SlideShare ist ein Scribd-Unternehmen logo
1 von 10
Berger 1
Term Project:
Analysis of Converging/Diverging Nozzles
MAE 3064: Fluid Mechanics Lab
By Thaddeus Berger
Submitted: 11/19/2015
Instructor: Muzammil Arshad
Berger 2
CONTENTS
Figures...............................................................................................................................................2
Mathematical Symbols........................................................................................................................3
Abstract.............................................................................................................................................4
Introduction.......................................................................................................................................5
Theory...............................................................................................................................................6
Facility and Apparatus.........................................................................................................................8
Procedure..........................................................................................................................................8
Part 1: CD Nozzle Outlet Conditions.................................................................................................8
Part 2: Analysis of CD Nozzle DesignParameters...............................................................................8
Statement of Uncertainty....................................................................................................................9
Conclusion .........................................................................................................................................9
References.......................................................................................................................................10
FIGURES
Figure 1:.............................................................................................................................................5
Figure 2:.............................................................................................................................................5
Figure 3:.............................................................................................................................................8
Berger 3
MATHEMATICAL SYMBOLS
R = universal gasconstant
M = molecularmass
T = temperature
P = pressure
Cp = constant pressure specificheat
Cv = constantvolume specificheat
K = ratioof specificheats(Cp/Cv)
FT = thrust
𝑚̇ = massflowrate
v = velocity
NM = Mach number
ρ = density
A = area
a = speedof sound
AR = arearatio
d = diameter
%d = percentdifference
Berger 4
ABSTRACT
Nozzle design is of great importance in for many fluid flow applications. Missiles, rockets, jet engines,
hoses,Jacuzzis,spraybottles,andahostof otherdevicesusenozzles.The de Laval nozzle,or“converging-
diverging” (CD) nozzle, is of special importance in high-speed flows – most notably in jet/rocket
propulsion. Analyzing CD nozzles and developing useful relationships has been an important field of
researchinaerospace engineeringformanyyears.
This experimentwill firstanalyze the fluidflow of one smooth-bore CDnozzle andthenanalyze the flow
of several differentnozzlesinsubsonicflow todetermine relationshipsbetweenflow characteristicsand
geometrythatcan be useful inthe manufacture of CD nozzlesforspecificperformancecharacteristics.
Berger 5
INTRODUCTION
This experiment will consist of two parts. For one part, a single
nozzle will be given with known geometry and inlet conditions.
Outletconditionswill be calculated,andexperimental datawill be
collectedtocompare to the theoretical values. Figure 2showsthe
general behaviorof flowthrougha CD nozzle. The goal of Part 1 is
to developsome familiaritywithanalyzingsubsonicflowsthrough
a CD nozzle. The second part of the experiment will involve the
comparison of several different nozzles in order to find
relationships between nozzle geometry and flow characteristics.
The nozzles to be tested will have different area ratios with the
lengths of the convergent and divergent sections being held
constant(meaningthatconvergenceanddivergenceangleswillbe
analyzed). Figure 1 shows one application of CD nozzle design –
rocketry. The goal of Part 2 is to define important parameters for
the designandmanufacture of CD nozzles.
Figure 2: Diagram of a CD nozzle showing
approximate flow velocity (v),
temperature (T), and pressure (P), with
Mach number (M) [2].
Figure 1: F-1 rocket engine from 1960 [1]
Berger 6
THEORY
Thisexperimentwillbe conductedunderthe followingassumptions:
1. Steady-state,steadyflow conditions.
2. Ideal gas.
a. R = 8.314462 J/mol-K[3].
b. Mair = 28.97 g/mol-K[3].
3. Standardtemperature andpressure.
a. T = 20o
C = 293.15 K [4].
b. Patm = 101.325 kPa [4].
4. Negligiblechangesinpotential energy.
5. Constantspecificheats.
a. For air: Cp = 1.01 kJ/kg-K,Cv = 0.718 kJ/kg-K k = 1.40 [5]
One of the mostimportantperformancecharacteristicsforanozzle isthe outletflow speed.Forexample,
thrustprovidedbya jetengine canbe describedbythe velocitiescomingintoandoutof the nozzle,
𝐹𝑇 = 𝑚̇ ( 𝑣𝑒 − 𝑣𝑖).
By combiningthe Lawof Conservationof Massand the Law of Conservationof momentumforisentropic
flow,the followingequationshowsthe behaviorof CDnozzleswithrespecttoflow velocity[6]:
(1 − 𝑁 𝑀
2 )
𝑑𝑣
𝑣
= −
𝑑𝐴
𝐴
The Mach number, Nm iscalculatedby usingthe speedof sound a:
𝑁 𝑀 =
𝑣
𝑎
These equationsshowthat,for subsonicflows(Nm < 1), an increase inarea (dA > 0) causesa decrease in
flowvelocity,while forsupersonicflows(Nm > 1), an increase inarea causesan increase inflow velocity.
This result is used to great effect in ramjets,scramjets,and rockets to achieve veryhigh speeds [6]. For
thisparticular experiment,onlysubsonicflowsare analyzed.Therefore,the flow speedcanbe expected
to decrease comingoutof the nozzle.
In most situations, the inlet velocity is either known or easily calculated. The exit velocity ve for a fluid
flowing through a nozzle at inlet temperature T, molecular weight M, ratio of specific heats k, inlet
pressure pi,andexitpressure pe can be calculatedusingthe followingequation:
𝑣𝑒 = √
𝑇𝑅
𝑀
∗
2𝑘
𝑘 − 1
∗ [1 − (
𝑝𝑒
𝑝𝑖
)
𝑘−1
𝑘
]
Berger 7
In general,the propulsiveefficiencyof anozzle canbe expressedby[7]:
𝜂 𝑃 =
𝑃𝑜𝑤𝑒𝑟 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑
𝑅𝑎𝑡𝑒 𝑜𝑓 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
Mathematically,thisratiocanbe formulatedas:
𝜂 𝑃 =
𝑚̇ ( 𝑣𝑒 − 𝑣𝑖) 𝑣𝑖
𝑚̇ (
𝑣𝑒
2
2
−
𝑣𝑖
2
2
)
Thissimplifiesto:
𝜂 𝑃 =
2𝑣𝑖
𝑣𝑒 + 𝑣𝑖
The area ratio of a CD nozzle iscalculatedby:
𝐴 𝑅 =
𝑎𝑟𝑒𝑎 𝑎𝑡 𝑡ℎ𝑒 𝑛𝑜𝑧𝑧𝑙𝑒 𝑒𝑥𝑖𝑡
𝑎𝑟𝑒𝑎 𝑡𝑜 𝑤ℎ𝑖𝑐ℎ 𝑡ℎ𝑒 𝑓𝑙𝑜𝑤 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠
Mathematically,
𝐴 𝑅 =
𝜋𝑑 𝑒
2
4
𝜋𝑑 𝑐𝑜𝑛𝑣
2
4
=
𝑑 𝑒
2
𝑑 𝑐𝑜𝑛𝑣
2
Percentdifference isusedinforthisexperimenttodeterminethesuccessofPart1.The percentdifference
betweenthe experimental andtheoretical valuescanbe calculatedby:
%𝑑 =
|𝑣 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 − 𝑣 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖 𝑐 𝑎𝑙|
𝑣 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙
∗ 100%
Berger 8
FACILITY ANDAPPARATUS
The apparatusneededforthisexperimentare the several CDnozzles,the JetStream500windtunnel,and
the accompanyingdata acquisitionsoftware. The appropriate sensorsmustbe addedtothe windtunnel
to acquire temperature,pressure,andspeedandthe nozzle inletandexit.
Figure 3: JetStream 500 wind tunnel (equipped with the force balance used in Experiment 11).
PROCEDURE
Part1: CD NozzleOutletConditions
A single nozzleisselectedandplacedinthe windtunnel,whichisthenturnedon. A range of inletspeeds
shouldbe tested,anddata acquiredfor temperature,pressure,andflow speedatthe nozzle outlet.This
data is then compared against the calculated theoretical outlet conditions to determine the success of
Part 1.
Part2: Analysis of CD NozzleDesignParameters
The procedure for Part 2 is similar to Part 1. For each nozzle tested, the following procedure should be
followed.The nozzle isplacedintothe windtunnel,whichisthenturnedon. A range of inletspeedsare
usedto generate datafor the outletconditions(asin Part 1). Then,nozzle efficienciescan be calculated
using the efficiency equation in the theory section. Plots should be made of area ratio vs. change in
velocity,divergence angle vs.nozzle efficiency,andoutletspeedvs.inletareaand outletarea (a surface
plot).The R2
valuesof the fittedcurvesinthe firsttwo plotsare usedto determine the successof Part2,
while the surface plot is used to observe the effects of various inlet and outlet areas on nozzle outlet
speed.
Berger 9
STATEMENTOF UNCERTAINTY
For both parts of this experiment, the sensors can be assumed to be exact. The sensors produce a
negligibleamountof randomintrinsicerrorinmeasurement.Itistherefore expectedthatPart1will result
in highlyaccurate data. Successfor Part 1 can be declaredif the percentdifference betweentheoretical
and experimental outletconditionsare all lessthan 5%. For Part 2, the anglesand area ratios are varied
across several nozzles.Anerrorof approximately±0.5o
in divergenceangle willpropagate intothe nozzle
outletarea,andagainintothe equationsusedtocalculate outletspeedandnozzle efficiency,ifdivergence
angle isusedtodescribe the nozzle.If arearatioisused,thenanerrorof ±0.5 mm will propagate.Success
inPart 2 can be declaredif the correlationscoefficients(R2
) forall fittedcurvesare atleast0.95. If Parts 1
and 2 are successful,the experimentcanbe declaredasuccess.
CONCLUSION
The goal of this experiment is to first test the quantitative accuracy of the theoretical equations for
calculatingoutletconditionsforflowthroughaCDnozzle.Fromthere,abasisisestablishedforgenerating
accurate experimental nozzleexit conditions.ForPart2, thisbasisisusedtoanalyze several CDnozzles of
equal length and develop relationships between the input variables of area ratio and divergence angle
andthe outputvariablesof outletspeedandnozzle efficiency.A surface plotof outletspeedvs.inletarea
and outlet area can be plotted to see the effects of changes in area on outlet speed for a given nozzle
lengthandinletspeed.While there are few sourcesof errorinthis experimentdue tothe sensors,there
are some quantitative measuredtodetermine success.The experimentcanbe declaredsuccessful if the
percent difference between all theoretical and experimental valuesin Part 1 are less than 5% and if the
R2
valuesforthe fittedcurvesinPart2 are at least0.95.
Berger 10
REFERENCES
[1] Hutchinson,Lee.“NewF-1B rocketengine upgradesApollo-eradesignwith1.8Mpoundsof
thrust,”14 April 2009, Conde Nast,ArsTechnica.15 Nov.2015. Available:
<http://arstechnica.com/science/2013/04/new-f-1b-rocket-engine-upgrades-apollo-era-deisgn-
with-1-8m-lbs-of-thrust/>
[2] N.A.“de Laval Nzzle,”21 August2015, Wikipedia.15Nov.2015. Available:<
https://en.wikipedia.org/wiki/De_Laval_nozzle>
[3] N.A.“The Individual andUniversal GasConstants,”The EngineeringToolbox.16Nov.2015.
Available:<http://www.engineeringtoolbox.com/individual-universal-gas-constant-d_588.html>
[4] N.A.“STP – Standard Temperature andPressure &NTP – Normal Temperature andPressure,”
The EngineeringToolbox.16Nov 2015. Available:< http://www.engineeringtoolbox.com/stp-
standard-ntp-normal-air-d_772.html>
[5] N.A.“Gases – SpecificHeatsandIndividualGasConstants,”The EngineeringToolbox.16Nov
2015. Available:<http://www.engineeringtoolbox.com/specific-heat-capacity-gases-
d_159.html>
[6] Hall,Nancy,ed.“Nozzle Design –Converging/Diverging(CD) Nozzle,”5May 2015, National
AeronauticsandSpace Administration.16Nov2015. Available:
<https://www.grc.nasa.gov/www/K-12/airplane/nozzled.html>
[7] Micklow,Gerald.MAE 3161: FluidMechanics – Lecture Notes.June 2014, FloridaInstitute of
Technology.16 Nov2015.

Weitere ähnliche Inhalte

Was ist angesagt?

Accounting SDR Fluctuations to Non-Premixed Turbulent Combustion for Better P...
Accounting SDR Fluctuations to Non-Premixed Turbulent Combustion for Better P...Accounting SDR Fluctuations to Non-Premixed Turbulent Combustion for Better P...
Accounting SDR Fluctuations to Non-Premixed Turbulent Combustion for Better P...
IJERA Editor
 

Was ist angesagt? (10)

Accounting SDR Fluctuations to Non-Premixed Turbulent Combustion for Better P...
Accounting SDR Fluctuations to Non-Premixed Turbulent Combustion for Better P...Accounting SDR Fluctuations to Non-Premixed Turbulent Combustion for Better P...
Accounting SDR Fluctuations to Non-Premixed Turbulent Combustion for Better P...
 
Chemical Process Calculations – Short Tutorial
Chemical Process Calculations – Short TutorialChemical Process Calculations – Short Tutorial
Chemical Process Calculations – Short Tutorial
 
Univariate analysis of variance
Univariate analysis of varianceUnivariate analysis of variance
Univariate analysis of variance
 
Optimization of Closure Law of Guide Vanes for an Operational Hydropower Plan...
Optimization of Closure Law of Guide Vanes for an Operational Hydropower Plan...Optimization of Closure Law of Guide Vanes for an Operational Hydropower Plan...
Optimization of Closure Law of Guide Vanes for an Operational Hydropower Plan...
 
Cooling Tower Makeup Water Estimation
Cooling Tower Makeup Water EstimationCooling Tower Makeup Water Estimation
Cooling Tower Makeup Water Estimation
 
SPLIT SECOND ANALYSIS COVERING HIGH PRESSURE GAS FLOW DYNAMICS AT PIPE OUTLET...
SPLIT SECOND ANALYSIS COVERING HIGH PRESSURE GAS FLOW DYNAMICS AT PIPE OUTLET...SPLIT SECOND ANALYSIS COVERING HIGH PRESSURE GAS FLOW DYNAMICS AT PIPE OUTLET...
SPLIT SECOND ANALYSIS COVERING HIGH PRESSURE GAS FLOW DYNAMICS AT PIPE OUTLET...
 
Evaluating Pipeline Operational Integrity - Sand Production
Evaluating Pipeline Operational Integrity - Sand ProductionEvaluating Pipeline Operational Integrity - Sand Production
Evaluating Pipeline Operational Integrity - Sand Production
 
30120140502004 2
30120140502004 230120140502004 2
30120140502004 2
 
Fanno Flow
Fanno FlowFanno Flow
Fanno Flow
 
A 1 D Breakup Model For
A 1 D Breakup Model ForA 1 D Breakup Model For
A 1 D Breakup Model For
 

Ähnlich wie Fluids Lab

Isentropic Blow-Down Process and Discharge Coefficient
Isentropic Blow-Down Process and Discharge CoefficientIsentropic Blow-Down Process and Discharge Coefficient
Isentropic Blow-Down Process and Discharge Coefficient
Steven Cooke
 
NozzleBurnThrough
NozzleBurnThroughNozzleBurnThrough
NozzleBurnThrough
luchinskyd
 
Cfd fundamental study of flow past a circular cylinder with convective heat t...
Cfd fundamental study of flow past a circular cylinder with convective heat t...Cfd fundamental study of flow past a circular cylinder with convective heat t...
Cfd fundamental study of flow past a circular cylinder with convective heat t...
Sammy Jamar
 
Heat exchanger design project
Heat exchanger design project Heat exchanger design project
Heat exchanger design project
Chinedu Isiadinso
 
Title of the ReportA. Partner, B. Partner, and C. Partner.docx
Title of the ReportA. Partner, B. Partner, and C. Partner.docxTitle of the ReportA. Partner, B. Partner, and C. Partner.docx
Title of the ReportA. Partner, B. Partner, and C. Partner.docx
juliennehar
 

Ähnlich wie Fluids Lab (20)

Isentropic Blow-Down Process and Discharge Coefficient
Isentropic Blow-Down Process and Discharge CoefficientIsentropic Blow-Down Process and Discharge Coefficient
Isentropic Blow-Down Process and Discharge Coefficient
 
Numerical Study of Gas Effect at High Temperature on the Supersonic Plug and ...
Numerical Study of Gas Effect at High Temperature on the Supersonic Plug and ...Numerical Study of Gas Effect at High Temperature on the Supersonic Plug and ...
Numerical Study of Gas Effect at High Temperature on the Supersonic Plug and ...
 
NozzleBurnThrough
NozzleBurnThroughNozzleBurnThrough
NozzleBurnThrough
 
Numerical simulaton of axial flow fan using gambit and
Numerical simulaton of axial flow fan using gambit andNumerical simulaton of axial flow fan using gambit and
Numerical simulaton of axial flow fan using gambit and
 
Cfd fundamental study of flow past a circular cylinder with convective heat t...
Cfd fundamental study of flow past a circular cylinder with convective heat t...Cfd fundamental study of flow past a circular cylinder with convective heat t...
Cfd fundamental study of flow past a circular cylinder with convective heat t...
 
Final Report 4_22_15
Final Report 4_22_15Final Report 4_22_15
Final Report 4_22_15
 
Heat exchanger design project
Heat exchanger design project Heat exchanger design project
Heat exchanger design project
 
DIFFUSER ANGLE CONTROL TO AVOID FLOW SEPARATION
DIFFUSER ANGLE CONTROL TO AVOID FLOW SEPARATIONDIFFUSER ANGLE CONTROL TO AVOID FLOW SEPARATION
DIFFUSER ANGLE CONTROL TO AVOID FLOW SEPARATION
 
14 34-46
14 34-4614 34-46
14 34-46
 
Numerical Calculation of Solid-Liquid two-Phase Flow Inside a Small Sewage Pump
Numerical Calculation of Solid-Liquid two-Phase Flow Inside a Small Sewage PumpNumerical Calculation of Solid-Liquid two-Phase Flow Inside a Small Sewage Pump
Numerical Calculation of Solid-Liquid two-Phase Flow Inside a Small Sewage Pump
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
Gs2512261235
Gs2512261235Gs2512261235
Gs2512261235
 
Gs2512261235
Gs2512261235Gs2512261235
Gs2512261235
 
Twice yield method for assessment of fatigue life assesment of pressure swing...
Twice yield method for assessment of fatigue life assesment of pressure swing...Twice yield method for assessment of fatigue life assesment of pressure swing...
Twice yield method for assessment of fatigue life assesment of pressure swing...
 
Stirling engine performance prediction using schmidt
Stirling engine performance prediction using schmidtStirling engine performance prediction using schmidt
Stirling engine performance prediction using schmidt
 
A model for the parametric analysis and optimization of inertance tube pulse ...
A model for the parametric analysis and optimization of inertance tube pulse ...A model for the parametric analysis and optimization of inertance tube pulse ...
A model for the parametric analysis and optimization of inertance tube pulse ...
 
Fuzzy Logic Modeling of Heat Transfer in a double Pipe Heat Exchanger with Wa...
Fuzzy Logic Modeling of Heat Transfer in a double Pipe Heat Exchanger with Wa...Fuzzy Logic Modeling of Heat Transfer in a double Pipe Heat Exchanger with Wa...
Fuzzy Logic Modeling of Heat Transfer in a double Pipe Heat Exchanger with Wa...
 
Calibration of A Five-Hole Probe in Null and Non-Null Technique
Calibration of A Five-Hole Probe in Null and Non-Null Technique Calibration of A Five-Hole Probe in Null and Non-Null Technique
Calibration of A Five-Hole Probe in Null and Non-Null Technique
 
Title of the ReportA. Partner, B. Partner, and C. Partner.docx
Title of the ReportA. Partner, B. Partner, and C. Partner.docxTitle of the ReportA. Partner, B. Partner, and C. Partner.docx
Title of the ReportA. Partner, B. Partner, and C. Partner.docx
 
CFD Studies of Combustion in Direct Injection Single Cylinder Diesel Engine U...
CFD Studies of Combustion in Direct Injection Single Cylinder Diesel Engine U...CFD Studies of Combustion in Direct Injection Single Cylinder Diesel Engine U...
CFD Studies of Combustion in Direct Injection Single Cylinder Diesel Engine U...
 

Mehr von Thaddeus Berger

Mehr von Thaddeus Berger (8)

Showcase2016_Poster_BME_Berger-3
Showcase2016_Poster_BME_Berger-3Showcase2016_Poster_BME_Berger-3
Showcase2016_Poster_BME_Berger-3
 
01 PriMA_DetailDesignReport
01 PriMA_DetailDesignReport01 PriMA_DetailDesignReport
01 PriMA_DetailDesignReport
 
PriMA_Design_Portfolio
PriMA_Design_PortfolioPriMA_Design_Portfolio
PriMA_Design_Portfolio
 
ARInitialPaper
ARInitialPaperARInitialPaper
ARInitialPaper
 
Vibrations
VibrationsVibrations
Vibrations
 
Thermal Systems Design
Thermal Systems DesignThermal Systems Design
Thermal Systems Design
 
ThaddeusBerger_Poster
ThaddeusBerger_PosterThaddeusBerger_Poster
ThaddeusBerger_Poster
 
TBerger_FinalReport
TBerger_FinalReportTBerger_FinalReport
TBerger_FinalReport
 

Fluids Lab

  • 1. Berger 1 Term Project: Analysis of Converging/Diverging Nozzles MAE 3064: Fluid Mechanics Lab By Thaddeus Berger Submitted: 11/19/2015 Instructor: Muzammil Arshad
  • 2. Berger 2 CONTENTS Figures...............................................................................................................................................2 Mathematical Symbols........................................................................................................................3 Abstract.............................................................................................................................................4 Introduction.......................................................................................................................................5 Theory...............................................................................................................................................6 Facility and Apparatus.........................................................................................................................8 Procedure..........................................................................................................................................8 Part 1: CD Nozzle Outlet Conditions.................................................................................................8 Part 2: Analysis of CD Nozzle DesignParameters...............................................................................8 Statement of Uncertainty....................................................................................................................9 Conclusion .........................................................................................................................................9 References.......................................................................................................................................10 FIGURES Figure 1:.............................................................................................................................................5 Figure 2:.............................................................................................................................................5 Figure 3:.............................................................................................................................................8
  • 3. Berger 3 MATHEMATICAL SYMBOLS R = universal gasconstant M = molecularmass T = temperature P = pressure Cp = constant pressure specificheat Cv = constantvolume specificheat K = ratioof specificheats(Cp/Cv) FT = thrust 𝑚̇ = massflowrate v = velocity NM = Mach number ρ = density A = area a = speedof sound AR = arearatio d = diameter %d = percentdifference
  • 4. Berger 4 ABSTRACT Nozzle design is of great importance in for many fluid flow applications. Missiles, rockets, jet engines, hoses,Jacuzzis,spraybottles,andahostof otherdevicesusenozzles.The de Laval nozzle,or“converging- diverging” (CD) nozzle, is of special importance in high-speed flows – most notably in jet/rocket propulsion. Analyzing CD nozzles and developing useful relationships has been an important field of researchinaerospace engineeringformanyyears. This experimentwill firstanalyze the fluidflow of one smooth-bore CDnozzle andthenanalyze the flow of several differentnozzlesinsubsonicflow todetermine relationshipsbetweenflow characteristicsand geometrythatcan be useful inthe manufacture of CD nozzlesforspecificperformancecharacteristics.
  • 5. Berger 5 INTRODUCTION This experiment will consist of two parts. For one part, a single nozzle will be given with known geometry and inlet conditions. Outletconditionswill be calculated,andexperimental datawill be collectedtocompare to the theoretical values. Figure 2showsthe general behaviorof flowthrougha CD nozzle. The goal of Part 1 is to developsome familiaritywithanalyzingsubsonicflowsthrough a CD nozzle. The second part of the experiment will involve the comparison of several different nozzles in order to find relationships between nozzle geometry and flow characteristics. The nozzles to be tested will have different area ratios with the lengths of the convergent and divergent sections being held constant(meaningthatconvergenceanddivergenceangleswillbe analyzed). Figure 1 shows one application of CD nozzle design – rocketry. The goal of Part 2 is to define important parameters for the designandmanufacture of CD nozzles. Figure 2: Diagram of a CD nozzle showing approximate flow velocity (v), temperature (T), and pressure (P), with Mach number (M) [2]. Figure 1: F-1 rocket engine from 1960 [1]
  • 6. Berger 6 THEORY Thisexperimentwillbe conductedunderthe followingassumptions: 1. Steady-state,steadyflow conditions. 2. Ideal gas. a. R = 8.314462 J/mol-K[3]. b. Mair = 28.97 g/mol-K[3]. 3. Standardtemperature andpressure. a. T = 20o C = 293.15 K [4]. b. Patm = 101.325 kPa [4]. 4. Negligiblechangesinpotential energy. 5. Constantspecificheats. a. For air: Cp = 1.01 kJ/kg-K,Cv = 0.718 kJ/kg-K k = 1.40 [5] One of the mostimportantperformancecharacteristicsforanozzle isthe outletflow speed.Forexample, thrustprovidedbya jetengine canbe describedbythe velocitiescomingintoandoutof the nozzle, 𝐹𝑇 = 𝑚̇ ( 𝑣𝑒 − 𝑣𝑖). By combiningthe Lawof Conservationof Massand the Law of Conservationof momentumforisentropic flow,the followingequationshowsthe behaviorof CDnozzleswithrespecttoflow velocity[6]: (1 − 𝑁 𝑀 2 ) 𝑑𝑣 𝑣 = − 𝑑𝐴 𝐴 The Mach number, Nm iscalculatedby usingthe speedof sound a: 𝑁 𝑀 = 𝑣 𝑎 These equationsshowthat,for subsonicflows(Nm < 1), an increase inarea (dA > 0) causesa decrease in flowvelocity,while forsupersonicflows(Nm > 1), an increase inarea causesan increase inflow velocity. This result is used to great effect in ramjets,scramjets,and rockets to achieve veryhigh speeds [6]. For thisparticular experiment,onlysubsonicflowsare analyzed.Therefore,the flow speedcanbe expected to decrease comingoutof the nozzle. In most situations, the inlet velocity is either known or easily calculated. The exit velocity ve for a fluid flowing through a nozzle at inlet temperature T, molecular weight M, ratio of specific heats k, inlet pressure pi,andexitpressure pe can be calculatedusingthe followingequation: 𝑣𝑒 = √ 𝑇𝑅 𝑀 ∗ 2𝑘 𝑘 − 1 ∗ [1 − ( 𝑝𝑒 𝑝𝑖 ) 𝑘−1 𝑘 ]
  • 7. Berger 7 In general,the propulsiveefficiencyof anozzle canbe expressedby[7]: 𝜂 𝑃 = 𝑃𝑜𝑤𝑒𝑟 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 Mathematically,thisratiocanbe formulatedas: 𝜂 𝑃 = 𝑚̇ ( 𝑣𝑒 − 𝑣𝑖) 𝑣𝑖 𝑚̇ ( 𝑣𝑒 2 2 − 𝑣𝑖 2 2 ) Thissimplifiesto: 𝜂 𝑃 = 2𝑣𝑖 𝑣𝑒 + 𝑣𝑖 The area ratio of a CD nozzle iscalculatedby: 𝐴 𝑅 = 𝑎𝑟𝑒𝑎 𝑎𝑡 𝑡ℎ𝑒 𝑛𝑜𝑧𝑧𝑙𝑒 𝑒𝑥𝑖𝑡 𝑎𝑟𝑒𝑎 𝑡𝑜 𝑤ℎ𝑖𝑐ℎ 𝑡ℎ𝑒 𝑓𝑙𝑜𝑤 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠 Mathematically, 𝐴 𝑅 = 𝜋𝑑 𝑒 2 4 𝜋𝑑 𝑐𝑜𝑛𝑣 2 4 = 𝑑 𝑒 2 𝑑 𝑐𝑜𝑛𝑣 2 Percentdifference isusedinforthisexperimenttodeterminethesuccessofPart1.The percentdifference betweenthe experimental andtheoretical valuescanbe calculatedby: %𝑑 = |𝑣 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 − 𝑣 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖 𝑐 𝑎𝑙| 𝑣 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 ∗ 100%
  • 8. Berger 8 FACILITY ANDAPPARATUS The apparatusneededforthisexperimentare the several CDnozzles,the JetStream500windtunnel,and the accompanyingdata acquisitionsoftware. The appropriate sensorsmustbe addedtothe windtunnel to acquire temperature,pressure,andspeedandthe nozzle inletandexit. Figure 3: JetStream 500 wind tunnel (equipped with the force balance used in Experiment 11). PROCEDURE Part1: CD NozzleOutletConditions A single nozzleisselectedandplacedinthe windtunnel,whichisthenturnedon. A range of inletspeeds shouldbe tested,anddata acquiredfor temperature,pressure,andflow speedatthe nozzle outlet.This data is then compared against the calculated theoretical outlet conditions to determine the success of Part 1. Part2: Analysis of CD NozzleDesignParameters The procedure for Part 2 is similar to Part 1. For each nozzle tested, the following procedure should be followed.The nozzle isplacedintothe windtunnel,whichisthenturnedon. A range of inletspeedsare usedto generate datafor the outletconditions(asin Part 1). Then,nozzle efficienciescan be calculated using the efficiency equation in the theory section. Plots should be made of area ratio vs. change in velocity,divergence angle vs.nozzle efficiency,andoutletspeedvs.inletareaand outletarea (a surface plot).The R2 valuesof the fittedcurvesinthe firsttwo plotsare usedto determine the successof Part2, while the surface plot is used to observe the effects of various inlet and outlet areas on nozzle outlet speed.
  • 9. Berger 9 STATEMENTOF UNCERTAINTY For both parts of this experiment, the sensors can be assumed to be exact. The sensors produce a negligibleamountof randomintrinsicerrorinmeasurement.Itistherefore expectedthatPart1will result in highlyaccurate data. Successfor Part 1 can be declaredif the percentdifference betweentheoretical and experimental outletconditionsare all lessthan 5%. For Part 2, the anglesand area ratios are varied across several nozzles.Anerrorof approximately±0.5o in divergenceangle willpropagate intothe nozzle outletarea,andagainintothe equationsusedtocalculate outletspeedandnozzle efficiency,ifdivergence angle isusedtodescribe the nozzle.If arearatioisused,thenanerrorof ±0.5 mm will propagate.Success inPart 2 can be declaredif the correlationscoefficients(R2 ) forall fittedcurvesare atleast0.95. If Parts 1 and 2 are successful,the experimentcanbe declaredasuccess. CONCLUSION The goal of this experiment is to first test the quantitative accuracy of the theoretical equations for calculatingoutletconditionsforflowthroughaCDnozzle.Fromthere,abasisisestablishedforgenerating accurate experimental nozzleexit conditions.ForPart2, thisbasisisusedtoanalyze several CDnozzles of equal length and develop relationships between the input variables of area ratio and divergence angle andthe outputvariablesof outletspeedandnozzle efficiency.A surface plotof outletspeedvs.inletarea and outlet area can be plotted to see the effects of changes in area on outlet speed for a given nozzle lengthandinletspeed.While there are few sourcesof errorinthis experimentdue tothe sensors,there are some quantitative measuredtodetermine success.The experimentcanbe declaredsuccessful if the percent difference between all theoretical and experimental valuesin Part 1 are less than 5% and if the R2 valuesforthe fittedcurvesinPart2 are at least0.95.
  • 10. Berger 10 REFERENCES [1] Hutchinson,Lee.“NewF-1B rocketengine upgradesApollo-eradesignwith1.8Mpoundsof thrust,”14 April 2009, Conde Nast,ArsTechnica.15 Nov.2015. Available: <http://arstechnica.com/science/2013/04/new-f-1b-rocket-engine-upgrades-apollo-era-deisgn- with-1-8m-lbs-of-thrust/> [2] N.A.“de Laval Nzzle,”21 August2015, Wikipedia.15Nov.2015. Available:< https://en.wikipedia.org/wiki/De_Laval_nozzle> [3] N.A.“The Individual andUniversal GasConstants,”The EngineeringToolbox.16Nov.2015. Available:<http://www.engineeringtoolbox.com/individual-universal-gas-constant-d_588.html> [4] N.A.“STP – Standard Temperature andPressure &NTP – Normal Temperature andPressure,” The EngineeringToolbox.16Nov 2015. Available:< http://www.engineeringtoolbox.com/stp- standard-ntp-normal-air-d_772.html> [5] N.A.“Gases – SpecificHeatsandIndividualGasConstants,”The EngineeringToolbox.16Nov 2015. Available:<http://www.engineeringtoolbox.com/specific-heat-capacity-gases- d_159.html> [6] Hall,Nancy,ed.“Nozzle Design –Converging/Diverging(CD) Nozzle,”5May 2015, National AeronauticsandSpace Administration.16Nov2015. Available: <https://www.grc.nasa.gov/www/K-12/airplane/nozzled.html> [7] Micklow,Gerald.MAE 3161: FluidMechanics – Lecture Notes.June 2014, FloridaInstitute of Technology.16 Nov2015.