SlideShare ist ein Scribd-Unternehmen logo
1 von 12
Gauss’s Theorem:
The surface integral of the electric field intensity over any closed hypothetical
surface (called Gaussian surface) in free space is equal to 1 / ε0 times the net
charge enclosed within the surface.
E . dS =
S
ΦE =
1
ε0
∑
i=1
n
qi
Proof of Gauss’s Theorem for Spherically Symmetric Surfaces:
E . dS
dΦ =
r2
1
4πε0
=
q
r . dS n
dΦ =
r2
1
4πε0
q dS
r n
.
Here, = 1 x 1 cos 0° = 1
r n
.
dΦ =
r2
1
4πε0
q dS
S
ΦE = dΦ
r2
1
4πε0
q
= 4π r2
ε0
q
=
dS
S
r2
1
4πε0
q
=
O •
r
r
dS
E
+q
O •
r
r
dS
E
+q
Deduction of Coulomb’s Law from Gauss’s Theorem:
From Gauss’s law,
E . dS =
S
ΦE =
q
ε0
E dS =
S
ΦE =
q
ε0
or dS =
S
ΦE =
q
ε0
E
E =
q
4πε0 r2
E x 4π r2
q
ε0
=
If a charge q0 is placed at a point where E
is calculated, then
Since E and dS are in the same direction,
which is Coulomb’s Law.
or
F =
qq0
4πε0 r2
Applications of Gauss’s Theorem:
1. Electric Field Intensity due to an Infinitely Long Straight Charged
Wire:
Gaussian surface is a
closed surface,
around a charge
distribution, such that
the electric field
intensity has a single
fixed value at every
point on the surface.
From Gauss’s law,
E . dS =
S
ΦE =
q
ε0
E . dS =
S
E . dS +
A
E . dS +
B
E . dS
C
E . dS =
S
E dS cos 90° +
A B
E dS cos 90° +
C
E dS cos 0° =
C
E dS = E x 2 π r l
- ∞ + ∞
B A
C
E
E E
dS
dS
dS
l
r
q
ε0
=
λ l
ε0
(where λ is the liner charge density)
E x 2 π r l =
λ l
ε0
or E =
2 πε0
1 λ
r
or E =
4 πε0
1 2λ
r
In vector form, E (r) =
4 πε0
1 2λ
r
r
The direction of the electric field intensity is radially outward from the positive
line charge. For negative line charge, it will be radially inward.
Note:
The electric field intensity is independent of the size of the Gaussian surface
constructed. It depends only on the distance of point of consideration. i.e. the
Gaussian surface should contain the point of consideration.
E
dS
C
B
A
E E
dS
dS r
l
2. Electric Field Intensity due to an Infinitely Long, Thin Plane Sheet of
Charge:
From Gauss’s law,
σ
E . dS =
S
ΦE =
q
ε0
E . dS =
S
E . dS +
A
E . dS +
B
E . dS
C
E . dS =
S
E dS cos 0° +
A B
E dS cos 0° +
C
E dS cos 90° = 2E dS = 2E x π r2
TIP:
The field lines remain
straight, parallel and
uniformly spaced.
(where σ is the surface charge density)
or E =
2 ε0
σ
In vector form, E (l) =
2 ε0
σ
l
The direction of the electric field intensity is normal to the plane and away
from the positive charge distribution. For negative charge distribution, it will
be towards the plane.
Note:
The electric field intensity is independent of the size of the Gaussian surface
constructed. It neither depends on the distance of point of consideration nor
the radius of the cylindrical surface.
q
ε0
=
σ π r2
ε0
2 E x π r2 =
σ π r2
ε0
If the plane sheet is thick, then the charge distribution will be available on
both the sides. So, the charge enclosed within the Gaussian surface will be
twice as before. Therefore, the field will be twice.
E =
ε0
σ
3. Electric Field Intensity due to Two Parallel, Infinitely Long, Thin
Plane Sheet of Charge:
σ1
σ2
E1
E1
E1
E2
E2
E2
E E E
Region I Region II Region III
E = E1 + E2
E =
2 ε0
σ1 + σ2
E = E1 - E2
E =
2 ε0
σ1 - σ2
E = E1 + E2
E =
2 ε0
σ1 + σ2
σ1 > σ2
( )
Case 1: σ1 > σ2
Case 2:
σ1
σ2
E1
E1
E1
E2
E2
E2
E E E
Region I Region II Region III
E = E1 - E2
E =
2 ε0
σ1 - σ2
E = E1 + E2
E =
2 ε0
σ1 + σ2
E = E1 - E2
E =
2 ε0
σ1 - σ2
σ1 > σ2
( )
σ1 > σ2
( )
+ σ1 & - σ2
Case 3:
σ1
σ2
E1
E1
E1
E2
E2
E2
E = 0 E ≠ 0
Region I Region II Region III
E = 0
E = E1 - E2
E =
2 ε0
σ1 - σ2
= 0
E = E1 - E2
E =
2 ε0
σ1 - σ2
= 0
E = E1 + E2
E =
2 ε0
σ1 + σ2
=
ε0
σ
+ σ & - σ
4. Electric Field Intensity due to a Uniformed Charged This Spherical
Shell:
dS
E
q
r
R
•P
From Gauss’s law,
E . dS =
S
ΦE =
q
ε0
E dS =
S
ΦE =
q
ε0
or dS =
S
ΦE =
q
ε0
E
E x 4π r2
q
ε0
=
Since E and dS are in the same direction,
or E =
q
4πε0 r2
i) At a point P outside the shell:
Since q = σ x 4π R2,
E =
ε0 r2
σ R2
Electric field due to a uniformly
charged thin spherical shell at
a point outside the shell is such
as if the whole charge were
concentrated at the centre of
the shell.
HOLLOW
……… Gaussian Surface
O •
dS
E
From Gauss’s law,
E . dS =
S
ΦE =
q
ε0
E dS =
S
ΦE =
q
ε0
or dS =
S
ΦE =
q
ε0
E
E x 4π R2
q
ε0
=
Since E and dS are in the same direction,
or E =
q
4πε0 R2
ii) At a point A on the surface of the shell:
Electric field due to a uniformly
charged thin spherical shell at
a point on the surface of the
shell is maximum.
Since q = σ x 4π R2,
E =
ε0
σ
q R
HOLLOW
O •
•
A
dS
E
r’
O
q R
HOLLOW
•
B
•
From Gauss’s law,
E . dS =
S
ΦE =
q
ε0
E dS =
S
ΦE =
q
ε0
or dS =
S
ΦE =
q
ε0
E
E x 4π r’2
q
ε0
=
Since E and dS are in the same direction,
or E =
0
4πε0 r’2
iii) At a point B inside the shell:
This property E = 0 inside a cavity is
used for electrostatic shielding.
(since q = 0 inside the Gaussian surface)
E = 0
r
E
R
O
Emax
END

Weitere ähnliche Inhalte

Was ist angesagt?

Application of Gauss,Green and Stokes Theorem
Application of Gauss,Green and Stokes TheoremApplication of Gauss,Green and Stokes Theorem
Application of Gauss,Green and Stokes TheoremSamiul Ehsan
 
divergence of vector and divergence theorem
divergence of vector and divergence theoremdivergence of vector and divergence theorem
divergence of vector and divergence theoremAbhishekLalkiya
 
Gauss Divergence Therom
Gauss Divergence TheromGauss Divergence Therom
Gauss Divergence TheromVC Infotech
 
Poisson’s and Laplace’s Equation
Poisson’s and Laplace’s EquationPoisson’s and Laplace’s Equation
Poisson’s and Laplace’s EquationAbhishek Choksi
 
Divergence theorem
Divergence theoremDivergence theorem
Divergence theoremFFMdeMul
 
Electric field gauss law
Electric field gauss lawElectric field gauss law
Electric field gauss lawRabia Jabeen
 
5. lec5 curl of a vector
5. lec5 curl of a vector5. lec5 curl of a vector
5. lec5 curl of a vectorshabdrang
 
Chap6 laplaces and-poissons-equations
Chap6 laplaces and-poissons-equationsChap6 laplaces and-poissons-equations
Chap6 laplaces and-poissons-equationsUmesh Kumar
 
Line integral,Strokes and Green Theorem
Line integral,Strokes and Green TheoremLine integral,Strokes and Green Theorem
Line integral,Strokes and Green TheoremHassan Ahmed
 
Laplace equation in Maple
Laplace equation in MapleLaplace equation in Maple
Laplace equation in MapleCamilo Chaves
 
Divergence,curl,gradient
Divergence,curl,gradientDivergence,curl,gradient
Divergence,curl,gradientKunj Patel
 
Lecture10 maxwells equations
Lecture10 maxwells equationsLecture10 maxwells equations
Lecture10 maxwells equationsAmit Rastogi
 
Laplace and Earnshaw
Laplace and EarnshawLaplace and Earnshaw
Laplace and EarnshawFFMdeMul
 
Capitulo 6, 7ma edición
Capitulo 6, 7ma ediciónCapitulo 6, 7ma edición
Capitulo 6, 7ma ediciónSohar Carr
 

Was ist angesagt? (20)

Application of Gauss,Green and Stokes Theorem
Application of Gauss,Green and Stokes TheoremApplication of Gauss,Green and Stokes Theorem
Application of Gauss,Green and Stokes Theorem
 
divergence of vector and divergence theorem
divergence of vector and divergence theoremdivergence of vector and divergence theorem
divergence of vector and divergence theorem
 
Divrgence theorem with example
Divrgence theorem with exampleDivrgence theorem with example
Divrgence theorem with example
 
Stoke’s theorem
Stoke’s theoremStoke’s theorem
Stoke’s theorem
 
Gauss Divergence Therom
Gauss Divergence TheromGauss Divergence Therom
Gauss Divergence Therom
 
Electricity for physic
Electricity for physic Electricity for physic
Electricity for physic
 
Lecture noteschapter2
Lecture noteschapter2Lecture noteschapter2
Lecture noteschapter2
 
7
77
7
 
Poisson’s and Laplace’s Equation
Poisson’s and Laplace’s EquationPoisson’s and Laplace’s Equation
Poisson’s and Laplace’s Equation
 
Divergence theorem
Divergence theoremDivergence theorem
Divergence theorem
 
Electric field gauss law
Electric field gauss lawElectric field gauss law
Electric field gauss law
 
5. lec5 curl of a vector
5. lec5 curl of a vector5. lec5 curl of a vector
5. lec5 curl of a vector
 
Chap6 laplaces and-poissons-equations
Chap6 laplaces and-poissons-equationsChap6 laplaces and-poissons-equations
Chap6 laplaces and-poissons-equations
 
Line integral,Strokes and Green Theorem
Line integral,Strokes and Green TheoremLine integral,Strokes and Green Theorem
Line integral,Strokes and Green Theorem
 
Laplace equation in Maple
Laplace equation in MapleLaplace equation in Maple
Laplace equation in Maple
 
Divergence,curl,gradient
Divergence,curl,gradientDivergence,curl,gradient
Divergence,curl,gradient
 
Special integrations
Special integrationsSpecial integrations
Special integrations
 
Lecture10 maxwells equations
Lecture10 maxwells equationsLecture10 maxwells equations
Lecture10 maxwells equations
 
Laplace and Earnshaw
Laplace and EarnshawLaplace and Earnshaw
Laplace and Earnshaw
 
Capitulo 6, 7ma edición
Capitulo 6, 7ma ediciónCapitulo 6, 7ma edición
Capitulo 6, 7ma edición
 

Ähnlich wie Electrostatics Grade 12 Part 1 CBSE

Ähnlich wie Electrostatics Grade 12 Part 1 CBSE (20)

gauss law.ppt
gauss law.pptgauss law.ppt
gauss law.ppt
 
Meeting 3. Gauss's Law.pptx
Meeting 3. Gauss's Law.pptxMeeting 3. Gauss's Law.pptx
Meeting 3. Gauss's Law.pptx
 
Electricity slides
Electricity slidesElectricity slides
Electricity slides
 
Lecture 3
Lecture 3Lecture 3
Lecture 3
 
Gauss law 1
Gauss law 1Gauss law 1
Gauss law 1
 
Electrycity 2 p c r o 1
Electrycity 2 p c r o 1Electrycity 2 p c r o 1
Electrycity 2 p c r o 1
 
Gauss’s Law
Gauss’s LawGauss’s Law
Gauss’s Law
 
GAUSS LAW .pdf
GAUSS LAW .pdfGAUSS LAW .pdf
GAUSS LAW .pdf
 
Why we need Gaussian surface in Gauss's law
Why we need Gaussian surface in Gauss's lawWhy we need Gaussian surface in Gauss's law
Why we need Gaussian surface in Gauss's law
 
Bab4
Bab4Bab4
Bab4
 
Boundary Value Problems
Boundary Value ProblemsBoundary Value Problems
Boundary Value Problems
 
Physics about-electric-field
Physics about-electric-fieldPhysics about-electric-field
Physics about-electric-field
 
Gauss Law.pdf
Gauss Law.pdfGauss Law.pdf
Gauss Law.pdf
 
Conductors
ConductorsConductors
Conductors
 
Maxwell's equations and their derivations.
Maxwell's equations and their derivations.Maxwell's equations and their derivations.
Maxwell's equations and their derivations.
 
Electric field intensity
Electric field intensityElectric field intensity
Electric field intensity
 
Gauss's Law & its Applications
Gauss's Law & its ApplicationsGauss's Law & its Applications
Gauss's Law & its Applications
 
Ch22 ssm
Ch22 ssmCh22 ssm
Ch22 ssm
 
Fundamentals of Gauss' Law
Fundamentals of Gauss' LawFundamentals of Gauss' Law
Fundamentals of Gauss' Law
 
Electrostatics 3
Electrostatics 3Electrostatics 3
Electrostatics 3
 

Kürzlich hochgeladen

URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 

Kürzlich hochgeladen (20)

URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 

Electrostatics Grade 12 Part 1 CBSE

  • 1. Gauss’s Theorem: The surface integral of the electric field intensity over any closed hypothetical surface (called Gaussian surface) in free space is equal to 1 / ε0 times the net charge enclosed within the surface. E . dS = S ΦE = 1 ε0 ∑ i=1 n qi Proof of Gauss’s Theorem for Spherically Symmetric Surfaces: E . dS dΦ = r2 1 4πε0 = q r . dS n dΦ = r2 1 4πε0 q dS r n . Here, = 1 x 1 cos 0° = 1 r n . dΦ = r2 1 4πε0 q dS S ΦE = dΦ r2 1 4πε0 q = 4π r2 ε0 q = dS S r2 1 4πε0 q = O • r r dS E +q
  • 2. O • r r dS E +q Deduction of Coulomb’s Law from Gauss’s Theorem: From Gauss’s law, E . dS = S ΦE = q ε0 E dS = S ΦE = q ε0 or dS = S ΦE = q ε0 E E = q 4πε0 r2 E x 4π r2 q ε0 = If a charge q0 is placed at a point where E is calculated, then Since E and dS are in the same direction, which is Coulomb’s Law. or F = qq0 4πε0 r2
  • 3. Applications of Gauss’s Theorem: 1. Electric Field Intensity due to an Infinitely Long Straight Charged Wire: Gaussian surface is a closed surface, around a charge distribution, such that the electric field intensity has a single fixed value at every point on the surface. From Gauss’s law, E . dS = S ΦE = q ε0 E . dS = S E . dS + A E . dS + B E . dS C E . dS = S E dS cos 90° + A B E dS cos 90° + C E dS cos 0° = C E dS = E x 2 π r l - ∞ + ∞ B A C E E E dS dS dS l r
  • 4. q ε0 = λ l ε0 (where λ is the liner charge density) E x 2 π r l = λ l ε0 or E = 2 πε0 1 λ r or E = 4 πε0 1 2λ r In vector form, E (r) = 4 πε0 1 2λ r r The direction of the electric field intensity is radially outward from the positive line charge. For negative line charge, it will be radially inward. Note: The electric field intensity is independent of the size of the Gaussian surface constructed. It depends only on the distance of point of consideration. i.e. the Gaussian surface should contain the point of consideration.
  • 5. E dS C B A E E dS dS r l 2. Electric Field Intensity due to an Infinitely Long, Thin Plane Sheet of Charge: From Gauss’s law, σ E . dS = S ΦE = q ε0 E . dS = S E . dS + A E . dS + B E . dS C E . dS = S E dS cos 0° + A B E dS cos 0° + C E dS cos 90° = 2E dS = 2E x π r2 TIP: The field lines remain straight, parallel and uniformly spaced.
  • 6. (where σ is the surface charge density) or E = 2 ε0 σ In vector form, E (l) = 2 ε0 σ l The direction of the electric field intensity is normal to the plane and away from the positive charge distribution. For negative charge distribution, it will be towards the plane. Note: The electric field intensity is independent of the size of the Gaussian surface constructed. It neither depends on the distance of point of consideration nor the radius of the cylindrical surface. q ε0 = σ π r2 ε0 2 E x π r2 = σ π r2 ε0 If the plane sheet is thick, then the charge distribution will be available on both the sides. So, the charge enclosed within the Gaussian surface will be twice as before. Therefore, the field will be twice. E = ε0 σ
  • 7. 3. Electric Field Intensity due to Two Parallel, Infinitely Long, Thin Plane Sheet of Charge: σ1 σ2 E1 E1 E1 E2 E2 E2 E E E Region I Region II Region III E = E1 + E2 E = 2 ε0 σ1 + σ2 E = E1 - E2 E = 2 ε0 σ1 - σ2 E = E1 + E2 E = 2 ε0 σ1 + σ2 σ1 > σ2 ( ) Case 1: σ1 > σ2
  • 8. Case 2: σ1 σ2 E1 E1 E1 E2 E2 E2 E E E Region I Region II Region III E = E1 - E2 E = 2 ε0 σ1 - σ2 E = E1 + E2 E = 2 ε0 σ1 + σ2 E = E1 - E2 E = 2 ε0 σ1 - σ2 σ1 > σ2 ( ) σ1 > σ2 ( ) + σ1 & - σ2
  • 9. Case 3: σ1 σ2 E1 E1 E1 E2 E2 E2 E = 0 E ≠ 0 Region I Region II Region III E = 0 E = E1 - E2 E = 2 ε0 σ1 - σ2 = 0 E = E1 - E2 E = 2 ε0 σ1 - σ2 = 0 E = E1 + E2 E = 2 ε0 σ1 + σ2 = ε0 σ + σ & - σ
  • 10. 4. Electric Field Intensity due to a Uniformed Charged This Spherical Shell: dS E q r R •P From Gauss’s law, E . dS = S ΦE = q ε0 E dS = S ΦE = q ε0 or dS = S ΦE = q ε0 E E x 4π r2 q ε0 = Since E and dS are in the same direction, or E = q 4πε0 r2 i) At a point P outside the shell: Since q = σ x 4π R2, E = ε0 r2 σ R2 Electric field due to a uniformly charged thin spherical shell at a point outside the shell is such as if the whole charge were concentrated at the centre of the shell. HOLLOW ……… Gaussian Surface O •
  • 11. dS E From Gauss’s law, E . dS = S ΦE = q ε0 E dS = S ΦE = q ε0 or dS = S ΦE = q ε0 E E x 4π R2 q ε0 = Since E and dS are in the same direction, or E = q 4πε0 R2 ii) At a point A on the surface of the shell: Electric field due to a uniformly charged thin spherical shell at a point on the surface of the shell is maximum. Since q = σ x 4π R2, E = ε0 σ q R HOLLOW O • • A
  • 12. dS E r’ O q R HOLLOW • B • From Gauss’s law, E . dS = S ΦE = q ε0 E dS = S ΦE = q ε0 or dS = S ΦE = q ε0 E E x 4π r’2 q ε0 = Since E and dS are in the same direction, or E = 0 4πε0 r’2 iii) At a point B inside the shell: This property E = 0 inside a cavity is used for electrostatic shielding. (since q = 0 inside the Gaussian surface) E = 0 r E R O Emax END