SlideShare ist ein Scribd-Unternehmen logo
1 von 40
Downloaden Sie, um offline zu lesen
Finite Element Analysis
Finite element formulation for
1D elasticity using the
Rayleigh-Ritz Principle
Dr. Muhammad Farhan
Reading assignment:
Lecture notes, Logan 3.10
Summary:
• Stiffness matrix and nodal load vectors for 1D elasticity
problem
Axially loaded elastic bar
A(x) = cross section at x
b(x) = body force distribution
(force per unit length)
E(x) = Young’s modulus
x
y
x=0 x=L
x
F
Potential energy of the axially loaded bar corresponding to the
exact solution u(x)
L)
Fu(x
dx
bu
dx
dx
du
EA
2
1
(u)
0
0
2










 

L
L
Potential energy of the bar corresponding to an admissible
displacement w(x)
L)
Fw(x
dx
bw
dx
dx
dw
EA
2
1
(w)
0
0
2










 

L
L
Finite element idea:
Step 1: Divide the truss into finite elements connected to each
other through special points (“nodes”)
El #1 El #2 El #3
1 2 3 4
L)
Fw(x
dx
bw
dx
dx
dw
EA
2
1
(w)
0
0
2










 

L
L
Total potential energy=sum of potential energies of the elements
El #1 El #2 El #3
x1=0 x2 x3 x4=L
dx
bw
dx
dx
dw
EA
2
1
(w)
2
1
2
1
2
1 
 








x
x
x
x
L)
Fw(x
dx
bw
dx
dx
dw
EA
2
1
(w)
0
0
2










 

L
L
Total potential energy
Potential energy of element 1:
dx
bw
dx
dx
dw
EA
2
1
(w)
3
2
3
2
2
2 
 








x
x
x
x
Potential energy of element 2:
El #1 El #2 El #3
x1=0 x2 x3 x4
Total potential energy=sum of potential energies of the elements
Potential energy of element 3:
(w)
(w)
(w)
(w) 3
2
1 






L)
Fw(x
dx
bw
dx
dx
dw
EA
2
1
(w)
4
3
4
3
2
3 









 

x
x
x
x
Step 2: Describe the behavior of each element
In the “direct stiffness” approach, we derived the stiffness matrix
of each element directly (See lecture on Springs/Trusses).
Now, we will first approximate the displacement inside each
element and then show you a systematic way of deriving the
stiffness matrix (sections 2.2 and 3.1 of Logan).
TASK 1: APPROXIMATE THE DISPLACEMENT WITHIN
EACH ELEMENT
TASK 2: APPROXIMATE THE STRAIN and STRESS WITHIN
EACH ELEMENT
TASK 3: DERIVE THE STIFFNESS MATRIX OF EACH
ELEMENT (this class) USING THE RAYLEIGH-RITZ
PRINCIPLE
Inside an element, the three most important approximations in
terms of the nodal displacements (d) are:
d
B
E


(1)
Displacement approximation in terms of shape functions
d
N
w(x) 
d
B
ε(x) 
Strain approximation in terms of strain-displacement matrix
(2)
Stress approximation in terms of strain-displacement matrix and
Young’s modulus
(3)
Summary
The shape functions for a 1D linear element
2x
1
2
1
1x
1
2
2
d
x
x
x
-
x
d
x
x
x
-
x
w(x)




Within the element, the displacement approximation is
x
x1 x2
El #1
1
2
2
1
x
x
x
-
x
(x)
N


1
2
1
2
x
x
x
-
x
(x)
N


1 1
Displacement approximation in terms of shape functions















2x
1x
1
2
1
1
2
2
d
d
x
x
x
-
x
x
x
x
-
x
w(x)
Strain approximation
Stress approximation
For a linear element
 










2x
1x
1
2 d
d
1
1
x
x
1
dx
dw
ε
 










2x
1x
1
2 d
d
1
1
x
x
E
Eε

For the entire bar, the displacement approximation is
Why is the approximation “admissible”?
El #1 El #2 El #3
x1=0 x2 x3 x4=L
(x)
w
(x)
w
(x)
w
w(x) (3)
(2)
(1)



exists
dx
dw
(2)
0
0)
w(x
(1) 

Where w(i)(x) is the displacement approximation within element (i).
Let use set d1x=0. Then, can you seen that the above approximation
does satisfy the two conditions of being an admissible function on
the entire bar, i.e.,
2 2
1 1
1
1
(w) dx bw dx
2
x x
x x
A
 
  
 
Potential energy of element 1:
TASK 3: DERIVE THE STIFFNESS MATRIX OF EACH
ELEMENT USING THE RAYLEIGH-RITZ PRINCIPLE
Lets plug in the approximation
d
N
w(x) 
   
2 2
1 1
T
1
1
(d) d B EB dx d d N b dx
2
x x
T T T
x x
A
  
 
d
B
ε(x)  d
B
E


2
1
T
B EB dx
x
x
A

Lets see what the matrix
is for a 1D linear element
Recall that
 
1
1
x
x
1
B
1
2



Hence
 
 
 
  




























1
1
1
1
x
x
E
1
1
1
1
x
x
E
1
1
x
x
1
E
1
1
x
x
1
B
E
B
2
1
2
2
1
2
1
2
1
2
T
 
  
2 2 2
1 1 1
T
2 2
2 1 2 1
1 1 1 1
1 1
B EB dx AEdx AEdx
1 1 1 1
x x x x
x x x
x x x
A
 
   
 
   
 
 
   
  
Remembering that (x2-x1) is the length of the element, this is the
stiffness matrix we had derived directly before using the direct
stiffness approach!!
    
 
2 2
1 1
T 2 1
2 2
2 1 2 1
2 1
1 1 1 1
AE(x x )
1
B EB dx AEdx
1 1 1 1
x x x x
1 1
AE
1 1
x x
x x
x x
A
 
   

 
   
 
 
   

 
  

  
 
Now, if we assume E and A are constant
Then why is it necessary to go through this complicated procedure??
1. Easy to handle nonuniform E and A
2. Easy to handle distributed loads
For nonuniform E and A, i.e. E(x) and A(x), the stiffness matrix of
the linear element will NOT be
 
2 1
1 1
EA
1 1
x x

 
 

  
But it will ALWAYS be
2
1
T
B EB dx
x
x
k A
 
Now lets go back to
2 2
1 1
T
1
1
(d) d B EB dx d d N b dx
2
1
d d d
2
b
x x
T T T
x x
k f
T T
b
A
k f
 
 
 
 
    
 
 
 
   
 
 
2
1
T
B EB dx
x
x
k A
 
Element stiffness matrix
Element nodal load vector due to distributed body force
dx
b
N
2
1


x
x
T
b
f
Apply Rayleigh-Ritz principle for the 1D linear element













0
d
)
d
(
Π
0
d
)
d
(
Π
2x
1
1x
1
b
b
T
T
f
k
f
k









d
d
)
d
(
d
d
d
2
1
)
d
(
1
1
0
d
)
d
(
Π1




Recall from linear algebra (Lecture notes on Linear Algebra)
Hence
0
d
)
d
(
Π1



b
f
k 
 d
Exactly the same equation that we had before, except that the
stiffness matrix and nodal force vectors are more general
Recap of the properties of the element stiffness matrix
1. The stiffness matrix is singular and is therefore non-invertible
2. The stiffness matrix is symmetric
3. Sum of any row (or column) of the stiffness matrix is zero!
2
1
T
B EB dx
x
x
k A
 
Why?
11
k
Consider a rigid body motion of the element
1 2
d1x=1 d2x=1







1
1
d d
B
0
ε 

Element strain
 
 
2
1
2
1
T
T
d B EB dx d
B E Bd dx
0
0
x
x
x
x
k A
A
 

 
  
 


0
and
0
0
0
1
1
d
22
21
12
11
22
21
12
11

























k
k
k
k
k
k
k
k
k
Sum of any row (or column) of the stiffness matrix is zero
The nodal load vector
1 2
d1x
d2x
b(x)





























dx
b
)
(
dx
b
)
(
dx
b
)
(
)
(
dx
b
N
2
1
2
1
2
1
2
1
2
1
2
1
2
1
x
x
x
x
x
x
x
x
x
x
b
x
N
x
N
f
f
x
N
x
N
f
dx
b
N
2
1


x
x
T
b
f
dx
b
)
(
dx
b
)
(
2
1
2
1
2
2
1
1




x
x
x
x
x
x
x
N
f
x
N
f
“Consistent” nodal loads
1 2
d1x
d2x
b(x) /unit length 1 2
d1x
d2x
Replaced by
f1x
f2x
A distributed load is represented by two nodal loads in a
consistent manner
e.g., if b=1
2
x
dx
)
(
dx
b
)
(
2
x
dx
)
(
dx
b
)
(
1
2
2
2
2
1
2
1
1
1
2
1
2
1
2
1
2
1
x
x
N
x
N
f
x
x
N
x
N
f
x
x
x
x
x
x
x
x
x
x












Divide the total force into two equal halves and lump them at the
nodes
What happens if b(x)=x?
d
B
E


Displacement approximation in terms of shape functions
d
N
w(x) 
d
B
ε(x) 
Strain approximation in terms of strain-displacement matrix
Stress approximation
Summary: For each element
2
1
T
B EB dx
x
x
k A
 
Element stiffness matrix
dx
b
N
2
1


x
x
T
b
f
Element nodal load vector
What happens for element #3?
L)
Fw(x
dx
bw
dx
dx
dw
EA
2
1
(w)
4
3
4
3
2
3 









 

x
x
x
x
For element 3















4x
3x
3
4
3
3
4
4
d
d
x
x
x
-
x
x
x
x
-
x
w(x)
4x
d
L)
w(x 


The discretized form of the potential energy
   
4 4
3 3
T
3 4x
1
(d) d B EB dx d d N b dx Fd
2
x x
T T T
x x
A
   
 
What happens for element #3?
0
d
)
d
(
Π3












F
0
d b
f
k
Now apply Rayleigh-Ritz principle
Hence there is an extra load term on the right hand side due to the
concentrated force F applied to the right end of the bar.
NOTE that whenever you have a concentrated load at ANY
node, that load should be applied as an extra right hand side
term.
Step3:Assembly exactly as you had done before, assemble the
global stiffness matrix and global load vector and solve the
resulting set of equations by properly taking into account the
displacement boundary conditions
Problem:
x
24”
3”
6”
P=100lb
12”
E=30x106 psi
r=0.2836 lb/in3
Thickness of plate, t=1”
Model the plate as 2 finite elements and
(1)Write the expression for element stiffness
matrix and body force vectors
(2)Assemble the global stiffness matrix and
load vector
(3)Solve for the unknown displacements
(4)Evaluate the stress in each element
(5)Evaluate the reaction in each support
Finite element model
x
12”
12”
1
2
3
El #1
El #2 P=100lb
Element # Node 1 Node 2
1 1 2
2 2 3
Node-element connectivity chart
Stiffness matrix of El #1
 
12 12
(1) T
2
0 0
1 1
B EB dx ( )
1 1
(12)
E
k A A x dx

 
   

 
 
12 12 12
3
0 0 0
( ) (6 0.125 ) (6 0.125 ) 63
A x dx t x dx t x dx in
    
  
 
(1) 6
2
1 1 1 1
63 13.125 10
1 1 1 1
(12)
E
k
 
   
   
   
 
   
Solution (1)
Stiffness matrix of El #2
 
24 24
(2) T
2
12 12
1 1
B EB dx ( )
1 1
(12)
E
k A A x dx

 
   

 
 
24 24 24
3
12 12 12
( ) (6 0.125 ) (6 0.125 ) 45
A x dx t x dx t x dx in
    
  
 
(2) 6
2
1 1 1 1
45 9.375 10
1 1 1 1
(12)
E
k
 
   
   
   
 
   
Now compute the element load vector due to distributed body
force (weight)
dx
b
N
2
1


x
x
T
b
f
x
12”
6”
4.5”
x
6 - 0.125x
 
12 12
(1)
0 0
12
0
(1)
12
1
(1)
0
2 ( )
N b dx N A dx
N dx
( )
(6 0.125 ) dx
( )
33
0.2836
30
9.3588
8.508
T T
b
T
A x
f
A
N x
t x
N x
lb
lb
r
r
r
 

 
 
 
 
 
  
 
 
  
 
 


For element #1
x
12”
1
2
El #1
)
(
)
1
(
2 x
N
)
(
)
1
(
1 x
N
12
)
(
12
12
)
(
)
1
(
2
)
1
(
1
x
x
N
x
x
N



Superscript in parenthesis indicates
element number
 
24 24
(2)
12 12
24
12
(2)
24
2
(2)
12
3 ( )
N b dx N A dx
N dx
( )
(6 0.125 ) dx
( )
24
0.2836
21
6.8064
5.9556
T T
b
T
A x
f
A
N x
t x
N x
lb
lb
r
r
r
 

 
 
 
 
 
  
 
 
  
 
 


For element #2
x
12”
12”
1
2
3
El #1
El #2
)
(
)
2
(
2 x
N
)
(
)
2
(
3 x
N
12
12
)
(
12
24
)
(
)
2
(
3
)
2
(
2




x
x
N
x
x
N
Solution (2) Assemble the system equations
6
13.125 13.125 0
10 13.125 22.5 9.375
0 9.375 9.375
K

 
 
   
 
 

 
9.3588
8.508 6.8064
5.9556
0
100
0
9.3588
115.3144
5.9556
b concentrated load
b
concentrated load
f f f
f lb
f lb
f lb
 
 
 
 
 
 
 
 
 
  
 
 
 
 
   
 
 
Hence we need to solve
1x 1
6
2x
3x
13.125 13.125 0 d 9.3588
10 13.125 22.5 9.375 d 115.3144
0 9.375 9.375 d 5.9556
R
 
    
   
 
   
   
 
   
 

    
R1 is the reaction at node 1.
Notice that since the boundary condition at x=0 (d1x=0) has not been
taken into account, the system matrix is not invertible.
Incorporating the boundary condition d1x=0 we need to solve the
following set of equations
2x
6
3x
d
22.5 9.375 115.3144
10
d
9.375 9.375 5.9556
  
   
 
   
 

   
 
Solution (3)
5
2
5
3
0.92396 10
0.98749 10
x
x
d
in
d


 
  
 

   

 
   
Solution (4) Stress in elements
 
(1) (1)
(1)
1x
2x
2 1
6
2x 1x
d
1 1
d
30 10
d d 0
12
23.099
EB d
E
x x
psi
 
 
   
  

 

Solve to obtain
Notice that since we are using linear elements, the stress within
each element is constant.
In element #1
 
 
(2) (2)
(2)
2x
3x
3 2
6
3x 2x
d
1 1
d
30 10
d -d
12
1.5882
EB d
E
x x
psi
 
 
   
  



In element #2
Solution (5) Reaction at support
Go back to the first line of the global equilibrium equations…
1 130.6288
R lb
  
1x 1
6
2x
3x
13.125 13.125 0 d 9.3588
10 13.125 22.5 9.375 d 115.3144
0 9.375 9.375 d 5.9556
R
 
    
   
 
   
   
 
   
 

    
Check
x
24”
3”
6”
12”
P=100lb
R1
24
1 0
24
0
( )
100 (6 0.125 )
130.6288
x
x
R P A x dx
t x dx
lb
r
r


 
  



The reaction at the wall from force
equilibrium in the x-direction
(The –ve sign indicates that the force is in the –ve x-direction)
Problem: Can you solve for the displacement and stresses
analytically?
Check out
9 2 7
9 2 7 6
4.727 10 9.487 10 0 12
4.727 10 2.0797 10 8.89 10 12 24
anal
x x for x
u
x x for x
 
  
     

 
       


Stress
6
( ) 30 10
anal anal
anal
du du
x E
dx dx
   
0 5 10 15 20
0
0.2
0.4
0.6
0.8
1
1.2
x 10
-4
x (in)
Displacement
(in) Analytical solution
Finite element solution
Comparison of displacement solutions
Notice:
1. Slope discontinuity at x=12 (why?)
2. The finite element solution does not produce the exact
solution even at the nodes
3. We may improve the solution by
(1) Increasing the number of elements
(2) Using higher order elements (e.g., quadratic instead of
linear)
0 5 10 15 20
-5
0
5
10
15
20
25
30
x (in)
Stress
(psi)
Finite element solution
Analytical solutions
Comparison of stress solutions
The analytical as well as the finite element stresses are
discontinuous across the elements

Weitere ähnliche Inhalte

Ähnlich wie Lecture5-FEA.pdf

Primer for ordinary differential equations
Primer for ordinary differential equationsPrimer for ordinary differential equations
Primer for ordinary differential equationsTarun Gehlot
 
Chap-1 Preliminary Concepts and Linear Finite Elements.pptx
Chap-1 Preliminary Concepts and Linear Finite Elements.pptxChap-1 Preliminary Concepts and Linear Finite Elements.pptx
Chap-1 Preliminary Concepts and Linear Finite Elements.pptxSamirsinh Parmar
 
differentiol equation.pptx
differentiol equation.pptxdifferentiol equation.pptx
differentiol equation.pptxPlanningHCEGC
 
Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3Fabian Pedregosa
 
Laplace equation
Laplace equationLaplace equation
Laplace equationalexkhan129
 
Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential slides
 
Crib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsCrib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsA Jorge Garcia
 
Chapter 1 pt 2
Chapter 1 pt 2Chapter 1 pt 2
Chapter 1 pt 2SinYK
 
Conformable Chebyshev differential equation of first kind
Conformable Chebyshev differential equation of first kindConformable Chebyshev differential equation of first kind
Conformable Chebyshev differential equation of first kindIJECEIAES
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniquesKrishna Gali
 

Ähnlich wie Lecture5-FEA.pdf (20)

UNIT I_3.pdf
UNIT I_3.pdfUNIT I_3.pdf
UNIT I_3.pdf
 
Primer for ordinary differential equations
Primer for ordinary differential equationsPrimer for ordinary differential equations
Primer for ordinary differential equations
 
Chap-1 Preliminary Concepts and Linear Finite Elements.pptx
Chap-1 Preliminary Concepts and Linear Finite Elements.pptxChap-1 Preliminary Concepts and Linear Finite Elements.pptx
Chap-1 Preliminary Concepts and Linear Finite Elements.pptx
 
Cse41
Cse41Cse41
Cse41
 
differentiol equation.pptx
differentiol equation.pptxdifferentiol equation.pptx
differentiol equation.pptx
 
Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3
 
Laplace equation
Laplace equationLaplace equation
Laplace equation
 
Unit ii
Unit iiUnit ii
Unit ii
 
Vectors and Kinematics
Vectors and KinematicsVectors and Kinematics
Vectors and Kinematics
 
Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential
 
Cs jog
Cs jogCs jog
Cs jog
 
Crib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsCrib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC exams
 
Section4 stochastic
Section4 stochasticSection4 stochastic
Section4 stochastic
 
Chapter 1 pt 2
Chapter 1 pt 2Chapter 1 pt 2
Chapter 1 pt 2
 
Conformable Chebyshev differential equation of first kind
Conformable Chebyshev differential equation of first kindConformable Chebyshev differential equation of first kind
Conformable Chebyshev differential equation of first kind
 
Sol75
Sol75Sol75
Sol75
 
Sol75
Sol75Sol75
Sol75
 
Ch07 5
Ch07 5Ch07 5
Ch07 5
 
Electricity for physic
Electricity for physic Electricity for physic
Electricity for physic
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
 

Kürzlich hochgeladen

College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college projectTonystark477637
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)simmis5
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 

Kürzlich hochgeladen (20)

College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 

Lecture5-FEA.pdf

  • 1. Finite Element Analysis Finite element formulation for 1D elasticity using the Rayleigh-Ritz Principle Dr. Muhammad Farhan
  • 2. Reading assignment: Lecture notes, Logan 3.10 Summary: • Stiffness matrix and nodal load vectors for 1D elasticity problem
  • 3. Axially loaded elastic bar A(x) = cross section at x b(x) = body force distribution (force per unit length) E(x) = Young’s modulus x y x=0 x=L x F Potential energy of the axially loaded bar corresponding to the exact solution u(x) L) Fu(x dx bu dx dx du EA 2 1 (u) 0 0 2              L L Potential energy of the bar corresponding to an admissible displacement w(x) L) Fw(x dx bw dx dx dw EA 2 1 (w) 0 0 2              L L
  • 4. Finite element idea: Step 1: Divide the truss into finite elements connected to each other through special points (“nodes”) El #1 El #2 El #3 1 2 3 4 L) Fw(x dx bw dx dx dw EA 2 1 (w) 0 0 2              L L Total potential energy=sum of potential energies of the elements
  • 5. El #1 El #2 El #3 x1=0 x2 x3 x4=L dx bw dx dx dw EA 2 1 (w) 2 1 2 1 2 1            x x x x L) Fw(x dx bw dx dx dw EA 2 1 (w) 0 0 2              L L Total potential energy Potential energy of element 1: dx bw dx dx dw EA 2 1 (w) 3 2 3 2 2 2            x x x x Potential energy of element 2:
  • 6. El #1 El #2 El #3 x1=0 x2 x3 x4 Total potential energy=sum of potential energies of the elements Potential energy of element 3: (w) (w) (w) (w) 3 2 1        L) Fw(x dx bw dx dx dw EA 2 1 (w) 4 3 4 3 2 3              x x x x
  • 7. Step 2: Describe the behavior of each element In the “direct stiffness” approach, we derived the stiffness matrix of each element directly (See lecture on Springs/Trusses). Now, we will first approximate the displacement inside each element and then show you a systematic way of deriving the stiffness matrix (sections 2.2 and 3.1 of Logan). TASK 1: APPROXIMATE THE DISPLACEMENT WITHIN EACH ELEMENT TASK 2: APPROXIMATE THE STRAIN and STRESS WITHIN EACH ELEMENT TASK 3: DERIVE THE STIFFNESS MATRIX OF EACH ELEMENT (this class) USING THE RAYLEIGH-RITZ PRINCIPLE
  • 8. Inside an element, the three most important approximations in terms of the nodal displacements (d) are: d B E   (1) Displacement approximation in terms of shape functions d N w(x)  d B ε(x)  Strain approximation in terms of strain-displacement matrix (2) Stress approximation in terms of strain-displacement matrix and Young’s modulus (3) Summary
  • 9. The shape functions for a 1D linear element 2x 1 2 1 1x 1 2 2 d x x x - x d x x x - x w(x)     Within the element, the displacement approximation is x x1 x2 El #1 1 2 2 1 x x x - x (x) N   1 2 1 2 x x x - x (x) N   1 1
  • 10. Displacement approximation in terms of shape functions                2x 1x 1 2 1 1 2 2 d d x x x - x x x x - x w(x) Strain approximation Stress approximation For a linear element             2x 1x 1 2 d d 1 1 x x 1 dx dw ε             2x 1x 1 2 d d 1 1 x x E Eε 
  • 11. For the entire bar, the displacement approximation is Why is the approximation “admissible”? El #1 El #2 El #3 x1=0 x2 x3 x4=L (x) w (x) w (x) w w(x) (3) (2) (1)    exists dx dw (2) 0 0) w(x (1)   Where w(i)(x) is the displacement approximation within element (i). Let use set d1x=0. Then, can you seen that the above approximation does satisfy the two conditions of being an admissible function on the entire bar, i.e.,
  • 12. 2 2 1 1 1 1 (w) dx bw dx 2 x x x x A        Potential energy of element 1: TASK 3: DERIVE THE STIFFNESS MATRIX OF EACH ELEMENT USING THE RAYLEIGH-RITZ PRINCIPLE Lets plug in the approximation d N w(x)      2 2 1 1 T 1 1 (d) d B EB dx d d N b dx 2 x x T T T x x A      d B ε(x)  d B E  
  • 13. 2 1 T B EB dx x x A  Lets see what the matrix is for a 1D linear element Recall that   1 1 x x 1 B 1 2    Hence                                      1 1 1 1 x x E 1 1 1 1 x x E 1 1 x x 1 E 1 1 x x 1 B E B 2 1 2 2 1 2 1 2 1 2 T
  • 14.      2 2 2 1 1 1 T 2 2 2 1 2 1 1 1 1 1 1 1 B EB dx AEdx AEdx 1 1 1 1 x x x x x x x x x x A                        Remembering that (x2-x1) is the length of the element, this is the stiffness matrix we had derived directly before using the direct stiffness approach!!        2 2 1 1 T 2 1 2 2 2 1 2 1 2 1 1 1 1 1 AE(x x ) 1 B EB dx AEdx 1 1 1 1 x x x x 1 1 AE 1 1 x x x x x x A                                  Now, if we assume E and A are constant
  • 15. Then why is it necessary to go through this complicated procedure?? 1. Easy to handle nonuniform E and A 2. Easy to handle distributed loads For nonuniform E and A, i.e. E(x) and A(x), the stiffness matrix of the linear element will NOT be   2 1 1 1 EA 1 1 x x          But it will ALWAYS be 2 1 T B EB dx x x k A  
  • 16. Now lets go back to 2 2 1 1 T 1 1 (d) d B EB dx d d N b dx 2 1 d d d 2 b x x T T T x x k f T T b A k f                            2 1 T B EB dx x x k A   Element stiffness matrix Element nodal load vector due to distributed body force dx b N 2 1   x x T b f
  • 17. Apply Rayleigh-Ritz principle for the 1D linear element              0 d ) d ( Π 0 d ) d ( Π 2x 1 1x 1 b b T T f k f k          d d ) d ( d d d 2 1 ) d ( 1 1 0 d ) d ( Π1     Recall from linear algebra (Lecture notes on Linear Algebra)
  • 18. Hence 0 d ) d ( Π1    b f k   d Exactly the same equation that we had before, except that the stiffness matrix and nodal force vectors are more general
  • 19. Recap of the properties of the element stiffness matrix 1. The stiffness matrix is singular and is therefore non-invertible 2. The stiffness matrix is symmetric 3. Sum of any row (or column) of the stiffness matrix is zero! 2 1 T B EB dx x x k A   Why? 11 k
  • 20. Consider a rigid body motion of the element 1 2 d1x=1 d2x=1        1 1 d d B 0 ε   Element strain     2 1 2 1 T T d B EB dx d B E Bd dx 0 0 x x x x k A A             0 and 0 0 0 1 1 d 22 21 12 11 22 21 12 11                          k k k k k k k k k Sum of any row (or column) of the stiffness matrix is zero
  • 21. The nodal load vector 1 2 d1x d2x b(x)                              dx b ) ( dx b ) ( dx b ) ( ) ( dx b N 2 1 2 1 2 1 2 1 2 1 2 1 2 1 x x x x x x x x x x b x N x N f f x N x N f dx b N 2 1   x x T b f dx b ) ( dx b ) ( 2 1 2 1 2 2 1 1     x x x x x x x N f x N f “Consistent” nodal loads
  • 22. 1 2 d1x d2x b(x) /unit length 1 2 d1x d2x Replaced by f1x f2x A distributed load is represented by two nodal loads in a consistent manner e.g., if b=1 2 x dx ) ( dx b ) ( 2 x dx ) ( dx b ) ( 1 2 2 2 2 1 2 1 1 1 2 1 2 1 2 1 2 1 x x N x N f x x N x N f x x x x x x x x x x             Divide the total force into two equal halves and lump them at the nodes What happens if b(x)=x?
  • 23. d B E   Displacement approximation in terms of shape functions d N w(x)  d B ε(x)  Strain approximation in terms of strain-displacement matrix Stress approximation Summary: For each element 2 1 T B EB dx x x k A   Element stiffness matrix dx b N 2 1   x x T b f Element nodal load vector
  • 24. What happens for element #3? L) Fw(x dx bw dx dx dw EA 2 1 (w) 4 3 4 3 2 3              x x x x For element 3                4x 3x 3 4 3 3 4 4 d d x x x - x x x x - x w(x) 4x d L) w(x    The discretized form of the potential energy     4 4 3 3 T 3 4x 1 (d) d B EB dx d d N b dx Fd 2 x x T T T x x A      
  • 25. What happens for element #3? 0 d ) d ( Π3             F 0 d b f k Now apply Rayleigh-Ritz principle Hence there is an extra load term on the right hand side due to the concentrated force F applied to the right end of the bar. NOTE that whenever you have a concentrated load at ANY node, that load should be applied as an extra right hand side term.
  • 26. Step3:Assembly exactly as you had done before, assemble the global stiffness matrix and global load vector and solve the resulting set of equations by properly taking into account the displacement boundary conditions
  • 27. Problem: x 24” 3” 6” P=100lb 12” E=30x106 psi r=0.2836 lb/in3 Thickness of plate, t=1” Model the plate as 2 finite elements and (1)Write the expression for element stiffness matrix and body force vectors (2)Assemble the global stiffness matrix and load vector (3)Solve for the unknown displacements (4)Evaluate the stress in each element (5)Evaluate the reaction in each support
  • 28. Finite element model x 12” 12” 1 2 3 El #1 El #2 P=100lb Element # Node 1 Node 2 1 1 2 2 2 3 Node-element connectivity chart Stiffness matrix of El #1   12 12 (1) T 2 0 0 1 1 B EB dx ( ) 1 1 (12) E k A A x dx             12 12 12 3 0 0 0 ( ) (6 0.125 ) (6 0.125 ) 63 A x dx t x dx t x dx in           (1) 6 2 1 1 1 1 63 13.125 10 1 1 1 1 (12) E k                     Solution (1)
  • 29. Stiffness matrix of El #2   24 24 (2) T 2 12 12 1 1 B EB dx ( ) 1 1 (12) E k A A x dx             24 24 24 3 12 12 12 ( ) (6 0.125 ) (6 0.125 ) 45 A x dx t x dx t x dx in           (2) 6 2 1 1 1 1 45 9.375 10 1 1 1 1 (12) E k                     Now compute the element load vector due to distributed body force (weight) dx b N 2 1   x x T b f x 12” 6” 4.5” x 6 - 0.125x
  • 30.   12 12 (1) 0 0 12 0 (1) 12 1 (1) 0 2 ( ) N b dx N A dx N dx ( ) (6 0.125 ) dx ( ) 33 0.2836 30 9.3588 8.508 T T b T A x f A N x t x N x lb lb r r r                              For element #1 x 12” 1 2 El #1 ) ( ) 1 ( 2 x N ) ( ) 1 ( 1 x N 12 ) ( 12 12 ) ( ) 1 ( 2 ) 1 ( 1 x x N x x N    Superscript in parenthesis indicates element number
  • 31.   24 24 (2) 12 12 24 12 (2) 24 2 (2) 12 3 ( ) N b dx N A dx N dx ( ) (6 0.125 ) dx ( ) 24 0.2836 21 6.8064 5.9556 T T b T A x f A N x t x N x lb lb r r r                              For element #2 x 12” 12” 1 2 3 El #1 El #2 ) ( ) 2 ( 2 x N ) ( ) 2 ( 3 x N 12 12 ) ( 12 24 ) ( ) 2 ( 3 ) 2 ( 2     x x N x x N
  • 32. Solution (2) Assemble the system equations 6 13.125 13.125 0 10 13.125 22.5 9.375 0 9.375 9.375 K                 9.3588 8.508 6.8064 5.9556 0 100 0 9.3588 115.3144 5.9556 b concentrated load b concentrated load f f f f lb f lb f lb                                     
  • 33. Hence we need to solve 1x 1 6 2x 3x 13.125 13.125 0 d 9.3588 10 13.125 22.5 9.375 d 115.3144 0 9.375 9.375 d 5.9556 R                                    R1 is the reaction at node 1. Notice that since the boundary condition at x=0 (d1x=0) has not been taken into account, the system matrix is not invertible. Incorporating the boundary condition d1x=0 we need to solve the following set of equations 2x 6 3x d 22.5 9.375 115.3144 10 d 9.375 9.375 5.9556                       Solution (3)
  • 34. 5 2 5 3 0.92396 10 0.98749 10 x x d in d                      Solution (4) Stress in elements   (1) (1) (1) 1x 2x 2 1 6 2x 1x d 1 1 d 30 10 d d 0 12 23.099 EB d E x x psi                Solve to obtain Notice that since we are using linear elements, the stress within each element is constant. In element #1
  • 35.     (2) (2) (2) 2x 3x 3 2 6 3x 2x d 1 1 d 30 10 d -d 12 1.5882 EB d E x x psi               In element #2
  • 36. Solution (5) Reaction at support Go back to the first line of the global equilibrium equations… 1 130.6288 R lb    1x 1 6 2x 3x 13.125 13.125 0 d 9.3588 10 13.125 22.5 9.375 d 115.3144 0 9.375 9.375 d 5.9556 R                                    Check x 24” 3” 6” 12” P=100lb R1 24 1 0 24 0 ( ) 100 (6 0.125 ) 130.6288 x x R P A x dx t x dx lb r r           The reaction at the wall from force equilibrium in the x-direction (The –ve sign indicates that the force is in the –ve x-direction)
  • 37. Problem: Can you solve for the displacement and stresses analytically? Check out 9 2 7 9 2 7 6 4.727 10 9.487 10 0 12 4.727 10 2.0797 10 8.89 10 12 24 anal x x for x u x x for x                         Stress 6 ( ) 30 10 anal anal anal du du x E dx dx    
  • 38. 0 5 10 15 20 0 0.2 0.4 0.6 0.8 1 1.2 x 10 -4 x (in) Displacement (in) Analytical solution Finite element solution Comparison of displacement solutions
  • 39. Notice: 1. Slope discontinuity at x=12 (why?) 2. The finite element solution does not produce the exact solution even at the nodes 3. We may improve the solution by (1) Increasing the number of elements (2) Using higher order elements (e.g., quadratic instead of linear)
  • 40. 0 5 10 15 20 -5 0 5 10 15 20 25 30 x (in) Stress (psi) Finite element solution Analytical solutions Comparison of stress solutions The analytical as well as the finite element stresses are discontinuous across the elements