SlideShare ist ein Scribd-Unternehmen logo
1 von 101
Downloaden Sie, um offline zu lesen
“Quest for Excellence”
PROJECT REPORT
on
“PILOT STUDY OF JALYUKT SHIVAR (JYS)
ASSESSMENT”
Submitted by
Manju H. Badoge BT4600007
Pranali A. Bodhare BT4600014
Sagar S. Mali BT4600075
Under the Guidance of
Prof. Rahul Agrawal sir
In partial fulfillment for the award of
Bachelor’s of Technology Degree inCivil Engineering
of
Dr.BABASAHEB AMBEDKAR MARATHWADA UNIVERSITY
AURANGABAD (M. S.)
Department of Civil Engineering
Maharashtra Institute of Technology, Aurangabad
Accredited with “Grade A” by NAAC
Affiliated to Dr. Babasaheb Ambedkar MarathwadaUniversity, Aurangabad
Maharashtra state, India
(2017-18)
CERTIFICATE
This is to certify that the project report entitled “PILOT STUDY OF
JALYUKT SHIVAR (JYS) ASSESSMENT”, which is being submitted to
Maharashtra Institute of Technology, affiliated to Dr. Babasaheb Ambedkar
Marathwada University, Aurangabad, Maharashtra State, India in the faculty of Civil
Engineering in partial fulfillment of the requirements for the award of ‘Bachelor of
Technology’ in ‘Civil Engineering’. This is the result of the original work and
contribution under my supervision and guidance. The work embodied in this report
has not formed earlier for the basis of the award of any degree or compatible
certificate or similar title of this for any other diploma /examining body or university
to the best of knowledge and belief.
Submitted by
Manju H. Badoge BT4600007
Pranali A. Bodhare BT4600014
Sagar S. Mali BT4600075
Place: Aurangabad
Date:
Prof. Rahul P. Agrawal
Guide
Civil Engineering Department
Dr. Ajay Dahake
Head of Civil Engineering
Dr. Santosh Bhosale
Principal
Maharashtra Institute of Technology,
Aurangabad
PROJECT APPROVAL SHEET
The following Studentshave done the appropriate work for the award of
Bachelor of Technology in Civil Engineering as a part of curriculum of Maharashtra
Institute of Technology affiliated to Dr. Babasaheb Ambedkar Marathwada University
Aurangabad, Maharashtra State, India.
Name of Student Manju H. Badoge BT4600007
Pranali A. Bodhare BT4600014
Sagar S. Mali BT4600075
Guide Prof. Rahul P. Agrawal
External Examiner
Date :- 06.01.2018
Place :- Maharashtra Institute of Technology
Aurangabad, Maharashtra, India-431010
i
ABSTRACT
Maharashtra has always faced droughts. The drought has persisted for four
consecutive years and has affected drinking water security and crop production and
productivity severely all over the Maharashtra state. Maharashtra government has
launched a new program named Jalyukta Shivar Abhiyan to make Maharashtra a
drought-free state by 2019. The JYS proposes a framework for village level water
balance calculation which includes estimation of crop-water requirements, drinking
water stress etc. JYS promotes an integration and coordination between various
government agencies and program during planning and implementation levels and
stresses on people's participation as one of the key objectives. The program aims to
make 5000 villages free of water scarcity every year. This transformation has been
possible with concentrated efforts towards developing watersheds, improving ground
water levels, de-silting and decentralizing water sources and increasing the area under
irrigation.
In this study we have select the village name of ‘Jambhala’ which is located in
the Gangapur Tahsil, Aurangabad District (M.S.) India. The main aim of the study is
to calculate total water demand of the village, total quantity of water available in a
village and finally by deducting total demand from the available quantity water
balance for the selected village will be calculate. And also visit to actual JYS work
such as stream deepening and widening, cement nala bund, farm pond, well,
compartment bunding etc. and collect the data as per assessment methodology given
in GR -2014 water conservation department (MS).
ii
INDEX
Abstract i
List of Table iv
List of Figure v
List of Graph v
Abbreviation vi
Ch. No. Title Page No.
1 Introduction 1
1.1 State Profile 1
1.2 Jalyukt Shivar Abhiyan JSA 2
1.3 About JYS 2
1.4 Works To Be Done Under JYS 3
1.5 Strategy 3
1.6 Activities of JYS 3
1.7 Necessity on JYS Assessment 4
1.8 Objectives 4
2. Literature Review 5
3. Study Area And Data Collection 9
3.1 Introduction of Village 9
3.2 Data Of Jambhala Village 10
3.2.1 General Data 10
3.2.2 Hydrological Data 12
3.2.3 Agricultural Data 18
3.3 Information About JYS Structure 21
3.3.1 Cement Nala Bandh 21
3.3.2 Farm Pond 22
3.3.3 Water Well 23
3.3.4 Compartment Bunding 25
3.3.5 Earthen Bund 25
iii
Ch. No. Title Page No.
4. Assessment And Analysis 29
4.1 Methodology of JYS Assessment 29
4.2 Assessment of JYS Structure 29
5. Result And Discussion 31
5.1 Analysis of Well 31
5.2 Water Storage Capacity JYS Work 33
5.3 Crop Water Requirement Study 34
5.4 Assessment of JYS Structure 36
6. Conclusion 39
6.1 Future Scope 39
6.2. Impact of JYA 40
7. References 43
7.1 Photos 45
8. Appendix 52
Acknowledgement
iv
LIST OF TABLES
Table No. Title Page No.
1 Rainfall data 12
2 Runoff data 14
3 Total water demand 14
4 Crop water requirements 15
5 Runoff stopped due to watershed 15
6 Cropping pattern 18
7 Kharif seasonal total crop areas 19
8 Rabbi seasonal total crop areas 19
9 Seasonal crop total areas 19
10 Cash crop total areas 20
11 Food crop total areas 20
12 Total vegetables crop areas 20
13 Total flowers crop areas 21
14 JYS Assessment 30
15 Depth of water in Well 32
16 Runoff Stopped due to Watershed in The Village 33
17 Crop Water Requirement Study 35
v
LIST OF FIGURES
Fig. No. Title Page No.
1 Map of Jambhala village 9
2 Jambhala village watersheds map 17
3 Cement Nala bund 21
4 Farm Pond 22
5 Water Well 23
6 Bore Well 24
7 Earthen Bund 25
8 Gabion Bund 26
9 Boulder Bund 27
10 JYS Structure Location Map 31
11 Nalla Dipping and widening 36
12 Cement Nalla Bund 37
13 Form Pond 38
vi
LIST OF Graph
Graph No. Title Page No.
1 Year wise precipitation data of Jambhala village 12
2 Year wise temperature data of Jambhala village 13
3 Year wise rainfall data of Jambhala village 13
4 Year wise rainfall data of Jambhala village 13
5 Slope wise runoff data of Jambhala village 14
6 Well Analyses in Jambhala village 32
7 JYS Structure Done 34
vii
ABBREVATIONS
WRD : Water resource Department
JSA : Jalyukt Shivar Abhiyan
JYS : Jalyukt Shivar Structure
CSR : Corporate Social Responsibly
CNB : Cement Nala Bund
ENB : Earthen Nala Bund
CCT : Construction of Continuous Contour Trenches
IWMP : Integrated Watershed Management Programme
GSDA : Groundwater Survey and Development Agency
TCM : Thousand Cubic Meter
NRDWP : National Rural Drinking Water Programme
ICAR : Indian Council of Agricultural Research’s
1
CHAPTER: I
INTRODUCTION
1.1 STATE PROFILE
Out of 307.70 lakh hectares of the geographical area, 225.4 lakh hectares area
is “cultivable land.” The state has about 75% area which is drained by eastward
flowing rivers; viz. the Godavari and Krishna, to the Bay of Bengal and the remaining
25% area is drained by westward flowing rivers like the Narmada, Tapi and Konkan
coastal rivers to the Arabian Sea. Maharashtra is prone to various disasters such as
drought, floods, cyclones, earthquake and accidents. While low rainfall areas of the
state are under the constant risk of droughts, high rainfall zones of eastern and
western Maharashtra are prone to flash floods and landslides. Overall situation of the
State is that it consists of 50 – 50 situations for floods as well as drought in the region.
Various water conservation projects are taken by WRD and Irrigation department, but
still the situation remains same. To overcome the drought situation in the state,
government of India has taken a step called ‘Jalyukt Shivar Abhiyan’ (JSA) with the
aim to make ‘Drought Free Maharashtra’ by 2019.
1.2 JALYUKT SHIVAR ABHIYAN (JYS)
One of the most important natural resources which are extremely crucial for
our daily life is water. There are the two types of sources of this essential resource viz.
surface water and ground water. Maharashtra, the second largest state in India, both in
area as well as in population, has very limited assured irrigation. Considering drought-
like situation occurring frequently in the state, Jalyukta Shivar Campaign is being
taken up under ‘Water for All -Drought-Free Maharashtra 2019’. Capacity and around
84% of its agricultural land is depends upon rainfall. Around 159 lakhs hectares of
area is drought-prone. Water Conservation Program is one of the very important
programs, the Government of Maharashtra has decided to implement with a view to
improve the lifestyle of the people and economical situation, agriculture development
in rural areas and thereby achieve the rural development. In the state, inconsistency of
rains in the very times of crop growth and discontinuity of rains create drought-like
situation and agriculture field is heavily impacted. Almost 82% area in the state is dry
land while 52% area is drought-prone. There are 188 Talukas (2234 villages) where
groundwater level dropped for more than 2 meter and drought situation were declared
2
in 19059 villages from 22 districts in the year 2014-15. This ‘Jalyukta Shivar’
campaign needs to be implemented in these locations on priority. Also, provisions
should be made to ensure water scarcity situation is not created in future in the
remaining part of the state. Therefore, government is authorizing implementation of
‘Jalyukta Shivar’ campaign in all districts of the state, in order to permanently
overcome drought situation by convergence of funds approved for schemes under
various departments and through MLA/MPFund/District-levelFund/Non-
governmentalOrganizations/CSRand public participation. The scheme aimed at
solving water scarcity problem of draught-prone regions is already a hit with farmers
as many villages are inching towards becoming water-sufficient.
1.3ABOUT JYS
This programme aims to make 5000 villages free of water scarcity every year.
Under the programme, micro-irrigation systems would be encouraged for proficient
use of water, hence increasing the irrigated area. Government will be initially
allocating Rs.1,000 core for the scheme. Moreover, all the existing water conservation
schemes will be now accumulated under this scheme. With several parts of
Maharashtra still reeling under the drought, the state government has launched the
scheme to combat increasing number of suicide by the farmers of the state.
Maharashtra is a drought prone area, especially its region of “Vidarbha” and
“Marathwada”.
In 2014, Vidarbha was deficit by 14 per cent, while Marathwada was deficit
by 42 percent, putting both the regions inthe category of drought. Incidents of farmers
suicide have become very common in these regions. High dependency on Monsoon
rain is the biggest factor behind farmers taking this extreme step. According to an
English Daily, 986 cases of farmers suicide were reported from Maharashtra in 2014.
In 2013, there were 11, 744 farmer suicides reported across the country out of
which nearly 27% (3,146) – highest for any state - was from Maharashtra. The main
reason to suicide is water scarcity and loan, if this programme goes smoothly and
result oriented, farmers from much hit area would be benefitted, and it shall increase
the water level of villages which has lowered to 1000 ft. some places in Maharashtra.
3
1.4 WORKS TO BE DONE UNDER JYS
 Broadening and deepening of the Nalla,
 Removing silt from lakes, ponds, farm ponds, and canals which prevents water
percolation.
 Building check dams, canals, small ponds, and wells (individual and
community).
 Tree plantation.
 Construction of Cement nalla bhandhara (CNB),
 Earthen nalla bhandhara (ENB).
 Compartment Bunding.
 Construction of continuous contour trenches (CCT).
1.5 STRATEGY
JYS Abhiyan, integrates and converges 14 water conservation programmes
Integrated Watershed Management is core component of the Abhiyan Village plans
drawn up based on water budget of the select villages Gram Sabha is empowered to
approve the village plan Funded by the government and private sector, and more
significantly, by the communities themselves through voluntary contributions
Increased engagement of corporate sector - corporate extended financial assistance
and adopted 400 villages State-level co-ordination and monitoring with Chief
Minister Transformation Office (CMTO) periodically reviewing the programme.
1.6 ACTIVITIES OF JYS
Generating public awareness through village and community level interactions,
use of mass media and distribution of information education and communication
(IEC) material watershed development and rejuvenation of old water bodies Repair,
renovation and restoration of existing irrigation water bodies de-silting of old water
conservation structures recharging of open dug wells and tube wells strengthening
drinking water resources promoting efficient use of available water strengthening of
water users associations ensuring optimum use of irrigation potential of existing
projects Online monitoring of activities in project villages.
4
1.7 NECESSITY ON JYS ASSISMENT
 In Maharashtra state water scarcity was declared in 23811 villages in the year
2014-15 and 15747 water scarcity Villages in 2015-16.
 There is a need to recharge ground water and create decentralized water bodies
to overcome the Water Scarcity problem in rain-fed area of the State.
 Incidents of farmer’s suicide have become very common in these regions.
The main reason to suicide is water scarcity and loan, if this programmed goes
smoothly and result oriented, farmers from much hit area would be benefitted, and it
shall increase the water level of villages which has lowered to 1000 ft. some places in
Maharashtra.
1.8 OBJECTIVES
Objectives of JYS Assessment:
 To check whether there is a increasing the level of ground water or not.
 To observe the volume of increased water storage capacity
 To check whether there is increasing assured water for farming and efficiency
of water usage or not.
 To check the JYS structure which is correct or not as per the assessment
methodology.
5
CHAPTER NO 2
LITERATURE REVIEW
Pachkore & Prabat 2017
[1]
studied that JYS is the Government of
Maharashtra’s program to provide water for all and make villages scarcity-free.
Maharashtra has been witnessing increasing agricultural and drinking water stress in
recent years. Maharashtra government has launched a new program named ‘Jalyukta
Shivar Abhiyan (Campaign)’ in a bid to make Maharashtra a drought-free state by
2019. The JYS proposes a framework for village level water balance calculation
which includes estimation of crop-water requirements, drinking water stress etc. JYS
promotes an integration and coordination between various government agencies and
program during planning and implementation levels and stresses on people's
participation as one of the key objectives. The program aims to make 5000 villages
free of water scarcity every year. The scheme aimed at solving water woes of draught-
prone regions is already a hit with farmers as many villages are inching towards
becoming water-sufficient. This transformation has been possible with concentrated
efforts towards developing water sheds, improving ground water levels, de-silting and
decentralizing water sources and increasing the area under irrigation. The project
involves deepening and widening of streams, construction of cement and earthen stop
dams, work on lakes and digging of farm ponds .After completion of irrigation
projects in next two years, 50% area will be under irrigation. For the rest 50%,
rainwater harvesting and decentralizing water sources are the only options to solve the
issue of water scarcity. The JYS is a successor of many earlier watershed programs
which have already been implemented, and some of which are ongoing, such as the
IWMP. With unique initiative like Jalyukta Shivar, water scarcity will surely be a
thing of the past.
Mr. Potekaret U.P. & Pawar 2017 [2]
concluded that water is important
because it is essential to life on the earth. It is one of the most important natural
resources and is vital for the Agricultural and economic development. In Maharashtra
state nearly 82% area of state falls in Rain-fed sector and 50% area is drought prone,
uncertain, insufficient and irregular rainfall pattern adversely affects Agriculture.
Drought occurs frequently resulting shortage of water for drinking and irrigation. In
view of this, the present paper based on secondary data intends, The state
6
government’s project 'Jalyukta Shivar Abhiyan' on January 26, 2015 setting targeting
25lakh hectares of land under irrigation in three phases between 2015 to 2018. To
look into the long term measures to mitigate drought with help of integration and
convergence of various schemes implemented by various departments and pulling
funds from all resources like Central, State, NGO, People's participation etc. under the
programme, Micro-irrigation system would be encouraged for proficient use of water,
hence increased the irrigation area.It is found that due to Jalyukt Shivar Abhiyan
rainfall run-off, soil erosion declined undercharge of ground water level and water
storage capacity also increased under irrigation area. Improving productivity and
socio- economic condition of farmers.
Mr. Khillare N.J. 2017 [3]
studied that Jalyukt Shivar (JYS) Campaign is a
flagship programme of Government of Maharashtra, aims to bring water
empowerment to the drought-affected villages to make Maharashtra Drought Free by
the year 2019. This Campaign is first of its kind organized action plan wherein many
departments are collectively & collaboratively working towards a common goal i.e.
‘Water for All’. The Campaign is mainly a combination of various pre-existing
schemes related to water conservation but with certain fine tuning. The targets in the
first phase of JYS Campaign, which were having a time frame of a year, could not be
achieved even after two years. The Government of Maharashtra has initiated several
measures to expedite the campaign but these initiatives have only focused on reducing
cycle time of particular stage. Also; the government is only monitoring a construction
phase of project cycle whereas delays in pre-construction actives are not being taken
in to account. The aim of this study is to optimize the cycle time by highlighting all
such areas where substantial delays are occurring and proposing measures to reduce
such delays thereby reducing the overall project cycle time for the JYS works. For
data collection interview method and field visit approach has been adopted. From the
collected data, projects cycle time of JYS works has been grouped under 7 stages and
idealistic time cycle has been developed which then compared with case studies, to
highlight the delaying events. Results from case studies showed that major portion of
project cycle time is being consumed by project initiation, formulation, and approval
phases than actual construction phase.
7
Government of Maharashtra
Water Conservation Department
Government Resolution (GR)No. JaLaA-2014/Case No.203/JaLa-7
[4] Water for all - Drought-free Maharashtra 2019
Regarding implementation of JalyuktaShivar Campaign to permanently
overcome internal drought situation.
Zeeshan & Pachkor R.T. 2015 [5]
conclude that JYS is the Government of
Maharashtra’s program to provide water for all and make villages scarcity-free.
Maharashtra has been witnessing increasing agricultural and drinking water stress in
recent years. Maharashtra government has launched a new program named ‘Jalyukta
Shivar Abhiyan (Campaign)’ in a bid to make Maharashtra a drought-free state by
2019. The JYS proposes a framework for village level water balance calculation
which includes estimation of crop-water requirements, drinking water stress etc. JYS
promotes an integration and coordination between various government agencies and
program during planning and implementation levels and stresses on people's
participation as one of the key objectives. The program aims to make 5000 villages
free of water scarcity every year. The scheme aimed at solving water woes of draught-
prone regions is already a hit with farmers as many villages are inching towards
becoming water-sufficient. This transformation has been possible with concentrated
efforts towards developing water sheds, improving ground water levels, de-silting and
decentralizing water sources and increasing the area under irrigation. The project
involves deepening and widening of streams, construction of cement and earthen stop
dams, work on lakes and digging of farm ponds .After completion of irrigation
projects in next two years, 50% area will be under irrigation. For the rest 50%,
rainwater harvesting and decentralizing water sources are the only options to solve the
issue of water scarcity. The JYS is a successor of many earlier watershed programs
which have already been implemented, and some of which are ongoing, such as the
IWMP. With unique initiative like Jalyukta Shivar, water scarcity will surely be a
thing of the past!
8
9
CHAPTER NO 3
STUDY AREA AND DATA COLLECTION
3.1 INTRODUCTION OF VILLAGE
From previous JYS reviewed the Jambhala village was decided to taken as pilot study
Gangapur, Aurangabad District of Maharashtra State, India. It belongs to Marathwada
region According to Census 2011 information the location code or village code of
Jambhala village is 549215. Jambhala village is located in Gangapur Tehsil in
Aurangabad district in Maharashtra, India. It is situated 47 km away from sub-district
headquarter Gangapur and 20km away from district headquarter Aurangabad.
Fig.no.1 Map of Jambhala village
Jambhala village is also a grampanchayat. The total geographical area of the village is
802 hectares. Jambhala has a total population of 1865 people. There are about 367
houses in Jambhala village. Latitude: 75.3125, Longitude: 19.82649994 and
Elevation: 616.
10
3.2 DATA OF JAMBHALA VILLAGE
3.2.1GENERAL DATA:
A) General data (As per National Rural Drinking Water Programme Habitation
Profile)
No. of Houses holds (As on 01/04/2017) - 337
No. of Cattles (As on 01/04/2003) - 200
Total Population (As on 01/04/2017) - GEN - 1323 SC - 395 ST - 1
LPCD as on 01/04/2017 - 37.93 Liter
B) GSDA’s groundwater assessment and regulations
Groundwater Surveys and Development Agency (GSDA), Maharashtra, performs
groundwater budgeting of all the 1500+ watersheds every alternate year. It uses
village level data like cropping patterns, extraction of groundwater for irrigation,
number of irrigation wells, pumping hours, public drinking water requirements, canal
length, command area, conservation structures and so on. The output of the
groundwater budgeting is to notify watersheds into Safe, Critical, Exploited and Over-
exploited categories. These categories indicate the amount of groundwater extracted
in the watershed against the net groundwater availability.
INFORMATION GSDA:-
1) District :- Aurangabad
2) Administrative Unit :- Gangapur
3) Type of Rock formation :- Hard Rock
4) Total Geographical Area :- 128019 Hectares
5) Hilly Area :- 0.0 Hectares
6) Ground Water Recharge Worthy Area
a. Command Area :- 32312 Hectares
b. Non- Command Area :- 95707.8 Hectares
c. Poor Ground Water Quality Area :- 0.00 Hectares
d. Shallow Water Table Area :- N.A
e. Flood Prone Area :- N.A
11
f. Maximum Depth of Fractures under unconfined Zone :- 20.4
Hectares
7) Village Name :- JAMBHALA
8) Elementary Watershed No :- GV-41
a. Mini Watershed No :- 1/8
b. Status :- Over Exploited
c. Census Code :- 02413000
d. Micro watershed code :- 4E8B1d2i
C) Some basic details of Jambhala:-
a. As per the JYS Plan-
b. Total Geo Area = 901 Hectare
c. Cultivable = 612 Hectare
d. Total Population = 3101
e. No. of cattle = 335
f. Annual Precipitation = 634mm
g. Water Budget =
a. Demand = (Agri-755, Drinking-110 TCM)
b. Deficit = 309 TCM
JYS Plan-
 Planned impounded water = 462 TCM
 Planned Budget = 2.17 Cores
12
3.2.2 HYDROLOGICAL DATA
A) Rainfall and whether data:- Last 15 years rainfall data
Table no.: 1 Rainfall data
Year
Max
Temperature
(Degree
Celsius)
Min
Temperature
(Degree
Celsius)
Precipitation
(mm)
Wind
(m/s)
Relative
Humidity
(fractions)
Solar
ml/m2
1999 32.647 19.571 998.785 2.788 0.484 19.624
2000 32.951 18.729 683.408 2.725 0.427 19.618
2001 33.034 19.519 913.228 2.794 0.440 19.624
2002 32.845 19.846 999.521 2.824 0.461 18.590
2003 32.794 19.915 1194.992 2.855 0.473 19.728
2004 32.171 19.528 1700.898 2.683 0.498 19.174
2005 31.787 19.103 847.927 2.700 0.492 18.983
2006 31.885 19.828 1047.418 2.642 0.512 18.875
2007 32.291 19.903 1261.035 2.665 0.487 18.651
2008 32.668 19.631 782.511 2.808 0.459 19.365
2009 32.841 20.298 1057.831 2.720 0.478 18.866
2010 32.033 20.390 1493.066 2.573 0.549 19.612
2011 32.108 19.055 1249.679 2.374 0.496 19.815
2012 31.791 18.997 1247.666 2.470 0.501 19.226
2013 31.272 19.337 1545.112 2.486 0.550 18.901
Aveg. 32.341 19.577 1134.872 2.674 0.487 19.244
Ref. www.globalwheather.tamu.in
Graph no.: 1 Year wise precipitation data of Jambhala village
0
200
400
600
800
1000
1200
1400
1600
1800
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
Average
Temperaturein(mm)
YEAR
PRECIPITATION
Precipitation
(mm)
13
Graph no.: 2 Year wise temperature data of Jambhala village
Graph no.: 3Year wise rainfall data of Jambhala village
Graph no.: 4 Year wise rainfall data of Jambhala village
0
5
10
15
20
25
30
35
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
Average
Range
Year
TEMPERATURE
Max. Temperature
Min. Temperature
0
0.5
1
1.5
2
2.5
3
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
Average
Range
Year
WIND AND HUMIDITY
Wind (m/s)
Relative Humidity (fractions)
17.5
18
18.5
19
19.5
20
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
Average
Rainfalldatain(ml/m2)
YEAR
SOLAR
Solar
ml/m2
14
B) RUNOFF DATA:- STROM WATER RUNOFF:-
Table no.: 2 Runoff data
No. Catchment Type
Strange Chart
Runoff %
Area (Ha)
Total Runoff
Tcm
1 20.00 % More Than Slope 1.3086 45.00 58.89
2 5% To 20% Slope 0.9814 60.00 58.88
3 5% Less Than Slope 0.6543 796.00 520.82
Total 901.00 638.59
Ref: Village data sheet
Graph no.: 5 Slope wise runoff data of Jambhala village
C) TOTAL WATER DEMAND:-DRINKING WATER:-
Table no.: 3 Total water demand
Activity No. Per Day Liter Total Need Water
Man 3101 90 101.87
Animal 335 60 7.34
Goat – Ship 346 06 0.76
Total 3782 109.96
Ref: Village data sheet
58.89 TCM 58.88 TCM
520.82 TCM
0
50
100
150
200
250
300
350
400
450
500
550
600
20% more slope 5% to 20% slope 5% less slpoe
TotalRunoffinTMC
Catchment Type
TOTAL RUNOFF
Total…
15
D) CROP WATER REQUIRMENT:-
Table no.: 4 Crop Water Requirements
Crop Name Area (Ha)
Needed Water Per Ha.
TCM
Total Need
Water TCM
Green gram 0 0 0
Maize 15 4 60
Tur 7 2 14
Animal Food 12 2.5 30
Cotton 35 5 175
Bazaar 5 2 10
Wheat 15 5 75
Chickpea 5 1 5
Cholam 10 2.5 25
Food Farm 49 7 345.45
Vegetable 8 2 16
Total 161.35 755.45
Ref: Village data sheet
`E) RUNOFF STOPPED DUE TO WATERSHED IN THE VILLAGE
(RAINWATER):-
Table no.: 5 Runoff stopped due to watershed
Type Of Work
Old JYS Work New JYS Work Total
NO. TMC NO. TMC NO. TMC
Deep CCT 0 0 0 0 0 0
Compartment Bunding 0 0.00 720 324 720 324
Farm Pond 2 4.39 30 65.88 32 70.27
Earthen Nalla Bund 25 75.00 2 6 27 81
Cement Nalla Bund 20 9 1 0.45 21 9.45
Cement Nalla Repair 0 0 22 11 22 11.00
Well Recharge 0 0 10 0 10 0
Desilting 1 5 5 25 06 30
Van Rai Bandhara 0 0 15 30 15 30
Deeping Nalla 0 0 20 0 20 0
Total 93.39 462.33 555.72
Ref: Village data sheet
16
F) VILLAGE WATER BALANCE SHEET:-
1) Village Total Water Need : - 865.41 TCM
a) Crop :- 755.45 TCM
b) Drinking Water :- 109.96 TCM
2) Total Runoff In Rain Water : - 638.59 TCM
3) Runoff Stopped Due To Watershed Works: -555.72 TMC
a) Old Works :- 93.39 TMC
b) New Works :- 462.33 TMC
4) As Compare To Village Need : - 309.69 TMC
5) Flow of Runoff : - 82.87 TMC
G) Sources and methods of irrigation
The extra water (crop water requirement) which farmer has to manage comes from
one of the three sources,
i) groundwater,
ii) surface water – canals (command area)
iii) lifts (outside command area)
Similarly farmer adopts different methods of irrigation method like
i) drip,
ii) sprinkler
iii) Conventional (flow).
H) Command Area / Non-Command Area
The watershed of village Jambhala comes under Watershed GV-41 and its
nearest minwatershed 1/8 of GV-41 watershed as follows
17
Ref: GSDA Data
Fig. No 2 Jambhala village watersheds map
I) Surface water / groundwater irrigation
There are No of nalla bunds used for irrigation for farming in village.
J) lift Irrigation
There are almost every farmers have his own well used for Drinking as well as
Irrigation
K) Methods of Irrigation
More likely conventional methods are adopted by farmers in village
L) Groundwater component in water balance
Almost 95% of the farmers depend on groundwater for irrigating crops. But
the water balance takes into account only rainfall runoff as the input to the system
while ignoring the rainfall infiltrating below the surface. Thus, the increase in the
groundwater table which is available to farmers through open / bore wells is
considered as extra water (or irrigation water) to be managed by farmer and not
included in water balance. These water levels indicate the water availability to the
farmer for that season depending on which farmer decides the cropping pattern.
Butsometimes cropping pattern may also force the farmer to sink deeper wells in the
conditions of poor water availability. Thus, there is a two-way relationship between
18
groundwater availability and cropping pattern which needs to be understood in order
to have proper demand-side management of water, which is an important objective as
per the JYS GR. The impounded water is available to farmers through groundwater
recharge, Hence the spatial and geological component is very important in estimating
the effects of water impoundments.
3.2.3 AGRICULTURAL DATA:- Cropping pattern
The agricultural water balance is calculated with the assumption that the
existing cropping pattern is the cropping pattern which will remain constant for all
years. But crop patterns change due to many reasons like increase in water
availability, low rainfall, farmer’s affordability etc.
Table no.: 6 Cropping pattern
Cropping Pattern Crops
KHARIF (1/04 to
30/09)
Maize, Green Gram, Cotton, Bazaar, Vegetables, Tur,
Animal Food
RABI (1/10 to 31/03)
Wheat, Chickpea, Cholam, Galit Dhanya, Grass,
Vegetables
SEASONAL Animal Food, Vegetables
YEARLY Sugarcane, Cotton
Ref: Village data sheet
The change in cropping pattern due to increased availability of water is not
incorporated in the current JYS framework. JYS GR mentions about crop plans and
regulations in water use. But there is no provision for agreements or regulations to be
done at the village level to bring these things into the plan.
19
KHARIF SEASONAL TOTAL CROP AREA :-
Table no.: 7 Kharif seasonal total crop areas
No Crop Name Area (Ha)
1 Green Gram 3
2 Maize 40
3 Cotton 540
4 Bazaar 30
5 Vegetables 25
6 Tur 25
7 Animal Food 5
Total 668
Ref: Village data sheet
RABBI SEASONAL CROP TOTAL AREA:-
Table no.: 8 Rabbi seasonal total crop areas
No Crop Name Area( Ha)
1 Wheat 15
2 Chickpea 5
3 Cholam 10
4 Galit Dhanya 2
5 Grass 2
6 Vegetables 2
Total 36
Ref: Village data sheet
SEASONAL CROPS TOTAL AREA:-
Table no.: 9 Seasonal crop total areas
No Crop Name Area (Ha)
1 Animal food 1
2 Vegetables 2
3 Total 3
Ref: Village data sheet
20
CASH CROP TOTAL AREA:-
Table no.: 10 Cash crop total areas
No Crop Name Area (Ha)
1 Sugarcane 1
2 Cotton 540
Total 541
Ref: Village data sheet
FOOD CROP TOTAL AREA:-
Table no.: 11 Food crop total areas
No. Crop Name Area (Ha)
1 Pomegranate 0.30
2 Sweet lime 9.00
3 Sapota 5.20
4 Tamarind 0.00
5 Custared Apple 2.20
6 Mango 9.35
7 Black Berry 8.75
8 Annona Reticulata 0.00
9 Fig 11.65
10 Gooseberry 0.40
11 Coconut 2.50
Total 49.35
Ref: Village data sheet
TOTAL VEGETABLES CROP AREA :-
Table no.: 12 Total vegetables crop areas
No. Crop Name Area (Ha)
1 Onion 15
2 Brinjal 1
3 Vegetable 4
Total 20
Ref: Village data sheet
21
TOTAL FLOWERS CROP AREA:-
Table no.: 13 Total flowers crop areas
No. Crop Name Area (Ha)
1 Marigold 0.60
2 Rose 0.40
Total 1.00
Ref: Village data sheet
3.3 INFORMATION ABOUT JYS STRUCTURE
3.3.1 Cement Nalla Bunds
Cement nalla bunds are constructed across small streams having gentle slope
and feasible both in hard rock as well as alluvial formations. The water stored in these
structures is mostly confined to stream course and the height is normally less than 2
m. These are designed base on stream width and excess water is allowed to flow over
the wall. In order to avoid scouring from excess run off, water cushions are provided
at downstream side. To harness the maximum run off in the stream, series of such
check dams can be constructed to have recharge on regional scale.
Fig. no 3 Cement nalla bund
A series of small bunds or weirs are made across selected nalla sections such
that the flow of surface water in the stream channel is impeded and water is retained
on pervious soil/rock surface for longer body. Nalla bunds are constructed across
bigger streams of second order in areas having gentler slopes. A nalla bund acts like a
mini percolation tank.
22
3.3.2Farm Pond
Farm ponds are small tanks or reservoirs constructed for the purpose of storing
water essentially from surface runoff. Farm ponds are useful for irrigation, water
supply for the cattle, fish production etc. The design and construction of farm ponds
require a thorough knowledge of the site conditions and requirements. Some sites are
ideally suited for locating the ponds and advantage of natural conditions should
always be taken.
Fig. no4 Farm Pond
Advantages of Farm Ponds
1. They provide water to start growing crops, without waiting for rain to fall.
2. They check soil erosion and minimize siltation of waterways and reservoirs.
3. They supplies water for domestic purposes and livestock.
4. They promote fish rearing.
5. They recharge the ground water.
6. They improve drainage.
Types of Ponds
Depending on the source of water and their location with respect to the land
surface, farm ponds are grouped into four types.(A) Dugout ponds, (B) Surface Ponds,
(C) Spring or Creek fed ponds and(D) Off-stream storage ponds.
23
3.3.3 Water Well
Water well is a hole, shaft, or excavation used for the purpose of extracting
ground water from the subsurface. Water may flow to the surface naturally after
excavation of the hole or shaft. Such a well is known as a flowing artesian well. More
commonly, water must be pumped out of the well. Most wells are vertical shafts, but
they may also be horizontal or at an inclined angle. Horizontal wells are commonly
used in bank filtration, where surface water is extracted via recharge through river bed
sediments into horizontal wells located underneath or next to a stream. In this
publication we focus on vertical water-production wells commonly used to supply
water for domestic, municipal, and agricultural uses in California. Our purposes to
provide readers with some basic information about water wells to help them
understand principles of effective well construction when they work with a
professional driller, consultant, or well servicing agency for well drilling and
maintenance.
Fig. no.: 5 Water Well
Types of Well
There are two main types of wells, each distinguished by the diameter of the
bore hole. The two types are A) Bored wells and B) Drilled wells.
24
A) Bore Well
Bored wells are constructed when low yielding groundwater sources are found
relatively close to the surface, usually less than 30 m (100 ft.). Bored wells are
constructed using a rotary bucket auger. They are usually completed by perforating
the casing (also called cribbing) or using a sand screen with continuous slot openings.
One advantage of bored wells is the large diameter of the casing, from 45-90 cm (18-
36 in.). It provides a water storage reservoir for use during peak demand periods. A
disadvantage of utilizing a shallow groundwater aquifer is that it generally relies on
annual precipitation for recharge. Water shortages may occur following long dry
periods in summer and extended freeze up during winter months. It can also be more
susceptible to contamination from surface land-use activities.
Fig. no.: 6 Bore Well
B) Drilled Well
Drilled wells are smaller in diameter, usually ranging from 10-20 cm (4-8 in.),
and completed to much greater depths than bored wells, up to several hundred meters.
The producing aquifer is generally less susceptible to pollution from surface sources
because of the depth. Also, the water supply tends to be more reliable since it is less
affected by seasonal weather patterns.
25
3.3.4 Compartment Bunding
Compartmental bunding means the entire field is divided into small compartments
with pre determined size to retain the rain water where it falls and arrest soil erosion. The
compartmental bunds are formed using bund former. The size of the bunds depends upon
slope of the land. Compartmental bunds provide more opportunity time for water to infiltrate
into the soil and help in conserving soil moisture.
Salient features:
1. Compartmental bunding is an effective moisture conservation measure in dry
land.
2. It is suitable for lesser rainfall areas and the slope is < 1%.
3. The lands are divided into small compartments with the dimension of 8 x 5
m2.
4. Small compartments act as a dam and store the rainfall received in the
compartments for longer period.
5. It increases water holding capacity of the soil.
6. Reduces the formation of cracks.
7. It will overcome the disadvantages of contour bunding.
3.3.5 Earthen Bund
This is the most popular soil conservation structure in the country and it is
practiced at large scale all over India. Farms bunds are constructed on agricultural
land with the aim of arresting soil erosion and improving the soil moisture profile.
Fig. no 7 Earthen Bund
26
Ideally bunds on farms should be made on the contour line. It would lie along
the bounding of the field. Land holding in the project area is very small and it is not
possible or feasible to construct contour or bund in the field. The earthen bund is
divided into three types on the basis of the slope of the land and size of the field. It
would help to conserve the water in the field and maintain in situ moisture in the field.
The erosion of the field is reduced. The waste weir in the field helps to safely disposal
of the excess water from the field.
Gabion Bunds
They are similar to lose boulder checks, but are constructed across bigger
streams and have their own catchments area at least 5 ha. Also, these structures are
constructed on flatter regions as against loose boulder checks. The flatter the upstream
slope, the more will be the storage. Along with slowing down the runoff this structure
also help in temporary water storage. Storage if the is impermeable enough. These
structures are generally reinforced with wire mesh for stable embankment and oppose
strong currents. The bunds made by covering the loosest ones by mesh are called
“Gabion Bandhara”.
Fig. no.: 8 Gabion Bund
The areas where the slopes of the nalla is greater than 3 per cent and the
rainfall is heavy in such conditions the loose boulder structure cannot sustain, so in
such cases the Gabion Bandhara are preferred. The boulders are locally available are
stored in a steel mesh and are tied up in the form of rectangular blocks. The height of
such structures is around 0.5 m and is a normally used stream with width of about 10
27
to 15 m. the excess water overflows this structure storing some water to serve as
source of recharge. The silt content of stream water in due course is deposited in the
interstices of the boulders to make it more impermeable. These structures are common
in Maharashtra, Madhya Pradesh, and Andhra Pradesh etc.
Boulder Bund
To reduce the erosion of soil on the upper side of the catchment area loose
boulder structure is more effective. By constructing the bunds made up of rocks
across the nalla the velocity of flowing rainwater can be reduced, to reduce erosion of
soil. Blocking the way of water and allowing it to percolate in the soil. As the silt gets
accumulated between two bunds, this area can be used under agriculture. By doing
plantation on the downstream side of bunds a forestation can be done.
Fig. no.: 9 Boulder Bund
28
29
CHAPTER NO. 4
METHODOLOGY ASSESSMENT
4.1 METHODOLOGY OF JYS ASSESSMENT
As per the assessment methodology three key pillars of assessment derived
from the JYS GR dated-5/12/2014 are-
1. Location- (Whether the Location of intervention is appropriate? Etc.)
2. Structural Soundness- (Whether the interventions are structurally sound and as
per relevant guidelines? Etc.)
3. Utility- (Whether the intended benefits have been fulfilled? Etc.)
Important Government Officials (Agri Assistant, Gram sevak) are contact and
JYS plan will obtain.
A series of primary visits to the village and three of them have been executed.
Visit to actual JYS work of structure widening and deepening of Nalla, observe the
structure collect the data from actual structure constructed as per the JYS scheme.
4.2 ASSESSMENT OF JYS STRUCTURE
The assessment of JYS structures are carried by following table format it
includes cement nalla bund, stream deepening and widening, farm pond and analysis
of well
30
Table No. 14 JYS Assessment Structure
Form
no
Farmer name JYS structure Distance
from CNB
Gut
no
1 Anil Eravane Cement Nalla
Bund
10 m 115
1 Afsar Sheikh Cement Nalla
Bund
10m 115
1 Ramkisan Chandel Cement Nalla
Bund
10m 115
1 Prashant Nallawade Cement Nalla
Bund
10m 177
1 Arun Satarkar Cement Nalla
Bund
15m 189
1 Sheikh Kaliya Cement Nalla
Bund
40m 173
1 Sahebrao More Cement Nalla
Bund
15m 114
2 Mohammad Afsar
Sheikh
Stream deep and
wide
5m 115
2 Sheikh Kaliya Stream deep and
wide
25m 173
3 Vithal Chopde Farm pond 139
31
CHAPTER NO 5
RESULTS AND DISCUSSION
5.1 ANALYSIS OF WELL
The main aim of this well analysis was that to check the ground water level
under the JYS construction project. Through this study we observed that the wells
which were located near JYS construction had increased water level and values were
obtained by conducting farmers’ interview as well as by self-assessment.
Fig. no.:10 JYS Structure Location Map Jambhala Village
32
Table 15 Depth of wall in Well
No/Year
Depth of
well(m)
Depth of
water
in(m)
2013
Depth of
water
in(m)
2014
Depth of
water
in(m)
2015
Depth of
water
in(m)
2016
Depth of
water
in(m)
2017
1 14 4.5 3 3.5 2.5 3
2 16 5.5 4.5 5 3 3.5
3 12 3.5 2 2.5 2 2.5
4 14 3.0 1.5 2.5 2 3
5 15 4.5 3 3.5 2.5 3.5
6 10 2.5 2 2.5 2 2.5
7 12 2.0 1.5 2 1.5 2
8 08 1.5 1 2 1.5 2.5
9 14 3.5 2.5 3 2 3.5
10 16 4.5 3 3.5 2.5 3.5
11 10 2.5 2 3 2.5 3
12 9 2.0 1.5 2.5 2.5 3.5
Graph No 6 Well Analyses in Jambhala village
0
5
10
15
20
25
2013 2014 2015 2016 2017
%OFWATERAVAILABLEIN
Year
WELL DEPTH
DEPTH OF WELL
DEPTH OFWATER
33
In the above graph table no. 17, and well no. 2 water level was found to be
varying every year. On the year 2013, 25% of water was available in the well which
was near to the jys structure of the nalla dipping and widening construction. As per
assessment observation of the year 2015, JYS structure constructed as a result of
which water was stopped and hence percolated in ground. This project also helped in
soil conservation. But in 2016, due to absence of rainfall at Jambhala village; water
couldn’t be stored in the JYS construction so it resulted into decreased water level.
That well water which was stored using JYS construction was used for the
irrigation as well as drinking purpose. In this area the Kharip crop depends upon the
rainfall while rabbi crops are taken according to the well water availability. Hence
whenever there is low well water level no more crops are taken by the farmers. This
affects not only farmers’ economy but common people also suffers due to market
strategy of “high demand and low availability principle”.
5.2 Water Storage Capacity JYS Work
Table No. 16 : Runoff Stopped Due To Watershed In The Village
(Rain Water)
TYPE OF WORK
OLD JYS
WORK
NEW JYS
WORK
TOTAL
NO. TMC NO. TMC NO. TMC
Deep CCT 0 0 0 0 0 0
Compartment Bunding 0 0.00 720 324 720 324
Farm Pond 2 4.39 30 65.88 32 70.27
Earthen Nalla Bund 25 75.00 2 6 27 81
Cement Nalla Bund 20 9 1 0.45 21 9.45
Cement Nalla Repair 0 0 22 11 22 11.00
Well Recharge 0 0 10 0 10 0
Desilting 1 5 5 25 06 30
Van RaiBandhara 0 0 15 30 15 30
Deeping Nalla 0 0 20 0 20 0
Total 93.39 462.33 555.72
34
JYS assessment village data is collected.as per Village data sheet no of work
done by government agencies, CSR (Corporate social responsibility). The assessment
of JYS structure we observed the water storage capacity that structure .The
constructions which come under JYS helped to stored 555.72 TMC. This stored water
further can be used for farm irrigation purpose, another advantage of this project was
found to be the increased well water level.
Graph No 7 JYS Structure Done
The assessment analysis of JYS structure is farm pond could store more water
70.27 TMC while cement nalla bund could store minimum water. Through this study
we came to the conclusion that the work of farm water ponds is more beneficial than
the other structures. But the cement nalla bund has an advantage of soil conservation.
This study showed that JYS project helps to solve scarcity problem and can create
drought free
5.3 Crop Water Requirement Study
The crop-water requirement figures used in the water-balance calculations
correspond to the extra water (besides rainfall and soil moisture available due to
rainfall), i.e. the irrigations which farmer must give to the crops. e.g. for Moong, Corn
and Udid, the crop-water requirement is zero because these are kharif crops which
require no extra rotations, while Rabi crops like Sorghum or Wheat are shown to need
0
10
20
30
40
50
60
70
80
FARM POND CEMENT NALA
BUND
DEEPING NALA
scaleinPercentage
JYS Structure
JYS STRUCTURE DONE
NO OF WORK
WATER STOPPED (TMC)
35
0.24 and 0.70 TCM/ha water, which are the rotations (extra water) to be given besides
water available from soil moisture.
However in the whole report identical crops have different crop-water
requirement numbers entered by Krushi Sahayyaks in Jhambhala village.
Table No. 17 : Crop Water Requirement Study
Crop Name Area (Ha) Actual
Water Per Ha. TCM
Total Actual Need
Water TCM
Green gram 0 0 0
Maize 15 4 60
Tur 7 2 14
Animal Food 12 2.5 30
Cotton 35 5 175
Bajara 5 2 10
Wheat 15 5 75
Ckiekpea 5 1 5
Cholam 10 2.5 25
Fruits 49 7 345.45
Vegetable 8 2 16
Total 161.35 33 755.45
Above data more of the water is used for fruits farming (7Tcm). The chief
crops of Jambhala village are cotton ,groundnut, bajara, Different types of soils are
required for raising different types of crops .heavy retentive soil (40%) is favorable
for raising crops .Light sandy soil (2 to8%) is suitable for crop like gram requiring
less water . medium or normal soil (having about 10to 20% of clay)is suitable for
crops like wheat , cotton, maize, vegetables, etc. requiring normal amount of water.
36
5.4 Assessment of JYS Structure
Fig. no.: 11 Nalla Dipping and Widening
As per our observation, supported with actual measurements; we found that
the construction was not proper in depth and slope. We observed that digging of nalla
was not in continuous fashion, they were interrupted in-between due to improper
work. Also it had a problem with site clearance due to grown and uncut plants. At
the time of visit, water was not available in the said construction. Structure of nalla
had a varying width across its length. The norm suggests the depth of nalla should be
taken as per the second and third order classification of water flow. Also as per the
guidelines, at the upstream of the nalla construction; there should be the provision for
water conservation structure. But in this study we found that the absence of this water
conservation structure at the upstream of nalla.
37
Fig. no.: 11 Nalla Dipping and Widening
Fig. no.: 12 CNB ( Cement Nalla Bhandhara )
38
We observed that construction was not proper because it had moderate slope rather
than steep slope. This unsuitable slope then further results into soil sunlight. We took
the measurement of CNB which was length as 14 m, width 1.2 m and height 1.9 m.
Also we found that apron and freeboard were not provided. Flank walls had not been
constructed properly. But we couldn’t check water leakage due to the absence of
water, at the time of visit. Also we noticed that the construction material of main
body was made of boulder rather concrete. Excavated soil is filled with surrounding
the embankment purpose. At the time of visit, water was not available so we couldn’t
get the result of water increase in nearby wells. But by the opinions of farmer we
came to comment that water level had increased little bit. This JYS scheme suffered
due to its improper structure and lack of attention by the conducting body. If this
situation will persist then the mission of making drought free Marthawada upto 2019
won’t be accomplished.
Fig. no.: 13 Form Pond
We visited to the farm pond made under the construction scheme ‘Magil Tyala
Shettal’. There we observed that water was not stored in that also it was not provided
with the polythene at the base of pond and had the absence of outlets. Bandara was
not constructed at upstream.
39
CHAPTER NO 6
CONCLUSION
This project helped in soil conservation. But due to absence of rainfall at
Jambhala village; water couldn’t be stored in the JYS construction so it resulted into
decreased water level. This affected not only farmers’ economy but common people
also suffered due to market strategy of “high demand and low availability principle”.
The constructions which come under JYS helped to store 555.72 TMC. This
stored water further used for farm irrigation purpose and found to be useful in the
increased well water level. This study showed that JYS project helps to solve scarcity
problem and can create drought free region. But this JYS scheme suffered due to its
improper structure and lack of attention by the conducting body. If this situation will
persist then the mission of making drought free Marthawada up to 2019 won’t be
accomplished. So need the proper attention with the proper work management and
skilled workers so as to fulfill the mission of “Drought free Marathawada 2019”
6.1 Future Scope
 Increase in Water Storage Capacity
 Recharge of Ground Water Level
 Increase under protective Irrigation Area
 Increase in Cropping intensity
 Increase in the Horticulture Area
 Increase in the Agriculture Produce and productivity
 Increase in Fodder Production
 Increase in area under Soil Moisture Security
 Improvement of Environment through Tree Plantation
 Improving Productivity and Socio-economic Condition of farmers
40
6.2 Impact Of Jalyukta Shivar Abhiyan
1) Increase in Ground Water level :-
The water harvesting structures play a key role by storing water and allow
sufficient time for water to percolate into ground. Therefore, Increase in
ground water table in drought prone area in measurable indicator of Successful
of JSA.
2) Soil Erosion Reduction :-
The soil erosion was reduced more than 50% in the Jalyukta Shivar Abhiyan
Implanted Area because of compartment bunding, CCT and Deep CCT and
Graded Band.
3) Run Off Reduction :-
With regards to run-off reduction it was observed that the programme is
successful in achieving this goal. According to the JSA beneficiaries this has
been possible because of the contour bunding or field bunding which has also
in checking the run-off of Rain water resulting in Soil Moisture Retention.
4) Land-use Pattern :-
Better land-use pattern is one of the important objectives of Watershed
Management with increase in surface water conservation and increase in
availability of water in the watershed regions.
5) Cropping Pattern and Agriculture Productivity :-
Since water is essential for agricultural production, with available water
harvesting Structure Farmers are inclined to new cropping Pattern and
Agricultural Diversification.
6) Cropping Intensity :-
The change in cropping intensity is one of the major indicators to assess
impact of the Jalyukta Shivar Abhiyan. Increase in residual moisture content
due to contour bunding helping in crop growth and yield. Decrease in Soil
Erosion and hence Protection of Fertile top Soil due to contour bunding.
41
7) Increase in Agriculture Productivity :-
Result of JSA increase in Agricultural Productivity also fodder production
increased due to this milk Production also increased.
8) Employment Generation :-
According to the Watershed Guidelines, the under the study, additional
employment is generated due to JSA. It was reported that during the
implementation of JSA’s Earthen Nalla, Bunding, K.T. Weirs Employment
have been generated.
42
43
CHAPTER NO 7
REFERENCES
1. A report on Watershed Interventions for Kurlod and Botoshi Phase-I,
Technology and Development Solutions Cell (TDSC) Centre for Technology
Alternatives for Rural Areas (CTARA), Indian Institute of Technology,
Bombay (IITB) ,December-2014.
2. Pachkor R. T., Parbat D.K. (2017) “Assessment of Works under Jalyukta
Shivar Campaign – A Case Study of Pusad Region” Volume 5, Issue 4, April
2017 P.P. 1614-1619
3. Potekar U.P. and Pawar S.K. (2017), “Jalyukta Shivar Abhiyan" and micro
Irrigation in Maharashtra state”, -Vol. 1, 2017, pp.54-57
4. Khillare N.J. (2017), “Analysis of Delays in Works under Jalyukt Shivar Campaign”,
International Journal for Scientific Research & Development, Vol.5(1), 2017,
pp.1059-1066
5. Government of Maharashtra Water Conservation Department, Government
Resolution (GR)No. JaLaA-2014/Case No.203/JaLa-7, Mantralaya, Mumbai -
400 032. Date: 5 December, 2014.
6. Belsare. H, Sohoni M., Field visit report - Parbhani April 2015, Centre for
Technology Alternatives for Rural Areas (CTARA), Indian Institute of
Technology, Bombay, May 2015.
7. Zeeshan, & Pachkor R.T.,2015 “Jalyukta Shivar - A Combat to Water Stresses
In Maharashtra” Volume 3 Issue X, October 2015 P.P 102-108.
Web sites
1. http://mrsac.maharashtra.gov.in/jalyukt
44
45
PHOTOS
Photo no. 1 :- Nalla Dipping and Widening
Photo no. :- 2 – Well ( Goat farm )
46
Photo no.: 3 – Nalla Deeping and Wideing
Photo no.: 4- CNB ( Cement Nalla Bhandhara )
47
Photo no.: 5 – Farm Pond without polythene
Photo No.: 6 – Compartment Bunding
48
Photo no.: 7 - Well
Photo no.: 8 – Farm Pond without polythene
49
Photo no.: 9 – Stream
Photo no.: 10 – Well
50
Photo no.: 11 – Water Tank
Photono.: 12 – Well
51
Photo no.: 13 – Well
Photo No.: 14 – Observation on Structure
52
Appendix - A
Form 1: Cement Nalla Bund (CNB) :- 1ST CNB NREA TO ROAD (GUT NO:-115,NAME:-ANIL ERAVANE)
Sr.
No
Question New Construction
Possible options for
answer
Answer No Medium
Whom to
ask?
Purpose
A.1 Location
1
Lat/Long
N190
56.994’
E0750
09.850’ GPS
A.2 Suitability
1
Depth of nala
Less than 1.5 m
More than 1.5m
3M VI 2M Storage capacity
2
Slope of nala bed
(Should be less than 1%)
Steep/moderate/flat Steep VI No
Main structure can
fail on slope due to
excess water pressure
on u/s side
3
On sharp curve y/n No VI No
Erodes (scouring of
sides) the side of nala
4
Bed strata / soil type
1. Soil
2. Hard rock
3. Cant found
4. other
Soil VI
Govt.
official
Purpose to fulfill
(percolation /storage)
5
How long back water is present
i.e. 10m No
Appr. Storage
capacity
6
Height of Bandhara above bed
nala level is correct or not?
Foundation depth +
Height of main body app
3m
Yes VI Yes Structural stability
53
A.3 Structural Soundness
1 Dimensions of main body
Length
Breadth
Height (m)
L:-13m
B:-1.5m
H:-2.4m
Tape/ laser
meter
2 Apron presence y/n Yes VI Yes To avoid d/s erosion
3 Freeboard 0.3 m y/n No Yes
To escape surplus
water easily
4 D/S slope provided y/n Yes VI Yes
Structural stability to
resist water pressure
5 Flank wall dimensions
Length
Breadth
Height
L:-10M
B:-0.23
H:-3M
Tape/Laser
meter
6 Leakages at base
Heavy/light/no/can’t figure
out
No (No
available water
at visited time)
VI No
Cracks in the
concrete structure
causes leakages,
reduces strength and
fails
7 Leakages at side
Heavy/light/no/can’t figure
out
No VI
8 Overall Anchorage of all parts y/n No -
To carry self load and
water load together
9 Silt deposition Heavy/mild/no No -
Reduces water
storage capacity
10
Condition of main body
(only concrete/boulders/etc)
Good/mod/bad Good VI
54
11 Strength of main body
At left corner – 3 readings at
1m (top)
(Bottom) - 3
At middle (top) – 3
(bottom) - 3
At right end (top) – 3
(bottom) -3
-
Rebound
hammer
Concrete grade (mix
proportions) defines
strength of concrete
12
Strength of flank wall
(grade of concrete mix)
Left and right
Top – 3 readings
Bottom- 3 readings
Middle – 3 readings
-
Rebound
hammer
13
excavated soil is filled with
surrounding the embankment
y/n Yes VI No
Water flow should
not be disturbed and
silted
14
Quality of concrete mix
(depend on grade)
Mix proportions y/n Yes VI
15
Only boulders in the main body y/n No
Repair Work y/n No
Repair method
Reinforcement steel repair,
Smoothing or leveling of
surfaces,
Filling of flow to
honeycombs or holes,
Damaged corners etc
-
A.4 Utility
1
Water available y/n
No water available
Since 2012
VI
55
2
Water used for
DW, irrigation
etc
Both interview Farmer Anil Eravane
3
Is there a well near by
(number if many)
y/n Yes (2 :-well) interview
Govt
official/
farmer
Recharge
4
Well water level increased due to CNB
construction
y/n Yes interview farmer
Mohammed Afsar
Sheikh
B
Beneficiary Interview Form
B1
Beneficiary/Farmer Name
Mohammad Afsar Sheikh (20 people n farm house) (Mb.No:-9923037867)
Plot Details
Plot No 115
Plot Size
(in acres)
15 Distance from CNB 10m
Rain fed/ Irrigated
Yes Single Crop/ Double
Crop
2 Crop
Cropping Details
Year Kharif Crop Rabi
2013
Cotton, Mango, Figs
NO
2014 Cotton, Mango, Figs NO
2015 Cotton, Mango, Figs NO
2016 Cotton, Mango, Figs NO
56
Form 1: Cement Nala Bund (CNB) :- 2nd CNB Near to Goat (GUT NO:-115, NAME: Mohamed Afsar Sheikh)
Question
Possible options
for answer y/n
Answer No Medium
Whom
to ask?
Purpose
New Construction
A.1 Location
1
Lat/Long
N190
56.890’
E0750
09.761’ GPS
A.2 Suitability
1
Depth of nala
Less than 1.5 m
More than 1.5m
3M VI 2M Storage capacity
2
Slope of nalla bed
(Should be less than 1%)
Steep/moderate/flat Steep VI No
Main structure can fail on slope
due to excess water pressure on
u/s side
3
On sharp curve y/n No VI No
Erodes (scouring of sides) the side
of nala
4
Bed strata / soil type
1. Soil
2. Hard rock
3. Cant found
4. other
Soil VI
Govt.
official
Purpose to fulfill (percolation
/storage)
5
How long back water is present
10M No
Appr. Storage capacity
6
Height of Bandhara above bed
nala level is correct or not?
Foundation depth +
Height of main
body app 3m
Yes VI Yes Structural stability
57
A.3 Structural Soundness
1
Dimensions of main body
Length
Breadth
Height (m)
L:-14m
B:-1.5m
H:-1.9m
Tape/ laser
meter
2
Apron presence y/n Yes VI Yes To avoid d/s erosion
3
Freeboard 0.3 m y/n
No
Yes To escape surplus water easily
4
D/S slope provided y/n
Yes
VI Yes
Structural stability to resist water
pressure
5
Flank wall dimensions
Length
Breadth
Height
L:-5M
B:-0.6
H:-3M
Tape/Lase
r meter
6
Leakages at base
Heavy/light/no/can’t
figure out
No (No
available
water at
visited
time)
VI No
Cracks in the concrete structure causes
leakages, reduces strength and fails
7
Leakages at side
Heavy/light/no/can’t
figure out
No VI
8
Overall Anchorage of all parts y/n No -
To carry self load and water load
together
9
Silt deposition Heavy/mild/no No - Reduces water storage capacity
10
Condition of main body
(only concrete/boulders/etc)
Good/mod/bad Good VI
11
Strength of main body
At left corner – 3
readings at 1m (top)
(Bottom) - 3
-
Rebound
hammer
Concrete grade (mix proportions)
defines strength of concrete
58
At middle (top) – 3
(bottom) - 3
At right end (top) – 3
(bottom) -3
12
Strength of flank wall
(grade of concrete mix)
Left and right
Top – 3 readings
Bottom- 3 readings
Middle – 3 readings
-
Rebound
hammer
13
excavated soil is filled with
surrounding the embankment
y/n
Yes
VI
No Water flow should not be disturbed and
silted
14
Quality of concrete mix
(depend on grade)
Mix proportions y/n
Yes
VI
15
Only boulders in the main body y/n
No
Repair Work y/n
No
Repair method
Reinforcement steel
repair,
Smoothing or leveling
of surfaces,
Filling of flow to
honeycombs or holes,
Damaged corners etc
-
A.4 Utility
1
Water available y/n
No water
available
Since
2012
VI
59
2
Water used for DW, irrigation etc. Both interview Farmer Anil Eravane
3
Is there a well near by
(number if many)
y/n
Yes (2 :-
well)
interview
Govt.
official/
farmer
Recharge
4
Well water level increased due to
CNB construction
y/n
Yes
interview farmer Mohamed Afsar Shekha
B
Beneficiary Interview Form
B1
Beneficiary/Farmer Name Mohammad Afsar Sheikh (20 people n farm house) (Mb.No:-9923037867)
Plot Details
Plot No 115 Plot Size (in acres) 15 Distance from CNB 10m
Rain fed/
Irrigated
Yes Single Crop/ Double Crop 2 Crop
Cropping Details
Year Kharif Crop Rabi
2013
Cotton ,Maize:-4 Acre Horticulture :-
Figs, Mango, Custard Apple, Chiku.
NO
2014
Cotton ,Maize:-4 Acre Horticulture :-
Figs, Mango, Custard Apple, Chiku.
NO
2015
Cotton ,Maize:-4 Acre Horticulture :-
Figs, Mango, Custard Apple, Chiku.
NO
2016
Cotton , Maize:-4 Acre Horticulture:-
Figs, Mango, Custard Apple, Chiku.
NO
60
Form 1: Cement Nala Bund (CNB) :- :- 3rd CNB Near to figs farm(GUT NO:-142,NAME:RamkisanChandel)
Question
Possible options
for answer
Answer Medium
Whom
to ask?
Purpose
New Construction y/n No
A.1 Location
1
Lat/Long
N190
56.744’
E0750
09.701’ GPS
A.2 Suitability
1
Depth of nala Less than 1.5 m
More than 1.5m
3M VI 2M Storage capacity
2
Slope of nalla bed
(Should be less than 1%)
Steep/moderate/flat Steep VI No
Main structure can fail on
slope due to excess water
pressure on u/s side
3
On sharp curve y/n No VI No
Erodes (scouring of sides) the
side of nala
4
Bed strata / soil type
1. Soil
2. Hard rock
3. Cant found
4. other
Soil VI
Govt.
official
Purpose to fulfill (percolation
/storage)
5
How long back water is present
i.e 10m No
Appr. Storage capacity
6
Height of Bandhara above bed
nala level is correct or not?
Foundation depth +
Height of main body
app 3m
Yes VI Yes Structural stability
A.3 Structural Soundness
61
1
Dimensions of main body
Length
Breadth
Height (m)
L:-15.1m
B:-2.3m
H:-0.9m
Tape/ laser
meter
2
Apron presence y/n Yes VI Yes To avoid d/s erosion
3
Freeboard 0.3 m y/n No Yes
To escape surplus water
easily
4
D/S slope provided y/n Yes VI Yes
Structural stability to resist
water pressure
5
Flank wall dimensions
Length
Breadth
Height
L:-10M
B:-0.23
H:-3M
Tape/Laser
meter
6
Leakages at base
Heavy/light/no/can’t
figure out
No (No
available
water at
visited time)
VI No
Cracks in the concrete
structure causes leakages,
reduces strength and fails
7
Leakages at side
Heavy/light/no/can’t
figure out
No VI
8
Overall Anchorage of all parts y/n No -
To carry self load and water
load together
9
Silt deposition Heavy/mild/no No -
Reduces water storage
capacity
10
Condition of main body
(only concrete/boulders/etc)
Good/mod/bad Good VI
62
11
Strength of main body
At left corner – 3
readings at 1m (top)
(Bottom) - 3
At middle (top) – 3
(bottom) - 3
At right end (top) – 3
(bottom) -3
-
Rebound
hammer
Concrete grade (mix
proportions) defines strength
of concrete
12
Strength of flank wall
(grade of concrete mix)
Left and right
Top – 3 readings
Bottom- 3 readings
Middle – 3 readings
-
Rebound
hammer
13
excavated soil is filled with
surrounding the embankment
y/n Yes VI No
Water flow should not be
disturbed and silted
14
Quality of concrete mix
(depend on grade)
Mix proportions y/n Yes VI
15
Only boulders in the main body y/n No
Repair Work y/n No
Repair method
Reinforcement steel
repair,
Smoothing or leveling
of surfaces,
Filling of flow to
honeycombs or holes,
Damaged corners etc
-
63
A.4 Utility
1
Water available y/n
No water
available
Since
2012
VI
2
Water used for DW, irrigation etc Both interview Farmer Anil Eravane
3
Is there a well near by
(number if many)
y/n
Yes (2 :-
well)
interview
Govt.
official/
farmer
Recharge
4
Well water level increased due to
CNB construction
y/n
Yes
interview farmer -
B
Beneficiary Interview Form
B1
Beneficiary/Farmer Name
Ramkisan chindale (Mb.No:-8275324111)
Plot Details
Plot No 115 Plot Size (in acres) 15 Distance from CNB 10m
Rain fed/ Irrigated Yes Single Crop/ Double Crop 2 Crop
Cropping Details
Year Kharif Crop Rabi
2013 Cotton , Horticulture :-Sweet Lime NO
64
2014 Cotton , Horticulture :-Sweet Lime NO
2015 Cotton , Horticulture :-Sweet Lime NO
2016 Cotton , Horticulture :-Sweet Lime NO
65
Form 1: Cement Nala Bund (CNB) :- 4th CNB (GUT NO:-177 )
Question
Possible options
for answer
Answer Medium
Whom
to ask?
Purpose
New Construction y/n No
A.1 Location
1
Lat/Long
N190
57.117’
E0750
08.876’ GPS
A.2 Suitability
1
Depth of nala Less than 1.5 m
More than 1.5m
1M VI 2M Storage capacity
2
Slope of nala bed
(Should be less than 1%)
Steep/moderate/flat Flat VI No
Main structure can fail
on slope due to excess
water pressure on u/s
side
3
On sharp curve y/n No VI No
Erodes (scouring of
sides) the side of nalla
4
Bed strata / soil type
1. Soil
2. Hard rock
3. Cant found
4. other
Soil VI Govt. official
Purpose to fulfill
(percolation /storage)
5
How long back water is present
i.e 10m No
Appr. Storage capacity
6
Height of Bandhara above bed
nala level is correct or not?
Foundation depth +
Height of main body
Yes VI Yes Structural stability
66
app 3m
A.3 Structural Soundness
1
Dimensions of main body
Length
Breadth
Height (m)
L:-10m
B:-0.9m
H:-2.1m
Tape/ laser
meter
2
Apron presence y/n Yes VI
Yes
To avoid d/s erosion
3
Freeboard 0.3 m y/n No Yes
To escape surplus water
easily
4
D/S slope provided y/n No VI Yes
Structural stability to
resist water pressure
5
Flank wall dimensions
Length
Breadth
Height
No
Wall
Tape/Laser
meter
6
Leakages at base
Heavy/light/no/can’t
figure out
No (No available
water at visited
time)
VI No
Cracks in the concrete
structure causes
leakages, reduces
strength and fails
7
Leakages at side
Heavy/light/no/can’t
figure out
No VI
8
Overall Anchorage of all parts y/n No -
To carry self load and
water load together
9
Silt deposition Heavy/mild/no No -
Reduces water storage
capacity
10
Condition of main body
(only concrete/boulders/etc)
Good/mod/bad Boulders VI
67
11
Strength of main body
At left corner – 3
readings at 1m (top)
(Bottom) - 3
At middle (top) – 3
(bottom) - 3
At right end (top) –
3 (bottom) -3
-
Rebound
hammer
Concrete grade (mix
proportions) defines
strength of concrete
12
Strength of flank wall
(grade of concrete mix)
Left and right
Top – 3 readings
Bottom- 3 readings
Middle – 3 readings
-
Rebound
hammer
13
excavated soil is filled with
surrounding the embankment
y/n Yes VI No
Water flow should not be
disturbed and silted
14
Quality of concrete mix
(depend on grade)
Mix proportions y/n Yes VI
15
Only boulders in the main body y/n No
Repair Work y/n No
Repair method
Reinforcement steel
repair,
Smoothing or
leveling of surfaces,
Filling of flow to
honeycombs or
holes,
Damaged corners
etc
-
68
A.4 Utility
1
Water available y/n
No water
available
Since 2012
VI
2
Water used for DW, irrigation etc Both interview Farmer
Anil Eravane
3
Is there a well near by
(number if many)
y/n Yes (2 :-well) interview
Govt.
official/
farmer
Recharge
4
Well water level increased due to
CNB construction
y/n
Yes
interview farmer -
B
Beneficiary Interview Form
B1
Beneficiary/Farmer Name
Prashant nalwade (Mb.No:-9421688599)
Plot Details
Plot No 177 Plot Size (in acres) - Distance from CNB 10m
Rain fed/ Irrigated
Yes
Single Crop/ Double Crop
2 Crop
Cropping Details
Year Kharif Crop Rabi
2013 Cotton , Horticulture :-Peru NO
69
2014 Cotton , Horticulture :-Peru NO
2015 Cotton , Horticulture :-Peru NO
2016 Cotton , Horticulture :-Peru NO
70
Form 1: Cement Nala Bund (CNB) :- 5Th CNB (GUT NO:-189,NAME:Arun Satarkar)
Question
Possible options for
answer
Answer Medium
Whom to
ask?
Purpose
New Construction y/n No
A.1 Location
1
Lat/Long
N190
57.117’
E0750
08.876’ GPS
A.2 Suitability
1
Depth of nala
Less than 1.5 m
More than 1.5m
1M VI 2M Storage capacity
2
Slope of nala bed
(Should be less than 1%)
Steep/moderate/flat Flat VI No
Main structure can fail on
slope due to excess water
pressure on u/s side
3
On sharp curve y/n No VI No
Erodes (scouring of sides)
the side of nala
4
Bed strata / soil type
1. Soil
2. Hard rock
3. Cant found
4. other
Soil VI Govt. official
Purpose to fulfill
(percolation /storage)
5
How long back water is present
i.e. 10m No
- - Appr. Storage capacity
6
Height of Bandhara above bed
nala level is correct or not?
Foundation depth +
Height of main body
app 3M
Yes VI Yes Structural stability
A.3 Structural Soundness
71
1
Dimensions of main body
Length
Breadth
Height (m)
L:-10m
B:-0.9m
H:-2.1m
Tape/ laser
meter
2
Apron presence y/n No VI Yes To avoid d/s erosion
3
Freeboard 0.3 m y/n No Yes To escape surplus water easily
4
D/S slope provided y/n No VI Yes
Structural stability to resist
water pressure
5
Flank wall dimensions
Length
Breadth
Height
-
Tape/Laser
meter
6
Leakages at base
Heavy/light/no/can’t
figure out
No (No
available
water at
visited time)
VI No
Cracks in the concrete
structure causes leakages,
reduces strength and fails
7
Leakages at side
Heavy/light/no/can’t
figure out
No VI
8
Overall Anchorage of all parts y/n No -
To carry self load and water
load together
9
Silt deposition Heavy/mild/no No - Reduces water storage capacity
10
Condition of main body
(only concrete/boulders/etc)
Good/mod/bad boulders VI
11
Strength of main body
At left corner – 3
readings at 1m (top)
(Bottom) - 3
At middle (top) – 3
(bottom) - 3
At right end (top) – 3
-
Rebound
hammer
Concrete grade (mix
proportions) defines strength
of concrete
72
(bottom) -3
12
Strength of flank wall
(grade of concrete mix)
Left and right
Top – 3 readings
Bottom- 3 readings
Middle – 3 readings
-
Rebound
hammer
13
excavated soil is filled with
surrounding the embankment
y/n Yes VI No
Water flow should not be
disturbed and silted
14
Quality of concrete mix
(depend on grade)
Mix proportions y/n Yes VI
15
Only boulders in the main body y/n No
Repair Work y/n No
Repair method
Reinforcement steel
repair,
Smoothing or
leveling of surfaces,
Filling of flow to
honeycombs or
holes,
Damaged corners etc
-
A.4 Utility
1
Water available y/n
No water
available
Since 2012
VI
73
2
Water used for DW, irrigation etc Both interview Farmer Anil Eravane
3
Is there a well near by
(number if many)
y/n Yes (2 :-well) interview
Govt.
official/
farmer
Recharge
4
Well water level increased due to
CNB construction
y/n Yes interview farmer -
B
Beneficiary Interview Form
B1
Beneficiary/Farmer Name Arun Satarkar
Plot Details
Plot No 189 Plot Size (in acres) - Distance from CNB 15m
Rain fed/ Irrigated Yes Single Crop/ Double Crop
2 Crop
Cropping Details
Year Kharif Crop Rabi
2013 Cotton , Horticulture :-Chikoo NO
2014 Cotton , Horticulture :- Chikoo NO
2015 Cotton , Horticulture :- Chikoo NO
2016 Cotton , Horticulture :- Chikoo NO
74
Form 1: Cement Nala Bund (CNB) :- 6th CNB (GUT NO:-173,NAME:-Sheikh kaliya)
Question
Possible options for
answer
Answer Medium
Whom to
ask?
Purpose
New Construction y/n No
A.1 Location
1
Lat/Long
N190
56.9
03’
E0750
09.
309’
GPS
A.2 Suitability
1
Depth of nala Less than 1.5 m
More than 1.5m
1M VI 2M Storage capacity
2
Slope of nala bed
(Should be less than 1%)
Steep/moderate/flat Moderate VI No
Main structure can
fail on slope due to
excess water pressure
on u/s side
3
On sharp curve y/n No VI No
Erodes (scouring of
sides) the side of nala
4
Bed strata / soil type
1. Soil
2. Hard rock
3. Cant found
4. other
Soil VI Govt. official
Purpose to fulfill
(percolation /storage)
5
How long back water is present
i.e 10m No
Appr. Storage
capacity
6
Height of bandhara above bed
nallah level is correct or not?
Foundation depth +
Height of main body
Yes VI Yes Structural stability
75
app 3m
A.3 Structural Soundness
1
Dimensions of main body
Length
Breadth
Height (m)
L:-13m
B:-1.5m
H:-2.4m
Tape/ laser
meter
2
Apron presence y/n Yes VI Yes To avoid d/s erosion
3
Freeboard 0.3 m y/n No Yes
To escape surplus
water easily
4
D/S slope provided y/n Yes VI Yes
Structural stability to
resist water pressure
5
Flank wall dimensions
Length
Breadth
Height
-
Tape/Laser
meter
- -
6
Leakages at base
Heavy/light/no/can’t
figure out
No (No
available
water at
visited time)
VI No
Cracks in the concrete
structure causes
leakages, reduces
strength and fails
7
Leakages at side
Heavy/light/no/can’t
figure out
No VI - -
8
Overall Anchorage of all parts y/n No - -
To carry self load and
water load together
9
Silt deposition Heavy/mild/no No - -
Reduces water
storage capacity
10
Condition of main body
(only concrete/boulders/etc)
Good/mod/bad Good VI - -
11
Strength of main body
At left corner – 3
readings at 1m (top)
-
Rebound
hammer
-
Concrete grade (mix
proportions) defines
76
(Bottom) - 3
At middle (top) – 3
(bottom) - 3
At right end (top) – 3
(bottom) -3
strength of concrete
12
Strength of flank wall
(grade of concrete mix)
Left and right
Top – 3 readings
Bottom- 3 readings
Middle – 3 readings
-
Rebound
hammer
- -
13
excavated soil is filled with
surrounding the embankment
y/n Yes VI No
Water flow should not
be disturbed and
silted
14
Quality of concrete mix
(depend on grade)
Mix proportions y/n Yes VI - -
15
Only boulders in the main body y/n No - - -
Repair Work y/n No - - -
Repair method
Reinforcement steel
repair,
Smoothing or leveling
of surfaces,
Filling of flow to
honeycombs or holes,
Damaged corners etc
- - - -
A.4 Utility
1
Water available y/n
No water
available
Since 2012
VI - -
77
2
Water used for DW, irrigation etc Both interview Farmer Anil Eravane
3
Is there a well near by
(number if many)
y/n Yes (1:-well) interview
Govt.
official/farmer
Recharge
4
Well water level increased due to
CNB construction
y/n Yes interview farmer -
B
Beneficiary Interview Form
B1
Beneficiary/Farmer Name Sheikh Kaliya ( Gut No:-173)
Plot Details
Plot No 173 Plot Size (in acres) - Distance from CNB 40m
Rain fed/ Irrigated Yes Single Crop/ Double Crop 2 Crop
Cropping Details
Year Kharif Crop Rabi
2013 Cotton , Horticulture :- Guavas NO
2014 Cotton , Horticulture :-Guavas NO
2015 Cotton , Horticulture :-Guavas NO
2016 Cotton , Horticulture :-Guavas NO
78
Form 1: Cement Nala Bund (CNB) :- 7th CNB
Question
Possible options
for answer
Answer Medium
Whom to
ask?
Purpose
New Construction y/n No
A.1 Location
1
Lat/Long
N190
56.814’
E0750
09.283’ GPS
A.2 Suitability
1
Depth of nala Less than 1.5 m
More than 1.5m
1M VI 2M Storage capacity
2
Slope of nala bed
(Should be less than 1%)
Steep/moderate/flat Flat VI No
Main structure can fail on
slope due to excess water
pressure on u/s side
3
On sharp curve y/n No VI No
Erodes (scouring of sides) the
side of nala
4
Bed strata / soil type
1. Soil
2. Hard rock
3. Cant found
4. other
Soil VI
Govt.
official
Purpose to fulfill (percolation
/storage)
5
How long back water is present
i.e 10m No
Appr. Storage capacity
6
Height of Bandhara above bed
nala level is correct or not?
Foundation depth +
Height of main
body app 3m
Yes VI Yes Structural stability
A.3 Structural Soundness
79
1
Dimensions of main body
Length
Breadth
Height (m)
L:-12m
B:-1.5m
H:-2.3m
Tape/ laser
meter
2
Apron presence y/n Yes VI Yes To avoid d/s erosion
3
Freeboard 0.3 m y/n No Yes To escape surplus water easily
4
D/S slope provided y/n Yes VI Yes
Structural stability to resist
water pressure
5
Flank wall dimensions
Length
Breadth
Height
-
Tape/Laser
meter
6
Leakages at base
Heavy/light/no/can’t
figure out
No (No
available
water at
visited
time)
VI No
Cracks in the concrete
structure causes leakages,
reduces strength and fails
7
Leakages at side
Heavy/light/no/can’t
figure out
No VI
8
Overall Anchorage of all parts y/n No -
To carry self load and water
load together
9
Silt deposition Heavy/mild/no No - Reduces water storage capacity
10
Condition of main body
(only concrete/boulders/etc)
Good/mod/bad Good VI
11
Strength of main body
At left corner – 3
readings at 1m (top)
(Bottom) - 3
At middle (top) – 3
(bottom) - 3
-
Rebound
hammer
Concrete grade (mix
proportions) defines strength
of concrete
80
At right end (top) – 3
(bottom) -3
12
Strength of flank wall
(grade of concrete mix)
Left and right
Top – 3 readings
Bottom- 3 readings
Middle – 3 readings
-
Rebound
hammer
13
excavated soil is filled with
surrounding the embankment
y/n Yes VI No
Water flow should not be
disturbed and silted
14
Quality of concrete mix
(depend on grade)
Mix proportions y/n Yes VI
15
Only boulders in the main body y/n No
Repair Work y/n No
Repair method
Reinforcement steel
repair,
Smoothing or
leveling of surfaces,
Filling of flow to
honeycombs or
holes,
Damaged corners etc
-
A.4 Utility
1
Water available y/n
No water
available
Since 2012
VI
2
Water used for DW, irrigation etc Both interview Farmer Anil Eravane
81
3
Is there a well near by
(number if many)
y/n Yes (1 :-well) interview
Govt.
official/
farmer
Recharge
4
Well water level increased due
to CNB construction
y/n Yes interview farmer Mohamed Afsar Sheikh
B
Beneficiary Interview Form
B1
Beneficiary/Farmer Name Sahebrao More( Mb.no:9823578538)
Plot Details
Plot No 114 Plot Size (in acres) - Distance from CNB -
Rain fed/ Irrigated
Yes
Single Crop/ Double Crop
Cropping Details
Year KharifCrop Rabi
2013 Cotton , Horticulture :- Figs NO
2014 Cotton , Horticulture :- Figs NO
2015 Cotton , Horticulture :- Figs NO
2016 Cotton , Horticulture :- Figs NO
82
Form 1: Stream deepening and widening :-1st Nala (1 ST Stream)
Question
Possible options for
answer
Answer Medium
Whom
to ask?
Purpose
New Construction y/n Yes
A.1 Location
1
Lat/Long
N19o
56.992’
E0750
09.761
’
GPS
A.2 Suitability
1
Order of stream
1st
/2nd
/3rd/
.4th
. 2nd
GIS+VI Should be done on 2nd
/3rd
2
Whether over exploited/exploited
Area
y/n VI Should be preferred
3
Whether upstream of Bandhara? y/n VI Should be preferred
4
Bed strata / soil type
1. Hard rock
2. Soil/Alluvium
3. Cant found
4. other
Soil VI
Govt.
official
Purpose to fulfill
(percolation /storage)
5
Whether location certified by
Sub-divisional Agriculture
office?
y/n -
Govt.
official
A.3 Structural Soundness
1
Dimensions after Excavation
Length
Breadth
Height (m)
-
Tape/
laser
meter
83
2
Dimensions after Excavation
Length
Breadth
Height (m)
L:-13m
B:-13m
H:-8m
Tape/
laser
meter
3
Depth below stream bed? In meter
Minimum of (Less than 3
meter or till hard rock)
4
Volume of silt excavated?
 Used for?
In m3
 Farmer/Ber
m
Berm
5
Distance from CNB Meter 5m
Tape/Lase
r meter
Should be more than 5
mtrs
6
Soil conservation works in
upside of location?
y/n No VI Should be done
A.4 Utility
1
Water available y/n No VI
2
Water used for
Irrigation
etc
Yes interview Farmer
3
Is there a well near by
(number if many)
Perceived recharge?
y/n 2:-well interview
Govt.
official/
farmer
Recharge
4
Number of filling of CNB? number 2 interview farmer
B
Beneficiary Interview Form
B1
Beneficiary/Farmer Name Muhammad Afsar Sheikh (20 people n farm house) (Mb.No:-9923037867)
Plot Details
84
Plot No 115 Plot Size (in acres) 15 Acers
Distance from
CNB
5m
Rain fed/Irrigated
Yes Single Crop/ Double
Crop
Double crop
Cropping Details
Year kharif Crop Rabi Crop
2013 Cotton , Maize:-4 Acre Horticulture:- Figs, Mango, Custard Apple, Chiku.
No
2014 Cotton , Maize:-4 Acre Horticulture :-Figs, Mango, Custard Apple, Chiku.
2015 Cotton , Maize:-4 Acre Horticulture :-Figs, Mango, Custard Apple, Chiku.
REMARK:- DISCONNECTED DISATANCE BETWEEN NA IS 15M
85
Form 1: Stream deepening and widening :-1st Nala ( 2nd Stream)
Question
Possible options for
answer
Answer Medium
Whom
to ask?
Purpose
New Construction y/n Yes
A.1 Location
1
Lat/Long
N19o
57.118’
E075
0
08.875’ GPS
A.2 Suitability
1
Order of stream 1st
/2nd
/3rd/
.4th
. 2nd
GIS+VI Should be done on 2nd
/3rd
2
Whether over
exploited/exploited Area
y/n
Over exploited
Area
VI Should be preferred
3
Whether upstream of
Bandhara?
y/n No VI Should be preferred
4
Bed strata / soil type
5. Hard rock
6. Soil/Alluvium
7. Cant found
8. Other
Soil VI
Govt.
official
Purpose to fulfill (percolation /storage)
5
Whether location certified
by Sub-divisional
Agriculture office?
y/n -
Govt.
official
A.3 Structural Soundness
1
Dimensions after Excavation
Length
Breadth
Height (m)
-
Tape/ laser
meter
86
2
Dimensions after Excavation
Length
Breadth
Height (m)
L:-10m
B:-8m
H:-8m
Tape/ laser
meter
3
Depth below stream bed? In meter
Minimum of (Less than 3 meter or till
hard rock)
4
Volume of silt excavated?
 Used for?
In m3
 Farmer/Berm
Berm
5
Distance from CNB Meter 10m
Tape/Lase
r meter
Should be more than 5 mtrs
6
Soil conservation works in
upside of location?
y/n No VI Should be done
A.4 Utility
1
Water available y/n
No
VI
2
Water used for Irrigation etc
Yes
interview Farmer
3
Is there a well near by
(number if many)
Perceived recharge?
y/n 1:-well interview
Govt.
official
/farmer
Recharge
4
Number of filling of CNB? number 2 interview farmer
B
Beneficiary Interview Form
B1
Beneficiary/Farmer Name GUT NO:-173,NAME:- Shekha kaliya
Plot Details
Plot No 173 Plot Size (in acres) - Distance from CNB 25m
87
Rain fed/ Irrigated Yes Single Crop/ Double Crop Double crop
Cropping Details
Year Kharif Crop Rabi Crop
2013 Cotton , Horticulture :- Guavas
No
2014 Cotton , Horticulture :- Guavas
2015 Cotton , Horticulture :- Guavas
88
Form 3: Farm Pond No:- 01
Question
Possible options for
answer
Answer Medium
Whom
to ask?
Purpose
A.1 Location
Lat/Long
N19o
56.95’
E0750
09.711’ GPS
A.2 Suitability
1
Pond location in farm
Flat/ hilly/ corner
or edge
Flat VI
Rainfall can damage the pond and silt
deposits
2
Built in nala y/n No VI Flows away with rainwater
3
Purpose of pond Percolation / storage Storage
4
Pond elevation than
nearest stream
Higher / lower/ same same
A.3 Structural Soundness
1
Dimensions
Length :
Breadth:
Depth :
30x30x3mt.
Tape/
laser
meter
2
Berm present y/n Yes VI Avoid breaching of bund
3
Plastic cover y/n N0 VI To avoid draining of water
4
Source of water? Rainfall/Groundwater Rainfall
Intervie
w
89
5
Inlet provided y/n No VI allow water to enter into pond
6
Outlet provided y/n No VI Allow water to drain
7
Position of inlet Correct/ incorrect Correct VI At higher elevation in the flow direction
8
Correct location of
excavated soil
deposition
y/n Yes VI
On the bund side but not on the way from
which water is coming into pond. Avoid on
nala side
9
Maintained Slope of
pond sides
y/n
Yes To protect the sides of pond to slide down into
the pond.
10
Soil compacted y/n
No
Overall stability of pond
11
Pitching or revetment y/n
No
Sides sag down into pit and erodes sides
A.4 Utility
1
Water present till which
month
Name of month
June
interview farmer To analyze Water availability
2
Is there a well near to pond
(number if many)
y/n
Yes
interview farmer Well recharge purpose
3
Well water level increased
due to pond construction
y/n
Yes
interview farmer
B
Beneficiary Interview Form
B1
Beneficiary/Farmer Name Vithal Chopade
Plot Details
90
Plot No 139 Plot Size (in acres)
Rain fed/
Irrigated
Yes
Single Crop/ Double
Crop
Double crop
Cropping Details
Year Kharif Crop
2013 Cotton, Tomato
2014 Cotton, Tomato
2015 Cotton, Tomato
2016 Cotton, Tomato
ACKNOWLEDGEMENT
I am very happy for the completion of this project. I would like to express my
special thanks of gratitude to our Guide Rahul Agrawal & Prashant Awarsarmal, who
gave us the golden opportunity to do this wonderful project and his valuable guidance
and constant support with all necessary help in our work. I am also thankful to all my
teachers and college staff who have helped us to complete this project.
Secondly, I would also like to thank my parents who helped a lot by encouraging
me to finishing this project in given time.
And the last, thanks again to all my friends, my group members and those who
directly or indirectly helped me during this project.
Manju H. Badoge BT4600007
Pranali A. Bodhare BT4600014
Sagar S. Mali BT4600075

Weitere ähnliche Inhalte

Was ist angesagt?

Case Studies of Water Supply Infrastructures
Case Studies of Water Supply InfrastructuresCase Studies of Water Supply Infrastructures
Case Studies of Water Supply InfrastructuresPrasad Thanthratey
 
Ganga River pollution
Ganga River pollutionGanga River pollution
Ganga River pollutionChethan B J
 
Hydropower Development in India
Hydropower Development in IndiaHydropower Development in India
Hydropower Development in IndiaSatish Taji
 
Pradhan Mantri Gram Sadak Yojana (PMGSY)
Pradhan Mantri Gram Sadak Yojana (PMGSY)Pradhan Mantri Gram Sadak Yojana (PMGSY)
Pradhan Mantri Gram Sadak Yojana (PMGSY)RAMPRASAD KUMAWAT
 
Kaleshwaram project (klis)pp open
Kaleshwaram project (klis)pp openKaleshwaram project (klis)pp open
Kaleshwaram project (klis)pp openrajuadepu1998
 
Sardar Sarovar Dam
Sardar Sarovar DamSardar Sarovar Dam
Sardar Sarovar DamKp Ahm
 
Water supply demand and Water Quality
Water supply demand and Water Quality Water supply demand and Water Quality
Water supply demand and Water Quality biometrust
 
Simulation of water distribution networks the use of epanet
Simulation of water distribution networks the use of epanetSimulation of water distribution networks the use of epanet
Simulation of water distribution networks the use of epanetRiki Rahmadhan KS
 
Design mannual for small scale irrigation scheme book
Design mannual for small scale irrigation scheme bookDesign mannual for small scale irrigation scheme book
Design mannual for small scale irrigation scheme bookSurendra Maharjan
 
Deendayal Antyodaya Yojana-National Urban Livelihoods Mission (DAY-NULM.pptx
Deendayal Antyodaya Yojana-National Urban Livelihoods Mission (DAY-NULM.pptxDeendayal Antyodaya Yojana-National Urban Livelihoods Mission (DAY-NULM.pptx
Deendayal Antyodaya Yojana-National Urban Livelihoods Mission (DAY-NULM.pptxJIT KUMAR GUPTA
 
Water conservation & management in rural Punjab_S.R. Aggarwal_Deptt. of Water...
Water conservation & management in rural Punjab_S.R. Aggarwal_Deptt. of Water...Water conservation & management in rural Punjab_S.R. Aggarwal_Deptt. of Water...
Water conservation & management in rural Punjab_S.R. Aggarwal_Deptt. of Water...India Water Portal
 
smart village report
smart village reportsmart village report
smart village reportvarun km
 
Hydro potential of india
Hydro potential of indiaHydro potential of india
Hydro potential of indiaRohil Kumar
 

Was ist angesagt? (20)

Multipurpose projects
Multipurpose projectsMultipurpose projects
Multipurpose projects
 
Case Studies of Water Supply Infrastructures
Case Studies of Water Supply InfrastructuresCase Studies of Water Supply Infrastructures
Case Studies of Water Supply Infrastructures
 
Ganga River pollution
Ganga River pollutionGanga River pollution
Ganga River pollution
 
Hydropower Development in India
Hydropower Development in IndiaHydropower Development in India
Hydropower Development in India
 
Indira awaas yojana
Indira awaas yojanaIndira awaas yojana
Indira awaas yojana
 
Pradhan Mantri Gram Sadak Yojana (PMGSY)
Pradhan Mantri Gram Sadak Yojana (PMGSY)Pradhan Mantri Gram Sadak Yojana (PMGSY)
Pradhan Mantri Gram Sadak Yojana (PMGSY)
 
Kaleshwaram project (klis)pp open
Kaleshwaram project (klis)pp openKaleshwaram project (klis)pp open
Kaleshwaram project (klis)pp open
 
Sardar Sarovar Dam
Sardar Sarovar DamSardar Sarovar Dam
Sardar Sarovar Dam
 
2021 uttarakhand flood
2021 uttarakhand flood2021 uttarakhand flood
2021 uttarakhand flood
 
Water supply demand and Water Quality
Water supply demand and Water Quality Water supply demand and Water Quality
Water supply demand and Water Quality
 
Simulation of water distribution networks the use of epanet
Simulation of water distribution networks the use of epanetSimulation of water distribution networks the use of epanet
Simulation of water distribution networks the use of epanet
 
Design mannual for small scale irrigation scheme book
Design mannual for small scale irrigation scheme bookDesign mannual for small scale irrigation scheme book
Design mannual for small scale irrigation scheme book
 
Deendayal Antyodaya Yojana-National Urban Livelihoods Mission (DAY-NULM.pptx
Deendayal Antyodaya Yojana-National Urban Livelihoods Mission (DAY-NULM.pptxDeendayal Antyodaya Yojana-National Urban Livelihoods Mission (DAY-NULM.pptx
Deendayal Antyodaya Yojana-National Urban Livelihoods Mission (DAY-NULM.pptx
 
Smart governance india
Smart governance indiaSmart governance india
Smart governance india
 
Village report
Village reportVillage report
Village report
 
Water conservation & management in rural Punjab_S.R. Aggarwal_Deptt. of Water...
Water conservation & management in rural Punjab_S.R. Aggarwal_Deptt. of Water...Water conservation & management in rural Punjab_S.R. Aggarwal_Deptt. of Water...
Water conservation & management in rural Punjab_S.R. Aggarwal_Deptt. of Water...
 
Rural roads-india
Rural roads-indiaRural roads-india
Rural roads-india
 
Final Project Report
Final Project ReportFinal Project Report
Final Project Report
 
smart village report
smart village reportsmart village report
smart village report
 
Hydro potential of india
Hydro potential of indiaHydro potential of india
Hydro potential of india
 

Ähnlich wie Project of JYS (Jalyukt Shivar Abhiyan)

IRJET- A Research Paper on Jalyukt Shivar Abhiyan Assessment (Sonavade) and D...
IRJET- A Research Paper on Jalyukt Shivar Abhiyan Assessment (Sonavade) and D...IRJET- A Research Paper on Jalyukt Shivar Abhiyan Assessment (Sonavade) and D...
IRJET- A Research Paper on Jalyukt Shivar Abhiyan Assessment (Sonavade) and D...IRJET Journal
 
IRJET - A Geographical Study of Nilwande Canal in Ahmednagar District, Pravar...
IRJET - A Geographical Study of Nilwande Canal in Ahmednagar District, Pravar...IRJET - A Geographical Study of Nilwande Canal in Ahmednagar District, Pravar...
IRJET - A Geographical Study of Nilwande Canal in Ahmednagar District, Pravar...IRJET Journal
 
Status of water & sanitation in gujarat ih&sg final
Status of water & sanitation in gujarat ih&sg finalStatus of water & sanitation in gujarat ih&sg final
Status of water & sanitation in gujarat ih&sg finalpravah
 
Status of water & sanitation in gujarat ih&sg final
Status of water & sanitation in gujarat ih&sg finalStatus of water & sanitation in gujarat ih&sg final
Status of water & sanitation in gujarat ih&sg finalpravah
 
IRJET- Preliminary Survey and Shared Vision Planning for a Smart Village
IRJET- Preliminary Survey and Shared Vision Planning for a Smart VillageIRJET- Preliminary Survey and Shared Vision Planning for a Smart Village
IRJET- Preliminary Survey and Shared Vision Planning for a Smart VillageIRJET Journal
 
Summit on e-Goverance Gujarat Vibrant
Summit on e-Goverance Gujarat VibrantSummit on e-Goverance Gujarat Vibrant
Summit on e-Goverance Gujarat VibrantVibrant Gujarat
 
Utilization of Existing Water Sources for Irrigation Purposes-Case Study of K...
Utilization of Existing Water Sources for Irrigation Purposes-Case Study of K...Utilization of Existing Water Sources for Irrigation Purposes-Case Study of K...
Utilization of Existing Water Sources for Irrigation Purposes-Case Study of K...IRJET Journal
 
“DESIGN OF WATER SUPPLY SCHEME IN VILLAGE – BANEGAON, TALUKA – NORTH SOLAPUR,...
“DESIGN OF WATER SUPPLY SCHEME IN VILLAGE – BANEGAON, TALUKA – NORTH SOLAPUR,...“DESIGN OF WATER SUPPLY SCHEME IN VILLAGE – BANEGAON, TALUKA – NORTH SOLAPUR,...
“DESIGN OF WATER SUPPLY SCHEME IN VILLAGE – BANEGAON, TALUKA – NORTH SOLAPUR,...IRJET Journal
 
IRJET- Seasonal Variations in Physico- Chemical Characteristics of Devara...
IRJET-  	  Seasonal Variations in Physico- Chemical Characteristics of Devara...IRJET-  	  Seasonal Variations in Physico- Chemical Characteristics of Devara...
IRJET- Seasonal Variations in Physico- Chemical Characteristics of Devara...IRJET Journal
 
Irrigation water management
Irrigation water managementIrrigation water management
Irrigation water managementboopathin
 
Agricultural drainage from waterlogged soils and indian experiences
Agricultural drainage from waterlogged soils and indian experiencesAgricultural drainage from waterlogged soils and indian experiences
Agricultural drainage from waterlogged soils and indian experiencesSuyog Khose
 
Inter basin water transfers in india – a solution to hydrological extremities
Inter basin water transfers in india – a solution to hydrological extremitiesInter basin water transfers in india – a solution to hydrological extremities
Inter basin water transfers in india – a solution to hydrological extremitieseSAT Publishing House
 
DESIGN OF MULTI-VILLAGE WATER SUPPLY SYSTEM
DESIGN OF MULTI-VILLAGE WATER SUPPLY SYSTEMDESIGN OF MULTI-VILLAGE WATER SUPPLY SYSTEM
DESIGN OF MULTI-VILLAGE WATER SUPPLY SYSTEMIRJET Journal
 
Reuse of wastewater as a climate mitigation strategy - Bengaluru and its hint...
Reuse of wastewater as a climate mitigation strategy - Bengaluru and its hint...Reuse of wastewater as a climate mitigation strategy - Bengaluru and its hint...
Reuse of wastewater as a climate mitigation strategy - Bengaluru and its hint...biometrust
 

Ähnlich wie Project of JYS (Jalyukt Shivar Abhiyan) (20)

IRJET- A Research Paper on Jalyukt Shivar Abhiyan Assessment (Sonavade) and D...
IRJET- A Research Paper on Jalyukt Shivar Abhiyan Assessment (Sonavade) and D...IRJET- A Research Paper on Jalyukt Shivar Abhiyan Assessment (Sonavade) and D...
IRJET- A Research Paper on Jalyukt Shivar Abhiyan Assessment (Sonavade) and D...
 
PMKSY: Implementation Pathways and Options (II)
PMKSY: Implementation Pathways and Options (II)PMKSY: Implementation Pathways and Options (II)
PMKSY: Implementation Pathways and Options (II)
 
IRJET - A Geographical Study of Nilwande Canal in Ahmednagar District, Pravar...
IRJET - A Geographical Study of Nilwande Canal in Ahmednagar District, Pravar...IRJET - A Geographical Study of Nilwande Canal in Ahmednagar District, Pravar...
IRJET - A Geographical Study of Nilwande Canal in Ahmednagar District, Pravar...
 
Status of water & sanitation in gujarat ih&sg final
Status of water & sanitation in gujarat ih&sg finalStatus of water & sanitation in gujarat ih&sg final
Status of water & sanitation in gujarat ih&sg final
 
Status of water & sanitation in gujarat ih&sg final
Status of water & sanitation in gujarat ih&sg finalStatus of water & sanitation in gujarat ih&sg final
Status of water & sanitation in gujarat ih&sg final
 
IRJET- Preliminary Survey and Shared Vision Planning for a Smart Village
IRJET- Preliminary Survey and Shared Vision Planning for a Smart VillageIRJET- Preliminary Survey and Shared Vision Planning for a Smart Village
IRJET- Preliminary Survey and Shared Vision Planning for a Smart Village
 
Summit on e-Goverance Gujarat Vibrant
Summit on e-Goverance Gujarat VibrantSummit on e-Goverance Gujarat Vibrant
Summit on e-Goverance Gujarat Vibrant
 
Utilization of Existing Water Sources for Irrigation Purposes-Case Study of K...
Utilization of Existing Water Sources for Irrigation Purposes-Case Study of K...Utilization of Existing Water Sources for Irrigation Purposes-Case Study of K...
Utilization of Existing Water Sources for Irrigation Purposes-Case Study of K...
 
Irrigation in maharashtra
Irrigation in maharashtraIrrigation in maharashtra
Irrigation in maharashtra
 
“DESIGN OF WATER SUPPLY SCHEME IN VILLAGE – BANEGAON, TALUKA – NORTH SOLAPUR,...
“DESIGN OF WATER SUPPLY SCHEME IN VILLAGE – BANEGAON, TALUKA – NORTH SOLAPUR,...“DESIGN OF WATER SUPPLY SCHEME IN VILLAGE – BANEGAON, TALUKA – NORTH SOLAPUR,...
“DESIGN OF WATER SUPPLY SCHEME IN VILLAGE – BANEGAON, TALUKA – NORTH SOLAPUR,...
 
IRJET- Seasonal Variations in Physico- Chemical Characteristics of Devara...
IRJET-  	  Seasonal Variations in Physico- Chemical Characteristics of Devara...IRJET-  	  Seasonal Variations in Physico- Chemical Characteristics of Devara...
IRJET- Seasonal Variations in Physico- Chemical Characteristics of Devara...
 
Presentation
PresentationPresentation
Presentation
 
Irrigation water management
Irrigation water managementIrrigation water management
Irrigation water management
 
Agricultural drainage from waterlogged soils and indian experiences
Agricultural drainage from waterlogged soils and indian experiencesAgricultural drainage from waterlogged soils and indian experiences
Agricultural drainage from waterlogged soils and indian experiences
 
poster
posterposter
poster
 
Inter basin water transfers in india – a solution to hydrological extremities
Inter basin water transfers in india – a solution to hydrological extremitiesInter basin water transfers in india – a solution to hydrological extremities
Inter basin water transfers in india – a solution to hydrological extremities
 
DESIGN OF MULTI-VILLAGE WATER SUPPLY SYSTEM
DESIGN OF MULTI-VILLAGE WATER SUPPLY SYSTEMDESIGN OF MULTI-VILLAGE WATER SUPPLY SYSTEM
DESIGN OF MULTI-VILLAGE WATER SUPPLY SYSTEM
 
PMKSY: Implementation Pathways and Options (I)
PMKSY: Implementation Pathways and Options (I)PMKSY: Implementation Pathways and Options (I)
PMKSY: Implementation Pathways and Options (I)
 
Reuse of wastewater as a climate mitigation strategy - Bengaluru and its hint...
Reuse of wastewater as a climate mitigation strategy - Bengaluru and its hint...Reuse of wastewater as a climate mitigation strategy - Bengaluru and its hint...
Reuse of wastewater as a climate mitigation strategy - Bengaluru and its hint...
 
Jalanidhi
JalanidhiJalanidhi
Jalanidhi
 

Kürzlich hochgeladen

Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdfSuman Jyoti
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfKamal Acharya
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VDineshKumar4165
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptMsecMca
 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01KreezheaRecto
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)simmis5
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTbhaskargani46
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...Call Girls in Nagpur High Profile
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...SUHANI PANDEY
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXssuser89054b
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 

Kürzlich hochgeladen (20)

Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 

Project of JYS (Jalyukt Shivar Abhiyan)

  • 1. “Quest for Excellence” PROJECT REPORT on “PILOT STUDY OF JALYUKT SHIVAR (JYS) ASSESSMENT” Submitted by Manju H. Badoge BT4600007 Pranali A. Bodhare BT4600014 Sagar S. Mali BT4600075 Under the Guidance of Prof. Rahul Agrawal sir In partial fulfillment for the award of Bachelor’s of Technology Degree inCivil Engineering of Dr.BABASAHEB AMBEDKAR MARATHWADA UNIVERSITY AURANGABAD (M. S.) Department of Civil Engineering Maharashtra Institute of Technology, Aurangabad Accredited with “Grade A” by NAAC Affiliated to Dr. Babasaheb Ambedkar MarathwadaUniversity, Aurangabad Maharashtra state, India (2017-18)
  • 2. CERTIFICATE This is to certify that the project report entitled “PILOT STUDY OF JALYUKT SHIVAR (JYS) ASSESSMENT”, which is being submitted to Maharashtra Institute of Technology, affiliated to Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra State, India in the faculty of Civil Engineering in partial fulfillment of the requirements for the award of ‘Bachelor of Technology’ in ‘Civil Engineering’. This is the result of the original work and contribution under my supervision and guidance. The work embodied in this report has not formed earlier for the basis of the award of any degree or compatible certificate or similar title of this for any other diploma /examining body or university to the best of knowledge and belief. Submitted by Manju H. Badoge BT4600007 Pranali A. Bodhare BT4600014 Sagar S. Mali BT4600075 Place: Aurangabad Date: Prof. Rahul P. Agrawal Guide Civil Engineering Department Dr. Ajay Dahake Head of Civil Engineering Dr. Santosh Bhosale Principal Maharashtra Institute of Technology, Aurangabad
  • 3. PROJECT APPROVAL SHEET The following Studentshave done the appropriate work for the award of Bachelor of Technology in Civil Engineering as a part of curriculum of Maharashtra Institute of Technology affiliated to Dr. Babasaheb Ambedkar Marathwada University Aurangabad, Maharashtra State, India. Name of Student Manju H. Badoge BT4600007 Pranali A. Bodhare BT4600014 Sagar S. Mali BT4600075 Guide Prof. Rahul P. Agrawal External Examiner Date :- 06.01.2018 Place :- Maharashtra Institute of Technology Aurangabad, Maharashtra, India-431010
  • 4. i ABSTRACT Maharashtra has always faced droughts. The drought has persisted for four consecutive years and has affected drinking water security and crop production and productivity severely all over the Maharashtra state. Maharashtra government has launched a new program named Jalyukta Shivar Abhiyan to make Maharashtra a drought-free state by 2019. The JYS proposes a framework for village level water balance calculation which includes estimation of crop-water requirements, drinking water stress etc. JYS promotes an integration and coordination between various government agencies and program during planning and implementation levels and stresses on people's participation as one of the key objectives. The program aims to make 5000 villages free of water scarcity every year. This transformation has been possible with concentrated efforts towards developing watersheds, improving ground water levels, de-silting and decentralizing water sources and increasing the area under irrigation. In this study we have select the village name of ‘Jambhala’ which is located in the Gangapur Tahsil, Aurangabad District (M.S.) India. The main aim of the study is to calculate total water demand of the village, total quantity of water available in a village and finally by deducting total demand from the available quantity water balance for the selected village will be calculate. And also visit to actual JYS work such as stream deepening and widening, cement nala bund, farm pond, well, compartment bunding etc. and collect the data as per assessment methodology given in GR -2014 water conservation department (MS).
  • 5. ii INDEX Abstract i List of Table iv List of Figure v List of Graph v Abbreviation vi Ch. No. Title Page No. 1 Introduction 1 1.1 State Profile 1 1.2 Jalyukt Shivar Abhiyan JSA 2 1.3 About JYS 2 1.4 Works To Be Done Under JYS 3 1.5 Strategy 3 1.6 Activities of JYS 3 1.7 Necessity on JYS Assessment 4 1.8 Objectives 4 2. Literature Review 5 3. Study Area And Data Collection 9 3.1 Introduction of Village 9 3.2 Data Of Jambhala Village 10 3.2.1 General Data 10 3.2.2 Hydrological Data 12 3.2.3 Agricultural Data 18 3.3 Information About JYS Structure 21 3.3.1 Cement Nala Bandh 21 3.3.2 Farm Pond 22 3.3.3 Water Well 23 3.3.4 Compartment Bunding 25 3.3.5 Earthen Bund 25
  • 6. iii Ch. No. Title Page No. 4. Assessment And Analysis 29 4.1 Methodology of JYS Assessment 29 4.2 Assessment of JYS Structure 29 5. Result And Discussion 31 5.1 Analysis of Well 31 5.2 Water Storage Capacity JYS Work 33 5.3 Crop Water Requirement Study 34 5.4 Assessment of JYS Structure 36 6. Conclusion 39 6.1 Future Scope 39 6.2. Impact of JYA 40 7. References 43 7.1 Photos 45 8. Appendix 52 Acknowledgement
  • 7. iv LIST OF TABLES Table No. Title Page No. 1 Rainfall data 12 2 Runoff data 14 3 Total water demand 14 4 Crop water requirements 15 5 Runoff stopped due to watershed 15 6 Cropping pattern 18 7 Kharif seasonal total crop areas 19 8 Rabbi seasonal total crop areas 19 9 Seasonal crop total areas 19 10 Cash crop total areas 20 11 Food crop total areas 20 12 Total vegetables crop areas 20 13 Total flowers crop areas 21 14 JYS Assessment 30 15 Depth of water in Well 32 16 Runoff Stopped due to Watershed in The Village 33 17 Crop Water Requirement Study 35
  • 8. v LIST OF FIGURES Fig. No. Title Page No. 1 Map of Jambhala village 9 2 Jambhala village watersheds map 17 3 Cement Nala bund 21 4 Farm Pond 22 5 Water Well 23 6 Bore Well 24 7 Earthen Bund 25 8 Gabion Bund 26 9 Boulder Bund 27 10 JYS Structure Location Map 31 11 Nalla Dipping and widening 36 12 Cement Nalla Bund 37 13 Form Pond 38
  • 9. vi LIST OF Graph Graph No. Title Page No. 1 Year wise precipitation data of Jambhala village 12 2 Year wise temperature data of Jambhala village 13 3 Year wise rainfall data of Jambhala village 13 4 Year wise rainfall data of Jambhala village 13 5 Slope wise runoff data of Jambhala village 14 6 Well Analyses in Jambhala village 32 7 JYS Structure Done 34
  • 10. vii ABBREVATIONS WRD : Water resource Department JSA : Jalyukt Shivar Abhiyan JYS : Jalyukt Shivar Structure CSR : Corporate Social Responsibly CNB : Cement Nala Bund ENB : Earthen Nala Bund CCT : Construction of Continuous Contour Trenches IWMP : Integrated Watershed Management Programme GSDA : Groundwater Survey and Development Agency TCM : Thousand Cubic Meter NRDWP : National Rural Drinking Water Programme ICAR : Indian Council of Agricultural Research’s
  • 11. 1 CHAPTER: I INTRODUCTION 1.1 STATE PROFILE Out of 307.70 lakh hectares of the geographical area, 225.4 lakh hectares area is “cultivable land.” The state has about 75% area which is drained by eastward flowing rivers; viz. the Godavari and Krishna, to the Bay of Bengal and the remaining 25% area is drained by westward flowing rivers like the Narmada, Tapi and Konkan coastal rivers to the Arabian Sea. Maharashtra is prone to various disasters such as drought, floods, cyclones, earthquake and accidents. While low rainfall areas of the state are under the constant risk of droughts, high rainfall zones of eastern and western Maharashtra are prone to flash floods and landslides. Overall situation of the State is that it consists of 50 – 50 situations for floods as well as drought in the region. Various water conservation projects are taken by WRD and Irrigation department, but still the situation remains same. To overcome the drought situation in the state, government of India has taken a step called ‘Jalyukt Shivar Abhiyan’ (JSA) with the aim to make ‘Drought Free Maharashtra’ by 2019. 1.2 JALYUKT SHIVAR ABHIYAN (JYS) One of the most important natural resources which are extremely crucial for our daily life is water. There are the two types of sources of this essential resource viz. surface water and ground water. Maharashtra, the second largest state in India, both in area as well as in population, has very limited assured irrigation. Considering drought- like situation occurring frequently in the state, Jalyukta Shivar Campaign is being taken up under ‘Water for All -Drought-Free Maharashtra 2019’. Capacity and around 84% of its agricultural land is depends upon rainfall. Around 159 lakhs hectares of area is drought-prone. Water Conservation Program is one of the very important programs, the Government of Maharashtra has decided to implement with a view to improve the lifestyle of the people and economical situation, agriculture development in rural areas and thereby achieve the rural development. In the state, inconsistency of rains in the very times of crop growth and discontinuity of rains create drought-like situation and agriculture field is heavily impacted. Almost 82% area in the state is dry land while 52% area is drought-prone. There are 188 Talukas (2234 villages) where groundwater level dropped for more than 2 meter and drought situation were declared
  • 12. 2 in 19059 villages from 22 districts in the year 2014-15. This ‘Jalyukta Shivar’ campaign needs to be implemented in these locations on priority. Also, provisions should be made to ensure water scarcity situation is not created in future in the remaining part of the state. Therefore, government is authorizing implementation of ‘Jalyukta Shivar’ campaign in all districts of the state, in order to permanently overcome drought situation by convergence of funds approved for schemes under various departments and through MLA/MPFund/District-levelFund/Non- governmentalOrganizations/CSRand public participation. The scheme aimed at solving water scarcity problem of draught-prone regions is already a hit with farmers as many villages are inching towards becoming water-sufficient. 1.3ABOUT JYS This programme aims to make 5000 villages free of water scarcity every year. Under the programme, micro-irrigation systems would be encouraged for proficient use of water, hence increasing the irrigated area. Government will be initially allocating Rs.1,000 core for the scheme. Moreover, all the existing water conservation schemes will be now accumulated under this scheme. With several parts of Maharashtra still reeling under the drought, the state government has launched the scheme to combat increasing number of suicide by the farmers of the state. Maharashtra is a drought prone area, especially its region of “Vidarbha” and “Marathwada”. In 2014, Vidarbha was deficit by 14 per cent, while Marathwada was deficit by 42 percent, putting both the regions inthe category of drought. Incidents of farmers suicide have become very common in these regions. High dependency on Monsoon rain is the biggest factor behind farmers taking this extreme step. According to an English Daily, 986 cases of farmers suicide were reported from Maharashtra in 2014. In 2013, there were 11, 744 farmer suicides reported across the country out of which nearly 27% (3,146) – highest for any state - was from Maharashtra. The main reason to suicide is water scarcity and loan, if this programme goes smoothly and result oriented, farmers from much hit area would be benefitted, and it shall increase the water level of villages which has lowered to 1000 ft. some places in Maharashtra.
  • 13. 3 1.4 WORKS TO BE DONE UNDER JYS  Broadening and deepening of the Nalla,  Removing silt from lakes, ponds, farm ponds, and canals which prevents water percolation.  Building check dams, canals, small ponds, and wells (individual and community).  Tree plantation.  Construction of Cement nalla bhandhara (CNB),  Earthen nalla bhandhara (ENB).  Compartment Bunding.  Construction of continuous contour trenches (CCT). 1.5 STRATEGY JYS Abhiyan, integrates and converges 14 water conservation programmes Integrated Watershed Management is core component of the Abhiyan Village plans drawn up based on water budget of the select villages Gram Sabha is empowered to approve the village plan Funded by the government and private sector, and more significantly, by the communities themselves through voluntary contributions Increased engagement of corporate sector - corporate extended financial assistance and adopted 400 villages State-level co-ordination and monitoring with Chief Minister Transformation Office (CMTO) periodically reviewing the programme. 1.6 ACTIVITIES OF JYS Generating public awareness through village and community level interactions, use of mass media and distribution of information education and communication (IEC) material watershed development and rejuvenation of old water bodies Repair, renovation and restoration of existing irrigation water bodies de-silting of old water conservation structures recharging of open dug wells and tube wells strengthening drinking water resources promoting efficient use of available water strengthening of water users associations ensuring optimum use of irrigation potential of existing projects Online monitoring of activities in project villages.
  • 14. 4 1.7 NECESSITY ON JYS ASSISMENT  In Maharashtra state water scarcity was declared in 23811 villages in the year 2014-15 and 15747 water scarcity Villages in 2015-16.  There is a need to recharge ground water and create decentralized water bodies to overcome the Water Scarcity problem in rain-fed area of the State.  Incidents of farmer’s suicide have become very common in these regions. The main reason to suicide is water scarcity and loan, if this programmed goes smoothly and result oriented, farmers from much hit area would be benefitted, and it shall increase the water level of villages which has lowered to 1000 ft. some places in Maharashtra. 1.8 OBJECTIVES Objectives of JYS Assessment:  To check whether there is a increasing the level of ground water or not.  To observe the volume of increased water storage capacity  To check whether there is increasing assured water for farming and efficiency of water usage or not.  To check the JYS structure which is correct or not as per the assessment methodology.
  • 15. 5 CHAPTER NO 2 LITERATURE REVIEW Pachkore & Prabat 2017 [1] studied that JYS is the Government of Maharashtra’s program to provide water for all and make villages scarcity-free. Maharashtra has been witnessing increasing agricultural and drinking water stress in recent years. Maharashtra government has launched a new program named ‘Jalyukta Shivar Abhiyan (Campaign)’ in a bid to make Maharashtra a drought-free state by 2019. The JYS proposes a framework for village level water balance calculation which includes estimation of crop-water requirements, drinking water stress etc. JYS promotes an integration and coordination between various government agencies and program during planning and implementation levels and stresses on people's participation as one of the key objectives. The program aims to make 5000 villages free of water scarcity every year. The scheme aimed at solving water woes of draught- prone regions is already a hit with farmers as many villages are inching towards becoming water-sufficient. This transformation has been possible with concentrated efforts towards developing water sheds, improving ground water levels, de-silting and decentralizing water sources and increasing the area under irrigation. The project involves deepening and widening of streams, construction of cement and earthen stop dams, work on lakes and digging of farm ponds .After completion of irrigation projects in next two years, 50% area will be under irrigation. For the rest 50%, rainwater harvesting and decentralizing water sources are the only options to solve the issue of water scarcity. The JYS is a successor of many earlier watershed programs which have already been implemented, and some of which are ongoing, such as the IWMP. With unique initiative like Jalyukta Shivar, water scarcity will surely be a thing of the past. Mr. Potekaret U.P. & Pawar 2017 [2] concluded that water is important because it is essential to life on the earth. It is one of the most important natural resources and is vital for the Agricultural and economic development. In Maharashtra state nearly 82% area of state falls in Rain-fed sector and 50% area is drought prone, uncertain, insufficient and irregular rainfall pattern adversely affects Agriculture. Drought occurs frequently resulting shortage of water for drinking and irrigation. In view of this, the present paper based on secondary data intends, The state
  • 16. 6 government’s project 'Jalyukta Shivar Abhiyan' on January 26, 2015 setting targeting 25lakh hectares of land under irrigation in three phases between 2015 to 2018. To look into the long term measures to mitigate drought with help of integration and convergence of various schemes implemented by various departments and pulling funds from all resources like Central, State, NGO, People's participation etc. under the programme, Micro-irrigation system would be encouraged for proficient use of water, hence increased the irrigation area.It is found that due to Jalyukt Shivar Abhiyan rainfall run-off, soil erosion declined undercharge of ground water level and water storage capacity also increased under irrigation area. Improving productivity and socio- economic condition of farmers. Mr. Khillare N.J. 2017 [3] studied that Jalyukt Shivar (JYS) Campaign is a flagship programme of Government of Maharashtra, aims to bring water empowerment to the drought-affected villages to make Maharashtra Drought Free by the year 2019. This Campaign is first of its kind organized action plan wherein many departments are collectively & collaboratively working towards a common goal i.e. ‘Water for All’. The Campaign is mainly a combination of various pre-existing schemes related to water conservation but with certain fine tuning. The targets in the first phase of JYS Campaign, which were having a time frame of a year, could not be achieved even after two years. The Government of Maharashtra has initiated several measures to expedite the campaign but these initiatives have only focused on reducing cycle time of particular stage. Also; the government is only monitoring a construction phase of project cycle whereas delays in pre-construction actives are not being taken in to account. The aim of this study is to optimize the cycle time by highlighting all such areas where substantial delays are occurring and proposing measures to reduce such delays thereby reducing the overall project cycle time for the JYS works. For data collection interview method and field visit approach has been adopted. From the collected data, projects cycle time of JYS works has been grouped under 7 stages and idealistic time cycle has been developed which then compared with case studies, to highlight the delaying events. Results from case studies showed that major portion of project cycle time is being consumed by project initiation, formulation, and approval phases than actual construction phase.
  • 17. 7 Government of Maharashtra Water Conservation Department Government Resolution (GR)No. JaLaA-2014/Case No.203/JaLa-7 [4] Water for all - Drought-free Maharashtra 2019 Regarding implementation of JalyuktaShivar Campaign to permanently overcome internal drought situation. Zeeshan & Pachkor R.T. 2015 [5] conclude that JYS is the Government of Maharashtra’s program to provide water for all and make villages scarcity-free. Maharashtra has been witnessing increasing agricultural and drinking water stress in recent years. Maharashtra government has launched a new program named ‘Jalyukta Shivar Abhiyan (Campaign)’ in a bid to make Maharashtra a drought-free state by 2019. The JYS proposes a framework for village level water balance calculation which includes estimation of crop-water requirements, drinking water stress etc. JYS promotes an integration and coordination between various government agencies and program during planning and implementation levels and stresses on people's participation as one of the key objectives. The program aims to make 5000 villages free of water scarcity every year. The scheme aimed at solving water woes of draught- prone regions is already a hit with farmers as many villages are inching towards becoming water-sufficient. This transformation has been possible with concentrated efforts towards developing water sheds, improving ground water levels, de-silting and decentralizing water sources and increasing the area under irrigation. The project involves deepening and widening of streams, construction of cement and earthen stop dams, work on lakes and digging of farm ponds .After completion of irrigation projects in next two years, 50% area will be under irrigation. For the rest 50%, rainwater harvesting and decentralizing water sources are the only options to solve the issue of water scarcity. The JYS is a successor of many earlier watershed programs which have already been implemented, and some of which are ongoing, such as the IWMP. With unique initiative like Jalyukta Shivar, water scarcity will surely be a thing of the past!
  • 18. 8
  • 19. 9 CHAPTER NO 3 STUDY AREA AND DATA COLLECTION 3.1 INTRODUCTION OF VILLAGE From previous JYS reviewed the Jambhala village was decided to taken as pilot study Gangapur, Aurangabad District of Maharashtra State, India. It belongs to Marathwada region According to Census 2011 information the location code or village code of Jambhala village is 549215. Jambhala village is located in Gangapur Tehsil in Aurangabad district in Maharashtra, India. It is situated 47 km away from sub-district headquarter Gangapur and 20km away from district headquarter Aurangabad. Fig.no.1 Map of Jambhala village Jambhala village is also a grampanchayat. The total geographical area of the village is 802 hectares. Jambhala has a total population of 1865 people. There are about 367 houses in Jambhala village. Latitude: 75.3125, Longitude: 19.82649994 and Elevation: 616.
  • 20. 10 3.2 DATA OF JAMBHALA VILLAGE 3.2.1GENERAL DATA: A) General data (As per National Rural Drinking Water Programme Habitation Profile) No. of Houses holds (As on 01/04/2017) - 337 No. of Cattles (As on 01/04/2003) - 200 Total Population (As on 01/04/2017) - GEN - 1323 SC - 395 ST - 1 LPCD as on 01/04/2017 - 37.93 Liter B) GSDA’s groundwater assessment and regulations Groundwater Surveys and Development Agency (GSDA), Maharashtra, performs groundwater budgeting of all the 1500+ watersheds every alternate year. It uses village level data like cropping patterns, extraction of groundwater for irrigation, number of irrigation wells, pumping hours, public drinking water requirements, canal length, command area, conservation structures and so on. The output of the groundwater budgeting is to notify watersheds into Safe, Critical, Exploited and Over- exploited categories. These categories indicate the amount of groundwater extracted in the watershed against the net groundwater availability. INFORMATION GSDA:- 1) District :- Aurangabad 2) Administrative Unit :- Gangapur 3) Type of Rock formation :- Hard Rock 4) Total Geographical Area :- 128019 Hectares 5) Hilly Area :- 0.0 Hectares 6) Ground Water Recharge Worthy Area a. Command Area :- 32312 Hectares b. Non- Command Area :- 95707.8 Hectares c. Poor Ground Water Quality Area :- 0.00 Hectares d. Shallow Water Table Area :- N.A e. Flood Prone Area :- N.A
  • 21. 11 f. Maximum Depth of Fractures under unconfined Zone :- 20.4 Hectares 7) Village Name :- JAMBHALA 8) Elementary Watershed No :- GV-41 a. Mini Watershed No :- 1/8 b. Status :- Over Exploited c. Census Code :- 02413000 d. Micro watershed code :- 4E8B1d2i C) Some basic details of Jambhala:- a. As per the JYS Plan- b. Total Geo Area = 901 Hectare c. Cultivable = 612 Hectare d. Total Population = 3101 e. No. of cattle = 335 f. Annual Precipitation = 634mm g. Water Budget = a. Demand = (Agri-755, Drinking-110 TCM) b. Deficit = 309 TCM JYS Plan-  Planned impounded water = 462 TCM  Planned Budget = 2.17 Cores
  • 22. 12 3.2.2 HYDROLOGICAL DATA A) Rainfall and whether data:- Last 15 years rainfall data Table no.: 1 Rainfall data Year Max Temperature (Degree Celsius) Min Temperature (Degree Celsius) Precipitation (mm) Wind (m/s) Relative Humidity (fractions) Solar ml/m2 1999 32.647 19.571 998.785 2.788 0.484 19.624 2000 32.951 18.729 683.408 2.725 0.427 19.618 2001 33.034 19.519 913.228 2.794 0.440 19.624 2002 32.845 19.846 999.521 2.824 0.461 18.590 2003 32.794 19.915 1194.992 2.855 0.473 19.728 2004 32.171 19.528 1700.898 2.683 0.498 19.174 2005 31.787 19.103 847.927 2.700 0.492 18.983 2006 31.885 19.828 1047.418 2.642 0.512 18.875 2007 32.291 19.903 1261.035 2.665 0.487 18.651 2008 32.668 19.631 782.511 2.808 0.459 19.365 2009 32.841 20.298 1057.831 2.720 0.478 18.866 2010 32.033 20.390 1493.066 2.573 0.549 19.612 2011 32.108 19.055 1249.679 2.374 0.496 19.815 2012 31.791 18.997 1247.666 2.470 0.501 19.226 2013 31.272 19.337 1545.112 2.486 0.550 18.901 Aveg. 32.341 19.577 1134.872 2.674 0.487 19.244 Ref. www.globalwheather.tamu.in Graph no.: 1 Year wise precipitation data of Jambhala village 0 200 400 600 800 1000 1200 1400 1600 1800 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Average Temperaturein(mm) YEAR PRECIPITATION Precipitation (mm)
  • 23. 13 Graph no.: 2 Year wise temperature data of Jambhala village Graph no.: 3Year wise rainfall data of Jambhala village Graph no.: 4 Year wise rainfall data of Jambhala village 0 5 10 15 20 25 30 35 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Average Range Year TEMPERATURE Max. Temperature Min. Temperature 0 0.5 1 1.5 2 2.5 3 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Average Range Year WIND AND HUMIDITY Wind (m/s) Relative Humidity (fractions) 17.5 18 18.5 19 19.5 20 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Average Rainfalldatain(ml/m2) YEAR SOLAR Solar ml/m2
  • 24. 14 B) RUNOFF DATA:- STROM WATER RUNOFF:- Table no.: 2 Runoff data No. Catchment Type Strange Chart Runoff % Area (Ha) Total Runoff Tcm 1 20.00 % More Than Slope 1.3086 45.00 58.89 2 5% To 20% Slope 0.9814 60.00 58.88 3 5% Less Than Slope 0.6543 796.00 520.82 Total 901.00 638.59 Ref: Village data sheet Graph no.: 5 Slope wise runoff data of Jambhala village C) TOTAL WATER DEMAND:-DRINKING WATER:- Table no.: 3 Total water demand Activity No. Per Day Liter Total Need Water Man 3101 90 101.87 Animal 335 60 7.34 Goat – Ship 346 06 0.76 Total 3782 109.96 Ref: Village data sheet 58.89 TCM 58.88 TCM 520.82 TCM 0 50 100 150 200 250 300 350 400 450 500 550 600 20% more slope 5% to 20% slope 5% less slpoe TotalRunoffinTMC Catchment Type TOTAL RUNOFF Total…
  • 25. 15 D) CROP WATER REQUIRMENT:- Table no.: 4 Crop Water Requirements Crop Name Area (Ha) Needed Water Per Ha. TCM Total Need Water TCM Green gram 0 0 0 Maize 15 4 60 Tur 7 2 14 Animal Food 12 2.5 30 Cotton 35 5 175 Bazaar 5 2 10 Wheat 15 5 75 Chickpea 5 1 5 Cholam 10 2.5 25 Food Farm 49 7 345.45 Vegetable 8 2 16 Total 161.35 755.45 Ref: Village data sheet `E) RUNOFF STOPPED DUE TO WATERSHED IN THE VILLAGE (RAINWATER):- Table no.: 5 Runoff stopped due to watershed Type Of Work Old JYS Work New JYS Work Total NO. TMC NO. TMC NO. TMC Deep CCT 0 0 0 0 0 0 Compartment Bunding 0 0.00 720 324 720 324 Farm Pond 2 4.39 30 65.88 32 70.27 Earthen Nalla Bund 25 75.00 2 6 27 81 Cement Nalla Bund 20 9 1 0.45 21 9.45 Cement Nalla Repair 0 0 22 11 22 11.00 Well Recharge 0 0 10 0 10 0 Desilting 1 5 5 25 06 30 Van Rai Bandhara 0 0 15 30 15 30 Deeping Nalla 0 0 20 0 20 0 Total 93.39 462.33 555.72 Ref: Village data sheet
  • 26. 16 F) VILLAGE WATER BALANCE SHEET:- 1) Village Total Water Need : - 865.41 TCM a) Crop :- 755.45 TCM b) Drinking Water :- 109.96 TCM 2) Total Runoff In Rain Water : - 638.59 TCM 3) Runoff Stopped Due To Watershed Works: -555.72 TMC a) Old Works :- 93.39 TMC b) New Works :- 462.33 TMC 4) As Compare To Village Need : - 309.69 TMC 5) Flow of Runoff : - 82.87 TMC G) Sources and methods of irrigation The extra water (crop water requirement) which farmer has to manage comes from one of the three sources, i) groundwater, ii) surface water – canals (command area) iii) lifts (outside command area) Similarly farmer adopts different methods of irrigation method like i) drip, ii) sprinkler iii) Conventional (flow). H) Command Area / Non-Command Area The watershed of village Jambhala comes under Watershed GV-41 and its nearest minwatershed 1/8 of GV-41 watershed as follows
  • 27. 17 Ref: GSDA Data Fig. No 2 Jambhala village watersheds map I) Surface water / groundwater irrigation There are No of nalla bunds used for irrigation for farming in village. J) lift Irrigation There are almost every farmers have his own well used for Drinking as well as Irrigation K) Methods of Irrigation More likely conventional methods are adopted by farmers in village L) Groundwater component in water balance Almost 95% of the farmers depend on groundwater for irrigating crops. But the water balance takes into account only rainfall runoff as the input to the system while ignoring the rainfall infiltrating below the surface. Thus, the increase in the groundwater table which is available to farmers through open / bore wells is considered as extra water (or irrigation water) to be managed by farmer and not included in water balance. These water levels indicate the water availability to the farmer for that season depending on which farmer decides the cropping pattern. Butsometimes cropping pattern may also force the farmer to sink deeper wells in the conditions of poor water availability. Thus, there is a two-way relationship between
  • 28. 18 groundwater availability and cropping pattern which needs to be understood in order to have proper demand-side management of water, which is an important objective as per the JYS GR. The impounded water is available to farmers through groundwater recharge, Hence the spatial and geological component is very important in estimating the effects of water impoundments. 3.2.3 AGRICULTURAL DATA:- Cropping pattern The agricultural water balance is calculated with the assumption that the existing cropping pattern is the cropping pattern which will remain constant for all years. But crop patterns change due to many reasons like increase in water availability, low rainfall, farmer’s affordability etc. Table no.: 6 Cropping pattern Cropping Pattern Crops KHARIF (1/04 to 30/09) Maize, Green Gram, Cotton, Bazaar, Vegetables, Tur, Animal Food RABI (1/10 to 31/03) Wheat, Chickpea, Cholam, Galit Dhanya, Grass, Vegetables SEASONAL Animal Food, Vegetables YEARLY Sugarcane, Cotton Ref: Village data sheet The change in cropping pattern due to increased availability of water is not incorporated in the current JYS framework. JYS GR mentions about crop plans and regulations in water use. But there is no provision for agreements or regulations to be done at the village level to bring these things into the plan.
  • 29. 19 KHARIF SEASONAL TOTAL CROP AREA :- Table no.: 7 Kharif seasonal total crop areas No Crop Name Area (Ha) 1 Green Gram 3 2 Maize 40 3 Cotton 540 4 Bazaar 30 5 Vegetables 25 6 Tur 25 7 Animal Food 5 Total 668 Ref: Village data sheet RABBI SEASONAL CROP TOTAL AREA:- Table no.: 8 Rabbi seasonal total crop areas No Crop Name Area( Ha) 1 Wheat 15 2 Chickpea 5 3 Cholam 10 4 Galit Dhanya 2 5 Grass 2 6 Vegetables 2 Total 36 Ref: Village data sheet SEASONAL CROPS TOTAL AREA:- Table no.: 9 Seasonal crop total areas No Crop Name Area (Ha) 1 Animal food 1 2 Vegetables 2 3 Total 3 Ref: Village data sheet
  • 30. 20 CASH CROP TOTAL AREA:- Table no.: 10 Cash crop total areas No Crop Name Area (Ha) 1 Sugarcane 1 2 Cotton 540 Total 541 Ref: Village data sheet FOOD CROP TOTAL AREA:- Table no.: 11 Food crop total areas No. Crop Name Area (Ha) 1 Pomegranate 0.30 2 Sweet lime 9.00 3 Sapota 5.20 4 Tamarind 0.00 5 Custared Apple 2.20 6 Mango 9.35 7 Black Berry 8.75 8 Annona Reticulata 0.00 9 Fig 11.65 10 Gooseberry 0.40 11 Coconut 2.50 Total 49.35 Ref: Village data sheet TOTAL VEGETABLES CROP AREA :- Table no.: 12 Total vegetables crop areas No. Crop Name Area (Ha) 1 Onion 15 2 Brinjal 1 3 Vegetable 4 Total 20 Ref: Village data sheet
  • 31. 21 TOTAL FLOWERS CROP AREA:- Table no.: 13 Total flowers crop areas No. Crop Name Area (Ha) 1 Marigold 0.60 2 Rose 0.40 Total 1.00 Ref: Village data sheet 3.3 INFORMATION ABOUT JYS STRUCTURE 3.3.1 Cement Nalla Bunds Cement nalla bunds are constructed across small streams having gentle slope and feasible both in hard rock as well as alluvial formations. The water stored in these structures is mostly confined to stream course and the height is normally less than 2 m. These are designed base on stream width and excess water is allowed to flow over the wall. In order to avoid scouring from excess run off, water cushions are provided at downstream side. To harness the maximum run off in the stream, series of such check dams can be constructed to have recharge on regional scale. Fig. no 3 Cement nalla bund A series of small bunds or weirs are made across selected nalla sections such that the flow of surface water in the stream channel is impeded and water is retained on pervious soil/rock surface for longer body. Nalla bunds are constructed across bigger streams of second order in areas having gentler slopes. A nalla bund acts like a mini percolation tank.
  • 32. 22 3.3.2Farm Pond Farm ponds are small tanks or reservoirs constructed for the purpose of storing water essentially from surface runoff. Farm ponds are useful for irrigation, water supply for the cattle, fish production etc. The design and construction of farm ponds require a thorough knowledge of the site conditions and requirements. Some sites are ideally suited for locating the ponds and advantage of natural conditions should always be taken. Fig. no4 Farm Pond Advantages of Farm Ponds 1. They provide water to start growing crops, without waiting for rain to fall. 2. They check soil erosion and minimize siltation of waterways and reservoirs. 3. They supplies water for domestic purposes and livestock. 4. They promote fish rearing. 5. They recharge the ground water. 6. They improve drainage. Types of Ponds Depending on the source of water and their location with respect to the land surface, farm ponds are grouped into four types.(A) Dugout ponds, (B) Surface Ponds, (C) Spring or Creek fed ponds and(D) Off-stream storage ponds.
  • 33. 23 3.3.3 Water Well Water well is a hole, shaft, or excavation used for the purpose of extracting ground water from the subsurface. Water may flow to the surface naturally after excavation of the hole or shaft. Such a well is known as a flowing artesian well. More commonly, water must be pumped out of the well. Most wells are vertical shafts, but they may also be horizontal or at an inclined angle. Horizontal wells are commonly used in bank filtration, where surface water is extracted via recharge through river bed sediments into horizontal wells located underneath or next to a stream. In this publication we focus on vertical water-production wells commonly used to supply water for domestic, municipal, and agricultural uses in California. Our purposes to provide readers with some basic information about water wells to help them understand principles of effective well construction when they work with a professional driller, consultant, or well servicing agency for well drilling and maintenance. Fig. no.: 5 Water Well Types of Well There are two main types of wells, each distinguished by the diameter of the bore hole. The two types are A) Bored wells and B) Drilled wells.
  • 34. 24 A) Bore Well Bored wells are constructed when low yielding groundwater sources are found relatively close to the surface, usually less than 30 m (100 ft.). Bored wells are constructed using a rotary bucket auger. They are usually completed by perforating the casing (also called cribbing) or using a sand screen with continuous slot openings. One advantage of bored wells is the large diameter of the casing, from 45-90 cm (18- 36 in.). It provides a water storage reservoir for use during peak demand periods. A disadvantage of utilizing a shallow groundwater aquifer is that it generally relies on annual precipitation for recharge. Water shortages may occur following long dry periods in summer and extended freeze up during winter months. It can also be more susceptible to contamination from surface land-use activities. Fig. no.: 6 Bore Well B) Drilled Well Drilled wells are smaller in diameter, usually ranging from 10-20 cm (4-8 in.), and completed to much greater depths than bored wells, up to several hundred meters. The producing aquifer is generally less susceptible to pollution from surface sources because of the depth. Also, the water supply tends to be more reliable since it is less affected by seasonal weather patterns.
  • 35. 25 3.3.4 Compartment Bunding Compartmental bunding means the entire field is divided into small compartments with pre determined size to retain the rain water where it falls and arrest soil erosion. The compartmental bunds are formed using bund former. The size of the bunds depends upon slope of the land. Compartmental bunds provide more opportunity time for water to infiltrate into the soil and help in conserving soil moisture. Salient features: 1. Compartmental bunding is an effective moisture conservation measure in dry land. 2. It is suitable for lesser rainfall areas and the slope is < 1%. 3. The lands are divided into small compartments with the dimension of 8 x 5 m2. 4. Small compartments act as a dam and store the rainfall received in the compartments for longer period. 5. It increases water holding capacity of the soil. 6. Reduces the formation of cracks. 7. It will overcome the disadvantages of contour bunding. 3.3.5 Earthen Bund This is the most popular soil conservation structure in the country and it is practiced at large scale all over India. Farms bunds are constructed on agricultural land with the aim of arresting soil erosion and improving the soil moisture profile. Fig. no 7 Earthen Bund
  • 36. 26 Ideally bunds on farms should be made on the contour line. It would lie along the bounding of the field. Land holding in the project area is very small and it is not possible or feasible to construct contour or bund in the field. The earthen bund is divided into three types on the basis of the slope of the land and size of the field. It would help to conserve the water in the field and maintain in situ moisture in the field. The erosion of the field is reduced. The waste weir in the field helps to safely disposal of the excess water from the field. Gabion Bunds They are similar to lose boulder checks, but are constructed across bigger streams and have their own catchments area at least 5 ha. Also, these structures are constructed on flatter regions as against loose boulder checks. The flatter the upstream slope, the more will be the storage. Along with slowing down the runoff this structure also help in temporary water storage. Storage if the is impermeable enough. These structures are generally reinforced with wire mesh for stable embankment and oppose strong currents. The bunds made by covering the loosest ones by mesh are called “Gabion Bandhara”. Fig. no.: 8 Gabion Bund The areas where the slopes of the nalla is greater than 3 per cent and the rainfall is heavy in such conditions the loose boulder structure cannot sustain, so in such cases the Gabion Bandhara are preferred. The boulders are locally available are stored in a steel mesh and are tied up in the form of rectangular blocks. The height of such structures is around 0.5 m and is a normally used stream with width of about 10
  • 37. 27 to 15 m. the excess water overflows this structure storing some water to serve as source of recharge. The silt content of stream water in due course is deposited in the interstices of the boulders to make it more impermeable. These structures are common in Maharashtra, Madhya Pradesh, and Andhra Pradesh etc. Boulder Bund To reduce the erosion of soil on the upper side of the catchment area loose boulder structure is more effective. By constructing the bunds made up of rocks across the nalla the velocity of flowing rainwater can be reduced, to reduce erosion of soil. Blocking the way of water and allowing it to percolate in the soil. As the silt gets accumulated between two bunds, this area can be used under agriculture. By doing plantation on the downstream side of bunds a forestation can be done. Fig. no.: 9 Boulder Bund
  • 38. 28
  • 39. 29 CHAPTER NO. 4 METHODOLOGY ASSESSMENT 4.1 METHODOLOGY OF JYS ASSESSMENT As per the assessment methodology three key pillars of assessment derived from the JYS GR dated-5/12/2014 are- 1. Location- (Whether the Location of intervention is appropriate? Etc.) 2. Structural Soundness- (Whether the interventions are structurally sound and as per relevant guidelines? Etc.) 3. Utility- (Whether the intended benefits have been fulfilled? Etc.) Important Government Officials (Agri Assistant, Gram sevak) are contact and JYS plan will obtain. A series of primary visits to the village and three of them have been executed. Visit to actual JYS work of structure widening and deepening of Nalla, observe the structure collect the data from actual structure constructed as per the JYS scheme. 4.2 ASSESSMENT OF JYS STRUCTURE The assessment of JYS structures are carried by following table format it includes cement nalla bund, stream deepening and widening, farm pond and analysis of well
  • 40. 30 Table No. 14 JYS Assessment Structure Form no Farmer name JYS structure Distance from CNB Gut no 1 Anil Eravane Cement Nalla Bund 10 m 115 1 Afsar Sheikh Cement Nalla Bund 10m 115 1 Ramkisan Chandel Cement Nalla Bund 10m 115 1 Prashant Nallawade Cement Nalla Bund 10m 177 1 Arun Satarkar Cement Nalla Bund 15m 189 1 Sheikh Kaliya Cement Nalla Bund 40m 173 1 Sahebrao More Cement Nalla Bund 15m 114 2 Mohammad Afsar Sheikh Stream deep and wide 5m 115 2 Sheikh Kaliya Stream deep and wide 25m 173 3 Vithal Chopde Farm pond 139
  • 41. 31 CHAPTER NO 5 RESULTS AND DISCUSSION 5.1 ANALYSIS OF WELL The main aim of this well analysis was that to check the ground water level under the JYS construction project. Through this study we observed that the wells which were located near JYS construction had increased water level and values were obtained by conducting farmers’ interview as well as by self-assessment. Fig. no.:10 JYS Structure Location Map Jambhala Village
  • 42. 32 Table 15 Depth of wall in Well No/Year Depth of well(m) Depth of water in(m) 2013 Depth of water in(m) 2014 Depth of water in(m) 2015 Depth of water in(m) 2016 Depth of water in(m) 2017 1 14 4.5 3 3.5 2.5 3 2 16 5.5 4.5 5 3 3.5 3 12 3.5 2 2.5 2 2.5 4 14 3.0 1.5 2.5 2 3 5 15 4.5 3 3.5 2.5 3.5 6 10 2.5 2 2.5 2 2.5 7 12 2.0 1.5 2 1.5 2 8 08 1.5 1 2 1.5 2.5 9 14 3.5 2.5 3 2 3.5 10 16 4.5 3 3.5 2.5 3.5 11 10 2.5 2 3 2.5 3 12 9 2.0 1.5 2.5 2.5 3.5 Graph No 6 Well Analyses in Jambhala village 0 5 10 15 20 25 2013 2014 2015 2016 2017 %OFWATERAVAILABLEIN Year WELL DEPTH DEPTH OF WELL DEPTH OFWATER
  • 43. 33 In the above graph table no. 17, and well no. 2 water level was found to be varying every year. On the year 2013, 25% of water was available in the well which was near to the jys structure of the nalla dipping and widening construction. As per assessment observation of the year 2015, JYS structure constructed as a result of which water was stopped and hence percolated in ground. This project also helped in soil conservation. But in 2016, due to absence of rainfall at Jambhala village; water couldn’t be stored in the JYS construction so it resulted into decreased water level. That well water which was stored using JYS construction was used for the irrigation as well as drinking purpose. In this area the Kharip crop depends upon the rainfall while rabbi crops are taken according to the well water availability. Hence whenever there is low well water level no more crops are taken by the farmers. This affects not only farmers’ economy but common people also suffers due to market strategy of “high demand and low availability principle”. 5.2 Water Storage Capacity JYS Work Table No. 16 : Runoff Stopped Due To Watershed In The Village (Rain Water) TYPE OF WORK OLD JYS WORK NEW JYS WORK TOTAL NO. TMC NO. TMC NO. TMC Deep CCT 0 0 0 0 0 0 Compartment Bunding 0 0.00 720 324 720 324 Farm Pond 2 4.39 30 65.88 32 70.27 Earthen Nalla Bund 25 75.00 2 6 27 81 Cement Nalla Bund 20 9 1 0.45 21 9.45 Cement Nalla Repair 0 0 22 11 22 11.00 Well Recharge 0 0 10 0 10 0 Desilting 1 5 5 25 06 30 Van RaiBandhara 0 0 15 30 15 30 Deeping Nalla 0 0 20 0 20 0 Total 93.39 462.33 555.72
  • 44. 34 JYS assessment village data is collected.as per Village data sheet no of work done by government agencies, CSR (Corporate social responsibility). The assessment of JYS structure we observed the water storage capacity that structure .The constructions which come under JYS helped to stored 555.72 TMC. This stored water further can be used for farm irrigation purpose, another advantage of this project was found to be the increased well water level. Graph No 7 JYS Structure Done The assessment analysis of JYS structure is farm pond could store more water 70.27 TMC while cement nalla bund could store minimum water. Through this study we came to the conclusion that the work of farm water ponds is more beneficial than the other structures. But the cement nalla bund has an advantage of soil conservation. This study showed that JYS project helps to solve scarcity problem and can create drought free 5.3 Crop Water Requirement Study The crop-water requirement figures used in the water-balance calculations correspond to the extra water (besides rainfall and soil moisture available due to rainfall), i.e. the irrigations which farmer must give to the crops. e.g. for Moong, Corn and Udid, the crop-water requirement is zero because these are kharif crops which require no extra rotations, while Rabi crops like Sorghum or Wheat are shown to need 0 10 20 30 40 50 60 70 80 FARM POND CEMENT NALA BUND DEEPING NALA scaleinPercentage JYS Structure JYS STRUCTURE DONE NO OF WORK WATER STOPPED (TMC)
  • 45. 35 0.24 and 0.70 TCM/ha water, which are the rotations (extra water) to be given besides water available from soil moisture. However in the whole report identical crops have different crop-water requirement numbers entered by Krushi Sahayyaks in Jhambhala village. Table No. 17 : Crop Water Requirement Study Crop Name Area (Ha) Actual Water Per Ha. TCM Total Actual Need Water TCM Green gram 0 0 0 Maize 15 4 60 Tur 7 2 14 Animal Food 12 2.5 30 Cotton 35 5 175 Bajara 5 2 10 Wheat 15 5 75 Ckiekpea 5 1 5 Cholam 10 2.5 25 Fruits 49 7 345.45 Vegetable 8 2 16 Total 161.35 33 755.45 Above data more of the water is used for fruits farming (7Tcm). The chief crops of Jambhala village are cotton ,groundnut, bajara, Different types of soils are required for raising different types of crops .heavy retentive soil (40%) is favorable for raising crops .Light sandy soil (2 to8%) is suitable for crop like gram requiring less water . medium or normal soil (having about 10to 20% of clay)is suitable for crops like wheat , cotton, maize, vegetables, etc. requiring normal amount of water.
  • 46. 36 5.4 Assessment of JYS Structure Fig. no.: 11 Nalla Dipping and Widening As per our observation, supported with actual measurements; we found that the construction was not proper in depth and slope. We observed that digging of nalla was not in continuous fashion, they were interrupted in-between due to improper work. Also it had a problem with site clearance due to grown and uncut plants. At the time of visit, water was not available in the said construction. Structure of nalla had a varying width across its length. The norm suggests the depth of nalla should be taken as per the second and third order classification of water flow. Also as per the guidelines, at the upstream of the nalla construction; there should be the provision for water conservation structure. But in this study we found that the absence of this water conservation structure at the upstream of nalla.
  • 47. 37 Fig. no.: 11 Nalla Dipping and Widening Fig. no.: 12 CNB ( Cement Nalla Bhandhara )
  • 48. 38 We observed that construction was not proper because it had moderate slope rather than steep slope. This unsuitable slope then further results into soil sunlight. We took the measurement of CNB which was length as 14 m, width 1.2 m and height 1.9 m. Also we found that apron and freeboard were not provided. Flank walls had not been constructed properly. But we couldn’t check water leakage due to the absence of water, at the time of visit. Also we noticed that the construction material of main body was made of boulder rather concrete. Excavated soil is filled with surrounding the embankment purpose. At the time of visit, water was not available so we couldn’t get the result of water increase in nearby wells. But by the opinions of farmer we came to comment that water level had increased little bit. This JYS scheme suffered due to its improper structure and lack of attention by the conducting body. If this situation will persist then the mission of making drought free Marthawada upto 2019 won’t be accomplished. Fig. no.: 13 Form Pond We visited to the farm pond made under the construction scheme ‘Magil Tyala Shettal’. There we observed that water was not stored in that also it was not provided with the polythene at the base of pond and had the absence of outlets. Bandara was not constructed at upstream.
  • 49. 39 CHAPTER NO 6 CONCLUSION This project helped in soil conservation. But due to absence of rainfall at Jambhala village; water couldn’t be stored in the JYS construction so it resulted into decreased water level. This affected not only farmers’ economy but common people also suffered due to market strategy of “high demand and low availability principle”. The constructions which come under JYS helped to store 555.72 TMC. This stored water further used for farm irrigation purpose and found to be useful in the increased well water level. This study showed that JYS project helps to solve scarcity problem and can create drought free region. But this JYS scheme suffered due to its improper structure and lack of attention by the conducting body. If this situation will persist then the mission of making drought free Marthawada up to 2019 won’t be accomplished. So need the proper attention with the proper work management and skilled workers so as to fulfill the mission of “Drought free Marathawada 2019” 6.1 Future Scope  Increase in Water Storage Capacity  Recharge of Ground Water Level  Increase under protective Irrigation Area  Increase in Cropping intensity  Increase in the Horticulture Area  Increase in the Agriculture Produce and productivity  Increase in Fodder Production  Increase in area under Soil Moisture Security  Improvement of Environment through Tree Plantation  Improving Productivity and Socio-economic Condition of farmers
  • 50. 40 6.2 Impact Of Jalyukta Shivar Abhiyan 1) Increase in Ground Water level :- The water harvesting structures play a key role by storing water and allow sufficient time for water to percolate into ground. Therefore, Increase in ground water table in drought prone area in measurable indicator of Successful of JSA. 2) Soil Erosion Reduction :- The soil erosion was reduced more than 50% in the Jalyukta Shivar Abhiyan Implanted Area because of compartment bunding, CCT and Deep CCT and Graded Band. 3) Run Off Reduction :- With regards to run-off reduction it was observed that the programme is successful in achieving this goal. According to the JSA beneficiaries this has been possible because of the contour bunding or field bunding which has also in checking the run-off of Rain water resulting in Soil Moisture Retention. 4) Land-use Pattern :- Better land-use pattern is one of the important objectives of Watershed Management with increase in surface water conservation and increase in availability of water in the watershed regions. 5) Cropping Pattern and Agriculture Productivity :- Since water is essential for agricultural production, with available water harvesting Structure Farmers are inclined to new cropping Pattern and Agricultural Diversification. 6) Cropping Intensity :- The change in cropping intensity is one of the major indicators to assess impact of the Jalyukta Shivar Abhiyan. Increase in residual moisture content due to contour bunding helping in crop growth and yield. Decrease in Soil Erosion and hence Protection of Fertile top Soil due to contour bunding.
  • 51. 41 7) Increase in Agriculture Productivity :- Result of JSA increase in Agricultural Productivity also fodder production increased due to this milk Production also increased. 8) Employment Generation :- According to the Watershed Guidelines, the under the study, additional employment is generated due to JSA. It was reported that during the implementation of JSA’s Earthen Nalla, Bunding, K.T. Weirs Employment have been generated.
  • 52. 42
  • 53. 43 CHAPTER NO 7 REFERENCES 1. A report on Watershed Interventions for Kurlod and Botoshi Phase-I, Technology and Development Solutions Cell (TDSC) Centre for Technology Alternatives for Rural Areas (CTARA), Indian Institute of Technology, Bombay (IITB) ,December-2014. 2. Pachkor R. T., Parbat D.K. (2017) “Assessment of Works under Jalyukta Shivar Campaign – A Case Study of Pusad Region” Volume 5, Issue 4, April 2017 P.P. 1614-1619 3. Potekar U.P. and Pawar S.K. (2017), “Jalyukta Shivar Abhiyan" and micro Irrigation in Maharashtra state”, -Vol. 1, 2017, pp.54-57 4. Khillare N.J. (2017), “Analysis of Delays in Works under Jalyukt Shivar Campaign”, International Journal for Scientific Research & Development, Vol.5(1), 2017, pp.1059-1066 5. Government of Maharashtra Water Conservation Department, Government Resolution (GR)No. JaLaA-2014/Case No.203/JaLa-7, Mantralaya, Mumbai - 400 032. Date: 5 December, 2014. 6. Belsare. H, Sohoni M., Field visit report - Parbhani April 2015, Centre for Technology Alternatives for Rural Areas (CTARA), Indian Institute of Technology, Bombay, May 2015. 7. Zeeshan, & Pachkor R.T.,2015 “Jalyukta Shivar - A Combat to Water Stresses In Maharashtra” Volume 3 Issue X, October 2015 P.P 102-108. Web sites 1. http://mrsac.maharashtra.gov.in/jalyukt
  • 54. 44
  • 55. 45 PHOTOS Photo no. 1 :- Nalla Dipping and Widening Photo no. :- 2 – Well ( Goat farm )
  • 56. 46 Photo no.: 3 – Nalla Deeping and Wideing Photo no.: 4- CNB ( Cement Nalla Bhandhara )
  • 57. 47 Photo no.: 5 – Farm Pond without polythene Photo No.: 6 – Compartment Bunding
  • 58. 48 Photo no.: 7 - Well Photo no.: 8 – Farm Pond without polythene
  • 59. 49 Photo no.: 9 – Stream Photo no.: 10 – Well
  • 60. 50 Photo no.: 11 – Water Tank Photono.: 12 – Well
  • 61. 51 Photo no.: 13 – Well Photo No.: 14 – Observation on Structure
  • 62. 52 Appendix - A Form 1: Cement Nalla Bund (CNB) :- 1ST CNB NREA TO ROAD (GUT NO:-115,NAME:-ANIL ERAVANE) Sr. No Question New Construction Possible options for answer Answer No Medium Whom to ask? Purpose A.1 Location 1 Lat/Long N190 56.994’ E0750 09.850’ GPS A.2 Suitability 1 Depth of nala Less than 1.5 m More than 1.5m 3M VI 2M Storage capacity 2 Slope of nala bed (Should be less than 1%) Steep/moderate/flat Steep VI No Main structure can fail on slope due to excess water pressure on u/s side 3 On sharp curve y/n No VI No Erodes (scouring of sides) the side of nala 4 Bed strata / soil type 1. Soil 2. Hard rock 3. Cant found 4. other Soil VI Govt. official Purpose to fulfill (percolation /storage) 5 How long back water is present i.e. 10m No Appr. Storage capacity 6 Height of Bandhara above bed nala level is correct or not? Foundation depth + Height of main body app 3m Yes VI Yes Structural stability
  • 63. 53 A.3 Structural Soundness 1 Dimensions of main body Length Breadth Height (m) L:-13m B:-1.5m H:-2.4m Tape/ laser meter 2 Apron presence y/n Yes VI Yes To avoid d/s erosion 3 Freeboard 0.3 m y/n No Yes To escape surplus water easily 4 D/S slope provided y/n Yes VI Yes Structural stability to resist water pressure 5 Flank wall dimensions Length Breadth Height L:-10M B:-0.23 H:-3M Tape/Laser meter 6 Leakages at base Heavy/light/no/can’t figure out No (No available water at visited time) VI No Cracks in the concrete structure causes leakages, reduces strength and fails 7 Leakages at side Heavy/light/no/can’t figure out No VI 8 Overall Anchorage of all parts y/n No - To carry self load and water load together 9 Silt deposition Heavy/mild/no No - Reduces water storage capacity 10 Condition of main body (only concrete/boulders/etc) Good/mod/bad Good VI
  • 64. 54 11 Strength of main body At left corner – 3 readings at 1m (top) (Bottom) - 3 At middle (top) – 3 (bottom) - 3 At right end (top) – 3 (bottom) -3 - Rebound hammer Concrete grade (mix proportions) defines strength of concrete 12 Strength of flank wall (grade of concrete mix) Left and right Top – 3 readings Bottom- 3 readings Middle – 3 readings - Rebound hammer 13 excavated soil is filled with surrounding the embankment y/n Yes VI No Water flow should not be disturbed and silted 14 Quality of concrete mix (depend on grade) Mix proportions y/n Yes VI 15 Only boulders in the main body y/n No Repair Work y/n No Repair method Reinforcement steel repair, Smoothing or leveling of surfaces, Filling of flow to honeycombs or holes, Damaged corners etc - A.4 Utility 1 Water available y/n No water available Since 2012 VI
  • 65. 55 2 Water used for DW, irrigation etc Both interview Farmer Anil Eravane 3 Is there a well near by (number if many) y/n Yes (2 :-well) interview Govt official/ farmer Recharge 4 Well water level increased due to CNB construction y/n Yes interview farmer Mohammed Afsar Sheikh B Beneficiary Interview Form B1 Beneficiary/Farmer Name Mohammad Afsar Sheikh (20 people n farm house) (Mb.No:-9923037867) Plot Details Plot No 115 Plot Size (in acres) 15 Distance from CNB 10m Rain fed/ Irrigated Yes Single Crop/ Double Crop 2 Crop Cropping Details Year Kharif Crop Rabi 2013 Cotton, Mango, Figs NO 2014 Cotton, Mango, Figs NO 2015 Cotton, Mango, Figs NO 2016 Cotton, Mango, Figs NO
  • 66. 56 Form 1: Cement Nala Bund (CNB) :- 2nd CNB Near to Goat (GUT NO:-115, NAME: Mohamed Afsar Sheikh) Question Possible options for answer y/n Answer No Medium Whom to ask? Purpose New Construction A.1 Location 1 Lat/Long N190 56.890’ E0750 09.761’ GPS A.2 Suitability 1 Depth of nala Less than 1.5 m More than 1.5m 3M VI 2M Storage capacity 2 Slope of nalla bed (Should be less than 1%) Steep/moderate/flat Steep VI No Main structure can fail on slope due to excess water pressure on u/s side 3 On sharp curve y/n No VI No Erodes (scouring of sides) the side of nala 4 Bed strata / soil type 1. Soil 2. Hard rock 3. Cant found 4. other Soil VI Govt. official Purpose to fulfill (percolation /storage) 5 How long back water is present 10M No Appr. Storage capacity 6 Height of Bandhara above bed nala level is correct or not? Foundation depth + Height of main body app 3m Yes VI Yes Structural stability
  • 67. 57 A.3 Structural Soundness 1 Dimensions of main body Length Breadth Height (m) L:-14m B:-1.5m H:-1.9m Tape/ laser meter 2 Apron presence y/n Yes VI Yes To avoid d/s erosion 3 Freeboard 0.3 m y/n No Yes To escape surplus water easily 4 D/S slope provided y/n Yes VI Yes Structural stability to resist water pressure 5 Flank wall dimensions Length Breadth Height L:-5M B:-0.6 H:-3M Tape/Lase r meter 6 Leakages at base Heavy/light/no/can’t figure out No (No available water at visited time) VI No Cracks in the concrete structure causes leakages, reduces strength and fails 7 Leakages at side Heavy/light/no/can’t figure out No VI 8 Overall Anchorage of all parts y/n No - To carry self load and water load together 9 Silt deposition Heavy/mild/no No - Reduces water storage capacity 10 Condition of main body (only concrete/boulders/etc) Good/mod/bad Good VI 11 Strength of main body At left corner – 3 readings at 1m (top) (Bottom) - 3 - Rebound hammer Concrete grade (mix proportions) defines strength of concrete
  • 68. 58 At middle (top) – 3 (bottom) - 3 At right end (top) – 3 (bottom) -3 12 Strength of flank wall (grade of concrete mix) Left and right Top – 3 readings Bottom- 3 readings Middle – 3 readings - Rebound hammer 13 excavated soil is filled with surrounding the embankment y/n Yes VI No Water flow should not be disturbed and silted 14 Quality of concrete mix (depend on grade) Mix proportions y/n Yes VI 15 Only boulders in the main body y/n No Repair Work y/n No Repair method Reinforcement steel repair, Smoothing or leveling of surfaces, Filling of flow to honeycombs or holes, Damaged corners etc - A.4 Utility 1 Water available y/n No water available Since 2012 VI
  • 69. 59 2 Water used for DW, irrigation etc. Both interview Farmer Anil Eravane 3 Is there a well near by (number if many) y/n Yes (2 :- well) interview Govt. official/ farmer Recharge 4 Well water level increased due to CNB construction y/n Yes interview farmer Mohamed Afsar Shekha B Beneficiary Interview Form B1 Beneficiary/Farmer Name Mohammad Afsar Sheikh (20 people n farm house) (Mb.No:-9923037867) Plot Details Plot No 115 Plot Size (in acres) 15 Distance from CNB 10m Rain fed/ Irrigated Yes Single Crop/ Double Crop 2 Crop Cropping Details Year Kharif Crop Rabi 2013 Cotton ,Maize:-4 Acre Horticulture :- Figs, Mango, Custard Apple, Chiku. NO 2014 Cotton ,Maize:-4 Acre Horticulture :- Figs, Mango, Custard Apple, Chiku. NO 2015 Cotton ,Maize:-4 Acre Horticulture :- Figs, Mango, Custard Apple, Chiku. NO 2016 Cotton , Maize:-4 Acre Horticulture:- Figs, Mango, Custard Apple, Chiku. NO
  • 70. 60 Form 1: Cement Nala Bund (CNB) :- :- 3rd CNB Near to figs farm(GUT NO:-142,NAME:RamkisanChandel) Question Possible options for answer Answer Medium Whom to ask? Purpose New Construction y/n No A.1 Location 1 Lat/Long N190 56.744’ E0750 09.701’ GPS A.2 Suitability 1 Depth of nala Less than 1.5 m More than 1.5m 3M VI 2M Storage capacity 2 Slope of nalla bed (Should be less than 1%) Steep/moderate/flat Steep VI No Main structure can fail on slope due to excess water pressure on u/s side 3 On sharp curve y/n No VI No Erodes (scouring of sides) the side of nala 4 Bed strata / soil type 1. Soil 2. Hard rock 3. Cant found 4. other Soil VI Govt. official Purpose to fulfill (percolation /storage) 5 How long back water is present i.e 10m No Appr. Storage capacity 6 Height of Bandhara above bed nala level is correct or not? Foundation depth + Height of main body app 3m Yes VI Yes Structural stability A.3 Structural Soundness
  • 71. 61 1 Dimensions of main body Length Breadth Height (m) L:-15.1m B:-2.3m H:-0.9m Tape/ laser meter 2 Apron presence y/n Yes VI Yes To avoid d/s erosion 3 Freeboard 0.3 m y/n No Yes To escape surplus water easily 4 D/S slope provided y/n Yes VI Yes Structural stability to resist water pressure 5 Flank wall dimensions Length Breadth Height L:-10M B:-0.23 H:-3M Tape/Laser meter 6 Leakages at base Heavy/light/no/can’t figure out No (No available water at visited time) VI No Cracks in the concrete structure causes leakages, reduces strength and fails 7 Leakages at side Heavy/light/no/can’t figure out No VI 8 Overall Anchorage of all parts y/n No - To carry self load and water load together 9 Silt deposition Heavy/mild/no No - Reduces water storage capacity 10 Condition of main body (only concrete/boulders/etc) Good/mod/bad Good VI
  • 72. 62 11 Strength of main body At left corner – 3 readings at 1m (top) (Bottom) - 3 At middle (top) – 3 (bottom) - 3 At right end (top) – 3 (bottom) -3 - Rebound hammer Concrete grade (mix proportions) defines strength of concrete 12 Strength of flank wall (grade of concrete mix) Left and right Top – 3 readings Bottom- 3 readings Middle – 3 readings - Rebound hammer 13 excavated soil is filled with surrounding the embankment y/n Yes VI No Water flow should not be disturbed and silted 14 Quality of concrete mix (depend on grade) Mix proportions y/n Yes VI 15 Only boulders in the main body y/n No Repair Work y/n No Repair method Reinforcement steel repair, Smoothing or leveling of surfaces, Filling of flow to honeycombs or holes, Damaged corners etc -
  • 73. 63 A.4 Utility 1 Water available y/n No water available Since 2012 VI 2 Water used for DW, irrigation etc Both interview Farmer Anil Eravane 3 Is there a well near by (number if many) y/n Yes (2 :- well) interview Govt. official/ farmer Recharge 4 Well water level increased due to CNB construction y/n Yes interview farmer - B Beneficiary Interview Form B1 Beneficiary/Farmer Name Ramkisan chindale (Mb.No:-8275324111) Plot Details Plot No 115 Plot Size (in acres) 15 Distance from CNB 10m Rain fed/ Irrigated Yes Single Crop/ Double Crop 2 Crop Cropping Details Year Kharif Crop Rabi 2013 Cotton , Horticulture :-Sweet Lime NO
  • 74. 64 2014 Cotton , Horticulture :-Sweet Lime NO 2015 Cotton , Horticulture :-Sweet Lime NO 2016 Cotton , Horticulture :-Sweet Lime NO
  • 75. 65 Form 1: Cement Nala Bund (CNB) :- 4th CNB (GUT NO:-177 ) Question Possible options for answer Answer Medium Whom to ask? Purpose New Construction y/n No A.1 Location 1 Lat/Long N190 57.117’ E0750 08.876’ GPS A.2 Suitability 1 Depth of nala Less than 1.5 m More than 1.5m 1M VI 2M Storage capacity 2 Slope of nala bed (Should be less than 1%) Steep/moderate/flat Flat VI No Main structure can fail on slope due to excess water pressure on u/s side 3 On sharp curve y/n No VI No Erodes (scouring of sides) the side of nalla 4 Bed strata / soil type 1. Soil 2. Hard rock 3. Cant found 4. other Soil VI Govt. official Purpose to fulfill (percolation /storage) 5 How long back water is present i.e 10m No Appr. Storage capacity 6 Height of Bandhara above bed nala level is correct or not? Foundation depth + Height of main body Yes VI Yes Structural stability
  • 76. 66 app 3m A.3 Structural Soundness 1 Dimensions of main body Length Breadth Height (m) L:-10m B:-0.9m H:-2.1m Tape/ laser meter 2 Apron presence y/n Yes VI Yes To avoid d/s erosion 3 Freeboard 0.3 m y/n No Yes To escape surplus water easily 4 D/S slope provided y/n No VI Yes Structural stability to resist water pressure 5 Flank wall dimensions Length Breadth Height No Wall Tape/Laser meter 6 Leakages at base Heavy/light/no/can’t figure out No (No available water at visited time) VI No Cracks in the concrete structure causes leakages, reduces strength and fails 7 Leakages at side Heavy/light/no/can’t figure out No VI 8 Overall Anchorage of all parts y/n No - To carry self load and water load together 9 Silt deposition Heavy/mild/no No - Reduces water storage capacity 10 Condition of main body (only concrete/boulders/etc) Good/mod/bad Boulders VI
  • 77. 67 11 Strength of main body At left corner – 3 readings at 1m (top) (Bottom) - 3 At middle (top) – 3 (bottom) - 3 At right end (top) – 3 (bottom) -3 - Rebound hammer Concrete grade (mix proportions) defines strength of concrete 12 Strength of flank wall (grade of concrete mix) Left and right Top – 3 readings Bottom- 3 readings Middle – 3 readings - Rebound hammer 13 excavated soil is filled with surrounding the embankment y/n Yes VI No Water flow should not be disturbed and silted 14 Quality of concrete mix (depend on grade) Mix proportions y/n Yes VI 15 Only boulders in the main body y/n No Repair Work y/n No Repair method Reinforcement steel repair, Smoothing or leveling of surfaces, Filling of flow to honeycombs or holes, Damaged corners etc -
  • 78. 68 A.4 Utility 1 Water available y/n No water available Since 2012 VI 2 Water used for DW, irrigation etc Both interview Farmer Anil Eravane 3 Is there a well near by (number if many) y/n Yes (2 :-well) interview Govt. official/ farmer Recharge 4 Well water level increased due to CNB construction y/n Yes interview farmer - B Beneficiary Interview Form B1 Beneficiary/Farmer Name Prashant nalwade (Mb.No:-9421688599) Plot Details Plot No 177 Plot Size (in acres) - Distance from CNB 10m Rain fed/ Irrigated Yes Single Crop/ Double Crop 2 Crop Cropping Details Year Kharif Crop Rabi 2013 Cotton , Horticulture :-Peru NO
  • 79. 69 2014 Cotton , Horticulture :-Peru NO 2015 Cotton , Horticulture :-Peru NO 2016 Cotton , Horticulture :-Peru NO
  • 80. 70 Form 1: Cement Nala Bund (CNB) :- 5Th CNB (GUT NO:-189,NAME:Arun Satarkar) Question Possible options for answer Answer Medium Whom to ask? Purpose New Construction y/n No A.1 Location 1 Lat/Long N190 57.117’ E0750 08.876’ GPS A.2 Suitability 1 Depth of nala Less than 1.5 m More than 1.5m 1M VI 2M Storage capacity 2 Slope of nala bed (Should be less than 1%) Steep/moderate/flat Flat VI No Main structure can fail on slope due to excess water pressure on u/s side 3 On sharp curve y/n No VI No Erodes (scouring of sides) the side of nala 4 Bed strata / soil type 1. Soil 2. Hard rock 3. Cant found 4. other Soil VI Govt. official Purpose to fulfill (percolation /storage) 5 How long back water is present i.e. 10m No - - Appr. Storage capacity 6 Height of Bandhara above bed nala level is correct or not? Foundation depth + Height of main body app 3M Yes VI Yes Structural stability A.3 Structural Soundness
  • 81. 71 1 Dimensions of main body Length Breadth Height (m) L:-10m B:-0.9m H:-2.1m Tape/ laser meter 2 Apron presence y/n No VI Yes To avoid d/s erosion 3 Freeboard 0.3 m y/n No Yes To escape surplus water easily 4 D/S slope provided y/n No VI Yes Structural stability to resist water pressure 5 Flank wall dimensions Length Breadth Height - Tape/Laser meter 6 Leakages at base Heavy/light/no/can’t figure out No (No available water at visited time) VI No Cracks in the concrete structure causes leakages, reduces strength and fails 7 Leakages at side Heavy/light/no/can’t figure out No VI 8 Overall Anchorage of all parts y/n No - To carry self load and water load together 9 Silt deposition Heavy/mild/no No - Reduces water storage capacity 10 Condition of main body (only concrete/boulders/etc) Good/mod/bad boulders VI 11 Strength of main body At left corner – 3 readings at 1m (top) (Bottom) - 3 At middle (top) – 3 (bottom) - 3 At right end (top) – 3 - Rebound hammer Concrete grade (mix proportions) defines strength of concrete
  • 82. 72 (bottom) -3 12 Strength of flank wall (grade of concrete mix) Left and right Top – 3 readings Bottom- 3 readings Middle – 3 readings - Rebound hammer 13 excavated soil is filled with surrounding the embankment y/n Yes VI No Water flow should not be disturbed and silted 14 Quality of concrete mix (depend on grade) Mix proportions y/n Yes VI 15 Only boulders in the main body y/n No Repair Work y/n No Repair method Reinforcement steel repair, Smoothing or leveling of surfaces, Filling of flow to honeycombs or holes, Damaged corners etc - A.4 Utility 1 Water available y/n No water available Since 2012 VI
  • 83. 73 2 Water used for DW, irrigation etc Both interview Farmer Anil Eravane 3 Is there a well near by (number if many) y/n Yes (2 :-well) interview Govt. official/ farmer Recharge 4 Well water level increased due to CNB construction y/n Yes interview farmer - B Beneficiary Interview Form B1 Beneficiary/Farmer Name Arun Satarkar Plot Details Plot No 189 Plot Size (in acres) - Distance from CNB 15m Rain fed/ Irrigated Yes Single Crop/ Double Crop 2 Crop Cropping Details Year Kharif Crop Rabi 2013 Cotton , Horticulture :-Chikoo NO 2014 Cotton , Horticulture :- Chikoo NO 2015 Cotton , Horticulture :- Chikoo NO 2016 Cotton , Horticulture :- Chikoo NO
  • 84. 74 Form 1: Cement Nala Bund (CNB) :- 6th CNB (GUT NO:-173,NAME:-Sheikh kaliya) Question Possible options for answer Answer Medium Whom to ask? Purpose New Construction y/n No A.1 Location 1 Lat/Long N190 56.9 03’ E0750 09. 309’ GPS A.2 Suitability 1 Depth of nala Less than 1.5 m More than 1.5m 1M VI 2M Storage capacity 2 Slope of nala bed (Should be less than 1%) Steep/moderate/flat Moderate VI No Main structure can fail on slope due to excess water pressure on u/s side 3 On sharp curve y/n No VI No Erodes (scouring of sides) the side of nala 4 Bed strata / soil type 1. Soil 2. Hard rock 3. Cant found 4. other Soil VI Govt. official Purpose to fulfill (percolation /storage) 5 How long back water is present i.e 10m No Appr. Storage capacity 6 Height of bandhara above bed nallah level is correct or not? Foundation depth + Height of main body Yes VI Yes Structural stability
  • 85. 75 app 3m A.3 Structural Soundness 1 Dimensions of main body Length Breadth Height (m) L:-13m B:-1.5m H:-2.4m Tape/ laser meter 2 Apron presence y/n Yes VI Yes To avoid d/s erosion 3 Freeboard 0.3 m y/n No Yes To escape surplus water easily 4 D/S slope provided y/n Yes VI Yes Structural stability to resist water pressure 5 Flank wall dimensions Length Breadth Height - Tape/Laser meter - - 6 Leakages at base Heavy/light/no/can’t figure out No (No available water at visited time) VI No Cracks in the concrete structure causes leakages, reduces strength and fails 7 Leakages at side Heavy/light/no/can’t figure out No VI - - 8 Overall Anchorage of all parts y/n No - - To carry self load and water load together 9 Silt deposition Heavy/mild/no No - - Reduces water storage capacity 10 Condition of main body (only concrete/boulders/etc) Good/mod/bad Good VI - - 11 Strength of main body At left corner – 3 readings at 1m (top) - Rebound hammer - Concrete grade (mix proportions) defines
  • 86. 76 (Bottom) - 3 At middle (top) – 3 (bottom) - 3 At right end (top) – 3 (bottom) -3 strength of concrete 12 Strength of flank wall (grade of concrete mix) Left and right Top – 3 readings Bottom- 3 readings Middle – 3 readings - Rebound hammer - - 13 excavated soil is filled with surrounding the embankment y/n Yes VI No Water flow should not be disturbed and silted 14 Quality of concrete mix (depend on grade) Mix proportions y/n Yes VI - - 15 Only boulders in the main body y/n No - - - Repair Work y/n No - - - Repair method Reinforcement steel repair, Smoothing or leveling of surfaces, Filling of flow to honeycombs or holes, Damaged corners etc - - - - A.4 Utility 1 Water available y/n No water available Since 2012 VI - -
  • 87. 77 2 Water used for DW, irrigation etc Both interview Farmer Anil Eravane 3 Is there a well near by (number if many) y/n Yes (1:-well) interview Govt. official/farmer Recharge 4 Well water level increased due to CNB construction y/n Yes interview farmer - B Beneficiary Interview Form B1 Beneficiary/Farmer Name Sheikh Kaliya ( Gut No:-173) Plot Details Plot No 173 Plot Size (in acres) - Distance from CNB 40m Rain fed/ Irrigated Yes Single Crop/ Double Crop 2 Crop Cropping Details Year Kharif Crop Rabi 2013 Cotton , Horticulture :- Guavas NO 2014 Cotton , Horticulture :-Guavas NO 2015 Cotton , Horticulture :-Guavas NO 2016 Cotton , Horticulture :-Guavas NO
  • 88. 78 Form 1: Cement Nala Bund (CNB) :- 7th CNB Question Possible options for answer Answer Medium Whom to ask? Purpose New Construction y/n No A.1 Location 1 Lat/Long N190 56.814’ E0750 09.283’ GPS A.2 Suitability 1 Depth of nala Less than 1.5 m More than 1.5m 1M VI 2M Storage capacity 2 Slope of nala bed (Should be less than 1%) Steep/moderate/flat Flat VI No Main structure can fail on slope due to excess water pressure on u/s side 3 On sharp curve y/n No VI No Erodes (scouring of sides) the side of nala 4 Bed strata / soil type 1. Soil 2. Hard rock 3. Cant found 4. other Soil VI Govt. official Purpose to fulfill (percolation /storage) 5 How long back water is present i.e 10m No Appr. Storage capacity 6 Height of Bandhara above bed nala level is correct or not? Foundation depth + Height of main body app 3m Yes VI Yes Structural stability A.3 Structural Soundness
  • 89. 79 1 Dimensions of main body Length Breadth Height (m) L:-12m B:-1.5m H:-2.3m Tape/ laser meter 2 Apron presence y/n Yes VI Yes To avoid d/s erosion 3 Freeboard 0.3 m y/n No Yes To escape surplus water easily 4 D/S slope provided y/n Yes VI Yes Structural stability to resist water pressure 5 Flank wall dimensions Length Breadth Height - Tape/Laser meter 6 Leakages at base Heavy/light/no/can’t figure out No (No available water at visited time) VI No Cracks in the concrete structure causes leakages, reduces strength and fails 7 Leakages at side Heavy/light/no/can’t figure out No VI 8 Overall Anchorage of all parts y/n No - To carry self load and water load together 9 Silt deposition Heavy/mild/no No - Reduces water storage capacity 10 Condition of main body (only concrete/boulders/etc) Good/mod/bad Good VI 11 Strength of main body At left corner – 3 readings at 1m (top) (Bottom) - 3 At middle (top) – 3 (bottom) - 3 - Rebound hammer Concrete grade (mix proportions) defines strength of concrete
  • 90. 80 At right end (top) – 3 (bottom) -3 12 Strength of flank wall (grade of concrete mix) Left and right Top – 3 readings Bottom- 3 readings Middle – 3 readings - Rebound hammer 13 excavated soil is filled with surrounding the embankment y/n Yes VI No Water flow should not be disturbed and silted 14 Quality of concrete mix (depend on grade) Mix proportions y/n Yes VI 15 Only boulders in the main body y/n No Repair Work y/n No Repair method Reinforcement steel repair, Smoothing or leveling of surfaces, Filling of flow to honeycombs or holes, Damaged corners etc - A.4 Utility 1 Water available y/n No water available Since 2012 VI 2 Water used for DW, irrigation etc Both interview Farmer Anil Eravane
  • 91. 81 3 Is there a well near by (number if many) y/n Yes (1 :-well) interview Govt. official/ farmer Recharge 4 Well water level increased due to CNB construction y/n Yes interview farmer Mohamed Afsar Sheikh B Beneficiary Interview Form B1 Beneficiary/Farmer Name Sahebrao More( Mb.no:9823578538) Plot Details Plot No 114 Plot Size (in acres) - Distance from CNB - Rain fed/ Irrigated Yes Single Crop/ Double Crop Cropping Details Year KharifCrop Rabi 2013 Cotton , Horticulture :- Figs NO 2014 Cotton , Horticulture :- Figs NO 2015 Cotton , Horticulture :- Figs NO 2016 Cotton , Horticulture :- Figs NO
  • 92. 82 Form 1: Stream deepening and widening :-1st Nala (1 ST Stream) Question Possible options for answer Answer Medium Whom to ask? Purpose New Construction y/n Yes A.1 Location 1 Lat/Long N19o 56.992’ E0750 09.761 ’ GPS A.2 Suitability 1 Order of stream 1st /2nd /3rd/ .4th . 2nd GIS+VI Should be done on 2nd /3rd 2 Whether over exploited/exploited Area y/n VI Should be preferred 3 Whether upstream of Bandhara? y/n VI Should be preferred 4 Bed strata / soil type 1. Hard rock 2. Soil/Alluvium 3. Cant found 4. other Soil VI Govt. official Purpose to fulfill (percolation /storage) 5 Whether location certified by Sub-divisional Agriculture office? y/n - Govt. official A.3 Structural Soundness 1 Dimensions after Excavation Length Breadth Height (m) - Tape/ laser meter
  • 93. 83 2 Dimensions after Excavation Length Breadth Height (m) L:-13m B:-13m H:-8m Tape/ laser meter 3 Depth below stream bed? In meter Minimum of (Less than 3 meter or till hard rock) 4 Volume of silt excavated?  Used for? In m3  Farmer/Ber m Berm 5 Distance from CNB Meter 5m Tape/Lase r meter Should be more than 5 mtrs 6 Soil conservation works in upside of location? y/n No VI Should be done A.4 Utility 1 Water available y/n No VI 2 Water used for Irrigation etc Yes interview Farmer 3 Is there a well near by (number if many) Perceived recharge? y/n 2:-well interview Govt. official/ farmer Recharge 4 Number of filling of CNB? number 2 interview farmer B Beneficiary Interview Form B1 Beneficiary/Farmer Name Muhammad Afsar Sheikh (20 people n farm house) (Mb.No:-9923037867) Plot Details
  • 94. 84 Plot No 115 Plot Size (in acres) 15 Acers Distance from CNB 5m Rain fed/Irrigated Yes Single Crop/ Double Crop Double crop Cropping Details Year kharif Crop Rabi Crop 2013 Cotton , Maize:-4 Acre Horticulture:- Figs, Mango, Custard Apple, Chiku. No 2014 Cotton , Maize:-4 Acre Horticulture :-Figs, Mango, Custard Apple, Chiku. 2015 Cotton , Maize:-4 Acre Horticulture :-Figs, Mango, Custard Apple, Chiku. REMARK:- DISCONNECTED DISATANCE BETWEEN NA IS 15M
  • 95. 85 Form 1: Stream deepening and widening :-1st Nala ( 2nd Stream) Question Possible options for answer Answer Medium Whom to ask? Purpose New Construction y/n Yes A.1 Location 1 Lat/Long N19o 57.118’ E075 0 08.875’ GPS A.2 Suitability 1 Order of stream 1st /2nd /3rd/ .4th . 2nd GIS+VI Should be done on 2nd /3rd 2 Whether over exploited/exploited Area y/n Over exploited Area VI Should be preferred 3 Whether upstream of Bandhara? y/n No VI Should be preferred 4 Bed strata / soil type 5. Hard rock 6. Soil/Alluvium 7. Cant found 8. Other Soil VI Govt. official Purpose to fulfill (percolation /storage) 5 Whether location certified by Sub-divisional Agriculture office? y/n - Govt. official A.3 Structural Soundness 1 Dimensions after Excavation Length Breadth Height (m) - Tape/ laser meter
  • 96. 86 2 Dimensions after Excavation Length Breadth Height (m) L:-10m B:-8m H:-8m Tape/ laser meter 3 Depth below stream bed? In meter Minimum of (Less than 3 meter or till hard rock) 4 Volume of silt excavated?  Used for? In m3  Farmer/Berm Berm 5 Distance from CNB Meter 10m Tape/Lase r meter Should be more than 5 mtrs 6 Soil conservation works in upside of location? y/n No VI Should be done A.4 Utility 1 Water available y/n No VI 2 Water used for Irrigation etc Yes interview Farmer 3 Is there a well near by (number if many) Perceived recharge? y/n 1:-well interview Govt. official /farmer Recharge 4 Number of filling of CNB? number 2 interview farmer B Beneficiary Interview Form B1 Beneficiary/Farmer Name GUT NO:-173,NAME:- Shekha kaliya Plot Details Plot No 173 Plot Size (in acres) - Distance from CNB 25m
  • 97. 87 Rain fed/ Irrigated Yes Single Crop/ Double Crop Double crop Cropping Details Year Kharif Crop Rabi Crop 2013 Cotton , Horticulture :- Guavas No 2014 Cotton , Horticulture :- Guavas 2015 Cotton , Horticulture :- Guavas
  • 98. 88 Form 3: Farm Pond No:- 01 Question Possible options for answer Answer Medium Whom to ask? Purpose A.1 Location Lat/Long N19o 56.95’ E0750 09.711’ GPS A.2 Suitability 1 Pond location in farm Flat/ hilly/ corner or edge Flat VI Rainfall can damage the pond and silt deposits 2 Built in nala y/n No VI Flows away with rainwater 3 Purpose of pond Percolation / storage Storage 4 Pond elevation than nearest stream Higher / lower/ same same A.3 Structural Soundness 1 Dimensions Length : Breadth: Depth : 30x30x3mt. Tape/ laser meter 2 Berm present y/n Yes VI Avoid breaching of bund 3 Plastic cover y/n N0 VI To avoid draining of water 4 Source of water? Rainfall/Groundwater Rainfall Intervie w
  • 99. 89 5 Inlet provided y/n No VI allow water to enter into pond 6 Outlet provided y/n No VI Allow water to drain 7 Position of inlet Correct/ incorrect Correct VI At higher elevation in the flow direction 8 Correct location of excavated soil deposition y/n Yes VI On the bund side but not on the way from which water is coming into pond. Avoid on nala side 9 Maintained Slope of pond sides y/n Yes To protect the sides of pond to slide down into the pond. 10 Soil compacted y/n No Overall stability of pond 11 Pitching or revetment y/n No Sides sag down into pit and erodes sides A.4 Utility 1 Water present till which month Name of month June interview farmer To analyze Water availability 2 Is there a well near to pond (number if many) y/n Yes interview farmer Well recharge purpose 3 Well water level increased due to pond construction y/n Yes interview farmer B Beneficiary Interview Form B1 Beneficiary/Farmer Name Vithal Chopade Plot Details
  • 100. 90 Plot No 139 Plot Size (in acres) Rain fed/ Irrigated Yes Single Crop/ Double Crop Double crop Cropping Details Year Kharif Crop 2013 Cotton, Tomato 2014 Cotton, Tomato 2015 Cotton, Tomato 2016 Cotton, Tomato
  • 101. ACKNOWLEDGEMENT I am very happy for the completion of this project. I would like to express my special thanks of gratitude to our Guide Rahul Agrawal & Prashant Awarsarmal, who gave us the golden opportunity to do this wonderful project and his valuable guidance and constant support with all necessary help in our work. I am also thankful to all my teachers and college staff who have helped us to complete this project. Secondly, I would also like to thank my parents who helped a lot by encouraging me to finishing this project in given time. And the last, thanks again to all my friends, my group members and those who directly or indirectly helped me during this project. Manju H. Badoge BT4600007 Pranali A. Bodhare BT4600014 Sagar S. Mali BT4600075