplacement.
Provides field evidence for enhanced dissolution due to brine flow.
Marc A. Hesse UKCCSRC Workshop October 29, 2015 21 / 40
Outline
1 Introduction
Motivation
Bravo Dome natural CO2 field in New Mexico
2 Dissolution trapping at Bravo Dome
Magnitude of CO2 dissolution
Mechanism of solubility trapping at Bravo Dome
Rate of CO2 dissolution
3 Pressures in natural CO2 reservoirs
Reservoir compartmentalization
Origins of subhydrostatic pressures
4 Implications for geological CO2 storage
Marc A. Hesse UKCCSRC Workshop October 29, 2015 22 / 40
CO2 emplacement and regional volcanism
Distribution of regional volcanism Age of regional volcanism
[MPa]
2 4 6 8 10 12 14
−60 −40 −20 0 20 40 60 80
20
40
60
80
100
120
140
160
1.7Ma−56ka
9Ma−2.2Ma
easting [km]
northing[km]
Texas
Oklahoma
Colorado
T1
0
95
Folsom SiteFolsom Site
Capulin volcanoCapulin volcano
New Mexico
volcanic ages:
T2
Assumed age of Bravo Dome is 10ka.
Three major volcanic phases:
1 Raton phase: 9.0 - 3.5 Ma
2 Clayton phase: 3.0 -2.25 Ma
3 Capulin phase: 1.7 - 0.04 Ma
Independent estimate of CO2 age!
Stroud (1996) M.S. Thesis, NM Tech
Marc A. Hesse UKCCSRC Workshop October 29, 2015 23 / 40
Dating CO2 emplacment with thermochronology
Core sample with Apatite crystal
Marc A. Hesse UKCCSRC Workshop October 29, 2015 24 / 40
Dating CO2 emplacment with thermochronology
Core sample with Apatite crystal (U-Th)/He thermochronology
Apatite accumulates He from radioactive decay below T = 75◦
C.
Current reservoir conditions T = 35◦
C → heating by ∆T ≈ 40◦
C
Marc A. Hesse UKCCSRC Workshop October 29, 2015 24 / 40
Dating CO2 emplacment with thermochronology
Core sample with Apatite crystal (U-Th)/He thermochronology
Apatite accumulates He from radioactive decay below T = 75◦
C.
Current reservoir conditions T = 35◦
C → heating by ∆T ≈ 40◦
C
Hot volcanic CO2 entered Bravo Dome 1.2-1.5 Ma ago.
Marc A. Hesse UKCCSRC Workshop October 29, 2015 24 / 40
Estimate IPCC–diagram for Bravo Dome
100
101
102
103
104
100%
80%
60%
40%
20%
0%
FractionofCO2
trapped
Time since injection [yrs]
free CO2
solubility trapping
residual trapping
mineral trapping
Marc A. Hesse UKCCSRC Workshop October 29, 2015 25 / 40
Estimate IPCC–diagram for Bravo Dome
Bravo Dome
100%
80%
60%
40%
20%
0%
FractionofCO2
trapped
100
101
102
103
104
Time since emplacement [yrs]
105
106 107
free CO2
solubility trapping
Marc A. Hesse UKCCSRC Workshop October 29, 2015 25 / 40
Outline
1 Introduction
Motivation
Bravo Dome natural CO2 field in New Mexico
2 Dissolution trapping at Bravo Dome
Magnitude of CO2 dissolution
Mechanism of solubility trapping at Bravo Dome
Rate of CO2 dissolution
3 Pressures in natural CO2 reservoirs
Reservoir compartmentalization
Origins of subhydrostatic pressures
4 Implications for geological CO2 storage
Marc A. Hesse UKCCSRC Workshop October 29, 2015 26 / 40
Outline
1 Introduction
Motivation
Bravo Dome natural CO2 field in New Mexico
2 Dissolution trapping at Bravo Dome
Magnitude of CO2 dissolution
Mechanism of solubility trapping at Bravo Dome
Rate of CO2 dissolution
3 Pressures in natural CO2 reservoirs
Reservoir compartmentalization
Origins of subhydrostatic pressures
4 Implications for geological CO2 storage
Marc A. Hesse UKCCSRC Workshop October 29, 2015 27 / 40
Pressures gradients at Bravo Dome
[MPa]
2 4 6 8 10 12 14
−60 −40 −20 0 20 40 60 80
20
40
60
80
100
1.7Ma−56ka
9Ma−2.2Ma
easting [km]
northing[km]
Texas
0
95
volcanic ages:
?
?
?
?
?
?
Is the reservoir still filling?
If not, why didn’t the pressure gradient relax?
Marc A. Hesse UKCCSRC Workshop October 29, 2015 28 / 40
Sub-hydrostatic gas pressures at Bravo Dome
Bravo Dome gas pressure
0 2 4 6 8 10
600
650
700
750
800
850
900
Gas Pressure (MPa)
Depth(m)
A
B
C
D
E
F
ρwg
ρgg
pe
Marc A. Hesse UKCCSRC Workshop October 29, 2015 29 / 40
Sub-hydrostatic gas pressures at Bravo Dome
Bravo Dome gas pressure Pressure compartments
0 2 4 6 8 10
600
650
700
750
800
850
900
Gas Pressure (MPa)
Depth(m)
A
B
C
D
E
F
ρwg
ρgg
pe
103103.2103.4103.6103.8
35.6
35.8
36
36.2
36.4
Longitude (°W)
Latitude(°N)
A
BC
DE
F
S
T
Marc A. Hesse UKCCSRC Workshop October 29, 2015 29 / 40
Stratigraphic controls on compartmentalization
Pressure compartments
103103.2103.4103.6103.8
35.6
35.8
36
36.2
36.4
Longitude (°W)
Latitude(°N)
A
BC
DE
F
S
T
Marc A. Hesse UKCCSRC Workshop October 29, 2015 30 / 40
Stratigraphic controls on compartmentalization
Pressure compartments Gas volume fraction ˜sand fraction
103103.2103.4103.6103.8
35.6
35.8
36
36.2
36.4
Longitude (°W)
Latitude(°N)
A
BC
DE
F
S
T
0
10
20
30
40
50
60
70
Northing(km)
4%
6%
8%
10%
12%
14%
16%
0 10 20 30 40 50 60 70
Easting (km)
gasvolumefraction:φS
Marc A. Hesse UKCCSRC Workshop October 29, 2015 30 / 40
Stratigraphic controls on compartmentalization
B 5 15 25 35 45 55 65 B’
500
600
700
800
900
granitic basement
brine
elevation[m]
source
distance along cross-section [km]
compartment 1
compartment 2
compartment 3
Marc A. Hesse UKCCSRC Workshop October 29, 2015 31 / 40
Stratigraphic controls on compartmentalization
B 5 15 25 35 45 55 65 B’
500
600
700
800
900
granitic basement
brine
elevation[m]
source
distance along cross-section [km]
compartment 1
compartment 2
compartment 3
CO2 is stored in a number of closed compartments?
Marc A. Hesse UKCCSRC Workshop October 29, 2015 31 / 40
Outline
1 Introduction
Motivation
Bravo Dome natural CO2 field in New Mexico
2 Dissolution trapping at Bravo Dome
Magnitude of CO2 dissolution
Mechanism of solubility trapping at Bravo Dome
Rate of CO2 dissolution
3 Pressures in natural CO2 reservoirs
Reservoir compartmentalization
Origins of subhydrostatic pressures
4 Implications for geological CO2 storage
Marc A. Hesse UKCCSRC Workshop October 29, 2015 32 / 40
Sub-hydrostatic gas pressures at Bravo Dome
14 ± 3%
5%
16%
Total Subhydrostatic Pressure = 6.3 MPa
Regional Subhydrostatic
Ogallala Depletion
Erosional Unloading
Cooling of Volcanic CO2
Dissolution of CO2
into Brine
Un-Explained
41 ± 30%
10 ± 5%
14 ± 4%
Marc A. Hesse UKCCSRC Workshop October 29, 2015 33 / 40
Sub-hydrostatic gas pressures at Bravo Dome
14 ± 3%
5%
16%
Total Subhydrostatic Pressure = 6.3 MPa
Regional Subhydrostatic
Ogallala Depletion
Erosional Unloading
Cooling of Volcanic CO2
Dissolution of CO2
into Brine
Un-Explained
41 ± 30%
10 ± 5%
14 ± 4%
250 300 350 400 450 500
0
2
4
6
8
10
12
Temperature (K)
Pressure(Mpa)
CO2 Isodensity Diagram
Dissolution Effect
∆P = 0.7 - 1.1 MPa
Marc A. Hesse UKCCSRC Workshop October 29, 2015 33 / 40
Regional underpressure
33˚ N
34˚ N
35˚ N
36˚ N
37˚ N
38˚ N
Latitude
Langitude
100˚ W101˚ W102˚ W103˚ W104˚ W105˚ W106˚ W
A A’
Marc A. Hesse UKCCSRC Workshop October 29, 2015 34 / 40
Regional underpressure
33˚ N
34˚ N
35˚ N
36˚ N
37˚ N
38˚ N
Latitude
Langitude
100˚ W101˚ W102˚ W103˚ W104˚ W105˚ W106˚ W
A A’
Elevation(ft)
-6000
-4000
-2000
0
2000
4000
6000
100˚ W101˚ W102˚ W103˚ W104˚ W
Langitude
A’A
Precambrian
Basement
TXNM
Anadarko
Dalhart
Basin
Wolfcampion
Marc A. Hesse UKCCSRC Workshop October 29, 2015 34 / 40
Underpressure due to regional evaporite
Marc A. Hesse UKCCSRC Workshop October 29, 2015 35 / 40
Underpressure due to regional evaporite
Permian
Evaporite
Marc A. Hesse UKCCSRC Workshop October 29, 2015 35 / 40
Underpressure is normal in natural CO2 reservoirs
Gas Pressure (MPa)
Depth(m)
0
4000
3000
2000
1000
0 302010
SJ E
DM
MD
KD
GC
MC
MD
L
GC
KD
MC
GC L
MD
SJ E
DM
B1
B5
B4
B2
B3
BD
DM: Des Moines
E: Estancia
GC: Gordon Creek
KD: Kevin Dome
L: Lisbon
MC: Mc Callum
MD: McElmo Dome
SJ: St. Johns
B1: Denver Basin
B2: Anadarko Basin
B3: Arkoma Basin
B4 Palo Duro Basin
B5: San Juan Basin
ρw g
Marc A. Hesse UKCCSRC Workshop October 29, 2015 36 / 40
Outline
1 Introduction
Motivation
Bravo Dome natural CO2 field in New Mexico
2 Dissolution trapping at Bravo Dome
Magnitude of CO2 dissolution
Mechanism of solubility trapping at Bravo Dome
Rate of CO2 dissolution
3 Pressures in natural CO2 reservoirs
Reservoir compartmentalization
Origins of subhydrostatic pressures
4 Implications for geological CO2 storage
Marc A. Hesse UKCCSRC Workshop October 29, 2015 37 / 40
Summary and conclusion
Natural analogs for geological CO2 storage
1 Large amounts of data are freely available.
2 Provide constraints in long-term fate of geological CO2 storage
Marc A. Hesse UKCCSRC Workshop October 29, 2015 38 / 40
Summary and conclusion
Natural analogs for geological CO2 storage
1 Large amounts of data are freely available.
2 Provide constraints in long-term fate of geological CO2 storage
Dissolution at Bravo Dome
1 Estimate that 366 MtCO2 have dissolved.
2 50% dissolves into residual brine during emplacement.
3 50% dissolves after emplacement into aquifer.
4 Emplacement of CO2 1.2-1.4 Ma ago.
Marc A. Hesse UKCCSRC Workshop October 29, 2015 38 / 40
Summary and conclusion
Natural analogs for geological CO2 storage
1 Large amounts of data are freely available.
2 Provide constraints in long-term fate of geological CO2 storage
Dissolution at Bravo Dome
1 Estimate that 366 MtCO2 have dissolved.
2 50% dissolves into residual brine during emplacement.
3 50% dissolves after emplacement into aquifer.
4 Emplacement of CO2 1.2-1.4 Ma ago.
Pressures at Bravo Dome
1 Pressure is significantly below hydrostatic (common).
2 CO2 dissolution can reduce pressure in compartmentalized reservoir.
3 Permian evaporites are associated with large regional underpressure.
Marc A. Hesse UKCCSRC Workshop October 29, 2015 38 / 40
Implications for CO2 storage
Trapping and safety
1 Structural trapping contained large volume over millenial timescales.
2 Dissolution trapping is slower then expected.
3 Dissolution trapping is nice, but not strictly necessary.
Marc A. Hesse UKCCSRC Workshop October 29, 2015 39 / 40
Implications for CO2 storage
Trapping and safety
1 Structural trapping contained large volume over millenial timescales.
2 Dissolution trapping is slower then expected.
3 Dissolution trapping is nice, but not strictly necessary.
Geological CO2 storage on a scale large enough to matter?
1 Sleipner is an example of successful storage in an optimal formation.
2 Bravo Dome is an example if successful storage in a formation
that would not be considered optimal.
Marc A. Hesse UKCCSRC Workshop October 29, 2015 39 / 40
Implications for CO2 storage
Trapping and safety
1 Structural trapping contained large volume over millenial timescales.
2 Dissolution trapping is slower then expected.
3 Dissolution trapping is nice, but not strictly necessary.
Geological CO2 storage on a scale large enough to matter?
1 Sleipner is an example of successful storage in an optimal formation.
2 Bravo Dome is an example if successful storage in a formation
that would not be considered optimal.
Low-pem & low-pressure formations as CO2 storage targets
1 Previously considered for hazardous waste injection.
2 CO2 is less mobile than in high perm formations.
3 Inject large amounts before reaching hydrostatic pressure.
4 CO2 dissolution reduces pressure over time.
Marc A. Hesse UKCCSRC Workshop October 29, 2015 39 / 40
Implications for CO2 storage
Trapping and safety
1 Structural trapping contained large volume over millenial timescales.
2 Dissolution trapping is slower then expected.
3 Dissolution trapping is nice, but not strictly necessary.
Geological CO2 storage on a scale large enough to matter?
1 Sleipner is an example of successful storage in an optimal formation.
2 Bravo Dome is an example if successful storage in a formation
that would not be considered optimal.
Low-pem & low-pressure formations as CO2 storage targets
1 Previously considered for hazardous waste injection.
2 CO2 is less mobile than in high perm formations.
3 Inject large amounts before reaching hydrostatic pressure.
4 CO2 dissolution reduces pressure over time.
Marc A. Hesse UKCCSRC Workshop October 29, 2015 39 / 40
Thank you for your attention.
Marc A. Hesse UKCCSRC Workshop October 29, 2015 40 / 40

Weitere ähnliche Inhalte

Was ist angesagt?

Integration of Seismic Inversion, Pore Pressure Prediction, and TOC Predictio...
Integration of Seismic Inversion, Pore Pressure Prediction, and TOC Predictio...Integration of Seismic Inversion, Pore Pressure Prediction, and TOC Predictio...
Integration of Seismic Inversion, Pore Pressure Prediction, and TOC Predictio...Andika Perbawa
 
Lumleyetal-intro4D-2015
Lumleyetal-intro4D-2015Lumleyetal-intro4D-2015
Lumleyetal-intro4D-2015Matthew Saul
 
Moffett RAB: EPA MEW Superfund Study Area Update
Moffett RAB: EPA MEW Superfund Study Area UpdateMoffett RAB: EPA MEW Superfund Study Area Update
Moffett RAB: EPA MEW Superfund Study Area UpdateSteve Williams
 
Petrophysical Analysis Of Reservoir Rock Of Kadanwari Gas [Autosaved]
Petrophysical Analysis Of Reservoir Rock Of Kadanwari Gas [Autosaved]Petrophysical Analysis Of Reservoir Rock Of Kadanwari Gas [Autosaved]
Petrophysical Analysis Of Reservoir Rock Of Kadanwari Gas [Autosaved]muhammad ali
 
Lauvaux, Thomas: Uncertainty-based analysis on constraining continental carbo...
Lauvaux, Thomas: Uncertainty-based analysis on constraining continental carbo...Lauvaux, Thomas: Uncertainty-based analysis on constraining continental carbo...
Lauvaux, Thomas: Uncertainty-based analysis on constraining continental carbo...Integrated Carbon Observation System (ICOS)
 
Formation evaluation and well log correlation
Formation evaluation and well log correlationFormation evaluation and well log correlation
Formation evaluation and well log correlationSwapnil Pal
 
Nuclear Methods and Radiometric Logging
Nuclear Methods and Radiometric LoggingNuclear Methods and Radiometric Logging
Nuclear Methods and Radiometric LoggingAdemola Sorungbe
 
M. Ek - Land Surface in Weather and Climate Models; "Surface scheme"
M. Ek - Land Surface in Weather and Climate Models; "Surface scheme"M. Ek - Land Surface in Weather and Climate Models; "Surface scheme"
M. Ek - Land Surface in Weather and Climate Models; "Surface scheme"Decision and Policy Analysis Program
 
Examination of Total Precipitable Water using MODIS measurements and Comparis...
Examination of Total Precipitable Water using MODIS measurements and Comparis...Examination of Total Precipitable Water using MODIS measurements and Comparis...
Examination of Total Precipitable Water using MODIS measurements and Comparis...inventionjournals
 
RAB Vapor Intrusion Update, Installation Restoration (IR) Site 28
RAB Vapor Intrusion Update, Installation Restoration (IR) Site 28RAB Vapor Intrusion Update, Installation Restoration (IR) Site 28
RAB Vapor Intrusion Update, Installation Restoration (IR) Site 28Steve Williams
 

Was ist angesagt? (20)

Carbon Dioxide Storage: a UK perspective - Andy Chadwick, BGS, at the UKCCSRC...
Carbon Dioxide Storage: a UK perspective - Andy Chadwick, BGS, at the UKCCSRC...Carbon Dioxide Storage: a UK perspective - Andy Chadwick, BGS, at the UKCCSRC...
Carbon Dioxide Storage: a UK perspective - Andy Chadwick, BGS, at the UKCCSRC...
 
Alberto Bellin
Alberto BellinAlberto Bellin
Alberto Bellin
 
Musings on potential CO2 migration along pre-existing (former) fluid flow pat...
Musings on potential CO2 migration along pre-existing (former) fluid flow pat...Musings on potential CO2 migration along pre-existing (former) fluid flow pat...
Musings on potential CO2 migration along pre-existing (former) fluid flow pat...
 
Mauro Sulis
Mauro SulisMauro Sulis
Mauro Sulis
 
Advances in Rock Physics Modelling and Improved Estimation of CO2 Saturation,...
Advances in Rock Physics Modelling and Improved Estimation of CO2 Saturation,...Advances in Rock Physics Modelling and Improved Estimation of CO2 Saturation,...
Advances in Rock Physics Modelling and Improved Estimation of CO2 Saturation,...
 
Integration of Seismic Inversion, Pore Pressure Prediction, and TOC Predictio...
Integration of Seismic Inversion, Pore Pressure Prediction, and TOC Predictio...Integration of Seismic Inversion, Pore Pressure Prediction, and TOC Predictio...
Integration of Seismic Inversion, Pore Pressure Prediction, and TOC Predictio...
 
Lumleyetal-intro4D-2015
Lumleyetal-intro4D-2015Lumleyetal-intro4D-2015
Lumleyetal-intro4D-2015
 
Poster oslo 2010 (v2)
Poster oslo 2010 (v2)Poster oslo 2010 (v2)
Poster oslo 2010 (v2)
 
Well Log Interpretation
Well Log InterpretationWell Log Interpretation
Well Log Interpretation
 
Moffett RAB: EPA MEW Superfund Study Area Update
Moffett RAB: EPA MEW Superfund Study Area UpdateMoffett RAB: EPA MEW Superfund Study Area Update
Moffett RAB: EPA MEW Superfund Study Area Update
 
Petrophysical Analysis Of Reservoir Rock Of Kadanwari Gas [Autosaved]
Petrophysical Analysis Of Reservoir Rock Of Kadanwari Gas [Autosaved]Petrophysical Analysis Of Reservoir Rock Of Kadanwari Gas [Autosaved]
Petrophysical Analysis Of Reservoir Rock Of Kadanwari Gas [Autosaved]
 
Lauvaux, Thomas: Uncertainty-based analysis on constraining continental carbo...
Lauvaux, Thomas: Uncertainty-based analysis on constraining continental carbo...Lauvaux, Thomas: Uncertainty-based analysis on constraining continental carbo...
Lauvaux, Thomas: Uncertainty-based analysis on constraining continental carbo...
 
Formation evaluation and well log correlation
Formation evaluation and well log correlationFormation evaluation and well log correlation
Formation evaluation and well log correlation
 
Nuclear Methods and Radiometric Logging
Nuclear Methods and Radiometric LoggingNuclear Methods and Radiometric Logging
Nuclear Methods and Radiometric Logging
 
Well logging
Well loggingWell logging
Well logging
 
M. Ek - Land Surface in Weather and Climate Models; "Surface scheme"
M. Ek - Land Surface in Weather and Climate Models; "Surface scheme"M. Ek - Land Surface in Weather and Climate Models; "Surface scheme"
M. Ek - Land Surface in Weather and Climate Models; "Surface scheme"
 
Petrophysic
PetrophysicPetrophysic
Petrophysic
 
Examination of Total Precipitable Water using MODIS measurements and Comparis...
Examination of Total Precipitable Water using MODIS measurements and Comparis...Examination of Total Precipitable Water using MODIS measurements and Comparis...
Examination of Total Precipitable Water using MODIS measurements and Comparis...
 
Neutron log
Neutron logNeutron log
Neutron log
 
RAB Vapor Intrusion Update, Installation Restoration (IR) Site 28
RAB Vapor Intrusion Update, Installation Restoration (IR) Site 28RAB Vapor Intrusion Update, Installation Restoration (IR) Site 28
RAB Vapor Intrusion Update, Installation Restoration (IR) Site 28
 

Andere mochten auch

Jeff Rega's Presentation
Jeff Rega's PresentationJeff Rega's Presentation
Jeff Rega's PresentationCompton
 
Packed Bed Reactor for Catalytic Cracking of Plasma Pyrolyzed Gas
Packed Bed Reactor for Catalytic Cracking of Plasma Pyrolyzed GasPacked Bed Reactor for Catalytic Cracking of Plasma Pyrolyzed Gas
Packed Bed Reactor for Catalytic Cracking of Plasma Pyrolyzed Gasijsrd.com
 
final thesis
final thesisfinal thesis
final thesisAli Raza
 
Packed bed reactors
Packed bed reactorsPacked bed reactors
Packed bed reactorsArun kumar
 
Heat transfer in packed bed
Heat transfer in packed bedHeat transfer in packed bed
Heat transfer in packed bedPreeti Birwal
 
Methanol Steam Reforming in Pd-Ag Membrane Reactor for High Purity Hydrogen G...
Methanol Steam Reforming in Pd-Ag Membrane Reactor for High Purity Hydrogen G...Methanol Steam Reforming in Pd-Ag Membrane Reactor for High Purity Hydrogen G...
Methanol Steam Reforming in Pd-Ag Membrane Reactor for High Purity Hydrogen G...sameer_israni
 
Fixed Bed Adsorber Design Guidelines
Fixed Bed Adsorber Design GuidelinesFixed Bed Adsorber Design Guidelines
Fixed Bed Adsorber Design GuidelinesGerard B. Hawkins
 
Packed Bed Reactor Lumped
Packed Bed Reactor LumpedPacked Bed Reactor Lumped
Packed Bed Reactor Lumpedgauravkakran
 

Andere mochten auch (20)

Jeff Rega's Presentation
Jeff Rega's PresentationJeff Rega's Presentation
Jeff Rega's Presentation
 
Challenges in the Steel Industry and the Network, James Watt (Amec) - Industr...
Challenges in the Steel Industry and the Network, James Watt (Amec) - Industr...Challenges in the Steel Industry and the Network, James Watt (Amec) - Industr...
Challenges in the Steel Industry and the Network, James Watt (Amec) - Industr...
 
Multiphase flow modelling of calcite dissolution patterns from core scale to ...
Multiphase flow modelling of calcite dissolution patterns from core scale to ...Multiphase flow modelling of calcite dissolution patterns from core scale to ...
Multiphase flow modelling of calcite dissolution patterns from core scale to ...
 
Horizon 2020 Update, Jon Gibbins, University of Edinburgh - UKCCSRC Strathcly...
Horizon 2020 Update, Jon Gibbins, University of Edinburgh - UKCCSRC Strathcly...Horizon 2020 Update, Jon Gibbins, University of Edinburgh - UKCCSRC Strathcly...
Horizon 2020 Update, Jon Gibbins, University of Edinburgh - UKCCSRC Strathcly...
 
Guangdong Offshore CCUS Project (GOCCUS) - Xi Liang, University of Edinburgh ...
Guangdong Offshore CCUS Project (GOCCUS) - Xi Liang, University of Edinburgh ...Guangdong Offshore CCUS Project (GOCCUS) - Xi Liang, University of Edinburgh ...
Guangdong Offshore CCUS Project (GOCCUS) - Xi Liang, University of Edinburgh ...
 
Changes in the Dutch CCS Landscape - Jan Brouwer, CATO - UKCCSRC Strathclyde ...
Changes in the Dutch CCS Landscape - Jan Brouwer, CATO - UKCCSRC Strathclyde ...Changes in the Dutch CCS Landscape - Jan Brouwer, CATO - UKCCSRC Strathclyde ...
Changes in the Dutch CCS Landscape - Jan Brouwer, CATO - UKCCSRC Strathclyde ...
 
Challenges in the chemical industry, jay brookes (boc) industry ccs worksho...
Challenges in the chemical industry, jay brookes (boc)   industry ccs worksho...Challenges in the chemical industry, jay brookes (boc)   industry ccs worksho...
Challenges in the chemical industry, jay brookes (boc) industry ccs worksho...
 
Overall Network Issues, Tim Dumenil (Pale Blue Dot) - Industry CCS Workshop, ...
Overall Network Issues, Tim Dumenil (Pale Blue Dot) - Industry CCS Workshop, ...Overall Network Issues, Tim Dumenil (Pale Blue Dot) - Industry CCS Workshop, ...
Overall Network Issues, Tim Dumenil (Pale Blue Dot) - Industry CCS Workshop, ...
 
Numerical Modelling of Fracture Growth and Caprock Integrity During CO2 Injec...
Numerical Modelling of Fracture Growth and Caprock Integrity During CO2 Injec...Numerical Modelling of Fracture Growth and Caprock Integrity During CO2 Injec...
Numerical Modelling of Fracture Growth and Caprock Integrity During CO2 Injec...
 
Research Coordination Network on Carbon Capture, Utilization and Storage Fund...
Research Coordination Network on Carbon Capture, Utilization and Storage Fund...Research Coordination Network on Carbon Capture, Utilization and Storage Fund...
Research Coordination Network on Carbon Capture, Utilization and Storage Fund...
 
Packed Bed Reactor for Catalytic Cracking of Plasma Pyrolyzed Gas
Packed Bed Reactor for Catalytic Cracking of Plasma Pyrolyzed GasPacked Bed Reactor for Catalytic Cracking of Plasma Pyrolyzed Gas
Packed Bed Reactor for Catalytic Cracking of Plasma Pyrolyzed Gas
 
CCUS Roadmap for Mexico - presentation by M. Vita Peralta Martínez (IIE - Ele...
CCUS Roadmap for Mexico - presentation by M. Vita Peralta Martínez (IIE - Ele...CCUS Roadmap for Mexico - presentation by M. Vita Peralta Martínez (IIE - Ele...
CCUS Roadmap for Mexico - presentation by M. Vita Peralta Martínez (IIE - Ele...
 
final thesis
final thesisfinal thesis
final thesis
 
Packed bed reactors
Packed bed reactorsPacked bed reactors
Packed bed reactors
 
Meihong Wang (University of Hull) - Process Intensification for Post-Combust...
Meihong Wang (University of Hull)  - Process Intensification for Post-Combust...Meihong Wang (University of Hull)  - Process Intensification for Post-Combust...
Meihong Wang (University of Hull) - Process Intensification for Post-Combust...
 
Heat transfer in packed bed
Heat transfer in packed bedHeat transfer in packed bed
Heat transfer in packed bed
 
SYNGAS production
SYNGAS productionSYNGAS production
SYNGAS production
 
Methanol Steam Reforming in Pd-Ag Membrane Reactor for High Purity Hydrogen G...
Methanol Steam Reforming in Pd-Ag Membrane Reactor for High Purity Hydrogen G...Methanol Steam Reforming in Pd-Ag Membrane Reactor for High Purity Hydrogen G...
Methanol Steam Reforming in Pd-Ag Membrane Reactor for High Purity Hydrogen G...
 
Fixed Bed Adsorber Design Guidelines
Fixed Bed Adsorber Design GuidelinesFixed Bed Adsorber Design Guidelines
Fixed Bed Adsorber Design Guidelines
 
Packed Bed Reactor Lumped
Packed Bed Reactor LumpedPacked Bed Reactor Lumped
Packed Bed Reactor Lumped
 

Ähnlich wie Long-term Safety of CO2 Storage at Bravo Dome

STM & XPS studies of HCl on Cu(100)/O(a)
STM & XPS studies of HCl on Cu(100)/O(a)STM & XPS studies of HCl on Cu(100)/O(a)
STM & XPS studies of HCl on Cu(100)/O(a)Philip R. Davies
 
carbon capture webinar
carbon capture webinarcarbon capture webinar
carbon capture webinargeocoach2020
 
carbon_capture_storage_webinar.ppt
carbon_capture_storage_webinar.pptcarbon_capture_storage_webinar.ppt
carbon_capture_storage_webinar.pptPrateek573064
 
carbon_capture_storage_webinar.ppt
carbon_capture_storage_webinar.pptcarbon_capture_storage_webinar.ppt
carbon_capture_storage_webinar.pptssuser5e8e36
 
carbon_capture_storage_webinar (1).ppt
carbon_capture_storage_webinar (1).pptcarbon_capture_storage_webinar (1).ppt
carbon_capture_storage_webinar (1).pptssuser5e8e36
 
Atlantic Meridional Overturning Circulation Effects on the Carbon Cycle and A...
Atlantic Meridional Overturning Circulation Effects on the Carbon Cycle and A...Atlantic Meridional Overturning Circulation Effects on the Carbon Cycle and A...
Atlantic Meridional Overturning Circulation Effects on the Carbon Cycle and A...Andreas Schmittner
 
Centennial Talk Hydrates
Centennial Talk HydratesCentennial Talk Hydrates
Centennial Talk Hydratesstalnaker
 
Stamford Raffles Lecture 2013
Stamford Raffles Lecture 2013Stamford Raffles Lecture 2013
Stamford Raffles Lecture 2013zslslides
 
Managing carbon geological storage and natural resources in sedimentary basins
Managing carbon geological storage and natural resources in sedimentary basinsManaging carbon geological storage and natural resources in sedimentary basins
Managing carbon geological storage and natural resources in sedimentary basinsGlobal CCS Institute
 
knowledge and education with engineering.pptx
knowledge and education with engineering.pptxknowledge and education with engineering.pptx
knowledge and education with engineering.pptxAbhisekMahalik1
 
Convective mixing in geological storage of CO2
Convective mixing in geological storage of CO2Convective mixing in geological storage of CO2
Convective mixing in geological storage of CO2Global CCS Institute
 
GHG presentation 2 [Autosaved]
GHG presentation 2 [Autosaved]GHG presentation 2 [Autosaved]
GHG presentation 2 [Autosaved]Amy Salvador
 
Carbon capture and sequestration
Carbon capture and sequestrationCarbon capture and sequestration
Carbon capture and sequestrationYash Pandey
 
Apec workshop 2 presentation 12 lh ci cinco presidentes-pemex-apec workshop 2
Apec workshop 2 presentation 12 lh ci cinco presidentes-pemex-apec workshop 2Apec workshop 2 presentation 12 lh ci cinco presidentes-pemex-apec workshop 2
Apec workshop 2 presentation 12 lh ci cinco presidentes-pemex-apec workshop 2Global CCS Institute
 

Ähnlich wie Long-term Safety of CO2 Storage at Bravo Dome (20)

STM & XPS studies of HCl on Cu(100)/O(a)
STM & XPS studies of HCl on Cu(100)/O(a)STM & XPS studies of HCl on Cu(100)/O(a)
STM & XPS studies of HCl on Cu(100)/O(a)
 
Andy Chadwick, UKCCSRC CG Member, visits The Coal Authority
Andy Chadwick, UKCCSRC CG Member, visits The Coal AuthorityAndy Chadwick, UKCCSRC CG Member, visits The Coal Authority
Andy Chadwick, UKCCSRC CG Member, visits The Coal Authority
 
An Accelerated Weathering of Limestone Reactor - Phil Renforth at the Alterna...
An Accelerated Weathering of Limestone Reactor - Phil Renforth at the Alterna...An Accelerated Weathering of Limestone Reactor - Phil Renforth at the Alterna...
An Accelerated Weathering of Limestone Reactor - Phil Renforth at the Alterna...
 
carbon capture webinar
carbon capture webinarcarbon capture webinar
carbon capture webinar
 
carbon_capture_storage_webinar.ppt
carbon_capture_storage_webinar.pptcarbon_capture_storage_webinar.ppt
carbon_capture_storage_webinar.ppt
 
carbon_capture_storage_webinar.ppt
carbon_capture_storage_webinar.pptcarbon_capture_storage_webinar.ppt
carbon_capture_storage_webinar.ppt
 
carbon_capture_storage_webinar (1).ppt
carbon_capture_storage_webinar (1).pptcarbon_capture_storage_webinar (1).ppt
carbon_capture_storage_webinar (1).ppt
 
Atlantic Meridional Overturning Circulation Effects on the Carbon Cycle and A...
Atlantic Meridional Overturning Circulation Effects on the Carbon Cycle and A...Atlantic Meridional Overturning Circulation Effects on the Carbon Cycle and A...
Atlantic Meridional Overturning Circulation Effects on the Carbon Cycle and A...
 
Centennial Talk Hydrates
Centennial Talk HydratesCentennial Talk Hydrates
Centennial Talk Hydrates
 
Stamford Raffles Lecture 2013
Stamford Raffles Lecture 2013Stamford Raffles Lecture 2013
Stamford Raffles Lecture 2013
 
Managing carbon geological storage and natural resources in sedimentary basins
Managing carbon geological storage and natural resources in sedimentary basinsManaging carbon geological storage and natural resources in sedimentary basins
Managing carbon geological storage and natural resources in sedimentary basins
 
Controling Co2
Controling Co2Controling Co2
Controling Co2
 
knowledge and education with engineering.pptx
knowledge and education with engineering.pptxknowledge and education with engineering.pptx
knowledge and education with engineering.pptx
 
Convective mixing in geological storage of CO2
Convective mixing in geological storage of CO2Convective mixing in geological storage of CO2
Convective mixing in geological storage of CO2
 
GHG presentation 2 [Autosaved]
GHG presentation 2 [Autosaved]GHG presentation 2 [Autosaved]
GHG presentation 2 [Autosaved]
 
Carbon capture and sequestration
Carbon capture and sequestrationCarbon capture and sequestration
Carbon capture and sequestration
 
Direct Air Capture - Dr EJ Anthony at UKCCSRC Direct Air Capture/Negative Emi...
Direct Air Capture - Dr EJ Anthony at UKCCSRC Direct Air Capture/Negative Emi...Direct Air Capture - Dr EJ Anthony at UKCCSRC Direct Air Capture/Negative Emi...
Direct Air Capture - Dr EJ Anthony at UKCCSRC Direct Air Capture/Negative Emi...
 
Apec workshop 2 presentation 12 lh ci cinco presidentes-pemex-apec workshop 2
Apec workshop 2 presentation 12 lh ci cinco presidentes-pemex-apec workshop 2Apec workshop 2 presentation 12 lh ci cinco presidentes-pemex-apec workshop 2
Apec workshop 2 presentation 12 lh ci cinco presidentes-pemex-apec workshop 2
 
An Update on Gas CCS Project: Effective Adsorbents for Establishing Solids Lo...
An Update on Gas CCS Project: Effective Adsorbents for Establishing Solids Lo...An Update on Gas CCS Project: Effective Adsorbents for Establishing Solids Lo...
An Update on Gas CCS Project: Effective Adsorbents for Establishing Solids Lo...
 
Brannon_Poster
Brannon_PosterBrannon_Poster
Brannon_Poster
 

Mehr von UK Carbon Capture and Storage Research Centre

Mehr von UK Carbon Capture and Storage Research Centre (14)

Carbon Capture and Storage in Australia - Tania Constable, CO2CRC - UKCCSRC S...
Carbon Capture and Storage in Australia - Tania Constable, CO2CRC - UKCCSRC S...Carbon Capture and Storage in Australia - Tania Constable, CO2CRC - UKCCSRC S...
Carbon Capture and Storage in Australia - Tania Constable, CO2CRC - UKCCSRC S...
 
Computational Modelling and Optimisation of Carbon Capture Reactors, Daniel S...
Computational Modelling and Optimisation of Carbon Capture Reactors, Daniel S...Computational Modelling and Optimisation of Carbon Capture Reactors, Daniel S...
Computational Modelling and Optimisation of Carbon Capture Reactors, Daniel S...
 
Effective Adsorbents for Establishing Solids Looping as a Next Generation NG ...
Effective Adsorbents for Establishing Solids Looping as a Next Generation NG ...Effective Adsorbents for Establishing Solids Looping as a Next Generation NG ...
Effective Adsorbents for Establishing Solids Looping as a Next Generation NG ...
 
Adsorption Materials and Processes for Carbon Capture from Gas-Fired Power Pl...
Adsorption Materials and Processes for Carbon Capture from Gas-Fired Power Pl...Adsorption Materials and Processes for Carbon Capture from Gas-Fired Power Pl...
Adsorption Materials and Processes for Carbon Capture from Gas-Fired Power Pl...
 
A UK Pathway to Rapid and Profitable CCS Rollout, Stuart Haszeldine, Universi...
A UK Pathway to Rapid and Profitable CCS Rollout, Stuart Haszeldine, Universi...A UK Pathway to Rapid and Profitable CCS Rollout, Stuart Haszeldine, Universi...
A UK Pathway to Rapid and Profitable CCS Rollout, Stuart Haszeldine, Universi...
 
Energy Security and Innovation Observing System for the Subsurface (ESIOS) Up...
Energy Security and Innovation Observing System for the Subsurface (ESIOS) Up...Energy Security and Innovation Observing System for the Subsurface (ESIOS) Up...
Energy Security and Innovation Observing System for the Subsurface (ESIOS) Up...
 
An update on the UK Government's CCS policy, Brian Allison, DECC - UKCCSRC St...
An update on the UK Government's CCS policy, Brian Allison, DECC - UKCCSRC St...An update on the UK Government's CCS policy, Brian Allison, DECC - UKCCSRC St...
An update on the UK Government's CCS policy, Brian Allison, DECC - UKCCSRC St...
 
Future UKCCSRC activities and other funding opportunities, Jon Gibbins, UKCCS...
Future UKCCSRC activities and other funding opportunities, Jon Gibbins, UKCCS...Future UKCCSRC activities and other funding opportunities, Jon Gibbins, UKCCS...
Future UKCCSRC activities and other funding opportunities, Jon Gibbins, UKCCS...
 
UKCCSRC Data and Information Archive Briefing - UKCCSRC Strathclyde Biannual ...
UKCCSRC Data and Information Archive Briefing - UKCCSRC Strathclyde Biannual ...UKCCSRC Data and Information Archive Briefing - UKCCSRC Strathclyde Biannual ...
UKCCSRC Data and Information Archive Briefing - UKCCSRC Strathclyde Biannual ...
 
CO₂ Storage and Enhanced Oil Recovery in the North Sea: Securing a Low-Carbon...
CO₂ Storage and Enhanced Oil Recovery in the North Sea: Securing a Low-Carbon...CO₂ Storage and Enhanced Oil Recovery in the North Sea: Securing a Low-Carbon...
CO₂ Storage and Enhanced Oil Recovery in the North Sea: Securing a Low-Carbon...
 
CO2-EOR ERP study, Richard Heap, ERP - UKCCSRC Strathclyde Biannual 8-9 Septe...
CO2-EOR ERP study, Richard Heap, ERP - UKCCSRC Strathclyde Biannual 8-9 Septe...CO2-EOR ERP study, Richard Heap, ERP - UKCCSRC Strathclyde Biannual 8-9 Septe...
CO2-EOR ERP study, Richard Heap, ERP - UKCCSRC Strathclyde Biannual 8-9 Septe...
 
The role of Hydrogen storage in a clean responsive power system, Den Gammer, ...
The role of Hydrogen storage in a clean responsive power system, Den Gammer, ...The role of Hydrogen storage in a clean responsive power system, Den Gammer, ...
The role of Hydrogen storage in a clean responsive power system, Den Gammer, ...
 
Update on the TINA Refresh, Joshua Brunert, The Carbon Trust - UKCCSRC Strath...
Update on the TINA Refresh, Joshua Brunert, The Carbon Trust - UKCCSRC Strath...Update on the TINA Refresh, Joshua Brunert, The Carbon Trust - UKCCSRC Strath...
Update on the TINA Refresh, Joshua Brunert, The Carbon Trust - UKCCSRC Strath...
 
Blueprint for Industrial CCS in the UK, Mark Lewis, Tees Valley Unlimited - U...
Blueprint for Industrial CCS in the UK, Mark Lewis, Tees Valley Unlimited - U...Blueprint for Industrial CCS in the UK, Mark Lewis, Tees Valley Unlimited - U...
Blueprint for Industrial CCS in the UK, Mark Lewis, Tees Valley Unlimited - U...
 

Kürzlich hochgeladen

247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college projectTonystark477637
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 

Kürzlich hochgeladen (20)

247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 

Long-term Safety of CO2 Storage at Bravo Dome

  • 1. Long-term safety of geological CO2 storage: Lessons from Bravo Dome Natural CO2 reservoir Marc A. Hesse Department of Geological Sciences Institute for Computational Engineering & Sciences October 29, 2015 Marc A. Hesse UKCCSRC Workshop October 29, 2015 1 / 40
  • 2. Outline 1 Introduction Motivation Bravo Dome natural CO2 field in New Mexico 2 Dissolution trapping at Bravo Dome Magnitude of CO2 dissolution Mechanism of solubility trapping at Bravo Dome Rate of CO2 dissolution 3 Pressures in natural CO2 reservoirs Reservoir compartmentalization Origins of subhydrostatic pressures 4 Implications for geological CO2 storage Marc A. Hesse UKCCSRC Workshop October 29, 2015 2 / 40
  • 3. Acknowledgements Funding: National Science Foundation - Hydrologic Sciences Department of Energy - Basic Energy Sciences Energy Frontier Research Center: Center for Frontiers in Subsurface Energy Security Bravo Dome collaborators: Kiran Sataye, Daria Ahkbari, Kimberly Lankford, Martin Cassidy, Toti Larson, Dani Stoeckli, Changli Yuan, Gary Pope, OXY Bravo Dome team Papers: Sathaye, Hesse, Cassidy & Stockli (2014) PNAS Sathaye, Larson, & Hesse (201X) EPSL Ahkbari & Hesse (201X) in prep Marc A. Hesse UKCCSRC Workshop October 29, 2015 3 / 40
  • 4. Outline 1 Introduction Motivation Bravo Dome natural CO2 field in New Mexico 2 Dissolution trapping at Bravo Dome Magnitude of CO2 dissolution Mechanism of solubility trapping at Bravo Dome Rate of CO2 dissolution 3 Pressures in natural CO2 reservoirs Reservoir compartmentalization Origins of subhydrostatic pressures 4 Implications for geological CO2 storage Marc A. Hesse UKCCSRC Workshop October 29, 2015 4 / 40
  • 5. Outline 1 Introduction Motivation Bravo Dome natural CO2 field in New Mexico 2 Dissolution trapping at Bravo Dome Magnitude of CO2 dissolution Mechanism of solubility trapping at Bravo Dome Rate of CO2 dissolution 3 Pressures in natural CO2 reservoirs Reservoir compartmentalization Origins of subhydrostatic pressures 4 Implications for geological CO2 storage Marc A. Hesse UKCCSRC Workshop October 29, 2015 5 / 40
  • 6. Trapping contribution and time-scales IPCC special report Reservoir simulation Theoretical analysis 100 101 102 103 104 100% 80% 60% 40% 20% 0% FractionofCO2 trapped Time since injection [yrs] free CO2 solubility trapping residual trapping mineral trapping 100% 80% 60% 40% 20% 0% 101 102 103 104 Time since injection [yrs] FractionofCO2 trapped free CO2 solubility trapping residual trapping mineral trapping 100% 80% 60% 40% 20% 0% 1 3 9 Injection periods [-] FractionofCO2 trapped solubility trapping residual trapping free CO2 Benson et al. (2005) IPCC Special Report Kumar et al. (2005) SPE Journal, 10(3) MacMinn et al. (2011) J. Fluid Mech., 688 Marc A. Hesse UKCCSRC Workshop October 29, 2015 6 / 40
  • 7. Trapping contribution and time-scales IPCC special report Reservoir simulation Theoretical analysis 100 101 102 103 104 100% 80% 60% 40% 20% 0% FractionofCO2 trapped Time since injection [yrs] free CO2 solubility trapping residual trapping mineral trapping 100% 80% 60% 40% 20% 0% 101 102 103 104 Time since injection [yrs] FractionofCO2 trapped free CO2 solubility trapping residual trapping mineral trapping 100% 80% 60% 40% 20% 0% 1 3 9 Injection periods [-] FractionofCO2 trapped solubility trapping residual trapping free CO2 Benson et al. (2005) IPCC Special Report Kumar et al. (2005) SPE Journal, 10(3) MacMinn et al. (2011) J. Fluid Mech., 688 Constrain trapping rates at Bravo Dome using field observations! Marc A. Hesse UKCCSRC Workshop October 29, 2015 6 / 40
  • 8. Outline 1 Introduction Motivation Bravo Dome natural CO2 field in New Mexico 2 Dissolution trapping at Bravo Dome Magnitude of CO2 dissolution Mechanism of solubility trapping at Bravo Dome Rate of CO2 dissolution 3 Pressures in natural CO2 reservoirs Reservoir compartmentalization Origins of subhydrostatic pressures 4 Implications for geological CO2 storage Marc A. Hesse UKCCSRC Workshop October 29, 2015 7 / 40
  • 9. Bravo Dome natural gas field, New Mexico Marc A. Hesse UKCCSRC Workshop October 29, 2015 8 / 40
  • 10. Introduction Bravo Dome, NM The numbers: Area: 3600 km2 Marc A. Hesse UKCCSRC Workshop October 29, 2015 9 / 40
  • 11. Introduction Bravo Dome, NM The numbers: Area: 3600 km2 20 km Marc A. Hesse UKCCSRC Workshop October 29, 2015 9 / 40
  • 12. Introduction Bravo Dome, NM The numbers: Area: 3600 km2 Gas-water contact: 1700 km2 Marc A. Hesse UKCCSRC Workshop October 29, 2015 9 / 40
  • 13. Introduction Bravo Dome, NM The numbers: Area: 3600 km2 Gas-water contact: 1700 km2 Reserves: 22 tcf (10 tcf) Largest CO2 field. Top 20 natural gas fields. Marc A. Hesse UKCCSRC Workshop October 29, 2015 9 / 40
  • 14. Introduction Bravo Dome, NM The numbers: Area: 3600 km2 Gas-water contact: 1700 km2 Reserves: 22 tcf (10 tcf) Largest CO2 field. Top 20 natural gas fields. Essentially pure CO2 Marc A. Hesse UKCCSRC Workshop October 29, 2015 9 / 40
  • 15. Introduction Bravo Dome, NM The numbers: Area: 3600 km2 Gas-water contact: 1700 km2 Reserves: 22 tcf (10 tcf) Largest CO2 field. Top 20 natural gas fields. Essentially pure CO2 Origin: volcanic gas (very high 3 He/4 He) Marc A. Hesse UKCCSRC Workshop October 29, 2015 9 / 40
  • 16. Data available at Bravo Dome, NM 788 wells 150 wells with digitized logs 42 cored wells 10 wells with stratigraphic logs 18 wells with noble gas/isotope data 3645 permeability and porosity measurements 21 drainage capillary pressure curves 40 2D seismic lines Best data set to constrain the magnitude and rate of solubility trapping. Marc A. Hesse UKCCSRC Workshop October 29, 2015 10 / 40
  • 17. Outline 1 Introduction Motivation Bravo Dome natural CO2 field in New Mexico 2 Dissolution trapping at Bravo Dome Magnitude of CO2 dissolution Mechanism of solubility trapping at Bravo Dome Rate of CO2 dissolution 3 Pressures in natural CO2 reservoirs Reservoir compartmentalization Origins of subhydrostatic pressures 4 Implications for geological CO2 storage Marc A. Hesse UKCCSRC Workshop October 29, 2015 11 / 40
  • 18. Outline 1 Introduction Motivation Bravo Dome natural CO2 field in New Mexico 2 Dissolution trapping at Bravo Dome Magnitude of CO2 dissolution Mechanism of solubility trapping at Bravo Dome Rate of CO2 dissolution 3 Pressures in natural CO2 reservoirs Reservoir compartmentalization Origins of subhydrostatic pressures 4 Implications for geological CO2 storage Marc A. Hesse UKCCSRC Workshop October 29, 2015 12 / 40
  • 19. Estimating dissolution from gas composition Convective dissolution of CO2 CO2CO2 He He CO2 CO2 Marc A. Hesse UKCCSRC Workshop October 29, 2015 13 / 40
  • 20. Estimating dissolution from gas composition Convective dissolution of CO2 CO2/3 He-ratio in the gas CO2CO2 He He CO2 CO2 0 5 10 15 20 25 30 35 0 2 4 6 8 10 12 14 16 18 time [hrs] CO2 /Heingas[mol/mol] Fraction dissolved: F = 1 − [CO2/He]final [CO2/He]initial ≈ 1 − 2 16 ≈ 0.9 Marc A. Hesse UKCCSRC Workshop October 29, 2015 13 / 40
  • 21. Mapping geochemistry into the reservoir Gas geochemistry: Gilfillan et al. (2009) Nature, 458 Lollar & Ballentine (2009) Nature Geosci, 2(8) Cassidy (2006) PhD Thesis U. Houston Marc A. Hesse UKCCSRC Workshop October 29, 2015 14 / 40
  • 22. Mapping geochemistry into the reservoir Gas geochemistry: Compositional variation in the reservoir 2.5 3 3.5 4 4.5 5 0 10 20 30 40 50 60 70 Easting (km) 0 10 20 30 40 50 60 70 Northing(km) CO2 /3 H109 [-] 8 MPa Gilfillan et al. (2009) Nature, 458 Lollar & Ballentine (2009) Nature Geosci, 2(8) Cassidy (2006) PhD Thesis U. Houston Marc A. Hesse UKCCSRC Workshop October 29, 2015 14 / 40
  • 23. Mapping geochemistry into the reservoir Gas geochemistry: Compositional variation in the reservoir 10% 20% 30% 40% 50% 0 10 20 30 40 50 60 70 Easting (km) 0 10 20 30 40 50 60 70 Northing(km) 60% 0% localfractionofgasdissolved Gilfillan et al. (2009) Nature, 458 Lollar & Ballentine (2009) Nature Geosci, 2(8) Cassidy (2006) PhD Thesis U. Houston Marc A. Hesse UKCCSRC Workshop October 29, 2015 14 / 40
  • 24. Gas mass per area: m = ¯φ ¯Sρ(¯p)h Thickness 0 10 20 30 40 50 60 70 Easting (km) 0 10 20 30 40 50 60 70 Northing(km) 20 40 60 80 100 120 thicknessofgascolumn:h[m] Marc A. Hesse UKCCSRC Workshop October 29, 2015 15 / 40
  • 25. Gas mass per area: m = ¯φ ¯Sρ(¯p)h Thickness Volume fraction 0 10 20 30 40 50 60 70 Easting (km) 0 10 20 30 40 50 60 70 Northing(km) 20 40 60 80 100 120 thicknessofgascolumn:h[m] 0 10 20 30 40 50 60 70 Northing(km) 4% 6% 8% 10% 12% 14% 16% 0 10 20 30 40 50 60 70 Easting (km) gasvolumefraction:φS Marc A. Hesse UKCCSRC Workshop October 29, 2015 15 / 40
  • 26. Gas mass per area: m = ¯φ ¯Sρ(¯p)h Thickness Volume fraction Density 0 10 20 30 40 50 60 70 Easting (km) 0 10 20 30 40 50 60 70 Northing(km) 20 40 60 80 100 120 thicknessofgascolumn:h[m] 0 10 20 30 40 50 60 70 Northing(km) 4% 6% 8% 10% 12% 14% 16% 0 10 20 30 40 50 60 70 Easting (km) gasvolumefraction:φS 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 Easting (km) Northing(km) 100 200 300 400 500 600 700 800 gasdensity[kg/m3 ] Marc A. Hesse UKCCSRC Workshop October 29, 2015 15 / 40
  • 27. Gas mass per area: m = ¯φ ¯Sρ(¯p)h Thickness Volume fraction Density Mass 0 10 20 30 40 50 60 70 Easting (km) 0 10 20 30 40 50 60 70 Northing(km) 20 40 60 80 100 120 thicknessofgascolumn:h[m] 0 10 20 30 40 50 60 70 Northing(km) 4% 6% 8% 10% 12% 14% 16% 0 10 20 30 40 50 60 70 Easting (km) gasvolumefraction:φS 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 Easting (km) Northing(km) 100 200 300 400 500 600 700 800 gasdensity[kg/m3 ] 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 Easting (km) Northing(km) 100 200 300 400 500 600 700 800 900 1000 1100 0 gasmassperunitarea[kg/m2 ] Marc A. Hesse UKCCSRC Workshop October 29, 2015 15 / 40
  • 28. Gas mass per area: m = ¯φ ¯Sρ(¯p)h Thickness Volume fraction Density Mass 0 10 20 30 40 50 60 70 Easting (km) 0 10 20 30 40 50 60 70 Northing(km) 20 40 60 80 100 120 thicknessofgascolumn:h[m] 0 10 20 30 40 50 60 70 Northing(km) 4% 6% 8% 10% 12% 14% 16% 0 10 20 30 40 50 60 70 Easting (km) gasvolumefraction:φS 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 Easting (km) Northing(km) 100 200 300 400 500 600 700 800 gasdensity[kg/m3 ] 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 Easting (km) Northing(km) 100 200 300 400 500 600 700 800 900 1000 1100 0 gasmassperunitarea[kg/m2 ] Large spatial variations that need to be accounted for in mass balance. Marc A. Hesse UKCCSRC Workshop October 29, 2015 15 / 40
  • 29. Estimate of the local change in mass: ∆m ∆M = ∆m dxdy ≈ (1/F − 1) mf dxdy. Mass/area: mf Fraction dissolved: F 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 Easting (km) Northing(km) 100 200 300 400 500 600 700 800 900 1000 1100 0 gasmassperunitarea[kg/m2 ] 10% 20% 30% 40% 50% 0 10 20 30 40 50 60 70 Easting (km) 0 10 20 30 40 50 60 70 Northing(km) 60% 0% localfractionofgasdissolvedMarc A. Hesse UKCCSRC Workshop October 29, 2015 16 / 40
  • 30. Estimate of the local change in mass: ∆m ∆M = ∆m dxdy ≈ (1/F − 1) mf dxdy. Mass/area: mf Fraction dissolved: F Change in mass, ∆m 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 Easting (km) Northing(km) 100 200 300 400 500 600 700 800 900 1000 1100 0 gasmassperunitarea[kg/m2 ] 10% 20% 30% 40% 50% 0 10 20 30 40 50 60 70 Easting (km) 0 10 20 30 40 50 60 70 Northing(km) 60% 0% localfractionofgasdissolved 50 100 150 200 250 300 350 400 450 0 0 10 20 30 40 50 60 70 Easting (km) 0 10 20 30 40 50 60 70 Northing(km) masslossperunitarea[kg/m2 ] Marc A. Hesse UKCCSRC Workshop October 29, 2015 16 / 40
  • 31. Estimate of the local change in mass: ∆m ∆M = ∆m dxdy ≈ (1/F − 1) mf dxdy. Mass/area: mf Fraction dissolved: F Change in mass, ∆m 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 Easting (km) Northing(km) 100 200 300 400 500 600 700 800 900 1000 1100 0 gasmassperunitarea[kg/m2 ] 10% 20% 30% 40% 50% 0 10 20 30 40 50 60 70 Easting (km) 0 10 20 30 40 50 60 70 Northing(km) 60% 0% localfractionofgasdissolved 50 100 150 200 250 300 350 400 450 0 0 10 20 30 40 50 60 70 Easting (km) 0 10 20 30 40 50 60 70 Northing(km) masslossperunitarea[kg/m2 ] As expected, mf is low where F is high → global fraction dissolved is less! Marc A. Hesse UKCCSRC Workshop October 29, 2015 16 / 40
  • 32. Magnitude of CO2 dissolution at Bravo Dome 1 Mass of gas dissolved at Bravo Dome: ∆M = 366 ± 122 MtCO2. Equivalent to 65 years of emissions from US coal power plant. 2 Total mass of CO2 emplaced at Bravo Dome is Mt = 1.6 ± 0.7GtCO2. Equivalent to annual global volcanic CO2 emissions. 3 At Bravo Dome only 22%±7% of the emplaced CO2 have dissolved. Much less than the maximum local dissolution in NE. free CO2 77% dissolved CO2 23% Marc A. Hesse UKCCSRC Workshop October 29, 2015 17 / 40
  • 33. Magnitude of CO2 dissolution at Bravo Dome 1 Mass of gas dissolved at Bravo Dome: ∆M = 366 ± 122 MtCO2. Equivalent to 65 years of emissions from US coal power plant. 2 Total mass of CO2 emplaced at Bravo Dome is Mt = 1.6 ± 0.7GtCO2. Equivalent to annual global volcanic CO2 emissions. 3 At Bravo Dome only 22%±7% of the emplaced CO2 have dissolved. Much less than the maximum local dissolution in NE. free CO2 77% dissolved CO2 23% Uncertainty is mainly due to variations in height of gas column! Marc A. Hesse UKCCSRC Workshop October 29, 2015 17 / 40
  • 34. Outline 1 Introduction Motivation Bravo Dome natural CO2 field in New Mexico 2 Dissolution trapping at Bravo Dome Magnitude of CO2 dissolution Mechanism of solubility trapping at Bravo Dome Rate of CO2 dissolution 3 Pressures in natural CO2 reservoirs Reservoir compartmentalization Origins of subhydrostatic pressures 4 Implications for geological CO2 storage Marc A. Hesse UKCCSRC Workshop October 29, 2015 18 / 40
  • 35. Stratigraphic architecture of reservoir Porosity and permeability 10-2 10-1 100 101 102 103 0 100 200 [mD] n = 3546 0 0.1 0.2 0.3 0 100 200 [-] Marc A. Hesse UKCCSRC Workshop October 29, 2015 19 / 40
  • 36. Stratigraphic architecture of reservoir Porosity and permeability 10-2 10-1 100 101 102 103 0 100 200 [mD] n = 3546 0 0.1 0.2 0.3 0 100 200 [-] sandsilt Marc A. Hesse UKCCSRC Workshop October 29, 2015 19 / 40
  • 37. Stratigraphic architecture of reservoir Porosity and permeability 10-2 10-1 100 101 102 103 0 100 200 [mD] n = 3546 0 0.1 0.2 0.3 0 100 200 [-] 42 mD Marc A. Hesse UKCCSRC Workshop October 29, 2015 19 / 40
  • 38. Stratigraphic architecture of reservoir Porosity and permeability Capillary entry pressure 10-2 10-1 100 101 102 103 0 100 200 [mD] n = 3546 0 0.1 0.2 0.3 0 100 200 [-] 42 mD 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 1.5 2.0 2.5 [MPa] [-] siltstone sandstone Marc A. Hesse UKCCSRC Workshop October 29, 2015 19 / 40
  • 39. Stratigraphic architecture of reservoir Porosity and permeability Capillary entry pressure 10-2 10-1 100 101 102 103 0 100 200 [mD] n = 3546 0 0.1 0.2 0.3 0 100 200 [-] 42 mD 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 1.5 2.0 2.5 [MPa] [-] siltstone sandstone High capillary entry pressure prevents CO2 entry into the siltstone. Marc A. Hesse UKCCSRC Workshop October 29, 2015 19 / 40
  • 40. Dissolution into residual brine during emplacement 0 0.1 0.25 695 705 715 725 735 745 φ, φg [-] silt} } sand B 5 15 25 35 45 55 65 B’ 500 600 700 800 900 granitic basement brine elevation[m] source distance along cross-section [km] anhydrite Marc A. Hesse UKCCSRC Workshop October 29, 2015 20 / 40
  • 41. Dissolution into residual brine during emplacement 0 0.1 0.25 695 705 715 725 735 745 φ, φg [-] silt} } sand B 5 15 25 35 45 55 65 B’ 500 600 700 800 900 granitic basement brine elevation[m] source distance along cross-section [km] anhydrite Marc A. Hesse UKCCSRC Workshop October 29, 2015 20 / 40
  • 42. Dissolution into residual brine during emplacement 0 0.1 0.25 695 705 715 725 735 745 φ, φg [-] silt} } sand B 5 15 25 35 45 55 65 B’ 500 600 700 800 900 granitic basement brine elevation[m] source distance along cross-section [km] anhydrite Marc A. Hesse UKCCSRC Workshop October 29, 2015 20 / 40
  • 43. Dissolution into residual brine during emplacement 0 0.1 0.25 695 705 715 725 735 745 φ, φg [-] silt} } sand B 5 15 25 35 45 55 65 B’ 500 600 700 800 900 granitic basement brine elevation[m] source distance along cross-section [km] anhydrite Marc A. Hesse UKCCSRC Workshop October 29, 2015 20 / 40
  • 44. Dissolution into residual brine during emplacement 0 0.1 0.25 695 705 715 725 735 745 φ, φg [-] silt} } sand B 5 15 25 35 45 55 65 B’ 500 600 700 800 900 granitic basement brine elevation[m] source distance along cross-section [km] anhydrite Marc A. Hesse UKCCSRC Workshop October 29, 2015 20 / 40
  • 45. Dissolution into residual brine during emplacement 0 0.1 0.25 695 705 715 725 735 745 φ, φg [-] silt} } sand B 5 15 25 35 45 55 65 B’ 500 600 700 800 900 granitic basement brine elevation[m] source distance along cross-section [km] anhydrite 0 20 40 60 80 100 120 0 0.2 0.4 0.6 0.8 1 1.2 Pressure [bar] CO2solubility[ mol kg ] Bravo Dome Measurments Duan et al. (2003): pure water Duan et al. (2003): 2 molal NaCl Easting (km) Northing(km) 0 25 50 75 0 25 50 75 0 50 100 150 CO2(aq) [kg/m2 ] Marc A. Hesse UKCCSRC Workshop October 29, 2015 20 / 40
  • 46. How much dissolved during emplacement Main reservoir segment Map of Bravo Dome: NE reservoir segment: residual brine 53% aquifer 47% 10% 20% 30% 40% 50% 0 10 20 30 40 50 60 70 Easting (km) 0 10 20 30 40 50 60 70 Northing(km) 60% 0% localfractionofgasdissolved residual brine 14% aquifer 86% 1 Significant amounts dissolved into ’residual brine’ during emplacement. Highlights positive effect of heterogeneity on dissolution! 2 Significant amounts dissolved into underlying aquifer after emplacement. Provides field evidence for enhanced dissolution due to brine flow. Marc A. Hesse UKCCSRC Workshop October 29, 2015 21 / 40
  • 47. Outline 1 Introduction Motivation Bravo Dome natural CO2 field in New Mexico 2 Dissolution trapping at Bravo Dome Magnitude of CO2 dissolution Mechanism of solubility trapping at Bravo Dome Rate of CO2 dissolution 3 Pressures in natural CO2 reservoirs Reservoir compartmentalization Origins of subhydrostatic pressures 4 Implications for geological CO2 storage Marc A. Hesse UKCCSRC Workshop October 29, 2015 22 / 40
  • 48. CO2 emplacement and regional volcanism Distribution of regional volcanism Age of regional volcanism [MPa] 2 4 6 8 10 12 14 −60 −40 −20 0 20 40 60 80 20 40 60 80 100 120 140 160 1.7Ma−56ka 9Ma−2.2Ma easting [km] northing[km] Texas Oklahoma Colorado T1 0 95 Folsom SiteFolsom Site Capulin volcanoCapulin volcano New Mexico volcanic ages: T2 Assumed age of Bravo Dome is 10ka. Three major volcanic phases: 1 Raton phase: 9.0 - 3.5 Ma 2 Clayton phase: 3.0 -2.25 Ma 3 Capulin phase: 1.7 - 0.04 Ma Independent estimate of CO2 age! Stroud (1996) M.S. Thesis, NM Tech Marc A. Hesse UKCCSRC Workshop October 29, 2015 23 / 40
  • 49. Dating CO2 emplacment with thermochronology Core sample with Apatite crystal Marc A. Hesse UKCCSRC Workshop October 29, 2015 24 / 40
  • 50. Dating CO2 emplacment with thermochronology Core sample with Apatite crystal (U-Th)/He thermochronology Apatite accumulates He from radioactive decay below T = 75◦ C. Current reservoir conditions T = 35◦ C → heating by ∆T ≈ 40◦ C Marc A. Hesse UKCCSRC Workshop October 29, 2015 24 / 40
  • 51. Dating CO2 emplacment with thermochronology Core sample with Apatite crystal (U-Th)/He thermochronology Apatite accumulates He from radioactive decay below T = 75◦ C. Current reservoir conditions T = 35◦ C → heating by ∆T ≈ 40◦ C Hot volcanic CO2 entered Bravo Dome 1.2-1.5 Ma ago. Marc A. Hesse UKCCSRC Workshop October 29, 2015 24 / 40
  • 52. Estimate IPCC–diagram for Bravo Dome 100 101 102 103 104 100% 80% 60% 40% 20% 0% FractionofCO2 trapped Time since injection [yrs] free CO2 solubility trapping residual trapping mineral trapping Marc A. Hesse UKCCSRC Workshop October 29, 2015 25 / 40
  • 53. Estimate IPCC–diagram for Bravo Dome Bravo Dome 100% 80% 60% 40% 20% 0% FractionofCO2 trapped 100 101 102 103 104 Time since emplacement [yrs] 105 106 107 free CO2 solubility trapping Marc A. Hesse UKCCSRC Workshop October 29, 2015 25 / 40
  • 54. Outline 1 Introduction Motivation Bravo Dome natural CO2 field in New Mexico 2 Dissolution trapping at Bravo Dome Magnitude of CO2 dissolution Mechanism of solubility trapping at Bravo Dome Rate of CO2 dissolution 3 Pressures in natural CO2 reservoirs Reservoir compartmentalization Origins of subhydrostatic pressures 4 Implications for geological CO2 storage Marc A. Hesse UKCCSRC Workshop October 29, 2015 26 / 40
  • 55. Outline 1 Introduction Motivation Bravo Dome natural CO2 field in New Mexico 2 Dissolution trapping at Bravo Dome Magnitude of CO2 dissolution Mechanism of solubility trapping at Bravo Dome Rate of CO2 dissolution 3 Pressures in natural CO2 reservoirs Reservoir compartmentalization Origins of subhydrostatic pressures 4 Implications for geological CO2 storage Marc A. Hesse UKCCSRC Workshop October 29, 2015 27 / 40
  • 56. Pressures gradients at Bravo Dome [MPa] 2 4 6 8 10 12 14 −60 −40 −20 0 20 40 60 80 20 40 60 80 100 1.7Ma−56ka 9Ma−2.2Ma easting [km] northing[km] Texas 0 95 volcanic ages: ? ? ? ? ? ? Is the reservoir still filling? If not, why didn’t the pressure gradient relax? Marc A. Hesse UKCCSRC Workshop October 29, 2015 28 / 40
  • 57. Sub-hydrostatic gas pressures at Bravo Dome Bravo Dome gas pressure 0 2 4 6 8 10 600 650 700 750 800 850 900 Gas Pressure (MPa) Depth(m) A B C D E F ρwg ρgg pe Marc A. Hesse UKCCSRC Workshop October 29, 2015 29 / 40
  • 58. Sub-hydrostatic gas pressures at Bravo Dome Bravo Dome gas pressure Pressure compartments 0 2 4 6 8 10 600 650 700 750 800 850 900 Gas Pressure (MPa) Depth(m) A B C D E F ρwg ρgg pe 103103.2103.4103.6103.8 35.6 35.8 36 36.2 36.4 Longitude (°W) Latitude(°N) A BC DE F S T Marc A. Hesse UKCCSRC Workshop October 29, 2015 29 / 40
  • 59. Stratigraphic controls on compartmentalization Pressure compartments 103103.2103.4103.6103.8 35.6 35.8 36 36.2 36.4 Longitude (°W) Latitude(°N) A BC DE F S T Marc A. Hesse UKCCSRC Workshop October 29, 2015 30 / 40
  • 60. Stratigraphic controls on compartmentalization Pressure compartments Gas volume fraction ˜sand fraction 103103.2103.4103.6103.8 35.6 35.8 36 36.2 36.4 Longitude (°W) Latitude(°N) A BC DE F S T 0 10 20 30 40 50 60 70 Northing(km) 4% 6% 8% 10% 12% 14% 16% 0 10 20 30 40 50 60 70 Easting (km) gasvolumefraction:φS Marc A. Hesse UKCCSRC Workshop October 29, 2015 30 / 40
  • 61. Stratigraphic controls on compartmentalization B 5 15 25 35 45 55 65 B’ 500 600 700 800 900 granitic basement brine elevation[m] source distance along cross-section [km] compartment 1 compartment 2 compartment 3 Marc A. Hesse UKCCSRC Workshop October 29, 2015 31 / 40
  • 62. Stratigraphic controls on compartmentalization B 5 15 25 35 45 55 65 B’ 500 600 700 800 900 granitic basement brine elevation[m] source distance along cross-section [km] compartment 1 compartment 2 compartment 3 CO2 is stored in a number of closed compartments? Marc A. Hesse UKCCSRC Workshop October 29, 2015 31 / 40
  • 63. Outline 1 Introduction Motivation Bravo Dome natural CO2 field in New Mexico 2 Dissolution trapping at Bravo Dome Magnitude of CO2 dissolution Mechanism of solubility trapping at Bravo Dome Rate of CO2 dissolution 3 Pressures in natural CO2 reservoirs Reservoir compartmentalization Origins of subhydrostatic pressures 4 Implications for geological CO2 storage Marc A. Hesse UKCCSRC Workshop October 29, 2015 32 / 40
  • 64. Sub-hydrostatic gas pressures at Bravo Dome 14 ± 3% 5% 16% Total Subhydrostatic Pressure = 6.3 MPa Regional Subhydrostatic Ogallala Depletion Erosional Unloading Cooling of Volcanic CO2 Dissolution of CO2 into Brine Un-Explained 41 ± 30% 10 ± 5% 14 ± 4% Marc A. Hesse UKCCSRC Workshop October 29, 2015 33 / 40
  • 65. Sub-hydrostatic gas pressures at Bravo Dome 14 ± 3% 5% 16% Total Subhydrostatic Pressure = 6.3 MPa Regional Subhydrostatic Ogallala Depletion Erosional Unloading Cooling of Volcanic CO2 Dissolution of CO2 into Brine Un-Explained 41 ± 30% 10 ± 5% 14 ± 4% 250 300 350 400 450 500 0 2 4 6 8 10 12 Temperature (K) Pressure(Mpa) CO2 Isodensity Diagram Dissolution Effect ∆P = 0.7 - 1.1 MPa Marc A. Hesse UKCCSRC Workshop October 29, 2015 33 / 40
  • 66. Regional underpressure 33˚ N 34˚ N 35˚ N 36˚ N 37˚ N 38˚ N Latitude Langitude 100˚ W101˚ W102˚ W103˚ W104˚ W105˚ W106˚ W A A’ Marc A. Hesse UKCCSRC Workshop October 29, 2015 34 / 40
  • 67. Regional underpressure 33˚ N 34˚ N 35˚ N 36˚ N 37˚ N 38˚ N Latitude Langitude 100˚ W101˚ W102˚ W103˚ W104˚ W105˚ W106˚ W A A’ Elevation(ft) -6000 -4000 -2000 0 2000 4000 6000 100˚ W101˚ W102˚ W103˚ W104˚ W Langitude A’A Precambrian Basement TXNM Anadarko Dalhart Basin Wolfcampion Marc A. Hesse UKCCSRC Workshop October 29, 2015 34 / 40
  • 68. Underpressure due to regional evaporite Marc A. Hesse UKCCSRC Workshop October 29, 2015 35 / 40
  • 69. Underpressure due to regional evaporite Permian Evaporite Marc A. Hesse UKCCSRC Workshop October 29, 2015 35 / 40
  • 70. Underpressure is normal in natural CO2 reservoirs Gas Pressure (MPa) Depth(m) 0 4000 3000 2000 1000 0 302010 SJ E DM MD KD GC MC MD L GC KD MC GC L MD SJ E DM B1 B5 B4 B2 B3 BD DM: Des Moines E: Estancia GC: Gordon Creek KD: Kevin Dome L: Lisbon MC: Mc Callum MD: McElmo Dome SJ: St. Johns B1: Denver Basin B2: Anadarko Basin B3: Arkoma Basin B4 Palo Duro Basin B5: San Juan Basin ρw g Marc A. Hesse UKCCSRC Workshop October 29, 2015 36 / 40
  • 71. Outline 1 Introduction Motivation Bravo Dome natural CO2 field in New Mexico 2 Dissolution trapping at Bravo Dome Magnitude of CO2 dissolution Mechanism of solubility trapping at Bravo Dome Rate of CO2 dissolution 3 Pressures in natural CO2 reservoirs Reservoir compartmentalization Origins of subhydrostatic pressures 4 Implications for geological CO2 storage Marc A. Hesse UKCCSRC Workshop October 29, 2015 37 / 40
  • 72. Summary and conclusion Natural analogs for geological CO2 storage 1 Large amounts of data are freely available. 2 Provide constraints in long-term fate of geological CO2 storage Marc A. Hesse UKCCSRC Workshop October 29, 2015 38 / 40
  • 73. Summary and conclusion Natural analogs for geological CO2 storage 1 Large amounts of data are freely available. 2 Provide constraints in long-term fate of geological CO2 storage Dissolution at Bravo Dome 1 Estimate that 366 MtCO2 have dissolved. 2 50% dissolves into residual brine during emplacement. 3 50% dissolves after emplacement into aquifer. 4 Emplacement of CO2 1.2-1.4 Ma ago. Marc A. Hesse UKCCSRC Workshop October 29, 2015 38 / 40
  • 74. Summary and conclusion Natural analogs for geological CO2 storage 1 Large amounts of data are freely available. 2 Provide constraints in long-term fate of geological CO2 storage Dissolution at Bravo Dome 1 Estimate that 366 MtCO2 have dissolved. 2 50% dissolves into residual brine during emplacement. 3 50% dissolves after emplacement into aquifer. 4 Emplacement of CO2 1.2-1.4 Ma ago. Pressures at Bravo Dome 1 Pressure is significantly below hydrostatic (common). 2 CO2 dissolution can reduce pressure in compartmentalized reservoir. 3 Permian evaporites are associated with large regional underpressure. Marc A. Hesse UKCCSRC Workshop October 29, 2015 38 / 40
  • 75. Implications for CO2 storage Trapping and safety 1 Structural trapping contained large volume over millenial timescales. 2 Dissolution trapping is slower then expected. 3 Dissolution trapping is nice, but not strictly necessary. Marc A. Hesse UKCCSRC Workshop October 29, 2015 39 / 40
  • 76. Implications for CO2 storage Trapping and safety 1 Structural trapping contained large volume over millenial timescales. 2 Dissolution trapping is slower then expected. 3 Dissolution trapping is nice, but not strictly necessary. Geological CO2 storage on a scale large enough to matter? 1 Sleipner is an example of successful storage in an optimal formation. 2 Bravo Dome is an example if successful storage in a formation that would not be considered optimal. Marc A. Hesse UKCCSRC Workshop October 29, 2015 39 / 40
  • 77. Implications for CO2 storage Trapping and safety 1 Structural trapping contained large volume over millenial timescales. 2 Dissolution trapping is slower then expected. 3 Dissolution trapping is nice, but not strictly necessary. Geological CO2 storage on a scale large enough to matter? 1 Sleipner is an example of successful storage in an optimal formation. 2 Bravo Dome is an example if successful storage in a formation that would not be considered optimal. Low-pem & low-pressure formations as CO2 storage targets 1 Previously considered for hazardous waste injection. 2 CO2 is less mobile than in high perm formations. 3 Inject large amounts before reaching hydrostatic pressure. 4 CO2 dissolution reduces pressure over time. Marc A. Hesse UKCCSRC Workshop October 29, 2015 39 / 40
  • 78. Implications for CO2 storage Trapping and safety 1 Structural trapping contained large volume over millenial timescales. 2 Dissolution trapping is slower then expected. 3 Dissolution trapping is nice, but not strictly necessary. Geological CO2 storage on a scale large enough to matter? 1 Sleipner is an example of successful storage in an optimal formation. 2 Bravo Dome is an example if successful storage in a formation that would not be considered optimal. Low-pem & low-pressure formations as CO2 storage targets 1 Previously considered for hazardous waste injection. 2 CO2 is less mobile than in high perm formations. 3 Inject large amounts before reaching hydrostatic pressure. 4 CO2 dissolution reduces pressure over time. Marc A. Hesse UKCCSRC Workshop October 29, 2015 39 / 40
  • 79. Thank you for your attention. Marc A. Hesse UKCCSRC Workshop October 29, 2015 40 / 40