SlideShare ist ein Scribd-Unternehmen logo
1 von 80
Downloaden Sie, um offline zu lesen
Series
FOURIER SERIES
Graham S McDonald
A self-contained Tutorial Module for learning
the technique of Fourier series analysis
● Table of contents
● Begin Tutorial
c 2004 g.s.mcdonald@salford.ac.uk
Table of contents
1. Theory
2. Exercises
3. Answers
4. Integrals
5. Useful trig results
6. Alternative notation
7. Tips on using solutions
Full worked solutions
Section 1: Theory 3
1. Theory
● A graph of periodic function f(x) that has period L exhibits the
same pattern every L units along the x-axis, so that f(x + L) = f(x)
for every value of x. If we know what the function looks like over one
complete period, we can thus sketch a graph of the function over a
wider interval of x (that may contain many periods)
f ( x )
x
P E R I O D = L
Toc JJ II J I Back
Section 1: Theory 4
● This property of repetition defines a fundamental spatial fre-
quency k = 2π
L that can be used to give a first approximation to
the periodic pattern f(x):
f(x) ' c1 sin(kx + α1) = a1 cos(kx) + b1 sin(kx),
where symbols with subscript 1 are constants that determine the am-
plitude and phase of this first approximation
● A much better approximation of the periodic pattern f(x) can
be built up by adding an appropriate combination of harmonics to
this fundamental (sine-wave) pattern. For example, adding
c2 sin(2kx + α2) = a2 cos(2kx) + b2 sin(2kx) (the 2nd harmonic)
c3 sin(3kx + α3) = a3 cos(3kx) + b3 sin(3kx) (the 3rd harmonic)
Here, symbols with subscripts are constants that determine the am-
plitude and phase of each harmonic contribution
Toc JJ II J I Back
Section 1: Theory 5
One can even approximate a square-wave pattern with a suitable sum
that involves a fundamental sine-wave plus a combination of harmon-
ics of this fundamental frequency. This sum is called a Fourier series
F u n d a m e n t a l + 5 h a r m o n i c s
F u n d a m e n t a l + 2 0 h a r m o n i c s
x
P E R I O D = L
F u n d a m e n t a l
F u n d a m e n t a l + 2 h a r m o n i c s
Toc JJ II J I Back
Section 1: Theory 6
● In this Tutorial, we consider working out Fourier series for func-
tions f(x) with period L = 2π. Their fundamental frequency is then
k = 2π
L = 1, and their Fourier series representations involve terms like
a1 cos x , b1 sin x
a2 cos 2x , b2 sin 2x
a3 cos 3x , b3 sin 3x
We also include a constant term a0/2 in the Fourier series. This
allows us to represent functions that are, for example, entirely above
the x−axis. With a sufficient number of harmonics included, our ap-
proximate series can exactly represent a given function f(x)
f(x) = a0/2 + a1 cos x + a2 cos 2x + a3 cos 3x + ...
+ b1 sin x + b2 sin 2x + b3 sin 3x + ...
Toc JJ II J I Back
Section 1: Theory 7
A more compact way of writing the Fourier series of a function f(x),
with period 2π, uses the variable subscript n = 1, 2, 3, . . .
f(x) =
a0
2
+
∞
X
n=1
[an cos nx + bn sin nx]
● We need to work out the Fourier coefficients (a0, an and bn) for
given functions f(x). This process is broken down into three steps
STEP ONE
a0 =
1
π
Z
2π
f(x) dx
STEP TWO
an =
1
π
Z
2π
f(x) cos nx dx
STEP THREE
bn =
1
π
Z
2π
f(x) sin nx dx
where integrations are over a single interval in x of L = 2π
Toc JJ II J I Back
Section 1: Theory 8
● Finally, specifying a particular value of x = x1 in a Fourier series,
gives a series of constants that should equal f(x1). However, if f(x)
is discontinuous at this value of x, then the series converges to a value
that is half-way between the two possible function values
f ( x )
x
F o u r i e r s e r i e s
c o n v e r g e s t o
h a l f - w a y p o i n t
" V e r t i c a l j u m p " / d i s c o n t i n u i t y
i n t h e f u n c t i o n r e p r e s e n t e d
Toc JJ II J I Back
Section 2: Exercises 9
2. Exercises
Click on Exercise links for full worked solutions (7 exercises in total).
Exercise 1.
Let f(x) be a function of period 2π such that
f(x) =

1, −π  x  0
0, 0  x  π .
a) Sketch a graph of f(x) in the interval −2π  x  2π
b) Show that the Fourier series for f(x) in the interval −π  x  π is
1
2
−
2
π

sin x +
1
3
sin 3x +
1
5
sin 5x + ...

c) By giving an appropriate value to x, show that
π
4
= 1 −
1
3
+
1
5
−
1
7
+ . . .
● Theory ● Answers ● Integrals ● Trig ● Notation
Toc JJ II J I Back
Section 2: Exercises 10
Exercise 2.
Let f(x) be a function of period 2π such that
f(x) =

0, −π  x  0
x, 0  x  π .
a) Sketch a graph of f(x) in the interval −3π  x  3π
b) Show that the Fourier series for f(x) in the interval −π  x  π is
π
4
−
2
π

cos x +
1
32
cos 3x +
1
52
cos 5x + ...

+

sin x −
1
2
sin 2x +
1
3
sin 3x − ...

c) By giving appropriate values to x, show that
(i) π
4 = 1 − 1
3 + 1
5 − 1
7 + . . . and (ii) π2
8 = 1 + 1
32 + 1
52 + 1
72 + . . .
● Theory ● Answers ● Integrals ● Trig ● Notation
Toc JJ II J I Back
Section 2: Exercises 11
Exercise 3.
Let f(x) be a function of period 2π such that
f(x) =

x, 0  x  π
π, π  x  2π .
a) Sketch a graph of f(x) in the interval −2π  x  2π
b) Show that the Fourier series for f(x) in the interval 0  x  2π is
3π
4
−
2
π

cos x +
1
32
cos 3x +
1
52
cos 5x + . . .

−

sin x +
1
2
sin 2x +
1
3
sin 3x + . . .

c) By giving appropriate values to x, show that
(i) π
4 = 1 − 1
3 + 1
5 − 1
7 + . . . and (ii) π2
8 = 1 + 1
32 + 1
52 + 1
72 + . . .
● Theory ● Answers ● Integrals ● Trig ● Notation
Toc JJ II J I Back
Section 2: Exercises 12
Exercise 4.
Let f(x) be a function of period 2π such that
f(x) =
x
2
over the interval 0  x  2π.
a) Sketch a graph of f(x) in the interval 0  x  4π
b) Show that the Fourier series for f(x) in the interval 0  x  2π is
π
2
−

sin x +
1
2
sin 2x +
1
3
sin 3x + . . .

c) By giving an appropriate value to x, show that
π
4
= 1 −
1
3
+
1
5
−
1
7
+
1
9
− . . .
● Theory ● Answers ● Integrals ● Trig ● Notation
Toc JJ II J I Back
Section 2: Exercises 13
Exercise 5.
Let f(x) be a function of period 2π such that
f(x) =

π − x, 0  x  π
0, π  x  2π
a) Sketch a graph of f(x) in the interval −2π  x  2π
b) Show that the Fourier series for f(x) in the interval 0  x  2π is
π
4
+
2
π

cos x +
1
32
cos 3x +
1
52
cos 5x + . . .

+ sin x +
1
2
sin 2x +
1
3
sin 3x +
1
4
sin 4x + . . .
c) By giving an appropriate value to x, show that
π2
8
= 1 +
1
32
+
1
52
+ . . .
● Theory ● Answers ● Integrals ● Trig ● Notation
Toc JJ II J I Back
Section 2: Exercises 14
Exercise 6.
Let f(x) be a function of period 2π such that
f(x) = x in the range − π  x  π.
a) Sketch a graph of f(x) in the interval −3π  x  3π
b) Show that the Fourier series for f(x) in the interval −π  x  π is
2

sin x −
1
2
sin 2x +
1
3
sin 3x − . . .

c) By giving an appropriate value to x, show that
π
4
= 1 −
1
3
+
1
5
−
1
7
+ . . .
● Theory ● Answers ● Integrals ● Trig ● Notation
Toc JJ II J I Back
Section 2: Exercises 15
Exercise 7.
Let f(x) be a function of period 2π such that
f(x) = x2
over the interval − π  x  π.
a) Sketch a graph of f(x) in the interval −3π  x  3π
b) Show that the Fourier series for f(x) in the interval −π  x  π is
π2
3
− 4

cos x −
1
22
cos 2x +
1
32
cos 3x − . . .

c) By giving an appropriate value to x, show that
π2
6
= 1 +
1
22
+
1
32
+
1
42
+ . . .
● Theory ● Answers ● Integrals ● Trig ● Notation
Toc JJ II J I Back
Section 3: Answers 16
3. Answers
The sketches asked for in part (a) of each exercise are given within
the full worked solutions – click on the Exercise links to see these
solutions
The answers below are suggested values of x to get the series of
constants quoted in part (c) of each exercise
1. x = π
2 ,
2. (i) x = π
2 , (ii) x = 0,
3. (i) x = π
2 , (ii) x = 0,
4. x = π
2 ,
5. x = 0,
6. x = π
2 ,
7. x = π.
Toc JJ II J I Back
Section 4: Integrals 17
4. Integrals
Formula for integration by parts:
R b
a
udv
dx dx = [uv]
b
a −
R b
a
du
dx v dx
f (x)
R
f(x)dx f (x)
R
f(x)dx
xn xn+1
n+1 (n 6= −1) [g (x)]
n
g0
(x) [g(x)]n+1
n+1 (n 6= −1)
1
x ln |x| g0
(x)
g(x) ln |g (x)|
ex
ex
ax ax
ln a (a  0)
sin x − cos x sinh x cosh x
cos x sin x cosh x sinh x
tan x − ln |cos x| tanh x ln cosh x
cosec x ln tan x
2 cosech x ln tanh x
2
sec x ln |sec x + tan x| sech x 2 tan−1
ex
sec2
x tan x sech2
x tanh x
cot x ln |sin x| coth x ln |sinh x|
sin2
x x
2 − sin 2x
4 sinh2
x sinh 2x
4 − x
2
cos2
x x
2 + sin 2x
4 cosh2
x sinh 2x
4 + x
2
Toc JJ II J I Back
Section 4: Integrals 18
f (x)
R
f (x) dx f (x)
R
f (x) dx
1
a2+x2
1
a tan−1 x
a
1
a2−x2
1
2a ln a+x
a−x (0|x|a)
(a  0) 1
x2−a2
1
2a ln x−a
x+a (|x|  a0)
1
√
a2−x2
sin−1 x
a
1
√
a2+x2
ln x+
√
a2+x2
a (a  0)
(−a  x  a) 1
√
x2−a2
ln x+
√
x2−a2
a (xa0)
√
a2 − x2 a2
2

sin−1 x
a
 √
a2 +x2 a2
2
h
sinh−1 x
a

+ x
√
a2+x2
a2
i
+x
√
a2−x2
a2
i √
x2 −a2 a2
2
h
− cosh−1 x
a

+ x
√
x2−a2
a2
i
Toc JJ II J I Back
Section 5: Useful trig results 19
5. Useful trig results
When calculating the Fourier coefficients an and bn , for which n =
1, 2, 3, . . . , the following trig. results are useful. Each of these results,
which are also true for n = 0, −1, −2, −3, . . . , can be deduced from
the graph of sin x or that of cos x
● sin nπ = 0
−1
0
1
π 2π 3π
−3π −2π
s i n ( x )
x
−π
● cos nπ = (−1)n
−1
0
1
π 2π 3π
−3π −2π
c o s ( x )
x
−π
Toc JJ II J I Back
Section 5: Useful trig results 20
−1
0
1
π 2π 3π
−3π −2π
s i n ( x )
x
−π
−1
0
1
π 2π 3π
−3π −2π
c o s ( x )
x
−π
● sin n
π
2
=



0 , n even
1 , n = 1, 5, 9, ...
−1 , n = 3, 7, 11, ...
● cos n
π
2
=



0 , n odd
1 , n = 0, 4, 8, ...
−1 , n = 2, 6, 10, ...
Areas cancel when
when integrating
over whole periods
●
R
2π
sin nx dx = 0
●
R
2π
cos nx dx = 0
+
+
−1
0
1
π 2π 3π
−3π −2π
s i n ( x )
x
−π
+
Toc JJ II J I Back
Section 6: Alternative notation 21
6. Alternative notation
● For a waveform f(x) with period L = 2π
k
f(x) =
a0
2
+
∞
X
n=1
[an cos nkx + bn sin nkx]
The corresponding Fourier coefficients are
STEP ONE
a0 =
2
L
Z
L
f(x) dx
STEP TWO
an =
2
L
Z
L
f(x) cos nkx dx
STEP THREE
bn =
2
L
Z
L
f(x) sin nkx dx
and integrations are over a single interval in x of L
Toc JJ II J I Back
Section 6: Alternative notation 22
● For a waveform f(x) with period 2L = 2π
k , we have that
k = 2π
2L = π
L and nkx = nπx
L
f(x) =
a0
2
+
∞
X
n=1
h
an cos
nπx
L
+ bn sin
nπx
L
i
The corresponding Fourier coefficients are
STEP ONE
a0 =
1
L
Z
2L
f(x) dx
STEP TWO
an =
1
L
Z
2L
f(x) cos
nπx
L
dx
STEP THREE
bn =
1
L
Z
2L
f(x) sin
nπx
L
dx
and integrations are over a single interval in x of 2L
Toc JJ II J I Back
Section 6: Alternative notation 23
● For a waveform f(t) with period T = 2π
ω
f(t) =
a0
2
+
∞
X
n=1
[an cos nωt + bn sin nωt]
The corresponding Fourier coefficients are
STEP ONE
a0 =
2
T
Z
T
f(t) dt
STEP TWO
an =
2
T
Z
T
f(t) cos nωt dt
STEP THREE
bn =
2
T
Z
T
f(t) sin nωt dt
and integrations are over a single interval in t of T
Toc JJ II J I Back
Section 7: Tips on using solutions 24
7. Tips on using solutions
● When looking at the THEORY, ANSWERS, INTEGRALS, TRIG
or NOTATION pages, use the Back button (at the bottom of the
page) to return to the exercises
● Use the solutions intelligently. For example, they can help you get
started on an exercise, or they can allow you to check whether your
intermediate results are correct
● Try to make less use of the full solutions as you work your way
through the Tutorial
Toc JJ II J I Back
Solutions to exercises 25
Full worked solutions
Exercise 1.
f(x) =

1, −π  x  0
0, 0  x  π, and has period 2π
a) Sketch a graph of f(x) in the interval −2π  x  2π
0
1
π 2π
−2π
f ( x )
x
−π
Toc JJ II J I Back
Solutions to exercises 26
b) Fourier series representation of f(x)
STEP ONE
a0 =
1
π
Z π
−π
f(x)dx =
1
π
Z 0
−π
f(x)dx +
1
π
Z π
0
f(x)dx
=
1
π
Z 0
−π
1 · dx +
1
π
Z π
0
0 · dx
=
1
π
Z 0
−π
dx
=
1
π
[x]
0
−π
=
1
π
(0 − (−π))
=
1
π
· (π)
i.e. a0 = 1 .
Toc JJ II J I Back
Solutions to exercises 27
STEP TWO
an =
1
π
Z π
−π
f(x) cos nx dx =
1
π
Z 0
−π
f(x) cos nx dx +
1
π
Z π
0
f(x) cos nx dx
=
1
π
Z 0
−π
1 · cos nx dx +
1
π
Z π
0
0 · cos nx dx
=
1
π
Z 0
−π
cos nx dx
=
1
π

sin nx
n
0
−π
=
1
nπ
[sin nx]
0
−π
=
1
nπ
(sin 0 − sin(−nπ))
=
1
nπ
(0 + sin nπ)
i.e. an =
1
nπ
(0 + 0) = 0.
Toc JJ II J I Back
Solutions to exercises 28
STEP THREE
bn =
1
π
Z π
−π
f(x) sin nx dx
=
1
π
Z 0
−π
f(x) sin nx dx +
1
π
Z π
0
f(x) sin nx dx
=
1
π
Z 0
−π
1 · sin nx dx +
1
π
Z π
0
0 · sin nx dx
i.e. bn =
1
π
Z 0
−π
sin nx dx =
1
π

− cos nx
n
0
−π
= −
1
nπ
[cos nx]0
−π = −
1
nπ
(cos 0 − cos(−nπ))
= −
1
nπ
(1 − cos nπ) = −
1
nπ
(1 − (−1)n
) , see Trig
i.e. bn =

0 , n even
− 2
nπ , n odd
, since (−1)n
=

1 , n even
−1 , n odd
Toc JJ II J I Back
Solutions to exercises 29
We now have that
f(x) =
a0
2
+
∞
X
n=1
[an cos nx + bn sin nx]
with the three steps giving
a0 = 1, an = 0 , and bn =

0 , n even
− 2
nπ , n odd
It may be helpful to construct a table of values of bn
n 1 2 3 4 5
bn − 2
π 0 − 2
π
1
3

0 − 2
π
1
5

Substituting our results now gives the required series
f(x) =
1
2
−
2
π

sin x +
1
3
sin 3x +
1
5
sin 5x + . . .

Toc JJ II J I Back
Solutions to exercises 30
c) Pick an appropriate value of x, to show that
π
4 = 1 − 1
3 + 1
5 − 1
7 + . . .
Comparing this series with
f(x) =
1
2
−
2
π

sin x +
1
3
sin 3x +
1
5
sin 5x + . . .

,
we need to introduce a minus sign in front of the constants 1
3 , 1
7 ,. . .
So we need sin x = 1, sin 3x = −1, sin 5x = 1, sin 7x = −1, etc
The first condition of sin x = 1 suggests trying x = π
2 .
This choice gives sin π
2 + 1
3 sin 3π
2 + 1
5 sin 5π
2 + 1
7 sin 7π
2
i.e. 1 − 1
3 + 1
5 − 1
7
Looking at the graph of f(x), we also have that f(π
2 ) = 0.
Toc JJ II J I Back
Solutions to exercises 31
Picking x = π
2 thus gives
0 = 1
2 − 2
π
h
sin π
2 + 1
3 sin 3π
2 + 1
5 sin 5π
2
+ 1
7 sin 7π
2 + . . .
i
i.e. 0 = 1
2 − 2
π
h
1 − 1
3 + 1
5
− 1
7 + . . .
i
A little manipulation then gives a series representation of π
4
2
π

1 −
1
3
+
1
5
−
1
7
+ . . .

=
1
2
1 −
1
3
+
1
5
−
1
7
+ . . . =
π
4
.
Return to Exercise 1
Toc JJ II J I Back
Solutions to exercises 32
Exercise 2.
f(x) =

0, −π  x  0
x, 0  x  π, and has period 2π
a) Sketch a graph of f(x) in the interval −3π  x  3π
π
π 2π 3π
−3π −2π
f ( x )
x
−π
Toc JJ II J I Back
Solutions to exercises 33
b) Fourier series representation of f(x)
STEP ONE
a0 =
1
π
Z π
−π
f(x)dx =
1
π
Z 0
−π
f(x)dx +
1
π
Z π
0
f(x)dx
=
1
π
Z 0
−π
0 · dx +
1
π
Z π
0
x dx
=
1
π

x2
2
π
0
=
1
π

π2
2
− 0

i.e. a0 =
π
2
.
Toc JJ II J I Back
Solutions to exercises 34
STEP TWO
an =
1
π
Z π
−π
f(x) cos nx dx =
1
π
Z 0
−π
f(x) cos nx dx +
1
π
Z π
0
f(x) cos nx dx
=
1
π
Z 0
−π
0 · cos nx dx +
1
π
Z π
0
x cos nx dx
i.e. an =
1
π
Z π
0
x cos nx dx =
1
π

x
sin nx
n
π
0
−
Z π
0
sin nx
n
dx

(using integration by parts)
i.e. an =
1
π

π
sin nπ
n
− 0

−
1
n
h
−
cos nx
n
iπ
0

=
1
π

( 0 − 0) +
1
n2
[cos nx]π
0

=
1
πn2
{cos nπ − cos 0} =
1
πn2
{(−1)n
− 1}
i.e. an =

0 , n even
− 2
πn2 , n odd
, see Trig.
Toc JJ II J I Back
Solutions to exercises 35
STEP THREE
bn =
1
π
Z π
−π
f(x) sin nx dx =
1
π
Z 0
−π
f(x) sin nx dx +
1
π
Z π
0
f(x) sin nx dx
=
1
π
Z 0
−π
0 · sin nx dx +
1
π
Z π
0
x sin nx dx
i.e. bn =
1
π
Z π
0
x sin nx dx =
1
π
h
x

−
cos nx
n
iπ
0
−
Z π
0

−
cos nx
n

dx

(using integration by parts)
=
1
π

−
1
n
[x cos nx]
π
0 +
1
n
Z π
0
cos nx dx

=
1
π

−
1
n
(π cos nπ − 0) +
1
n

sin nx
n
π
0

= −
1
n
(−1)n
+
1
πn2
(0 − 0), see Trig
= −
1
n
(−1)n
Toc JJ II J I Back
Solutions to exercises 36
i.e. bn =
(
− 1
n , n even
+ 1
n , n odd
We now have
f(x) =
a0
2
+
∞
X
n=1
[an cos nx + bn sin nx]
where a0 =
π
2
, an =
(
0 , n even
− 2
πn2 , n odd
, bn =
(
− 1
n , n even
1
n , n odd
Constructing a table of values gives
n 1 2 3 4 5
an − 2
π 0 − 2
π · 1
32 0 − 2
π · 1
52
bn 1 −1
2
1
3 −1
4
1
5
Toc JJ II J I Back
Solutions to exercises 37
This table of coefficients gives
f(x) =
1
2
π
2

+

−
2
π

cos x + 0 · cos 2x
+

−
2
π
·
1
32

cos 3x + 0 · cos 4x
+

−
2
π
·
1
52

cos 5x + ...
+ sin x −
1
2
sin 2x +
1
3
sin 3x − ...
i.e. f(x) =
π
4
−
2
π

cos x +
1
32
cos 3x +
1
52
cos 5x + ...

+

sin x −
1
2
sin 2x +
1
3
sin 3x − ...

and we have found the required series!
Toc JJ II J I Back
Solutions to exercises 38
c) Pick an appropriate value of x, to show that
(i) π
4 = 1 − 1
3 + 1
5 − 1
7 + ...
Comparing this series with
f(x) =
π
4
−
2
π

cos x +
1
32
cos 3x +
1
52
cos 5x + ...

+

sin x −
1
2
sin 2x +
1
3
sin 3x − ...

,
the required series of constants does not involve terms like 1
32 , 1
52 , 1
72 , ....
So we need to pick a value of x that sets the cos nx terms to zero.
The Trig section shows that cos nπ
2 = 0 when n is odd, and note also
that cos nx terms in the Fourier series all have odd n
i.e. cos x = cos 3x = cos 5x = ... = 0 when x = π
2 ,
i.e. cos π
2 = cos 3π
2 = cos 5π
2 = ... = 0
Toc JJ II J I Back
Solutions to exercises 39
Setting x = π
2 in the series for f(x) gives
f
π
2

=
π
4
−
2
π

cos
π
2
+
1
32
cos
3π
2
+
1
52
cos
5π
2
+ ...

+

sin
π
2
−
1
2
sin
2π
2
+
1
3
sin
3π
2
−
1
4
sin
4π
2
+
1
5
sin
5π
2
− ...

=
π
4
−
2
π
[0 + 0 + 0 + ...]
+

1 −
1
2
sin π
|{z}
=0
+
1
3
· (−1) −
1
4
sin 2π
| {z }
=0
+
1
5
· (1) − ...


The graph of f(x) shows that f π
2

= π
2 , so that
π
2
=
π
4
+ 1 −
1
3
+
1
5
−
1
7
+ ...
i.e.
π
4
= 1 −
1
3
+
1
5
−
1
7
+ ...
Toc JJ II J I Back
Solutions to exercises 40
Pick an appropriate value of x, to show that
(ii) π2
8 = 1 + 1
32 + 1
52 + 1
72 + ...
Compare this series with
f(x) =
π
4
−
2
π

cos x +
1
32
cos 3x +
1
52
cos 5x + ...

+

sin x −
1
2
sin 2x +
1
3
sin 3x − ...

.
This time, we want to use the coefficients of the cos nx terms, and
the same choice of x needs to set the sin nx terms to zero
Picking x = 0 gives
sin x = sin 2x = sin 3x = 0 and cos x = cos 3x = cos 5x = 1
Note also that the graph of f(x) gives f(x) = 0 when x = 0
Toc JJ II J I Back
Solutions to exercises 41
So, picking x = 0 gives
0 =
π
4
−
2
π

cos 0 +
1
32
cos 0 +
1
52
cos 0 +
1
72
cos 0 + ...

+ sin 0 −
sin 0
2
+
sin 0
3
− ...
i.e. 0 =
π
4
−
2
π

1 +
1
32
+
1
52
+
1
72
+ ...

+ 0 − 0 + 0 − ...
We then find that
2
π

1 +
1
32
+
1
52
+
1
72
+ ...

=
π
4
and 1 +
1
32
+
1
52
+
1
72
+ ... =
π2
8
.
Return to Exercise 2
Toc JJ II J I Back
Solutions to exercises 42
Exercise 3.
f(x) =

x, 0  x  π
π, π  x  2π, and has period 2π
a) Sketch a graph of f(x) in the interval −2π  x  2π
π
0 π 2π
−2π
f ( x )
x
−π
Toc JJ II J I Back
Solutions to exercises 43
b) Fourier series representation of f(x)
STEP ONE
a0 =
1
π
Z 2π
0
f(x)dx =
1
π
Z π
0
f(x)dx +
1
π
Z 2π
π
f(x)dx
=
1
π
Z π
0
xdx +
1
π
Z 2π
π
π · dx
=
1
π

x2
2
π
0
+
π
π

x
2π
π
=
1
π

π2
2
− 0

+

2π − π

=
π
2
+ π
i.e. a0 =
3π
2
.
Toc JJ II J I Back
Solutions to exercises 44
STEP TWO
an =
1
π
Z 2π
0
f(x) cos nx dx
=
1
π
Z π
0
x cos nx dx +
1
π
Z 2π
π
π · cos nx dx
=
1
π
 
x
sin nx
n
π
0
−
Z π
0
sin nx
n
dx
#
| {z }
using integration by parts
+
π
π

sin nx
n
2π
π
=
1
π

1
n

π sin nπ − 0 · sin n0

−

− cos nx
n2
π
0
#
+
1
n
(sin n2π − sin nπ)
Toc JJ II J I Back
Solutions to exercises 45
i.e. an =
1
π

1
n

0 − 0

+

cos nπ
n2
−
cos 0
n2
#
+
1
n

0 − 0

=
1
n2π
(cos nπ − 1), see Trig
=
1
n2π
(−1)n
− 1

,
i.e. an =
(
− 2
n2π , n odd
0 , n even.
Toc JJ II J I Back
Solutions to exercises 46
STEP THREE
bn =
1
π
Z 2π
0
f(x) sin nx dx
=
1
π
Z π
0
x sin nx dx +
1
π
Z 2π
π
π · sin nx dx
=
1
π

h
x

−
cos nx
n
iπ
0
−
Z π
0

− cos nx
n

dx
#
| {z }
using integration by parts
+
π
π

− cos nx
n
2π
π
=
1
π
 
−π cos nπ
n
+ 0

+

sin nx
n2
π
0
#
−
1
n
(cos 2nπ − cos nπ)
=
1
π

−π(−1)n
n
+

sin nπ − sin 0
n2
 #
−
1
n
1 − (−1)n

= −
1
n
(−1)n
+ 0 −
1
n
1 − (−1)n

Toc JJ II J I Back
Solutions to exercises 47
i.e. bn = −
1
n
(−1)n
−
1
n
+
1
n
(−1)n
i.e. bn = −
1
n
.
We now have
f(x) =
a0
2
+
∞
X
n=1
[an cos nx + bn sin nx]
where a0 = 3π
2 , an =
(
0 , n even
− 2
n2π , n odd
, bn = − 1
n
Constructing a table of values gives
n 1 2 3 4 5
an − 2
π 0 − 2
π
1
32

0 − 2
π
1
52

bn −1 −1
2 −1
3 −1
4 −1
5
Toc JJ II J I Back
Solutions to exercises 48
This table of coefficients gives
f(x) = 1
2

3π
2

+

− 2
π
 h
cos x + 0 · cos 2x + 1
32 cos 3x + . . .
i
+

− 1
 h
sin x + 1
2 sin 2x + 1
3 sin 3x + . . .
i
i.e. f(x) = 3π
4 − 2
π
h
cos x + 1
32 cos 3x + 1
52 cos 5x + . . .
i
−
h
sin x + 1
2 sin 2x + 1
3 sin 3x + . . .
i
and we have found the required series.
Toc JJ II J I Back
Solutions to exercises 49
c) Pick an appropriate value of x, to show that
(i) π
4 = 1 − 1
3 + 1
5 − 1
7 + . . .
Compare this series with
f(x) =
3π
4
−
2
π

cos x +
1
32
cos 3x +
1
52
cos 5x + . . .

−

sin x +
1
2
sin 2x +
1
3
sin 3x + . . .

Here, we want to set the cos nx terms to zero (since their coefficients
are 1, 1
32 , 1
52 , . . .). Since cos nπ
2 = 0 when n is odd, we will try setting
x = π
2 in the series. Note also that f(π
2 ) = π
2
This gives
π
2 = 3π
4 − 2
π

cos π
2 + 1
32 cos 3π
2 + 1
52 cos 5π
2 + . . .

−

sin π
2 + 1
2 sin 2π
2 + 1
3 sin 3π
2 + 1
4 sin 4π
2 + 1
5 sin 5π
2 + . . .

Toc JJ II J I Back
Solutions to exercises 50
and
π
2 = 3π
4 − 2
π [0 + 0 + 0 + . . .]
−

(1) + 1
2 · (0) + 1
3 · (−1) + 1
4 · (0) + 1
5 · (1) + . . .

then
π
2 = 3π
4 − 1 − 1
3 + 1
5 − 1
7 + . . .

1 − 1
3 + 1
5 − 1
7 + . . . = 3π
4 − π
2
1 − 1
3 + 1
5 − 1
7 + . . . = π
4 , as required.
To show that
(ii) π2
8 = 1 + 1
32 + 1
52 + 1
72 + . . . ,
We want zero sin nx terms and to use the coefficients of cos nx
Toc JJ II J I Back
Solutions to exercises 51
Setting x = 0 eliminates the sin nx terms from the series, and also
gives
cos x+
1
32
cos 3x+
1
52
cos 5x+
1
72
cos 7x+. . . = 1+
1
32
+
1
52
+
1
72
+. . .
(i.e. the desired series).
The graph of f(x) shows a discontinuity (a “vertical jump”) at x = 0
The Fourier series converges to a value that is half-way between the
two values of f(x) around this discontinuity. That is the series will
converge to π
2 at x = 0
i.e.
π
2
=
3π
4
−
2
π

cos 0 +
1
32
cos 0 +
1
52
cos 0 +
1
72
cos 0 + . . .

−

sin 0 +
1
2
sin 0 +
1
3
sin 0 + . . .

and
π
2
=
3π
4
−
2
π

1 +
1
32
+
1
52
+
1
72
+ . . .

− [0 + 0 + 0 + . . .]
Toc JJ II J I Back
Solutions to exercises 52
Finally, this gives
−
π
4
= −
2
π

1 +
1
32
+
1
52
+
1
72
+ . . .

and
π2
8
= 1 +
1
32
+
1
52
+
1
72
+ . . .
Return to Exercise 3
Toc JJ II J I Back
Solutions to exercises 53
Exercise 4.
f(x) = x
2 , over the interval 0  x  2π and has period 2π
a) Sketch a graph of f(x) in the interval 0  x  4π
π
3π 4π
0 2π
f ( x )
x
π
Toc JJ II J I Back
Solutions to exercises 54
b) Fourier series representation of f(x)
STEP ONE
a0 =
1
π
Z 2π
0
f(x) dx
=
1
π
Z 2π
0
x
2
dx
=
1
π

x2
4
2π
0
=
1
π

(2π)2
4
− 0

i.e. a0 = π.
Toc JJ II J I Back
Solutions to exercises 55
STEP TWO
an =
1
π
Z 2π
0
f(x) cos nx dx
=
1
π
Z 2π
0
x
2
cos nx dx
=
1
2π
( 
x
sin nx
n
2π
0
−
1
n
Z 2π
0
sin nx dx
)
| {z }
using integration by parts
=
1
2π
( 
2π
sin n2π
n
− 0 ·
sin n · 0
n

−
1
n
· 0
)
=
1
2π
(
(0 − 0) −
1
n
· 0
)
, see Trig
i.e. an = 0.
Toc JJ II J I Back
Solutions to exercises 56
STEP THREE
bn =
1
π
Z 2π
0
f(x) sin nx dx =
1
π
Z 2π
0
x
2

sin nx dx
=
1
2π
Z 2π
0
x sin nx dx
=
1
2π
( 
x

− cos nx
n
2π
0
−
Z 2π
0

− cos nx
n

dx
)
| {z }
using integration by parts
=
1
2π
(
1
n
(−2π cos n2π + 0) +
1
n
· 0
)
, see Trig
=
−2π
2πn
cos(n2π)
= −
1
n
cos(2nπ)
i.e. bn = −
1
n
, since 2n is even (see Trig)
Toc JJ II J I Back
Solutions to exercises 57
We now have
f(x) =
a0
2
+
∞
X
n=1
[an cos nx + bn sin nx]
where a0 = π, an = 0, bn = − 1
n
These Fourier coefficients give
f(x) =
π
2
+
∞
X
n=1

0 −
1
n
sin nx

i.e. f(x) =
π
2
−

sin x +
1
2
sin 2x +
1
3
sin 3x + . . .

.
Toc JJ II J I Back
Solutions to exercises 58
c) Pick an appropriate value of x, to show that
π
4 = 1 − 1
3 + 1
5 − 1
7 + 1
9 − . . .
Setting x = π
2 gives f(x) = π
4 and
π
4
=
π
2
−

1 + 0 −
1
3
+ 0 +
1
5
+ 0 − . . .

π
4
=
π
2
−

1 −
1
3
+
1
5
−
1
7
+
1
9
− . . .


1 −
1
3
+
1
5
−
1
7
+
1
9
− . . .

=
π
4
i.e. 1 −
1
3
+
1
5
−
1
7
+
1
9
− . . . =
π
4
.
Return to Exercise 4
Toc JJ II J I Back
Solutions to exercises 59
Exercise 5.
f(x) =

π − x , 0  x  π
0 , π  x  2π, and has period 2π
a) Sketch a graph of f(x) in the interval −2π  x  2π
π
0 π 2π
−2π
f ( x )
x
−π
Toc JJ II J I Back
Solutions to exercises 60
b) Fourier series representation of f(x)
STEP ONE
a0 =
1
π
Z 2π
0
f(x) dx
=
1
π
Z π
0
(π − x) dx +
1
π
Z 2π
π
0 · dx
=
1
π

πx −
1
2
x2
π
0
+ 0
=
1
π

π2
−
π2
2
− 0

i.e. a0 =
π
2
.
Toc JJ II J I Back
Solutions to exercises 61
STEP TWO
an =
1
π
Z 2π
0
f(x) cos nx dx
=
1
π
Z π
0
(π − x) cos nx dx +
1
π
Z 2π
π
0 · dx
i.e. an =
1
π

(π − x)
sin nx
n
π
0
−
Z π
0
(−1) ·
sin nx
n
dx

| {z }
using integration by parts
+0
=
1
π

(0 − 0) +
Z π
0
sin nx
n
dx

, see Trig
=
1
πn

− cos nx
n
π
0
= −
1
πn2
(cos nπ − cos 0)
i.e. an = −
1
πn2
((−1)n
− 1) , see Trig
Toc JJ II J I Back
Solutions to exercises 62
i.e. an =



0 , n even
2
πn2 , n odd
STEP THREE
bn =
1
π
Z 2π
0
f(x) sin nx dx
=
1
π
Z π
0
(π − x) sin nx dx +
Z 2π
π
0 · dx
=
1
π
h
(π − x)

−
cos nx
n
iπ
0
−
Z π
0
(−1) ·

−
cos nx
n

dx

+ 0
=
1
π

0 −

−
π
n

−
1
n
· 0

, see Trig
i.e. bn =
1
n
.
Toc JJ II J I Back
Solutions to exercises 63
In summary, a0 = π
2 and a table of other Fourier cofficients is
n 1 2 3 4 5
an = 2
πn2 (when n is odd) 2
π 0 2
π
1
32 0 2
π
1
52
bn = 1
n 1 1
2
1
3
1
4
1
5
∴ f(x) =
a0
2
+
∞
X
n=1
[an cos nx + bn sin nx]
=
π
4
+
2
π
cos x +
2
π
1
32
cos 3x +
2
π
1
52
cos 5x + . . .
+ sin x +
1
2
sin 2x +
1
3
sin 3x +
1
4
sin 4x + . . .
i.e. f(x) =
π
4
+
2
π

cos x +
1
32
cos 3x +
1
52
cos 5x + . . .

+ sin x +
1
2
sin 2x +
1
3
sin 3x +
1
4
sin 4x + . . .
Toc JJ II J I Back
Solutions to exercises 64
c) To show that π2
8 = 1 + 1
32 + 1
52 + . . . ,
note that, as x → 0 , the series converges to the half-way value of π
2 ,
and then
π
2
=
π
4
+
2
π

cos 0 +
1
32
cos 0 +
1
52
cos 0 + . . .

+ sin 0 +
1
2
sin 0 +
1
3
sin 0 + . . .
π
2
=
π
4
+
2
π

1 +
1
32
+
1
52
+ . . .

+ 0
π
4
=
2
π

1 +
1
32
+
1
52
+ . . .

giving
π2
8
= 1 +
1
32
+
1
52
+ . . .
Return to Exercise 5
Toc JJ II J I Back
Solutions to exercises 65
Exercise 6.
f(x) = x, over the interval −π  x  π and has period 2π
a) Sketch a graph of f(x) in the interval −3π  x  3π
−π
0
π
π 2π 3π
−3π −2π
f ( x )
x
−π
Toc JJ II J I Back
Solutions to exercises 66
b) Fourier series representation of f(x)
STEP ONE
a0 =
1
π
Z π
−π
f(x) dx
=
1
π
Z π
−π
x dx
=
1
π

x2
2
π
−π
=
1
π

π2
2
−
π2
2

i.e. a0 = 0.
Toc JJ II J I Back
Solutions to exercises 67
STEP TWO
an =
1
π
Z π
−π
f(x) cos nx dx
=
1
π
Z π
−π
x cos nx dx
=
1
π
(
x
sin nx
n
π
−π
−
Z π
−π

sin nx
n

dx
)
| {z }
using integration by parts
i.e. an =
1
π

1
n
(π sin nπ − (−π) sin(−nπ)) −
1
n
Z π
−π
sin nx dx

=
1
π

1
n
(0 − 0) −
1
n
· 0

,
since sin nπ = 0 and
Z
2π
sin nx dx = 0,
i.e. an = 0.
Toc JJ II J I Back
Solutions to exercises 68
STEP THREE
bn =
1
π
Z π
−π
f(x) sin nx dx
=
1
π
Z π
−π
x sin nx dx
=
1
π
(
−x cos nx
n
π
−π
−
Z π
−π

− cos nx
n

dx
)
=
1
π

−
1
n
[x cos nx]
π
−π +
1
n
Z π
−π
cos nx dx

=
1
π

−
1
n
(π cos nπ − (−π) cos(−nπ)) +
1
n
· 0

= −
π
nπ
(cos nπ + cos nπ)
= −
1
n
(2 cos nπ)
i.e. bn = −
2
n
(−1)n
.
Toc JJ II J I Back
Solutions to exercises 69
We thus have
f(x) =
a0
2
+
∞
X
n=1
h
an cos nx + bn sin nx
i
with a0 = 0, an = 0, bn = − 2
n (−1)n
and
n 1 2 3
bn 2 −1 2
3
Therefore
f(x) = b1 sin x + b2 sin 2x + b3 sin 3x + . . .
i.e. f(x) = 2

sin x −
1
2
sin 2x +
1
3
sin 3x − . . .

and we have found the required Fourier series.
Toc JJ II J I Back
Solutions to exercises 70
c) Pick an appropriate value of x, to show that
π
4 = 1 − 1
3 + 1
5 − 1
7 + . . .
Setting x = π
2 gives f(x) = π
2 and
π
2
= 2

sin
π
2
−
1
2
sin
2π
2
+
1
3
sin
3π
2
−
1
4
sin
4π
2
+
1
5
sin
5π
2
− . . .

This gives
π
2
= 2

1 + 0 +
1
3
· (−1) − 0 +
1
5
· (1) − 0 +
1
7
· (−1) + . . .

π
2
= 2

1 −
1
3
+
1
5
−
1
7
+ . . .

i.e.
π
4
= 1 −
1
3
+
1
5
−
1
7
+ . . .
Return to Exercise 6
Toc JJ II J I Back
Solutions to exercises 71
Exercise 7.
f(x) = x2
, over the interval −π  x  π and has period 2π
a) Sketch a graph of f(x) in the interval −3π  x  3π
0
π
2
π 2π 3π
−3π −2π
f ( x )
x
−π
Toc JJ II J I Back
Solutions to exercises 72
b) Fourier series representation of f(x)
STEP ONE
a0 =
1
π
Z π
−π
f(x)dx =
1
π
Z π
−π
x2
dx
=
1
π

x3
3
π
−π
=
1
π

π3
3
−

−
π3
3

=
1
π

2π3
3

i.e. a0 =
2π2
3
.
Toc JJ II J I Back
Solutions to exercises 73
STEP TWO
an =
1
π
Z π
−π
f(x) cos nx dx
=
1
π
Z π
−π
x2
cos nx dx
=
1
π
( 
x2 sin nx
n
π
−π
−
Z π
−π
2x

sin nx
n

dx
)
| {z }
using integration by parts
=
1
π
(
1
n
π2
sin nπ − π2
sin(−nπ)

−
2
n
Z π
−π
x sin nx dx
)
=
1
π
(
1
n
(0 − 0) −
2
n
Z π
−π
x sin nx dx
)
, see Trig
=
−2
nπ
Z π
−π
x sin nx dx
Toc JJ II J I Back
Solutions to exercises 74
i.e. an =
−2
nπ
( 
x

− cos nx
n
π
−π
−
Z π
−π

− cos nx
n

dx
)
| {z }
using integration by parts again
=
−2
nπ
(
−
1
n
[x cos nx]
π
−π +
1
n
Z π
−π
cos nx dx
)
=
−2
nπ
(
−
1
n

π cos nπ − (−π) cos(−nπ)

+
1
n
· 0
)
=
−2
nπ
(
−
1
n

π(−1)n
+ π(−1)n
)
=
−2
nπ
(
−2π
n
(−1)n
)
Toc JJ II J I Back
Solutions to exercises 75
i.e. an =
−2
nπ
(
−
2π
n
(−1)n
)
=
+4π
πn2
(−1)n
=
4
n2
(−1)n
i.e. an =
( 4
n2 , n even
−4
n2 , n odd.
Toc JJ II J I Back
Solutions to exercises 76
STEP THREE
bn =
1
π
Z π
−π
f(x) sin nx dx =
1
π
Z π
−π
x2
sin nx dx
=
1
π
( 
x2

− cos nx
n
π
−π
−
Z π
−π
2x ·

− cos nx
n

dx
)
| {z }
using integration by parts
=
1
π
(
−
1
n

x2
cos nx
π
−π
+
2
n
Z π
−π
x cos nx dx
)
=
1
π
(
−
1
n
π2
cos nπ − π2
cos(−nπ)

+
2
n
Z π
−π
x cos nx dx
)
=
1
π
(
−
1
n
π2
cos nπ − π2
cos(nπ)

| {z }
=0
+
2
n
Z π
−π
x cos nx dx
)
=
2
πn
Z π
−π
x cos nx dx
Toc JJ II J I Back
Solutions to exercises 77
i.e. bn =
2
πn
( 
x
sin nx
n
π
−π
−
Z π
−π
sin nx
n
dx
)
| {z }
using integration by parts
=
2
πn
(
1
n
(π sin nπ − (−π) sin(−nπ)) −
1
n
Z π
−π
sin nx dx
)
=
2
πn
(
1
n
(0 + 0) −
1
n
Z π
−π
sin nx dx
)
=
−2
πn2
Z π
−π
sin nx dx
i.e. bn = 0.
Toc JJ II J I Back
Solutions to exercises 78
∴ f(x) =
a0
2
+
∞
X
n=1
[an cos nx + bn sin nx]
where a0 = 2π2
3 , an =
(
4
n2 , n even
−4
n2 , n odd
, bn = 0
n 1 2 3 4
an −4(1) 4 1
22

−4 1
32

4 1
42

i.e. f(x) =
1
2

2π2
3

− 4

cos x −
1
22
cos 2x +
1
32
cos 3x −
1
42
cos 4x . . .

+ [0 + 0 + 0 + . . .]
i.e. f(x) =
π2
3
− 4

cos x −
1
22
cos 2x +
1
32
cos 3x −
1
42
cos 4x + . . .

.
Toc JJ II J I Back
Solutions to exercises 79
c) To show that π2
6 = 1 + 1
22 + 1
32 + 1
42 + . . . ,
use the fact that cos nπ =
(
1 , n even
−1 , n odd
i.e. cos x − 1
22 cos 2x + 1
32 cos 3x − 1
42 cos 4x + . . . with x = π
gives cos π − 1
22 cos 2π + 1
32 cos 3π − 1
42 cos 4π + . . .
i.e. (−1) − 1
22 · (1) + 1
32 · (−1) − 1
42 · (1) + . . .
i.e. −1 − 1
22 − 1
32 − 1
42 + . . .
= −1 ·

1 +
1
22
+
1
32
+
1
42
+ . . .

| {z }
(the desired series)
Toc JJ II J I Back
Solutions to exercises 80
The graph of f(x) gives that f(π) = π2
and the series converges to
this value.
Setting x = π in the Fourier series thus gives
π2
=
π2
3
− 4

cos π −
1
22
cos 2π +
1
32
cos 3π −
1
42
cos 4π + . . .

π2
=
π2
3
− 4

−1 −
1
22
−
1
32
−
1
42
− . . .

π2
=
π2
3
+ 4

1 +
1
22
+
1
32
+
1
42
+ . . .

2π2
3
= 4

1 +
1
22
+
1
32
+
1
42
+ . . .

i.e.
π2
6
= 1 +
1
22
+
1
32
+
1
42
+ . . .
Return to Exercise 7
Toc JJ II J I Back

Weitere ähnliche Inhalte

Ähnlich wie Fourier-series-tutorial.pdf

Review for the Third Midterm of Math 150 B 11242014Probl.docx
Review for the Third Midterm of Math 150 B 11242014Probl.docxReview for the Third Midterm of Math 150 B 11242014Probl.docx
Review for the Third Midterm of Math 150 B 11242014Probl.docxjoellemurphey
 
8.further calculus Further Mathematics Zimbabwe Zimsec Cambridge
8.further calculus   Further Mathematics Zimbabwe Zimsec Cambridge8.further calculus   Further Mathematics Zimbabwe Zimsec Cambridge
8.further calculus Further Mathematics Zimbabwe Zimsec Cambridgealproelearning
 
Natural and Clamped Cubic Splines
Natural and Clamped Cubic SplinesNatural and Clamped Cubic Splines
Natural and Clamped Cubic SplinesMark Brandao
 
Math 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdfMath 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdfhabtamu292245
 
Solutions_Chapter3.pdf
Solutions_Chapter3.pdfSolutions_Chapter3.pdf
Solutions_Chapter3.pdfTessydee
 
chap 2 Ex#1.1
chap 2 Ex#1.1chap 2 Ex#1.1
chap 2 Ex#1.1Ans Ali
 
Topic: Fourier Series ( Periodic Function to change of interval)
Topic: Fourier Series ( Periodic Function to  change of interval)Topic: Fourier Series ( Periodic Function to  change of interval)
Topic: Fourier Series ( Periodic Function to change of interval)Abhishek Choksi
 
Fourier series Introduction
Fourier series IntroductionFourier series Introduction
Fourier series IntroductionRizwan Kazi
 
Higher formal homeworks unit 1
Higher formal homeworks   unit 1Higher formal homeworks   unit 1
Higher formal homeworks unit 1sjamaths
 
SL Formulabooklet
SL FormulabookletSL Formulabooklet
SL Formulabookletnayaks3
 
CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA
CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA
CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA Gautham Rajesh
 

Ähnlich wie Fourier-series-tutorial.pdf (19)

maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdf
 
Review for the Third Midterm of Math 150 B 11242014Probl.docx
Review for the Third Midterm of Math 150 B 11242014Probl.docxReview for the Third Midterm of Math 150 B 11242014Probl.docx
Review for the Third Midterm of Math 150 B 11242014Probl.docx
 
8.further calculus Further Mathematics Zimbabwe Zimsec Cambridge
8.further calculus   Further Mathematics Zimbabwe Zimsec Cambridge8.further calculus   Further Mathematics Zimbabwe Zimsec Cambridge
8.further calculus Further Mathematics Zimbabwe Zimsec Cambridge
 
05_AJMS_332_21.pdf
05_AJMS_332_21.pdf05_AJMS_332_21.pdf
05_AJMS_332_21.pdf
 
Natural and Clamped Cubic Splines
Natural and Clamped Cubic SplinesNatural and Clamped Cubic Splines
Natural and Clamped Cubic Splines
 
Math 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdfMath 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdf
 
Solutions_Chapter3.pdf
Solutions_Chapter3.pdfSolutions_Chapter3.pdf
Solutions_Chapter3.pdf
 
exponen dan logaritma
exponen dan logaritmaexponen dan logaritma
exponen dan logaritma
 
Function
FunctionFunction
Function
 
Modul 1 functions
Modul 1 functionsModul 1 functions
Modul 1 functions
 
chap 2 Ex#1.1
chap 2 Ex#1.1chap 2 Ex#1.1
chap 2 Ex#1.1
 
AJMS_389_22.pdf
AJMS_389_22.pdfAJMS_389_22.pdf
AJMS_389_22.pdf
 
Topic: Fourier Series ( Periodic Function to change of interval)
Topic: Fourier Series ( Periodic Function to  change of interval)Topic: Fourier Series ( Periodic Function to  change of interval)
Topic: Fourier Series ( Periodic Function to change of interval)
 
Fourier series Introduction
Fourier series IntroductionFourier series Introduction
Fourier series Introduction
 
Higher formal homeworks unit 1
Higher formal homeworks   unit 1Higher formal homeworks   unit 1
Higher formal homeworks unit 1
 
SL Formulabooklet
SL FormulabookletSL Formulabooklet
SL Formulabooklet
 
CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA
CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA
CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA
 
ch3.ppt
ch3.pptch3.ppt
ch3.ppt
 
Functions
FunctionsFunctions
Functions
 

Kürzlich hochgeladen

9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort servicejennyeacort
 
Multiple time frame trading analysis -brianshannon.pdf
Multiple time frame trading analysis -brianshannon.pdfMultiple time frame trading analysis -brianshannon.pdf
Multiple time frame trading analysis -brianshannon.pdfchwongval
 
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...Jack DiGiovanna
 
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...dajasot375
 
Generative AI for Social Good at Open Data Science East 2024
Generative AI for Social Good at Open Data Science East 2024Generative AI for Social Good at Open Data Science East 2024
Generative AI for Social Good at Open Data Science East 2024Colleen Farrelly
 
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024thyngster
 
GA4 Without Cookies [Measure Camp AMS]
GA4 Without Cookies [Measure Camp AMS]GA4 Without Cookies [Measure Camp AMS]
GA4 Without Cookies [Measure Camp AMS]📊 Markus Baersch
 
High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...
High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...
High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...soniya singh
 
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /WhatsappsBeautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsappssapnasaifi408
 
Top 5 Best Data Analytics Courses In Queens
Top 5 Best Data Analytics Courses In QueensTop 5 Best Data Analytics Courses In Queens
Top 5 Best Data Analytics Courses In Queensdataanalyticsqueen03
 
From idea to production in a day – Leveraging Azure ML and Streamlit to build...
From idea to production in a day – Leveraging Azure ML and Streamlit to build...From idea to production in a day – Leveraging Azure ML and Streamlit to build...
From idea to production in a day – Leveraging Azure ML and Streamlit to build...Florian Roscheck
 
Predictive Analysis for Loan Default Presentation : Data Analysis Project PPT
Predictive Analysis for Loan Default  Presentation : Data Analysis Project PPTPredictive Analysis for Loan Default  Presentation : Data Analysis Project PPT
Predictive Analysis for Loan Default Presentation : Data Analysis Project PPTBoston Institute of Analytics
 
DBA Basics: Getting Started with Performance Tuning.pdf
DBA Basics: Getting Started with Performance Tuning.pdfDBA Basics: Getting Started with Performance Tuning.pdf
DBA Basics: Getting Started with Performance Tuning.pdfJohn Sterrett
 
Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)
Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)
Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)jennyeacort
 
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM TRACKING WITH GOOGLE ANALYTICS.pptx
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM  TRACKING WITH GOOGLE ANALYTICS.pptxEMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM  TRACKING WITH GOOGLE ANALYTICS.pptx
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM TRACKING WITH GOOGLE ANALYTICS.pptxthyngster
 
Heart Disease Classification Report: A Data Analysis Project
Heart Disease Classification Report: A Data Analysis ProjectHeart Disease Classification Report: A Data Analysis Project
Heart Disease Classification Report: A Data Analysis ProjectBoston Institute of Analytics
 
NLP Data Science Project Presentation:Predicting Heart Disease with NLP Data ...
NLP Data Science Project Presentation:Predicting Heart Disease with NLP Data ...NLP Data Science Project Presentation:Predicting Heart Disease with NLP Data ...
NLP Data Science Project Presentation:Predicting Heart Disease with NLP Data ...Boston Institute of Analytics
 
2006_GasProcessing_HB (1).pdf HYDROCARBON PROCESSING
2006_GasProcessing_HB (1).pdf HYDROCARBON PROCESSING2006_GasProcessing_HB (1).pdf HYDROCARBON PROCESSING
2006_GasProcessing_HB (1).pdf HYDROCARBON PROCESSINGmarianagonzalez07
 
Identifying Appropriate Test Statistics Involving Population Mean
Identifying Appropriate Test Statistics Involving Population MeanIdentifying Appropriate Test Statistics Involving Population Mean
Identifying Appropriate Test Statistics Involving Population MeanMYRABACSAFRA2
 
20240419 - Measurecamp Amsterdam - SAM.pdf
20240419 - Measurecamp Amsterdam - SAM.pdf20240419 - Measurecamp Amsterdam - SAM.pdf
20240419 - Measurecamp Amsterdam - SAM.pdfHuman37
 

Kürzlich hochgeladen (20)

9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
 
Multiple time frame trading analysis -brianshannon.pdf
Multiple time frame trading analysis -brianshannon.pdfMultiple time frame trading analysis -brianshannon.pdf
Multiple time frame trading analysis -brianshannon.pdf
 
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
 
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
 
Generative AI for Social Good at Open Data Science East 2024
Generative AI for Social Good at Open Data Science East 2024Generative AI for Social Good at Open Data Science East 2024
Generative AI for Social Good at Open Data Science East 2024
 
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
 
GA4 Without Cookies [Measure Camp AMS]
GA4 Without Cookies [Measure Camp AMS]GA4 Without Cookies [Measure Camp AMS]
GA4 Without Cookies [Measure Camp AMS]
 
High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...
High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...
High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...
 
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /WhatsappsBeautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsapps
 
Top 5 Best Data Analytics Courses In Queens
Top 5 Best Data Analytics Courses In QueensTop 5 Best Data Analytics Courses In Queens
Top 5 Best Data Analytics Courses In Queens
 
From idea to production in a day – Leveraging Azure ML and Streamlit to build...
From idea to production in a day – Leveraging Azure ML and Streamlit to build...From idea to production in a day – Leveraging Azure ML and Streamlit to build...
From idea to production in a day – Leveraging Azure ML and Streamlit to build...
 
Predictive Analysis for Loan Default Presentation : Data Analysis Project PPT
Predictive Analysis for Loan Default  Presentation : Data Analysis Project PPTPredictive Analysis for Loan Default  Presentation : Data Analysis Project PPT
Predictive Analysis for Loan Default Presentation : Data Analysis Project PPT
 
DBA Basics: Getting Started with Performance Tuning.pdf
DBA Basics: Getting Started with Performance Tuning.pdfDBA Basics: Getting Started with Performance Tuning.pdf
DBA Basics: Getting Started with Performance Tuning.pdf
 
Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)
Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)
Call Us ➥97111√47426🤳Call Girls in Aerocity (Delhi NCR)
 
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM TRACKING WITH GOOGLE ANALYTICS.pptx
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM  TRACKING WITH GOOGLE ANALYTICS.pptxEMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM  TRACKING WITH GOOGLE ANALYTICS.pptx
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM TRACKING WITH GOOGLE ANALYTICS.pptx
 
Heart Disease Classification Report: A Data Analysis Project
Heart Disease Classification Report: A Data Analysis ProjectHeart Disease Classification Report: A Data Analysis Project
Heart Disease Classification Report: A Data Analysis Project
 
NLP Data Science Project Presentation:Predicting Heart Disease with NLP Data ...
NLP Data Science Project Presentation:Predicting Heart Disease with NLP Data ...NLP Data Science Project Presentation:Predicting Heart Disease with NLP Data ...
NLP Data Science Project Presentation:Predicting Heart Disease with NLP Data ...
 
2006_GasProcessing_HB (1).pdf HYDROCARBON PROCESSING
2006_GasProcessing_HB (1).pdf HYDROCARBON PROCESSING2006_GasProcessing_HB (1).pdf HYDROCARBON PROCESSING
2006_GasProcessing_HB (1).pdf HYDROCARBON PROCESSING
 
Identifying Appropriate Test Statistics Involving Population Mean
Identifying Appropriate Test Statistics Involving Population MeanIdentifying Appropriate Test Statistics Involving Population Mean
Identifying Appropriate Test Statistics Involving Population Mean
 
20240419 - Measurecamp Amsterdam - SAM.pdf
20240419 - Measurecamp Amsterdam - SAM.pdf20240419 - Measurecamp Amsterdam - SAM.pdf
20240419 - Measurecamp Amsterdam - SAM.pdf
 

Fourier-series-tutorial.pdf

  • 1. Series FOURIER SERIES Graham S McDonald A self-contained Tutorial Module for learning the technique of Fourier series analysis ● Table of contents ● Begin Tutorial c 2004 g.s.mcdonald@salford.ac.uk
  • 2. Table of contents 1. Theory 2. Exercises 3. Answers 4. Integrals 5. Useful trig results 6. Alternative notation 7. Tips on using solutions Full worked solutions
  • 3. Section 1: Theory 3 1. Theory ● A graph of periodic function f(x) that has period L exhibits the same pattern every L units along the x-axis, so that f(x + L) = f(x) for every value of x. If we know what the function looks like over one complete period, we can thus sketch a graph of the function over a wider interval of x (that may contain many periods) f ( x ) x P E R I O D = L Toc JJ II J I Back
  • 4. Section 1: Theory 4 ● This property of repetition defines a fundamental spatial fre- quency k = 2π L that can be used to give a first approximation to the periodic pattern f(x): f(x) ' c1 sin(kx + α1) = a1 cos(kx) + b1 sin(kx), where symbols with subscript 1 are constants that determine the am- plitude and phase of this first approximation ● A much better approximation of the periodic pattern f(x) can be built up by adding an appropriate combination of harmonics to this fundamental (sine-wave) pattern. For example, adding c2 sin(2kx + α2) = a2 cos(2kx) + b2 sin(2kx) (the 2nd harmonic) c3 sin(3kx + α3) = a3 cos(3kx) + b3 sin(3kx) (the 3rd harmonic) Here, symbols with subscripts are constants that determine the am- plitude and phase of each harmonic contribution Toc JJ II J I Back
  • 5. Section 1: Theory 5 One can even approximate a square-wave pattern with a suitable sum that involves a fundamental sine-wave plus a combination of harmon- ics of this fundamental frequency. This sum is called a Fourier series F u n d a m e n t a l + 5 h a r m o n i c s F u n d a m e n t a l + 2 0 h a r m o n i c s x P E R I O D = L F u n d a m e n t a l F u n d a m e n t a l + 2 h a r m o n i c s Toc JJ II J I Back
  • 6. Section 1: Theory 6 ● In this Tutorial, we consider working out Fourier series for func- tions f(x) with period L = 2π. Their fundamental frequency is then k = 2π L = 1, and their Fourier series representations involve terms like a1 cos x , b1 sin x a2 cos 2x , b2 sin 2x a3 cos 3x , b3 sin 3x We also include a constant term a0/2 in the Fourier series. This allows us to represent functions that are, for example, entirely above the x−axis. With a sufficient number of harmonics included, our ap- proximate series can exactly represent a given function f(x) f(x) = a0/2 + a1 cos x + a2 cos 2x + a3 cos 3x + ... + b1 sin x + b2 sin 2x + b3 sin 3x + ... Toc JJ II J I Back
  • 7. Section 1: Theory 7 A more compact way of writing the Fourier series of a function f(x), with period 2π, uses the variable subscript n = 1, 2, 3, . . . f(x) = a0 2 + ∞ X n=1 [an cos nx + bn sin nx] ● We need to work out the Fourier coefficients (a0, an and bn) for given functions f(x). This process is broken down into three steps STEP ONE a0 = 1 π Z 2π f(x) dx STEP TWO an = 1 π Z 2π f(x) cos nx dx STEP THREE bn = 1 π Z 2π f(x) sin nx dx where integrations are over a single interval in x of L = 2π Toc JJ II J I Back
  • 8. Section 1: Theory 8 ● Finally, specifying a particular value of x = x1 in a Fourier series, gives a series of constants that should equal f(x1). However, if f(x) is discontinuous at this value of x, then the series converges to a value that is half-way between the two possible function values f ( x ) x F o u r i e r s e r i e s c o n v e r g e s t o h a l f - w a y p o i n t " V e r t i c a l j u m p " / d i s c o n t i n u i t y i n t h e f u n c t i o n r e p r e s e n t e d Toc JJ II J I Back
  • 9. Section 2: Exercises 9 2. Exercises Click on Exercise links for full worked solutions (7 exercises in total). Exercise 1. Let f(x) be a function of period 2π such that f(x) = 1, −π x 0 0, 0 x π . a) Sketch a graph of f(x) in the interval −2π x 2π b) Show that the Fourier series for f(x) in the interval −π x π is 1 2 − 2 π sin x + 1 3 sin 3x + 1 5 sin 5x + ... c) By giving an appropriate value to x, show that π 4 = 1 − 1 3 + 1 5 − 1 7 + . . . ● Theory ● Answers ● Integrals ● Trig ● Notation Toc JJ II J I Back
  • 10. Section 2: Exercises 10 Exercise 2. Let f(x) be a function of period 2π such that f(x) = 0, −π x 0 x, 0 x π . a) Sketch a graph of f(x) in the interval −3π x 3π b) Show that the Fourier series for f(x) in the interval −π x π is π 4 − 2 π cos x + 1 32 cos 3x + 1 52 cos 5x + ... + sin x − 1 2 sin 2x + 1 3 sin 3x − ... c) By giving appropriate values to x, show that (i) π 4 = 1 − 1 3 + 1 5 − 1 7 + . . . and (ii) π2 8 = 1 + 1 32 + 1 52 + 1 72 + . . . ● Theory ● Answers ● Integrals ● Trig ● Notation Toc JJ II J I Back
  • 11. Section 2: Exercises 11 Exercise 3. Let f(x) be a function of period 2π such that f(x) = x, 0 x π π, π x 2π . a) Sketch a graph of f(x) in the interval −2π x 2π b) Show that the Fourier series for f(x) in the interval 0 x 2π is 3π 4 − 2 π cos x + 1 32 cos 3x + 1 52 cos 5x + . . . − sin x + 1 2 sin 2x + 1 3 sin 3x + . . . c) By giving appropriate values to x, show that (i) π 4 = 1 − 1 3 + 1 5 − 1 7 + . . . and (ii) π2 8 = 1 + 1 32 + 1 52 + 1 72 + . . . ● Theory ● Answers ● Integrals ● Trig ● Notation Toc JJ II J I Back
  • 12. Section 2: Exercises 12 Exercise 4. Let f(x) be a function of period 2π such that f(x) = x 2 over the interval 0 x 2π. a) Sketch a graph of f(x) in the interval 0 x 4π b) Show that the Fourier series for f(x) in the interval 0 x 2π is π 2 − sin x + 1 2 sin 2x + 1 3 sin 3x + . . . c) By giving an appropriate value to x, show that π 4 = 1 − 1 3 + 1 5 − 1 7 + 1 9 − . . . ● Theory ● Answers ● Integrals ● Trig ● Notation Toc JJ II J I Back
  • 13. Section 2: Exercises 13 Exercise 5. Let f(x) be a function of period 2π such that f(x) = π − x, 0 x π 0, π x 2π a) Sketch a graph of f(x) in the interval −2π x 2π b) Show that the Fourier series for f(x) in the interval 0 x 2π is π 4 + 2 π cos x + 1 32 cos 3x + 1 52 cos 5x + . . . + sin x + 1 2 sin 2x + 1 3 sin 3x + 1 4 sin 4x + . . . c) By giving an appropriate value to x, show that π2 8 = 1 + 1 32 + 1 52 + . . . ● Theory ● Answers ● Integrals ● Trig ● Notation Toc JJ II J I Back
  • 14. Section 2: Exercises 14 Exercise 6. Let f(x) be a function of period 2π such that f(x) = x in the range − π x π. a) Sketch a graph of f(x) in the interval −3π x 3π b) Show that the Fourier series for f(x) in the interval −π x π is 2 sin x − 1 2 sin 2x + 1 3 sin 3x − . . . c) By giving an appropriate value to x, show that π 4 = 1 − 1 3 + 1 5 − 1 7 + . . . ● Theory ● Answers ● Integrals ● Trig ● Notation Toc JJ II J I Back
  • 15. Section 2: Exercises 15 Exercise 7. Let f(x) be a function of period 2π such that f(x) = x2 over the interval − π x π. a) Sketch a graph of f(x) in the interval −3π x 3π b) Show that the Fourier series for f(x) in the interval −π x π is π2 3 − 4 cos x − 1 22 cos 2x + 1 32 cos 3x − . . . c) By giving an appropriate value to x, show that π2 6 = 1 + 1 22 + 1 32 + 1 42 + . . . ● Theory ● Answers ● Integrals ● Trig ● Notation Toc JJ II J I Back
  • 16. Section 3: Answers 16 3. Answers The sketches asked for in part (a) of each exercise are given within the full worked solutions – click on the Exercise links to see these solutions The answers below are suggested values of x to get the series of constants quoted in part (c) of each exercise 1. x = π 2 , 2. (i) x = π 2 , (ii) x = 0, 3. (i) x = π 2 , (ii) x = 0, 4. x = π 2 , 5. x = 0, 6. x = π 2 , 7. x = π. Toc JJ II J I Back
  • 17. Section 4: Integrals 17 4. Integrals Formula for integration by parts: R b a udv dx dx = [uv] b a − R b a du dx v dx f (x) R f(x)dx f (x) R f(x)dx xn xn+1 n+1 (n 6= −1) [g (x)] n g0 (x) [g(x)]n+1 n+1 (n 6= −1) 1 x ln |x| g0 (x) g(x) ln |g (x)| ex ex ax ax ln a (a 0) sin x − cos x sinh x cosh x cos x sin x cosh x sinh x tan x − ln |cos x| tanh x ln cosh x cosec x ln tan x 2 cosech x ln tanh x 2 sec x ln |sec x + tan x| sech x 2 tan−1 ex sec2 x tan x sech2 x tanh x cot x ln |sin x| coth x ln |sinh x| sin2 x x 2 − sin 2x 4 sinh2 x sinh 2x 4 − x 2 cos2 x x 2 + sin 2x 4 cosh2 x sinh 2x 4 + x 2 Toc JJ II J I Back
  • 18. Section 4: Integrals 18 f (x) R f (x) dx f (x) R f (x) dx 1 a2+x2 1 a tan−1 x a 1 a2−x2 1 2a ln a+x a−x (0|x|a) (a 0) 1 x2−a2 1 2a ln x−a x+a (|x| a0) 1 √ a2−x2 sin−1 x a 1 √ a2+x2 ln x+ √ a2+x2 a (a 0) (−a x a) 1 √ x2−a2 ln x+ √ x2−a2 a (xa0) √ a2 − x2 a2 2 sin−1 x a √ a2 +x2 a2 2 h sinh−1 x a + x √ a2+x2 a2 i +x √ a2−x2 a2 i √ x2 −a2 a2 2 h − cosh−1 x a + x √ x2−a2 a2 i Toc JJ II J I Back
  • 19. Section 5: Useful trig results 19 5. Useful trig results When calculating the Fourier coefficients an and bn , for which n = 1, 2, 3, . . . , the following trig. results are useful. Each of these results, which are also true for n = 0, −1, −2, −3, . . . , can be deduced from the graph of sin x or that of cos x ● sin nπ = 0 −1 0 1 π 2π 3π −3π −2π s i n ( x ) x −π ● cos nπ = (−1)n −1 0 1 π 2π 3π −3π −2π c o s ( x ) x −π Toc JJ II J I Back
  • 20. Section 5: Useful trig results 20 −1 0 1 π 2π 3π −3π −2π s i n ( x ) x −π −1 0 1 π 2π 3π −3π −2π c o s ( x ) x −π ● sin n π 2 =    0 , n even 1 , n = 1, 5, 9, ... −1 , n = 3, 7, 11, ... ● cos n π 2 =    0 , n odd 1 , n = 0, 4, 8, ... −1 , n = 2, 6, 10, ... Areas cancel when when integrating over whole periods ● R 2π sin nx dx = 0 ● R 2π cos nx dx = 0 + + −1 0 1 π 2π 3π −3π −2π s i n ( x ) x −π + Toc JJ II J I Back
  • 21. Section 6: Alternative notation 21 6. Alternative notation ● For a waveform f(x) with period L = 2π k f(x) = a0 2 + ∞ X n=1 [an cos nkx + bn sin nkx] The corresponding Fourier coefficients are STEP ONE a0 = 2 L Z L f(x) dx STEP TWO an = 2 L Z L f(x) cos nkx dx STEP THREE bn = 2 L Z L f(x) sin nkx dx and integrations are over a single interval in x of L Toc JJ II J I Back
  • 22. Section 6: Alternative notation 22 ● For a waveform f(x) with period 2L = 2π k , we have that k = 2π 2L = π L and nkx = nπx L f(x) = a0 2 + ∞ X n=1 h an cos nπx L + bn sin nπx L i The corresponding Fourier coefficients are STEP ONE a0 = 1 L Z 2L f(x) dx STEP TWO an = 1 L Z 2L f(x) cos nπx L dx STEP THREE bn = 1 L Z 2L f(x) sin nπx L dx and integrations are over a single interval in x of 2L Toc JJ II J I Back
  • 23. Section 6: Alternative notation 23 ● For a waveform f(t) with period T = 2π ω f(t) = a0 2 + ∞ X n=1 [an cos nωt + bn sin nωt] The corresponding Fourier coefficients are STEP ONE a0 = 2 T Z T f(t) dt STEP TWO an = 2 T Z T f(t) cos nωt dt STEP THREE bn = 2 T Z T f(t) sin nωt dt and integrations are over a single interval in t of T Toc JJ II J I Back
  • 24. Section 7: Tips on using solutions 24 7. Tips on using solutions ● When looking at the THEORY, ANSWERS, INTEGRALS, TRIG or NOTATION pages, use the Back button (at the bottom of the page) to return to the exercises ● Use the solutions intelligently. For example, they can help you get started on an exercise, or they can allow you to check whether your intermediate results are correct ● Try to make less use of the full solutions as you work your way through the Tutorial Toc JJ II J I Back
  • 25. Solutions to exercises 25 Full worked solutions Exercise 1. f(x) = 1, −π x 0 0, 0 x π, and has period 2π a) Sketch a graph of f(x) in the interval −2π x 2π 0 1 π 2π −2π f ( x ) x −π Toc JJ II J I Back
  • 26. Solutions to exercises 26 b) Fourier series representation of f(x) STEP ONE a0 = 1 π Z π −π f(x)dx = 1 π Z 0 −π f(x)dx + 1 π Z π 0 f(x)dx = 1 π Z 0 −π 1 · dx + 1 π Z π 0 0 · dx = 1 π Z 0 −π dx = 1 π [x] 0 −π = 1 π (0 − (−π)) = 1 π · (π) i.e. a0 = 1 . Toc JJ II J I Back
  • 27. Solutions to exercises 27 STEP TWO an = 1 π Z π −π f(x) cos nx dx = 1 π Z 0 −π f(x) cos nx dx + 1 π Z π 0 f(x) cos nx dx = 1 π Z 0 −π 1 · cos nx dx + 1 π Z π 0 0 · cos nx dx = 1 π Z 0 −π cos nx dx = 1 π sin nx n 0 −π = 1 nπ [sin nx] 0 −π = 1 nπ (sin 0 − sin(−nπ)) = 1 nπ (0 + sin nπ) i.e. an = 1 nπ (0 + 0) = 0. Toc JJ II J I Back
  • 28. Solutions to exercises 28 STEP THREE bn = 1 π Z π −π f(x) sin nx dx = 1 π Z 0 −π f(x) sin nx dx + 1 π Z π 0 f(x) sin nx dx = 1 π Z 0 −π 1 · sin nx dx + 1 π Z π 0 0 · sin nx dx i.e. bn = 1 π Z 0 −π sin nx dx = 1 π − cos nx n 0 −π = − 1 nπ [cos nx]0 −π = − 1 nπ (cos 0 − cos(−nπ)) = − 1 nπ (1 − cos nπ) = − 1 nπ (1 − (−1)n ) , see Trig i.e. bn = 0 , n even − 2 nπ , n odd , since (−1)n = 1 , n even −1 , n odd Toc JJ II J I Back
  • 29. Solutions to exercises 29 We now have that f(x) = a0 2 + ∞ X n=1 [an cos nx + bn sin nx] with the three steps giving a0 = 1, an = 0 , and bn = 0 , n even − 2 nπ , n odd It may be helpful to construct a table of values of bn n 1 2 3 4 5 bn − 2 π 0 − 2 π 1 3 0 − 2 π 1 5 Substituting our results now gives the required series f(x) = 1 2 − 2 π sin x + 1 3 sin 3x + 1 5 sin 5x + . . . Toc JJ II J I Back
  • 30. Solutions to exercises 30 c) Pick an appropriate value of x, to show that π 4 = 1 − 1 3 + 1 5 − 1 7 + . . . Comparing this series with f(x) = 1 2 − 2 π sin x + 1 3 sin 3x + 1 5 sin 5x + . . . , we need to introduce a minus sign in front of the constants 1 3 , 1 7 ,. . . So we need sin x = 1, sin 3x = −1, sin 5x = 1, sin 7x = −1, etc The first condition of sin x = 1 suggests trying x = π 2 . This choice gives sin π 2 + 1 3 sin 3π 2 + 1 5 sin 5π 2 + 1 7 sin 7π 2 i.e. 1 − 1 3 + 1 5 − 1 7 Looking at the graph of f(x), we also have that f(π 2 ) = 0. Toc JJ II J I Back
  • 31. Solutions to exercises 31 Picking x = π 2 thus gives 0 = 1 2 − 2 π h sin π 2 + 1 3 sin 3π 2 + 1 5 sin 5π 2 + 1 7 sin 7π 2 + . . . i i.e. 0 = 1 2 − 2 π h 1 − 1 3 + 1 5 − 1 7 + . . . i A little manipulation then gives a series representation of π 4 2 π 1 − 1 3 + 1 5 − 1 7 + . . . = 1 2 1 − 1 3 + 1 5 − 1 7 + . . . = π 4 . Return to Exercise 1 Toc JJ II J I Back
  • 32. Solutions to exercises 32 Exercise 2. f(x) = 0, −π x 0 x, 0 x π, and has period 2π a) Sketch a graph of f(x) in the interval −3π x 3π π π 2π 3π −3π −2π f ( x ) x −π Toc JJ II J I Back
  • 33. Solutions to exercises 33 b) Fourier series representation of f(x) STEP ONE a0 = 1 π Z π −π f(x)dx = 1 π Z 0 −π f(x)dx + 1 π Z π 0 f(x)dx = 1 π Z 0 −π 0 · dx + 1 π Z π 0 x dx = 1 π x2 2 π 0 = 1 π π2 2 − 0 i.e. a0 = π 2 . Toc JJ II J I Back
  • 34. Solutions to exercises 34 STEP TWO an = 1 π Z π −π f(x) cos nx dx = 1 π Z 0 −π f(x) cos nx dx + 1 π Z π 0 f(x) cos nx dx = 1 π Z 0 −π 0 · cos nx dx + 1 π Z π 0 x cos nx dx i.e. an = 1 π Z π 0 x cos nx dx = 1 π x sin nx n π 0 − Z π 0 sin nx n dx (using integration by parts) i.e. an = 1 π π sin nπ n − 0 − 1 n h − cos nx n iπ 0 = 1 π ( 0 − 0) + 1 n2 [cos nx]π 0 = 1 πn2 {cos nπ − cos 0} = 1 πn2 {(−1)n − 1} i.e. an = 0 , n even − 2 πn2 , n odd , see Trig. Toc JJ II J I Back
  • 35. Solutions to exercises 35 STEP THREE bn = 1 π Z π −π f(x) sin nx dx = 1 π Z 0 −π f(x) sin nx dx + 1 π Z π 0 f(x) sin nx dx = 1 π Z 0 −π 0 · sin nx dx + 1 π Z π 0 x sin nx dx i.e. bn = 1 π Z π 0 x sin nx dx = 1 π h x − cos nx n iπ 0 − Z π 0 − cos nx n dx (using integration by parts) = 1 π − 1 n [x cos nx] π 0 + 1 n Z π 0 cos nx dx = 1 π − 1 n (π cos nπ − 0) + 1 n sin nx n π 0 = − 1 n (−1)n + 1 πn2 (0 − 0), see Trig = − 1 n (−1)n Toc JJ II J I Back
  • 36. Solutions to exercises 36 i.e. bn = ( − 1 n , n even + 1 n , n odd We now have f(x) = a0 2 + ∞ X n=1 [an cos nx + bn sin nx] where a0 = π 2 , an = ( 0 , n even − 2 πn2 , n odd , bn = ( − 1 n , n even 1 n , n odd Constructing a table of values gives n 1 2 3 4 5 an − 2 π 0 − 2 π · 1 32 0 − 2 π · 1 52 bn 1 −1 2 1 3 −1 4 1 5 Toc JJ II J I Back
  • 37. Solutions to exercises 37 This table of coefficients gives f(x) = 1 2 π 2 + − 2 π cos x + 0 · cos 2x + − 2 π · 1 32 cos 3x + 0 · cos 4x + − 2 π · 1 52 cos 5x + ... + sin x − 1 2 sin 2x + 1 3 sin 3x − ... i.e. f(x) = π 4 − 2 π cos x + 1 32 cos 3x + 1 52 cos 5x + ... + sin x − 1 2 sin 2x + 1 3 sin 3x − ... and we have found the required series! Toc JJ II J I Back
  • 38. Solutions to exercises 38 c) Pick an appropriate value of x, to show that (i) π 4 = 1 − 1 3 + 1 5 − 1 7 + ... Comparing this series with f(x) = π 4 − 2 π cos x + 1 32 cos 3x + 1 52 cos 5x + ... + sin x − 1 2 sin 2x + 1 3 sin 3x − ... , the required series of constants does not involve terms like 1 32 , 1 52 , 1 72 , .... So we need to pick a value of x that sets the cos nx terms to zero. The Trig section shows that cos nπ 2 = 0 when n is odd, and note also that cos nx terms in the Fourier series all have odd n i.e. cos x = cos 3x = cos 5x = ... = 0 when x = π 2 , i.e. cos π 2 = cos 3π 2 = cos 5π 2 = ... = 0 Toc JJ II J I Back
  • 39. Solutions to exercises 39 Setting x = π 2 in the series for f(x) gives f π 2 = π 4 − 2 π cos π 2 + 1 32 cos 3π 2 + 1 52 cos 5π 2 + ... + sin π 2 − 1 2 sin 2π 2 + 1 3 sin 3π 2 − 1 4 sin 4π 2 + 1 5 sin 5π 2 − ... = π 4 − 2 π [0 + 0 + 0 + ...] +  1 − 1 2 sin π |{z} =0 + 1 3 · (−1) − 1 4 sin 2π | {z } =0 + 1 5 · (1) − ...   The graph of f(x) shows that f π 2 = π 2 , so that π 2 = π 4 + 1 − 1 3 + 1 5 − 1 7 + ... i.e. π 4 = 1 − 1 3 + 1 5 − 1 7 + ... Toc JJ II J I Back
  • 40. Solutions to exercises 40 Pick an appropriate value of x, to show that (ii) π2 8 = 1 + 1 32 + 1 52 + 1 72 + ... Compare this series with f(x) = π 4 − 2 π cos x + 1 32 cos 3x + 1 52 cos 5x + ... + sin x − 1 2 sin 2x + 1 3 sin 3x − ... . This time, we want to use the coefficients of the cos nx terms, and the same choice of x needs to set the sin nx terms to zero Picking x = 0 gives sin x = sin 2x = sin 3x = 0 and cos x = cos 3x = cos 5x = 1 Note also that the graph of f(x) gives f(x) = 0 when x = 0 Toc JJ II J I Back
  • 41. Solutions to exercises 41 So, picking x = 0 gives 0 = π 4 − 2 π cos 0 + 1 32 cos 0 + 1 52 cos 0 + 1 72 cos 0 + ... + sin 0 − sin 0 2 + sin 0 3 − ... i.e. 0 = π 4 − 2 π 1 + 1 32 + 1 52 + 1 72 + ... + 0 − 0 + 0 − ... We then find that 2 π 1 + 1 32 + 1 52 + 1 72 + ... = π 4 and 1 + 1 32 + 1 52 + 1 72 + ... = π2 8 . Return to Exercise 2 Toc JJ II J I Back
  • 42. Solutions to exercises 42 Exercise 3. f(x) = x, 0 x π π, π x 2π, and has period 2π a) Sketch a graph of f(x) in the interval −2π x 2π π 0 π 2π −2π f ( x ) x −π Toc JJ II J I Back
  • 43. Solutions to exercises 43 b) Fourier series representation of f(x) STEP ONE a0 = 1 π Z 2π 0 f(x)dx = 1 π Z π 0 f(x)dx + 1 π Z 2π π f(x)dx = 1 π Z π 0 xdx + 1 π Z 2π π π · dx = 1 π x2 2 π 0 + π π x 2π π = 1 π π2 2 − 0 + 2π − π = π 2 + π i.e. a0 = 3π 2 . Toc JJ II J I Back
  • 44. Solutions to exercises 44 STEP TWO an = 1 π Z 2π 0 f(x) cos nx dx = 1 π Z π 0 x cos nx dx + 1 π Z 2π π π · cos nx dx = 1 π x sin nx n π 0 − Z π 0 sin nx n dx # | {z } using integration by parts + π π sin nx n 2π π = 1 π 1 n π sin nπ − 0 · sin n0 − − cos nx n2 π 0 # + 1 n (sin n2π − sin nπ) Toc JJ II J I Back
  • 45. Solutions to exercises 45 i.e. an = 1 π 1 n 0 − 0 + cos nπ n2 − cos 0 n2 # + 1 n 0 − 0 = 1 n2π (cos nπ − 1), see Trig = 1 n2π (−1)n − 1 , i.e. an = ( − 2 n2π , n odd 0 , n even. Toc JJ II J I Back
  • 46. Solutions to exercises 46 STEP THREE bn = 1 π Z 2π 0 f(x) sin nx dx = 1 π Z π 0 x sin nx dx + 1 π Z 2π π π · sin nx dx = 1 π h x − cos nx n iπ 0 − Z π 0 − cos nx n dx # | {z } using integration by parts + π π − cos nx n 2π π = 1 π −π cos nπ n + 0 + sin nx n2 π 0 # − 1 n (cos 2nπ − cos nπ) = 1 π −π(−1)n n + sin nπ − sin 0 n2 # − 1 n 1 − (−1)n = − 1 n (−1)n + 0 − 1 n 1 − (−1)n Toc JJ II J I Back
  • 47. Solutions to exercises 47 i.e. bn = − 1 n (−1)n − 1 n + 1 n (−1)n i.e. bn = − 1 n . We now have f(x) = a0 2 + ∞ X n=1 [an cos nx + bn sin nx] where a0 = 3π 2 , an = ( 0 , n even − 2 n2π , n odd , bn = − 1 n Constructing a table of values gives n 1 2 3 4 5 an − 2 π 0 − 2 π 1 32 0 − 2 π 1 52 bn −1 −1 2 −1 3 −1 4 −1 5 Toc JJ II J I Back
  • 48. Solutions to exercises 48 This table of coefficients gives f(x) = 1 2 3π 2 + − 2 π h cos x + 0 · cos 2x + 1 32 cos 3x + . . . i + − 1 h sin x + 1 2 sin 2x + 1 3 sin 3x + . . . i i.e. f(x) = 3π 4 − 2 π h cos x + 1 32 cos 3x + 1 52 cos 5x + . . . i − h sin x + 1 2 sin 2x + 1 3 sin 3x + . . . i and we have found the required series. Toc JJ II J I Back
  • 49. Solutions to exercises 49 c) Pick an appropriate value of x, to show that (i) π 4 = 1 − 1 3 + 1 5 − 1 7 + . . . Compare this series with f(x) = 3π 4 − 2 π cos x + 1 32 cos 3x + 1 52 cos 5x + . . . − sin x + 1 2 sin 2x + 1 3 sin 3x + . . . Here, we want to set the cos nx terms to zero (since their coefficients are 1, 1 32 , 1 52 , . . .). Since cos nπ 2 = 0 when n is odd, we will try setting x = π 2 in the series. Note also that f(π 2 ) = π 2 This gives π 2 = 3π 4 − 2 π cos π 2 + 1 32 cos 3π 2 + 1 52 cos 5π 2 + . . . − sin π 2 + 1 2 sin 2π 2 + 1 3 sin 3π 2 + 1 4 sin 4π 2 + 1 5 sin 5π 2 + . . . Toc JJ II J I Back
  • 50. Solutions to exercises 50 and π 2 = 3π 4 − 2 π [0 + 0 + 0 + . . .] − (1) + 1 2 · (0) + 1 3 · (−1) + 1 4 · (0) + 1 5 · (1) + . . . then π 2 = 3π 4 − 1 − 1 3 + 1 5 − 1 7 + . . . 1 − 1 3 + 1 5 − 1 7 + . . . = 3π 4 − π 2 1 − 1 3 + 1 5 − 1 7 + . . . = π 4 , as required. To show that (ii) π2 8 = 1 + 1 32 + 1 52 + 1 72 + . . . , We want zero sin nx terms and to use the coefficients of cos nx Toc JJ II J I Back
  • 51. Solutions to exercises 51 Setting x = 0 eliminates the sin nx terms from the series, and also gives cos x+ 1 32 cos 3x+ 1 52 cos 5x+ 1 72 cos 7x+. . . = 1+ 1 32 + 1 52 + 1 72 +. . . (i.e. the desired series). The graph of f(x) shows a discontinuity (a “vertical jump”) at x = 0 The Fourier series converges to a value that is half-way between the two values of f(x) around this discontinuity. That is the series will converge to π 2 at x = 0 i.e. π 2 = 3π 4 − 2 π cos 0 + 1 32 cos 0 + 1 52 cos 0 + 1 72 cos 0 + . . . − sin 0 + 1 2 sin 0 + 1 3 sin 0 + . . . and π 2 = 3π 4 − 2 π 1 + 1 32 + 1 52 + 1 72 + . . . − [0 + 0 + 0 + . . .] Toc JJ II J I Back
  • 52. Solutions to exercises 52 Finally, this gives − π 4 = − 2 π 1 + 1 32 + 1 52 + 1 72 + . . . and π2 8 = 1 + 1 32 + 1 52 + 1 72 + . . . Return to Exercise 3 Toc JJ II J I Back
  • 53. Solutions to exercises 53 Exercise 4. f(x) = x 2 , over the interval 0 x 2π and has period 2π a) Sketch a graph of f(x) in the interval 0 x 4π π 3π 4π 0 2π f ( x ) x π Toc JJ II J I Back
  • 54. Solutions to exercises 54 b) Fourier series representation of f(x) STEP ONE a0 = 1 π Z 2π 0 f(x) dx = 1 π Z 2π 0 x 2 dx = 1 π x2 4 2π 0 = 1 π (2π)2 4 − 0 i.e. a0 = π. Toc JJ II J I Back
  • 55. Solutions to exercises 55 STEP TWO an = 1 π Z 2π 0 f(x) cos nx dx = 1 π Z 2π 0 x 2 cos nx dx = 1 2π ( x sin nx n 2π 0 − 1 n Z 2π 0 sin nx dx ) | {z } using integration by parts = 1 2π ( 2π sin n2π n − 0 · sin n · 0 n − 1 n · 0 ) = 1 2π ( (0 − 0) − 1 n · 0 ) , see Trig i.e. an = 0. Toc JJ II J I Back
  • 56. Solutions to exercises 56 STEP THREE bn = 1 π Z 2π 0 f(x) sin nx dx = 1 π Z 2π 0 x 2 sin nx dx = 1 2π Z 2π 0 x sin nx dx = 1 2π ( x − cos nx n 2π 0 − Z 2π 0 − cos nx n dx ) | {z } using integration by parts = 1 2π ( 1 n (−2π cos n2π + 0) + 1 n · 0 ) , see Trig = −2π 2πn cos(n2π) = − 1 n cos(2nπ) i.e. bn = − 1 n , since 2n is even (see Trig) Toc JJ II J I Back
  • 57. Solutions to exercises 57 We now have f(x) = a0 2 + ∞ X n=1 [an cos nx + bn sin nx] where a0 = π, an = 0, bn = − 1 n These Fourier coefficients give f(x) = π 2 + ∞ X n=1 0 − 1 n sin nx i.e. f(x) = π 2 − sin x + 1 2 sin 2x + 1 3 sin 3x + . . . . Toc JJ II J I Back
  • 58. Solutions to exercises 58 c) Pick an appropriate value of x, to show that π 4 = 1 − 1 3 + 1 5 − 1 7 + 1 9 − . . . Setting x = π 2 gives f(x) = π 4 and π 4 = π 2 − 1 + 0 − 1 3 + 0 + 1 5 + 0 − . . . π 4 = π 2 − 1 − 1 3 + 1 5 − 1 7 + 1 9 − . . . 1 − 1 3 + 1 5 − 1 7 + 1 9 − . . . = π 4 i.e. 1 − 1 3 + 1 5 − 1 7 + 1 9 − . . . = π 4 . Return to Exercise 4 Toc JJ II J I Back
  • 59. Solutions to exercises 59 Exercise 5. f(x) = π − x , 0 x π 0 , π x 2π, and has period 2π a) Sketch a graph of f(x) in the interval −2π x 2π π 0 π 2π −2π f ( x ) x −π Toc JJ II J I Back
  • 60. Solutions to exercises 60 b) Fourier series representation of f(x) STEP ONE a0 = 1 π Z 2π 0 f(x) dx = 1 π Z π 0 (π − x) dx + 1 π Z 2π π 0 · dx = 1 π πx − 1 2 x2 π 0 + 0 = 1 π π2 − π2 2 − 0 i.e. a0 = π 2 . Toc JJ II J I Back
  • 61. Solutions to exercises 61 STEP TWO an = 1 π Z 2π 0 f(x) cos nx dx = 1 π Z π 0 (π − x) cos nx dx + 1 π Z 2π π 0 · dx i.e. an = 1 π (π − x) sin nx n π 0 − Z π 0 (−1) · sin nx n dx | {z } using integration by parts +0 = 1 π (0 − 0) + Z π 0 sin nx n dx , see Trig = 1 πn − cos nx n π 0 = − 1 πn2 (cos nπ − cos 0) i.e. an = − 1 πn2 ((−1)n − 1) , see Trig Toc JJ II J I Back
  • 62. Solutions to exercises 62 i.e. an =    0 , n even 2 πn2 , n odd STEP THREE bn = 1 π Z 2π 0 f(x) sin nx dx = 1 π Z π 0 (π − x) sin nx dx + Z 2π π 0 · dx = 1 π h (π − x) − cos nx n iπ 0 − Z π 0 (−1) · − cos nx n dx + 0 = 1 π 0 − − π n − 1 n · 0 , see Trig i.e. bn = 1 n . Toc JJ II J I Back
  • 63. Solutions to exercises 63 In summary, a0 = π 2 and a table of other Fourier cofficients is n 1 2 3 4 5 an = 2 πn2 (when n is odd) 2 π 0 2 π 1 32 0 2 π 1 52 bn = 1 n 1 1 2 1 3 1 4 1 5 ∴ f(x) = a0 2 + ∞ X n=1 [an cos nx + bn sin nx] = π 4 + 2 π cos x + 2 π 1 32 cos 3x + 2 π 1 52 cos 5x + . . . + sin x + 1 2 sin 2x + 1 3 sin 3x + 1 4 sin 4x + . . . i.e. f(x) = π 4 + 2 π cos x + 1 32 cos 3x + 1 52 cos 5x + . . . + sin x + 1 2 sin 2x + 1 3 sin 3x + 1 4 sin 4x + . . . Toc JJ II J I Back
  • 64. Solutions to exercises 64 c) To show that π2 8 = 1 + 1 32 + 1 52 + . . . , note that, as x → 0 , the series converges to the half-way value of π 2 , and then π 2 = π 4 + 2 π cos 0 + 1 32 cos 0 + 1 52 cos 0 + . . . + sin 0 + 1 2 sin 0 + 1 3 sin 0 + . . . π 2 = π 4 + 2 π 1 + 1 32 + 1 52 + . . . + 0 π 4 = 2 π 1 + 1 32 + 1 52 + . . . giving π2 8 = 1 + 1 32 + 1 52 + . . . Return to Exercise 5 Toc JJ II J I Back
  • 65. Solutions to exercises 65 Exercise 6. f(x) = x, over the interval −π x π and has period 2π a) Sketch a graph of f(x) in the interval −3π x 3π −π 0 π π 2π 3π −3π −2π f ( x ) x −π Toc JJ II J I Back
  • 66. Solutions to exercises 66 b) Fourier series representation of f(x) STEP ONE a0 = 1 π Z π −π f(x) dx = 1 π Z π −π x dx = 1 π x2 2 π −π = 1 π π2 2 − π2 2 i.e. a0 = 0. Toc JJ II J I Back
  • 67. Solutions to exercises 67 STEP TWO an = 1 π Z π −π f(x) cos nx dx = 1 π Z π −π x cos nx dx = 1 π ( x sin nx n π −π − Z π −π sin nx n dx ) | {z } using integration by parts i.e. an = 1 π 1 n (π sin nπ − (−π) sin(−nπ)) − 1 n Z π −π sin nx dx = 1 π 1 n (0 − 0) − 1 n · 0 , since sin nπ = 0 and Z 2π sin nx dx = 0, i.e. an = 0. Toc JJ II J I Back
  • 68. Solutions to exercises 68 STEP THREE bn = 1 π Z π −π f(x) sin nx dx = 1 π Z π −π x sin nx dx = 1 π ( −x cos nx n π −π − Z π −π − cos nx n dx ) = 1 π − 1 n [x cos nx] π −π + 1 n Z π −π cos nx dx = 1 π − 1 n (π cos nπ − (−π) cos(−nπ)) + 1 n · 0 = − π nπ (cos nπ + cos nπ) = − 1 n (2 cos nπ) i.e. bn = − 2 n (−1)n . Toc JJ II J I Back
  • 69. Solutions to exercises 69 We thus have f(x) = a0 2 + ∞ X n=1 h an cos nx + bn sin nx i with a0 = 0, an = 0, bn = − 2 n (−1)n and n 1 2 3 bn 2 −1 2 3 Therefore f(x) = b1 sin x + b2 sin 2x + b3 sin 3x + . . . i.e. f(x) = 2 sin x − 1 2 sin 2x + 1 3 sin 3x − . . . and we have found the required Fourier series. Toc JJ II J I Back
  • 70. Solutions to exercises 70 c) Pick an appropriate value of x, to show that π 4 = 1 − 1 3 + 1 5 − 1 7 + . . . Setting x = π 2 gives f(x) = π 2 and π 2 = 2 sin π 2 − 1 2 sin 2π 2 + 1 3 sin 3π 2 − 1 4 sin 4π 2 + 1 5 sin 5π 2 − . . . This gives π 2 = 2 1 + 0 + 1 3 · (−1) − 0 + 1 5 · (1) − 0 + 1 7 · (−1) + . . . π 2 = 2 1 − 1 3 + 1 5 − 1 7 + . . . i.e. π 4 = 1 − 1 3 + 1 5 − 1 7 + . . . Return to Exercise 6 Toc JJ II J I Back
  • 71. Solutions to exercises 71 Exercise 7. f(x) = x2 , over the interval −π x π and has period 2π a) Sketch a graph of f(x) in the interval −3π x 3π 0 π 2 π 2π 3π −3π −2π f ( x ) x −π Toc JJ II J I Back
  • 72. Solutions to exercises 72 b) Fourier series representation of f(x) STEP ONE a0 = 1 π Z π −π f(x)dx = 1 π Z π −π x2 dx = 1 π x3 3 π −π = 1 π π3 3 − − π3 3 = 1 π 2π3 3 i.e. a0 = 2π2 3 . Toc JJ II J I Back
  • 73. Solutions to exercises 73 STEP TWO an = 1 π Z π −π f(x) cos nx dx = 1 π Z π −π x2 cos nx dx = 1 π ( x2 sin nx n π −π − Z π −π 2x sin nx n dx ) | {z } using integration by parts = 1 π ( 1 n π2 sin nπ − π2 sin(−nπ) − 2 n Z π −π x sin nx dx ) = 1 π ( 1 n (0 − 0) − 2 n Z π −π x sin nx dx ) , see Trig = −2 nπ Z π −π x sin nx dx Toc JJ II J I Back
  • 74. Solutions to exercises 74 i.e. an = −2 nπ ( x − cos nx n π −π − Z π −π − cos nx n dx ) | {z } using integration by parts again = −2 nπ ( − 1 n [x cos nx] π −π + 1 n Z π −π cos nx dx ) = −2 nπ ( − 1 n π cos nπ − (−π) cos(−nπ) + 1 n · 0 ) = −2 nπ ( − 1 n π(−1)n + π(−1)n ) = −2 nπ ( −2π n (−1)n ) Toc JJ II J I Back
  • 75. Solutions to exercises 75 i.e. an = −2 nπ ( − 2π n (−1)n ) = +4π πn2 (−1)n = 4 n2 (−1)n i.e. an = ( 4 n2 , n even −4 n2 , n odd. Toc JJ II J I Back
  • 76. Solutions to exercises 76 STEP THREE bn = 1 π Z π −π f(x) sin nx dx = 1 π Z π −π x2 sin nx dx = 1 π ( x2 − cos nx n π −π − Z π −π 2x · − cos nx n dx ) | {z } using integration by parts = 1 π ( − 1 n x2 cos nx π −π + 2 n Z π −π x cos nx dx ) = 1 π ( − 1 n π2 cos nπ − π2 cos(−nπ) + 2 n Z π −π x cos nx dx ) = 1 π ( − 1 n π2 cos nπ − π2 cos(nπ) | {z } =0 + 2 n Z π −π x cos nx dx ) = 2 πn Z π −π x cos nx dx Toc JJ II J I Back
  • 77. Solutions to exercises 77 i.e. bn = 2 πn ( x sin nx n π −π − Z π −π sin nx n dx ) | {z } using integration by parts = 2 πn ( 1 n (π sin nπ − (−π) sin(−nπ)) − 1 n Z π −π sin nx dx ) = 2 πn ( 1 n (0 + 0) − 1 n Z π −π sin nx dx ) = −2 πn2 Z π −π sin nx dx i.e. bn = 0. Toc JJ II J I Back
  • 78. Solutions to exercises 78 ∴ f(x) = a0 2 + ∞ X n=1 [an cos nx + bn sin nx] where a0 = 2π2 3 , an = ( 4 n2 , n even −4 n2 , n odd , bn = 0 n 1 2 3 4 an −4(1) 4 1 22 −4 1 32 4 1 42 i.e. f(x) = 1 2 2π2 3 − 4 cos x − 1 22 cos 2x + 1 32 cos 3x − 1 42 cos 4x . . . + [0 + 0 + 0 + . . .] i.e. f(x) = π2 3 − 4 cos x − 1 22 cos 2x + 1 32 cos 3x − 1 42 cos 4x + . . . . Toc JJ II J I Back
  • 79. Solutions to exercises 79 c) To show that π2 6 = 1 + 1 22 + 1 32 + 1 42 + . . . , use the fact that cos nπ = ( 1 , n even −1 , n odd i.e. cos x − 1 22 cos 2x + 1 32 cos 3x − 1 42 cos 4x + . . . with x = π gives cos π − 1 22 cos 2π + 1 32 cos 3π − 1 42 cos 4π + . . . i.e. (−1) − 1 22 · (1) + 1 32 · (−1) − 1 42 · (1) + . . . i.e. −1 − 1 22 − 1 32 − 1 42 + . . . = −1 · 1 + 1 22 + 1 32 + 1 42 + . . . | {z } (the desired series) Toc JJ II J I Back
  • 80. Solutions to exercises 80 The graph of f(x) gives that f(π) = π2 and the series converges to this value. Setting x = π in the Fourier series thus gives π2 = π2 3 − 4 cos π − 1 22 cos 2π + 1 32 cos 3π − 1 42 cos 4π + . . . π2 = π2 3 − 4 −1 − 1 22 − 1 32 − 1 42 − . . . π2 = π2 3 + 4 1 + 1 22 + 1 32 + 1 42 + . . . 2π2 3 = 4 1 + 1 22 + 1 32 + 1 42 + . . . i.e. π2 6 = 1 + 1 22 + 1 32 + 1 42 + . . . Return to Exercise 7 Toc JJ II J I Back