SlideShare ist ein Scribd-Unternehmen logo
1 von 44
Downloaden Sie, um offline zu lesen
Periodic Non-Uniform Sampling (PNS)
for Satellite Communications
Marie Chabert1
, Bernard Lacaze2
, Marie-Laure Boucheret1
,
Jean-Adrien Vernhes1,2,3,4
1
Universit´e de Toulouse, IRIT-ENSEEIHT 2
T´eSA laboratory
3
CNES (French Spatial Agency) 4
Thales Alenia Space
marie.chabert@enseeiht.fr
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Outline
1 Introduction
Problem formulation
Proposed approach
2 The PNS solution
Signal model
Sampling frequency requirements
PNS sampling scheme and reconstruction formulas
Practical sampling device: the TI-ADCs
3 Improved PNS
Principle
Convergence speed improvement
Selective reconstruction with interference cancelation
Analytic signal reconstruction
4 PNS delay estimation
PNS delay estimation with a learning sequence
Blind PNS delay estimation
5 Conclusion
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 2 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Problem formulation
Satellite Communication Context
Context: increasing frequency bandwidth in satellite
communications.
Technical challenge: onboard high-rate analog-to-digital
conversion.
Economical and ecological constraints: cost, complexity, weight
and power consumption of electronic devices.
Trend: migration of signal processing from analog to digital world.
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 3 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Proposed approach
Periodic Non uniform Sampling (PNS)
Electronic device: unsynchronized Time Interleaved ADCs.
Requirement: desynchronization estimation.
Additional functionalities:
fast convergence reconstruction,
selective reconstruction and interference rejection.
analytic signal reconstruction.
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 4 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Outline
1 Introduction
Problem formulation
Proposed approach
2 The PNS solution
Signal model
Sampling frequency requirements
PNS sampling scheme and reconstruction formulas
Practical sampling device: the TI-ADCs
3 Improved PNS
Principle
Convergence speed improvement
Selective reconstruction with interference cancelation
Analytic signal reconstruction
4 PNS delay estimation
PNS delay estimation with a learning sequence
Blind PNS delay estimation
5 Conclusion
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 5 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Signal model
Signal model
Stationary random process: X = {X(t), t ∈ R} with zero mean,
finite variance and power spectral density sX(f):
sX(f) =
∞
−∞
e−2iπfτ
RX(τ) dτ
RX(τ) = E[X(t)X∗
(t − τ)] correlation function of X
Bandpass process: sX(f) support included in the normalized kth
Nyquist band BN (k):
BN (k) = −(k +
1
2
), −(k −
1
2
) ∪ k −
1
2
, k +
1
2
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 6 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Nyquist band
Sx(f)
f
k-1
2
k k+1
2
fmin fmax-k+1
2
-k-k-1
2
B+
N (k) = 1B−
N (k) = 1
Figure: Nyquist band
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 7 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Sampling frequency requirements
Case of a high frequency pass-band signal
Uniform low-pass sampling: Shannon criterion fe = 2fmax.
Uniform band-pass sampling: constrained Landau criterion
fe ≥ 2B.
Periodic Non Uniform Sampling (PNS): Landau criterion
fe = 2B.
Sx(f)
fB−
B+
−fc fc−fmax fmax−fmin fmin
Figure: Passband model
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 8 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Periodic Non uniform Sampling (PNS) of order
L
Definition
PNSL: L interleaved uniform sampling sequences
Xi = {X(n + δi), n ∈ Z}, δi ∈]0, 1[, i ∈ {0, L}.
t
nTe (n + 1)Te (n + 2)Te (n + 3)Te
PNSL:
tL−1:
···
t2:
t1:
t0:
∆0
Te
∆1
Te
∆2
Te
∆L−1
Te
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 9 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Periodic Non uniform Sampling (PNS) of order 2
Definition
PNS2: 2 interleaved uniform sampling sequences
X0 = {X(n), n ∈ Z} and X∆ = {X(n + ∆), n ∈ Z}, ∆ ∈]0, 1[.
t
nTe (n + 1)Te (n + 2)Te (n + 3)Te
PNS2:
t1:
t0:
∆0 = 0
Te
∆1
Te
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 10 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Periodic Non uniform Sampling (PNS) of order 2
X(n)
t
X(n+Δ)
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 11 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
PNS2 reconstruction - Filter formulation1
µt
ψt
⊕µ∆
⊕+
−
X0
X∆ D
˜X0
˜XK
˜X
(a) Orthogonal scheme
ηt
ψt
⊕
X0
X∆
˜X
˜X0
˜XK
(b) Symmetrical scheme
General filter expressions
µt(f) = St(f)
S0(f) e2iπft
ηt(f) = µt(f) − µ∆(f)ψt(f)
ψt(f) = e2iπf(t−∆) S0(f)St−∆(f)−S∗
∆(f)St(f)
S2
0 (f)−|St−∆(f)|2
with: Sλ(f) = n∈Z sX(f + n)e2iπnλ
, f ∈ (−1
2 , 1
2 )
1B. Lacaze. “Filtering from PNS2 Sampling”. In: Sampling Theory in Signal and
Image Processing (STSIP) 11.1 (2012), pp. 43–53.
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 12 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
PNS2 reconstruction - Interpolation formulas2
Closed-form reconstruction formulas
Hypothesis: Bandpass signal composed of two sub-bands, no
oversampling.
Simple exact PNS2 reconstruction formulas :



X(t) =
A0(t) sin [2πk(∆ − t)] + A∆(t) sin [2πkt]
sin [2πk∆]
with Aλ(t) =
n∈Z
sin [π(t − n − λ)]
π(t − n − λ)
X(n + λ)
if 2k∆ /∈ Z
2B. Lacaze. “Equivalent circuits for the PNS2 sampling scheme”. In: IEEE
Transactions on Circuits and Systems I: Regular Papers 57.11 (2010), pp. 2904–2914.
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 13 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Practical sampling device
Time Interleaved Analog to Digital Converters (TI-ADCs)
Structure: L time-interleaved multiplexed low-rate (fs) ADCs share
the high-rate (fe = Lfs) sampling operation.
Advantages: high sampling rates at low cost, low complexity, low
power consumption.
Limitations: mismatch errors including desynchronization.
For uniform sampling: perfect synchronization required.
For Periodic Non Uniform Sampling (PNS): possibly
unsynchronized.
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 14 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Synchronized Time Interleaved Analog to
Digital Converters (TI-ADCs)
M
U
X
X[n]
Lfs
X(t)
ADCL−1
nTs + L−1
L
Ts
fs
ADCL−2
nTs + L−2
L
Ts
fs
ADC2
nTs + 2
L
Ts
fs
ADC1
nTs + 1
L
Ts
fs
ADC0
nTs
fs
(c) Architecture
t
∼ Lfs
Ts 2Ts 3Ts 4Ts
TI-ADC:
ADCL−1:
ADCL−2:
ADC2:
ADC1:
ADC0:
∼ fs
∼ fs
∼ fs
∼ fs
∼ fs
Ts
1
L Ts
2
L Ts
L−2
L Ts
L−1
L Ts
(d) Elementary and global sampling operations
Figure: Synchronized TI-ADCs
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 15 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Synchronized TI-ADCs: an ideal model
Synchronization at all price
Associated sampling scheme: uniform sampling.
In practice: design imperfections and operating conditions ⇒
desynchronization.
Common solution: calibration and hardware corrections.
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 16 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Unsynchronized TI-ADC
X[n]
R
E
C
O
N
S
T
Lfs
δi, i = 0, ..., L − 1
X(t)
ADCL−1
nTs + δL−1
fs
ADCL−2
nTs + δL−2
fs
ADC2
nTs + δ2
fs
ADC1
nTs + δ1
fs
ADC0
nTs + δ0
fs
(a) Realistic/desynchronized
TI-ADC architecture
t
∼ Lfs
Ts 2Ts 3Ts 4Ts
TI-ADC:
ADCL−1:
ADCL−2:
ADC2:
ADC1:
ADC0:
∼ fs
∼ fs
∼ fs
∼ fs
∼ fs
δ0
δ1
δ2
δL−2
δL−1
(b) Elementary and global (non uniform)
sampling operations
Figure: Realistic/desynchronized TI-ADC model
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 17 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Unsynchronized TI-ADCs: a realistic model
Contributions: ”desynchronization... so?”
Proposed sampling scheme: Periodic Non uniform Sampling.
No hardware correction of the desynchronization required.
Estimation of the desynchronization:
hypothesis: slow variations of the desynchronization,
from a training sequence,
blindly.
Complexity moved from analog to digital world:
Digital compensation of the desynchronization.
Additional functionalities:
improved reconstruction speed,
selective reconstruction with interference rejection,
analytic signal reconstruction.
Dirty RF paradigm: how to cope with low-cost imperfect analog
devices thanks to subsequent digital processing.
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 18 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Outline
1 Introduction
Problem formulation
Proposed approach
2 The PNS solution
Signal model
Sampling frequency requirements
PNS sampling scheme and reconstruction formulas
Practical sampling device: the TI-ADCs
3 Improved PNS
Principle
Convergence speed improvement
Selective reconstruction with interference cancelation
Analytic signal reconstruction
4 PNS delay estimation
PNS delay estimation with a learning sequence
Blind PNS delay estimation
5 Conclusion
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 19 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Improved PNS
Principle
Integration of a filtering operation in the reconstruction step.
Condition: oversampling.
Joint filter H with transfer function H(f).
Reconstruction of U = H(X) from the filtering of
X0 = {X(n), n ∈ Z} and X∆ = {X(n + ∆), n ∈ Z} by:
ηH
t (f) = ie2iπft H(f + k)e2iπk(t−∆)
− H(f − k)e−2iπk(t−∆)
2 sin 2πk∆
,
ψH
t (f) = ie2iπf(t−∆) H(f − k)e−2iπkt
− H(f + k)e2iπkt
2 sin 2πk∆
.
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 20 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Improved PNS
Additional functionalities
Convergence speed improvement for an increasing joint filter
transfer function regularitya
.
Selective signal reconstruction with interference rejection for a
well-chosen joint filter bandb
.
Analytical signal reconstruction for analytic joint filtersc
.
aM. Chabert and B. Lacaze. “Fast convergence reconstruction formulas for periodic
nonuniform sampling of order 2”. In: IEEE ICASSP 2012.
bJ.-A. Vernhes, M. Chabert, and B. Lacaze. “Conversion Num´erique-Analogique
s´elective d’un signal passe-bande soumis `a des interf´erences”. In: GRETSI 2013.
cJ.-A. Vernhes et al. “Selective Analytic Signal Construction From A Non-Uniformly
Sampled Bandpass Signal”. In: IEEE ICASSP 2014.
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 21 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Rectangular filter
HR
(f)
f
1
fcfmin fmax-fc -fmin-fmax
B+
N (k)B−
N (k)
k-1
2 k+1
2-k+1
2-k-1
2
Figure: Rectangular filter
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 22 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Trapezoidal filter
HT
(f)
f
1
fc
Btr Btr
fmin fmax-fc -fmin-fmax
B+
N (k)B−
N (k)
k-1
2 k+1
2-k+1
2-k-1
2
Figure: Trapezoidal filter
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 23 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Raised cosine filter
HCS
(f)
f
1
fc
Btr Btr
fmin fmax-fc -fmin-fmax
B+
N (k)B−
N (k)
k-1
2 k+1
2-k+1
2-k-1
2
Figure: Raised Cosine Filter
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 24 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Convergence speed improvement: performance
analysis
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
10−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
N
EQMN
Filtre rectangulaire
Filtre trap´ezo¨ıdal
Filtre en cosinus sur´elev´e
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 25 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Selective reconstruction with interference
cancelation
f
k + 1
2k − 1
2
Btot
Sx1
(f) Sx2
(f) Sx3
(f)
B B B
Btr Btr Btr Btr
H1(f) H2(f) H3(f)
Figure: Selective reconstruction with interference cancelation
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 26 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Selective reconstruction with interference
cancelation: performance analysis
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100
N
EQMN
Filtre rectangulaire
Filtre trap´ezo¨ıdal
Filtre en cosinus sur´elev´e
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 27 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Analytic signal reconstruction
HR
(f)
f
1
fcfmin fmax-fc -fmin-fmax
B+
N (k)B−
N (k)
k-1
2 k+1
2-k+1
2-k-1
2
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 28 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Analytic signal reconstruction
HT
(f)
f
1
fc
Btr Btr
fmin fmax-fc -fmin-fmax
B+
N (k)B−
N (k)
k-1
2 k+1
2-k+1
2-k-1
2
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 29 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Analytic signal reconstruction
HCS
(f)
f
1
fc
Btr Btr
fmin fmax-fc -fmin-fmax
B+
N (k)B−
N (k)
k-1
2 k+1
2-k+1
2-k-1
2
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 30 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Analytic signal reconstruction: performance
analysis
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100
N
EQMN
Filtre rectangulaire
Filtre trap´ezo¨ıdal
Filtre cosinus sur´elev´e
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 31 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Outline
1 Introduction
Problem formulation
Proposed approach
2 The PNS solution
Signal model
Sampling frequency requirements
PNS sampling scheme and reconstruction formulas
Practical sampling device: the TI-ADCs
3 Improved PNS
Principle
Convergence speed improvement
Selective reconstruction with interference cancelation
Analytic signal reconstruction
4 PNS delay estimation
PNS delay estimation with a learning sequence
Blind PNS delay estimation
5 Conclusion
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 32 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
PNS delay estimation with a learning sequence3
Using a learning sequence
Principle:
Learning sequence with a priori known spectrum:
cosine wave,
bandlimited white noise.
Sampling using the unsynchronized TI-ADC.
PNS reconstruction for varying delays.
Criterion optimization w.r.t the delay.
Limitation: no superimposition with the signal of interest
part of the Built-In Self Test (BIST),
online updates during silent periods.
Advantages:
low complexity and thus low consumption.
3J.-A. Vernhes et al. “Adaptive Estimation and Compensation of the Time Delay in
a Periodic Non-uniform Sampling Scheme”. In: SampTA 2015.
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 33 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Principle: orthogonality property
Known delay: orthogonal equivalent scheme
Orthogonality between D = {D(n), n ∈ Z} and X0 = {X(n), n ∈ Z}:
E[D(n)X∗
0 (m)] = 0 , ∀(n, m) ∈ Z
with:
D(n) = X(n + ∆) − µ∆[X0](n)
µt
ψt
⊕µ∆
⊕+
−
X0
X∆ D
˜X0
˜XK
˜X
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 34 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Principle: orthogonality property
Unknown delay: loss of orthogonality
Sampling sequences: X0, X∆.
Reconstruction using a wrong delay ∆ ∈]0, 1[, ∆ = ∆.
Loss of orthogonality criterion:
σ2
∆
= E |X(n + ∆) − µ∆[X0](n)|2
=
∞
−∞
e2iπf∆
− µ∆(f)
2
sX(f) df
For simplificity:
Baseband learning sequence: sX (f) = 0 for f /∈ −1
2
, 1
2
Delay filter µ∆(f): µ∆[X0](n) = X(n + ∆)
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 35 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Principle: orthogonality property
Unknown delay: loss of orthogonality
Simplified criterion closed-form expression:
σ2
∆
= E |X(n + ∆) − X(n + ∆)|2
=
1
2
− 1
2
e2iπf(∆−∆)
− 1
2
sX(f) df
with:
µ∆[X0](n) = X(n + ∆) =
k
sin[π(∆ − k)]
π(∆ − k)
X(n + k)
Comparison between closed-form expression and empirical
estimation for particular learning sequences ⇒ ∆ estimation.
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 36 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Examples of learning sequences
Cosine wave
Learning sequence: Cosine wave at frequency f0 defined by
sX(f) =
1
2
(δ(f − f0) + δ(f + f0)) , −
1
2
< f0 <
1
2
Criterion closed-form expression:
σ2
∆
= 4 sin2
πf0(∆ − ∆)
Estimation of ∆:
ˆ∆ = ∆ −
1
2πf0
arccos 1 −
σ2
∆
2
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 37 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Learning sequence example 2
Bandlimited white noise
Learning sequence: bandlimited white noise defined by
sX(f) =
1 on (−1
2 + ε, 1
2 − ε) , 0 < ε < 1
2
0 elsewhere
Criterion closed-form expression:
σ2
∆
≈
1
2 −ε
− 1
2 +ε
e2iπf(∆−∆)
− 1
2
df
≈ 2(1 − 2ε) 1 − sinc[π(∆ − ∆)(1 − 2ε)]
Estimation of ∆ from:
sinc[π(∆ − ∆)(1 − 2ε)] = 1 −
σ2
∆
2(1 − 2ε)
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 38 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Performance analysis
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·104
10−8
10−7
10−6
10−5
N
E|ˆ∆−∆|2
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 39 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Blind PNS delay estimation4
Principle: stationarity property
Property: wide sense stationarity of the reconstructed signal
X( ˜∆)
= {X( ˜∆)
(t), t ∈ R} if and only if ˜∆ = ∆. In particular:
P( ˜∆)
(tm) = E X( ˜∆)
(tm)
2
, tm =
m
M + 1
, m = 1, ..., M
independent of tm.
Strategy: estimation of the reconstructed signal power P( ˜∆)
(tm)
for m = 1, ..., M for different values of ˜∆:
P( ˜∆)
(tm) =
1
N
N
2
n=− N
2
X( ˜∆)
(n + tm)
2
, m = 1, ..., M.
4J.-A. Vernhes et al. “Estimation du retard en ´echantillonnage p´eriodique non
uniforme - Application aux CAN entrelac´es d´esynchronis´es”. In: GRETSI 2015.
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 40 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Performance analysis
0.17 0.18 0.19 0.2 0.21 ∆ 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33
10−1
100
101
102
103
˜∆
P
(˜∆)
m
(a) Estimated power at different
times tm
0.17 0.18 0.19 0.2 0.21 ∆ 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33
10−4
10−3
10−2
10−1
100
101
102
103
104
105
˜∆
(b) Variance of the estimated
power
Figure: Blind estimation principle
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 41 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Outline
1 Introduction
Problem formulation
Proposed approach
2 The PNS solution
Signal model
Sampling frequency requirements
PNS sampling scheme and reconstruction formulas
Practical sampling device: the TI-ADCs
3 Improved PNS
Principle
Convergence speed improvement
Selective reconstruction with interference cancelation
Analytic signal reconstruction
4 PNS delay estimation
PNS delay estimation with a learning sequence
Blind PNS delay estimation
5 Conclusion
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 42 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Conclusion
Contributions
PNS as an alternative sampling scheme proposed for TI-ADCs.
Additional functionalities for telecommunications:
improved convergence speeda
,
selective reconstruction with interference rejectionb
,
analytical signal reconstructionc
.
Estimation of the desynchronisation:
from a learning sequenced
, blindlye
.
aM. Chabert and B. Lacaze. “Fast convergence reconstruction formulas for periodic
nonuniform sampling of order 2”. In: IEEE ICASSP 2012.
bJ.-A. Vernhes, M. Chabert, and B. Lacaze. “Conversion Num´erique-Analogique
s´elective d’un signal passe-bande soumis `a des interf´erences”. In: GRETSI 2013.
cJ.-A. Vernhes et al. “Selective Analytic Signal Construction From A Non-Uniformly
Sampled Bandpass Signal”. In: IEEE ICASSP 2014.
dJ.-A. Vernhes et al. “Adaptive Estimation and Compensation of the Time Delay in
a Periodic Non-uniform Sampling Scheme”. In: SampTA 2015.
eJ.-A. Vernhes et al. “Estimation du retard en ´echantillonnage p´eriodique non
uniforme - Application aux CAN entrelac´es d´esynchronis´es”. In: GRETSI 2015.
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 43 / 44
Introduction The PNS solution Improved PNS PNS delay estimation Conclusion
Thanks for your attention
Questions?
Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS
Periodic Non-Uniform Sampling (PNS) for Satellite Communications 44 / 44

Weitere ähnliche Inhalte

Was ist angesagt?

Speech signal time frequency representation
Speech signal time frequency representationSpeech signal time frequency representation
Speech signal time frequency representation
Nikolay Karpov
 

Was ist angesagt? (18)

DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier TransformDSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
 
Sampling and Reconstruction of Signal using Aliasing
Sampling and Reconstruction of Signal using AliasingSampling and Reconstruction of Signal using Aliasing
Sampling and Reconstruction of Signal using Aliasing
 
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter DesignDSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
 
Time-Frequency Representation of Microseismic Signals using the SST
Time-Frequency Representation of Microseismic Signals using the SSTTime-Frequency Representation of Microseismic Signals using the SST
Time-Frequency Representation of Microseismic Signals using the SST
 
EC8553 Discrete time signal processing
EC8553 Discrete time signal processing EC8553 Discrete time signal processing
EC8553 Discrete time signal processing
 
Speech signal time frequency representation
Speech signal time frequency representationSpeech signal time frequency representation
Speech signal time frequency representation
 
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
 
DIGITAL SIGNAL PROCESSING: Sampling and Reconstruction on MATLAB
DIGITAL SIGNAL PROCESSING: Sampling and Reconstruction on MATLABDIGITAL SIGNAL PROCESSING: Sampling and Reconstruction on MATLAB
DIGITAL SIGNAL PROCESSING: Sampling and Reconstruction on MATLAB
 
Defying Nyquist in Analog to Digital Conversion
Defying Nyquist in Analog to Digital ConversionDefying Nyquist in Analog to Digital Conversion
Defying Nyquist in Analog to Digital Conversion
 
DSP_FOEHU - Lec 11 - IIR Filter Design
DSP_FOEHU - Lec 11 - IIR Filter DesignDSP_FOEHU - Lec 11 - IIR Filter Design
DSP_FOEHU - Lec 11 - IIR Filter Design
 
45
4545
45
 
DSP_FOEHU - Lec 10 - FIR Filter Design
DSP_FOEHU - Lec 10 - FIR Filter DesignDSP_FOEHU - Lec 10 - FIR Filter Design
DSP_FOEHU - Lec 10 - FIR Filter Design
 
Multrate dsp
Multrate dspMultrate dsp
Multrate dsp
 
Sampling theorem
Sampling theoremSampling theorem
Sampling theorem
 
Design limitations and its effect in the performance of ZC1-DPLL
Design limitations and its effect in the performance of ZC1-DPLLDesign limitations and its effect in the performance of ZC1-DPLL
Design limitations and its effect in the performance of ZC1-DPLL
 
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter DesignDSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
 
DSP 07 _ Sheet Seven
DSP 07 _ Sheet SevenDSP 07 _ Sheet Seven
DSP 07 _ Sheet Seven
 
An Efficient DSP Implementation of a Dynamic Convolution Using Principal Comp...
An Efficient DSP Implementation of a Dynamic Convolution Using Principal Comp...An Efficient DSP Implementation of a Dynamic Convolution Using Principal Comp...
An Efficient DSP Implementation of a Dynamic Convolution Using Principal Comp...
 

Ähnlich wie 2015 12-10 chabert

Sampling and Reconstruction (Online Learning).pptx
Sampling and Reconstruction (Online Learning).pptxSampling and Reconstruction (Online Learning).pptx
Sampling and Reconstruction (Online Learning).pptx
HamzaJaved306957
 
Digital communication
Digital communicationDigital communication
Digital communication
meashi
 
Pulse modulation
Pulse modulationPulse modulation
Pulse modulation
avocado1111
 

Ähnlich wie 2015 12-10 chabert (20)

Sampling and Reconstruction (Online Learning).pptx
Sampling and Reconstruction (Online Learning).pptxSampling and Reconstruction (Online Learning).pptx
Sampling and Reconstruction (Online Learning).pptx
 
Digital Signal Processing[ECEG-3171]-Ch1_L05
Digital Signal Processing[ECEG-3171]-Ch1_L05Digital Signal Processing[ECEG-3171]-Ch1_L05
Digital Signal Processing[ECEG-3171]-Ch1_L05
 
Digital Signal Processing[ECEG-3171]-Ch1_L06
Digital Signal Processing[ECEG-3171]-Ch1_L06Digital Signal Processing[ECEG-3171]-Ch1_L06
Digital Signal Processing[ECEG-3171]-Ch1_L06
 
Nyquist criterion for zero ISI
Nyquist criterion for zero ISINyquist criterion for zero ISI
Nyquist criterion for zero ISI
 
Basic concepts
Basic conceptsBasic concepts
Basic concepts
 
Analysis of multipath channel delay estimation using subspace fitting
Analysis of multipath channel delay estimation using subspace fittingAnalysis of multipath channel delay estimation using subspace fitting
Analysis of multipath channel delay estimation using subspace fitting
 
Lecture9 Signal and Systems
Lecture9 Signal and SystemsLecture9 Signal and Systems
Lecture9 Signal and Systems
 
DPPs everywhere: repulsive point processes for Monte Carlo integration, signa...
DPPs everywhere: repulsive point processes for Monte Carlo integration, signa...DPPs everywhere: repulsive point processes for Monte Carlo integration, signa...
DPPs everywhere: repulsive point processes for Monte Carlo integration, signa...
 
IARE_DSP_PPT.pptx
IARE_DSP_PPT.pptxIARE_DSP_PPT.pptx
IARE_DSP_PPT.pptx
 
CHƯƠNG 2 KỸ THUẬT TRUYỀN DẪN SỐ - THONG TIN SỐ
CHƯƠNG 2 KỸ THUẬT TRUYỀN DẪN SỐ - THONG TIN SỐCHƯƠNG 2 KỸ THUẬT TRUYỀN DẪN SỐ - THONG TIN SỐ
CHƯƠNG 2 KỸ THUẬT TRUYỀN DẪN SỐ - THONG TIN SỐ
 
Tdm fdm
Tdm fdmTdm fdm
Tdm fdm
 
Digital communication
Digital communicationDigital communication
Digital communication
 
IMT Advanced
IMT AdvancedIMT Advanced
IMT Advanced
 
Course-Notes__Advanced-DSP.pdf
Course-Notes__Advanced-DSP.pdfCourse-Notes__Advanced-DSP.pdf
Course-Notes__Advanced-DSP.pdf
 
Advanced_DSP_J_G_Proakis.pdf
Advanced_DSP_J_G_Proakis.pdfAdvanced_DSP_J_G_Proakis.pdf
Advanced_DSP_J_G_Proakis.pdf
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
PIMRC 2016 Presentation
PIMRC 2016 PresentationPIMRC 2016 Presentation
PIMRC 2016 Presentation
 
Ch6 digital transmission of analog signal pg 99
Ch6 digital transmission of analog signal pg 99Ch6 digital transmission of analog signal pg 99
Ch6 digital transmission of analog signal pg 99
 
Pulse modulation
Pulse modulationPulse modulation
Pulse modulation
 

Mehr von SCEE Team (9)

2012 05-10 kaiser
2012 05-10 kaiser2012 05-10 kaiser
2012 05-10 kaiser
 
2012 04-26 savaux
2012 04-26 savaux2012 04-26 savaux
2012 04-26 savaux
 
2013 03-20 zhang
2013 03-20 zhang2013 03-20 zhang
2013 03-20 zhang
 
2012 10-04 achaichia
2012 10-04 achaichia2012 10-04 achaichia
2012 10-04 achaichia
 
2014 04-10 nebhen
2014 04-10 nebhen2014 04-10 nebhen
2014 04-10 nebhen
 
2013 10-17 nuaymi
2013 10-17 nuaymi2013 10-17 nuaymi
2013 10-17 nuaymi
 
2015 08-31 kofidis
2015 08-31 kofidis2015 08-31 kofidis
2015 08-31 kofidis
 
2014 11-06 melian
2014 11-06 melian2014 11-06 melian
2014 11-06 melian
 
2016 03-03 marchand
2016 03-03 marchand2016 03-03 marchand
2016 03-03 marchand
 

Kürzlich hochgeladen

TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc
 
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
panagenda
 
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider  Progress from Awareness to Implementation.pptxTales from a Passkey Provider  Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
FIDO Alliance
 

Kürzlich hochgeladen (20)

ASRock Industrial FDO Solutions in Action for Industrial Edge AI _ Kenny at A...
ASRock Industrial FDO Solutions in Action for Industrial Edge AI _ Kenny at A...ASRock Industrial FDO Solutions in Action for Industrial Edge AI _ Kenny at A...
ASRock Industrial FDO Solutions in Action for Industrial Edge AI _ Kenny at A...
 
Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...
Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...
Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...
 
Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)
Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)
Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)
 
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
 
Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...
Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...
Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...
 
ERP Contender Series: Acumatica vs. Sage Intacct
ERP Contender Series: Acumatica vs. Sage IntacctERP Contender Series: Acumatica vs. Sage Intacct
ERP Contender Series: Acumatica vs. Sage Intacct
 
AI mind or machine power point presentation
AI mind or machine power point presentationAI mind or machine power point presentation
AI mind or machine power point presentation
 
WebAssembly is Key to Better LLM Performance
WebAssembly is Key to Better LLM PerformanceWebAssembly is Key to Better LLM Performance
WebAssembly is Key to Better LLM Performance
 
Intro to Passkeys and the State of Passwordless.pptx
Intro to Passkeys and the State of Passwordless.pptxIntro to Passkeys and the State of Passwordless.pptx
Intro to Passkeys and the State of Passwordless.pptx
 
Extensible Python: Robustness through Addition - PyCon 2024
Extensible Python: Robustness through Addition - PyCon 2024Extensible Python: Robustness through Addition - PyCon 2024
Extensible Python: Robustness through Addition - PyCon 2024
 
Portal Kombat : extension du réseau de propagande russe
Portal Kombat : extension du réseau de propagande russePortal Kombat : extension du réseau de propagande russe
Portal Kombat : extension du réseau de propagande russe
 
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
 
UiPath manufacturing technology benefits and AI overview
UiPath manufacturing technology benefits and AI overviewUiPath manufacturing technology benefits and AI overview
UiPath manufacturing technology benefits and AI overview
 
The Zero-ETL Approach: Enhancing Data Agility and Insight
The Zero-ETL Approach: Enhancing Data Agility and InsightThe Zero-ETL Approach: Enhancing Data Agility and Insight
The Zero-ETL Approach: Enhancing Data Agility and Insight
 
Secure Zero Touch enabled Edge compute with Dell NativeEdge via FDO _ Brad at...
Secure Zero Touch enabled Edge compute with Dell NativeEdge via FDO _ Brad at...Secure Zero Touch enabled Edge compute with Dell NativeEdge via FDO _ Brad at...
Secure Zero Touch enabled Edge compute with Dell NativeEdge via FDO _ Brad at...
 
Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...
Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...
Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...
 
How we scaled to 80K users by doing nothing!.pdf
How we scaled to 80K users by doing nothing!.pdfHow we scaled to 80K users by doing nothing!.pdf
How we scaled to 80K users by doing nothing!.pdf
 
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider  Progress from Awareness to Implementation.pptxTales from a Passkey Provider  Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
 
TopCryptoSupers 12thReport OrionX May2024
TopCryptoSupers 12thReport OrionX May2024TopCryptoSupers 12thReport OrionX May2024
TopCryptoSupers 12thReport OrionX May2024
 
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...
 

2015 12-10 chabert

  • 1. Periodic Non-Uniform Sampling (PNS) for Satellite Communications Marie Chabert1 , Bernard Lacaze2 , Marie-Laure Boucheret1 , Jean-Adrien Vernhes1,2,3,4 1 Universit´e de Toulouse, IRIT-ENSEEIHT 2 T´eSA laboratory 3 CNES (French Spatial Agency) 4 Thales Alenia Space marie.chabert@enseeiht.fr
  • 2. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Outline 1 Introduction Problem formulation Proposed approach 2 The PNS solution Signal model Sampling frequency requirements PNS sampling scheme and reconstruction formulas Practical sampling device: the TI-ADCs 3 Improved PNS Principle Convergence speed improvement Selective reconstruction with interference cancelation Analytic signal reconstruction 4 PNS delay estimation PNS delay estimation with a learning sequence Blind PNS delay estimation 5 Conclusion Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 2 / 44
  • 3. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Problem formulation Satellite Communication Context Context: increasing frequency bandwidth in satellite communications. Technical challenge: onboard high-rate analog-to-digital conversion. Economical and ecological constraints: cost, complexity, weight and power consumption of electronic devices. Trend: migration of signal processing from analog to digital world. Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 3 / 44
  • 4. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Proposed approach Periodic Non uniform Sampling (PNS) Electronic device: unsynchronized Time Interleaved ADCs. Requirement: desynchronization estimation. Additional functionalities: fast convergence reconstruction, selective reconstruction and interference rejection. analytic signal reconstruction. Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 4 / 44
  • 5. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Outline 1 Introduction Problem formulation Proposed approach 2 The PNS solution Signal model Sampling frequency requirements PNS sampling scheme and reconstruction formulas Practical sampling device: the TI-ADCs 3 Improved PNS Principle Convergence speed improvement Selective reconstruction with interference cancelation Analytic signal reconstruction 4 PNS delay estimation PNS delay estimation with a learning sequence Blind PNS delay estimation 5 Conclusion Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 5 / 44
  • 6. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Signal model Signal model Stationary random process: X = {X(t), t ∈ R} with zero mean, finite variance and power spectral density sX(f): sX(f) = ∞ −∞ e−2iπfτ RX(τ) dτ RX(τ) = E[X(t)X∗ (t − τ)] correlation function of X Bandpass process: sX(f) support included in the normalized kth Nyquist band BN (k): BN (k) = −(k + 1 2 ), −(k − 1 2 ) ∪ k − 1 2 , k + 1 2 Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 6 / 44
  • 7. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Nyquist band Sx(f) f k-1 2 k k+1 2 fmin fmax-k+1 2 -k-k-1 2 B+ N (k) = 1B− N (k) = 1 Figure: Nyquist band Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 7 / 44
  • 8. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Sampling frequency requirements Case of a high frequency pass-band signal Uniform low-pass sampling: Shannon criterion fe = 2fmax. Uniform band-pass sampling: constrained Landau criterion fe ≥ 2B. Periodic Non Uniform Sampling (PNS): Landau criterion fe = 2B. Sx(f) fB− B+ −fc fc−fmax fmax−fmin fmin Figure: Passband model Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 8 / 44
  • 9. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Periodic Non uniform Sampling (PNS) of order L Definition PNSL: L interleaved uniform sampling sequences Xi = {X(n + δi), n ∈ Z}, δi ∈]0, 1[, i ∈ {0, L}. t nTe (n + 1)Te (n + 2)Te (n + 3)Te PNSL: tL−1: ··· t2: t1: t0: ∆0 Te ∆1 Te ∆2 Te ∆L−1 Te Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 9 / 44
  • 10. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Periodic Non uniform Sampling (PNS) of order 2 Definition PNS2: 2 interleaved uniform sampling sequences X0 = {X(n), n ∈ Z} and X∆ = {X(n + ∆), n ∈ Z}, ∆ ∈]0, 1[. t nTe (n + 1)Te (n + 2)Te (n + 3)Te PNS2: t1: t0: ∆0 = 0 Te ∆1 Te Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 10 / 44
  • 11. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Periodic Non uniform Sampling (PNS) of order 2 X(n) t X(n+Δ) Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 11 / 44
  • 12. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion PNS2 reconstruction - Filter formulation1 µt ψt ⊕µ∆ ⊕+ − X0 X∆ D ˜X0 ˜XK ˜X (a) Orthogonal scheme ηt ψt ⊕ X0 X∆ ˜X ˜X0 ˜XK (b) Symmetrical scheme General filter expressions µt(f) = St(f) S0(f) e2iπft ηt(f) = µt(f) − µ∆(f)ψt(f) ψt(f) = e2iπf(t−∆) S0(f)St−∆(f)−S∗ ∆(f)St(f) S2 0 (f)−|St−∆(f)|2 with: Sλ(f) = n∈Z sX(f + n)e2iπnλ , f ∈ (−1 2 , 1 2 ) 1B. Lacaze. “Filtering from PNS2 Sampling”. In: Sampling Theory in Signal and Image Processing (STSIP) 11.1 (2012), pp. 43–53. Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 12 / 44
  • 13. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion PNS2 reconstruction - Interpolation formulas2 Closed-form reconstruction formulas Hypothesis: Bandpass signal composed of two sub-bands, no oversampling. Simple exact PNS2 reconstruction formulas :    X(t) = A0(t) sin [2πk(∆ − t)] + A∆(t) sin [2πkt] sin [2πk∆] with Aλ(t) = n∈Z sin [π(t − n − λ)] π(t − n − λ) X(n + λ) if 2k∆ /∈ Z 2B. Lacaze. “Equivalent circuits for the PNS2 sampling scheme”. In: IEEE Transactions on Circuits and Systems I: Regular Papers 57.11 (2010), pp. 2904–2914. Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 13 / 44
  • 14. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Practical sampling device Time Interleaved Analog to Digital Converters (TI-ADCs) Structure: L time-interleaved multiplexed low-rate (fs) ADCs share the high-rate (fe = Lfs) sampling operation. Advantages: high sampling rates at low cost, low complexity, low power consumption. Limitations: mismatch errors including desynchronization. For uniform sampling: perfect synchronization required. For Periodic Non Uniform Sampling (PNS): possibly unsynchronized. Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 14 / 44
  • 15. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Synchronized Time Interleaved Analog to Digital Converters (TI-ADCs) M U X X[n] Lfs X(t) ADCL−1 nTs + L−1 L Ts fs ADCL−2 nTs + L−2 L Ts fs ADC2 nTs + 2 L Ts fs ADC1 nTs + 1 L Ts fs ADC0 nTs fs (c) Architecture t ∼ Lfs Ts 2Ts 3Ts 4Ts TI-ADC: ADCL−1: ADCL−2: ADC2: ADC1: ADC0: ∼ fs ∼ fs ∼ fs ∼ fs ∼ fs Ts 1 L Ts 2 L Ts L−2 L Ts L−1 L Ts (d) Elementary and global sampling operations Figure: Synchronized TI-ADCs Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 15 / 44
  • 16. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Synchronized TI-ADCs: an ideal model Synchronization at all price Associated sampling scheme: uniform sampling. In practice: design imperfections and operating conditions ⇒ desynchronization. Common solution: calibration and hardware corrections. Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 16 / 44
  • 17. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Unsynchronized TI-ADC X[n] R E C O N S T Lfs δi, i = 0, ..., L − 1 X(t) ADCL−1 nTs + δL−1 fs ADCL−2 nTs + δL−2 fs ADC2 nTs + δ2 fs ADC1 nTs + δ1 fs ADC0 nTs + δ0 fs (a) Realistic/desynchronized TI-ADC architecture t ∼ Lfs Ts 2Ts 3Ts 4Ts TI-ADC: ADCL−1: ADCL−2: ADC2: ADC1: ADC0: ∼ fs ∼ fs ∼ fs ∼ fs ∼ fs δ0 δ1 δ2 δL−2 δL−1 (b) Elementary and global (non uniform) sampling operations Figure: Realistic/desynchronized TI-ADC model Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 17 / 44
  • 18. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Unsynchronized TI-ADCs: a realistic model Contributions: ”desynchronization... so?” Proposed sampling scheme: Periodic Non uniform Sampling. No hardware correction of the desynchronization required. Estimation of the desynchronization: hypothesis: slow variations of the desynchronization, from a training sequence, blindly. Complexity moved from analog to digital world: Digital compensation of the desynchronization. Additional functionalities: improved reconstruction speed, selective reconstruction with interference rejection, analytic signal reconstruction. Dirty RF paradigm: how to cope with low-cost imperfect analog devices thanks to subsequent digital processing. Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 18 / 44
  • 19. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Outline 1 Introduction Problem formulation Proposed approach 2 The PNS solution Signal model Sampling frequency requirements PNS sampling scheme and reconstruction formulas Practical sampling device: the TI-ADCs 3 Improved PNS Principle Convergence speed improvement Selective reconstruction with interference cancelation Analytic signal reconstruction 4 PNS delay estimation PNS delay estimation with a learning sequence Blind PNS delay estimation 5 Conclusion Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 19 / 44
  • 20. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Improved PNS Principle Integration of a filtering operation in the reconstruction step. Condition: oversampling. Joint filter H with transfer function H(f). Reconstruction of U = H(X) from the filtering of X0 = {X(n), n ∈ Z} and X∆ = {X(n + ∆), n ∈ Z} by: ηH t (f) = ie2iπft H(f + k)e2iπk(t−∆) − H(f − k)e−2iπk(t−∆) 2 sin 2πk∆ , ψH t (f) = ie2iπf(t−∆) H(f − k)e−2iπkt − H(f + k)e2iπkt 2 sin 2πk∆ . Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 20 / 44
  • 21. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Improved PNS Additional functionalities Convergence speed improvement for an increasing joint filter transfer function regularitya . Selective signal reconstruction with interference rejection for a well-chosen joint filter bandb . Analytical signal reconstruction for analytic joint filtersc . aM. Chabert and B. Lacaze. “Fast convergence reconstruction formulas for periodic nonuniform sampling of order 2”. In: IEEE ICASSP 2012. bJ.-A. Vernhes, M. Chabert, and B. Lacaze. “Conversion Num´erique-Analogique s´elective d’un signal passe-bande soumis `a des interf´erences”. In: GRETSI 2013. cJ.-A. Vernhes et al. “Selective Analytic Signal Construction From A Non-Uniformly Sampled Bandpass Signal”. In: IEEE ICASSP 2014. Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 21 / 44
  • 22. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Rectangular filter HR (f) f 1 fcfmin fmax-fc -fmin-fmax B+ N (k)B− N (k) k-1 2 k+1 2-k+1 2-k-1 2 Figure: Rectangular filter Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 22 / 44
  • 23. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Trapezoidal filter HT (f) f 1 fc Btr Btr fmin fmax-fc -fmin-fmax B+ N (k)B− N (k) k-1 2 k+1 2-k+1 2-k-1 2 Figure: Trapezoidal filter Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 23 / 44
  • 24. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Raised cosine filter HCS (f) f 1 fc Btr Btr fmin fmax-fc -fmin-fmax B+ N (k)B− N (k) k-1 2 k+1 2-k+1 2-k-1 2 Figure: Raised Cosine Filter Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 24 / 44
  • 25. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Convergence speed improvement: performance analysis 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 10−12 10−11 10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 N EQMN Filtre rectangulaire Filtre trap´ezo¨ıdal Filtre en cosinus sur´elev´e Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 25 / 44
  • 26. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Selective reconstruction with interference cancelation f k + 1 2k − 1 2 Btot Sx1 (f) Sx2 (f) Sx3 (f) B B B Btr Btr Btr Btr H1(f) H2(f) H3(f) Figure: Selective reconstruction with interference cancelation Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 26 / 44
  • 27. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Selective reconstruction with interference cancelation: performance analysis 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100 N EQMN Filtre rectangulaire Filtre trap´ezo¨ıdal Filtre en cosinus sur´elev´e Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 27 / 44
  • 28. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Analytic signal reconstruction HR (f) f 1 fcfmin fmax-fc -fmin-fmax B+ N (k)B− N (k) k-1 2 k+1 2-k+1 2-k-1 2 Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 28 / 44
  • 29. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Analytic signal reconstruction HT (f) f 1 fc Btr Btr fmin fmax-fc -fmin-fmax B+ N (k)B− N (k) k-1 2 k+1 2-k+1 2-k-1 2 Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 29 / 44
  • 30. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Analytic signal reconstruction HCS (f) f 1 fc Btr Btr fmin fmax-fc -fmin-fmax B+ N (k)B− N (k) k-1 2 k+1 2-k+1 2-k-1 2 Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 30 / 44
  • 31. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Analytic signal reconstruction: performance analysis 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100 N EQMN Filtre rectangulaire Filtre trap´ezo¨ıdal Filtre cosinus sur´elev´e Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 31 / 44
  • 32. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Outline 1 Introduction Problem formulation Proposed approach 2 The PNS solution Signal model Sampling frequency requirements PNS sampling scheme and reconstruction formulas Practical sampling device: the TI-ADCs 3 Improved PNS Principle Convergence speed improvement Selective reconstruction with interference cancelation Analytic signal reconstruction 4 PNS delay estimation PNS delay estimation with a learning sequence Blind PNS delay estimation 5 Conclusion Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 32 / 44
  • 33. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion PNS delay estimation with a learning sequence3 Using a learning sequence Principle: Learning sequence with a priori known spectrum: cosine wave, bandlimited white noise. Sampling using the unsynchronized TI-ADC. PNS reconstruction for varying delays. Criterion optimization w.r.t the delay. Limitation: no superimposition with the signal of interest part of the Built-In Self Test (BIST), online updates during silent periods. Advantages: low complexity and thus low consumption. 3J.-A. Vernhes et al. “Adaptive Estimation and Compensation of the Time Delay in a Periodic Non-uniform Sampling Scheme”. In: SampTA 2015. Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 33 / 44
  • 34. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Principle: orthogonality property Known delay: orthogonal equivalent scheme Orthogonality between D = {D(n), n ∈ Z} and X0 = {X(n), n ∈ Z}: E[D(n)X∗ 0 (m)] = 0 , ∀(n, m) ∈ Z with: D(n) = X(n + ∆) − µ∆[X0](n) µt ψt ⊕µ∆ ⊕+ − X0 X∆ D ˜X0 ˜XK ˜X Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 34 / 44
  • 35. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Principle: orthogonality property Unknown delay: loss of orthogonality Sampling sequences: X0, X∆. Reconstruction using a wrong delay ∆ ∈]0, 1[, ∆ = ∆. Loss of orthogonality criterion: σ2 ∆ = E |X(n + ∆) − µ∆[X0](n)|2 = ∞ −∞ e2iπf∆ − µ∆(f) 2 sX(f) df For simplificity: Baseband learning sequence: sX (f) = 0 for f /∈ −1 2 , 1 2 Delay filter µ∆(f): µ∆[X0](n) = X(n + ∆) Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 35 / 44
  • 36. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Principle: orthogonality property Unknown delay: loss of orthogonality Simplified criterion closed-form expression: σ2 ∆ = E |X(n + ∆) − X(n + ∆)|2 = 1 2 − 1 2 e2iπf(∆−∆) − 1 2 sX(f) df with: µ∆[X0](n) = X(n + ∆) = k sin[π(∆ − k)] π(∆ − k) X(n + k) Comparison between closed-form expression and empirical estimation for particular learning sequences ⇒ ∆ estimation. Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 36 / 44
  • 37. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Examples of learning sequences Cosine wave Learning sequence: Cosine wave at frequency f0 defined by sX(f) = 1 2 (δ(f − f0) + δ(f + f0)) , − 1 2 < f0 < 1 2 Criterion closed-form expression: σ2 ∆ = 4 sin2 πf0(∆ − ∆) Estimation of ∆: ˆ∆ = ∆ − 1 2πf0 arccos 1 − σ2 ∆ 2 Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 37 / 44
  • 38. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Learning sequence example 2 Bandlimited white noise Learning sequence: bandlimited white noise defined by sX(f) = 1 on (−1 2 + ε, 1 2 − ε) , 0 < ε < 1 2 0 elsewhere Criterion closed-form expression: σ2 ∆ ≈ 1 2 −ε − 1 2 +ε e2iπf(∆−∆) − 1 2 df ≈ 2(1 − 2ε) 1 − sinc[π(∆ − ∆)(1 − 2ε)] Estimation of ∆ from: sinc[π(∆ − ∆)(1 − 2ε)] = 1 − σ2 ∆ 2(1 − 2ε) Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 38 / 44
  • 39. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Performance analysis 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ·104 10−8 10−7 10−6 10−5 N E|ˆ∆−∆|2 Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 39 / 44
  • 40. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Blind PNS delay estimation4 Principle: stationarity property Property: wide sense stationarity of the reconstructed signal X( ˜∆) = {X( ˜∆) (t), t ∈ R} if and only if ˜∆ = ∆. In particular: P( ˜∆) (tm) = E X( ˜∆) (tm) 2 , tm = m M + 1 , m = 1, ..., M independent of tm. Strategy: estimation of the reconstructed signal power P( ˜∆) (tm) for m = 1, ..., M for different values of ˜∆: P( ˜∆) (tm) = 1 N N 2 n=− N 2 X( ˜∆) (n + tm) 2 , m = 1, ..., M. 4J.-A. Vernhes et al. “Estimation du retard en ´echantillonnage p´eriodique non uniforme - Application aux CAN entrelac´es d´esynchronis´es”. In: GRETSI 2015. Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 40 / 44
  • 41. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Performance analysis 0.17 0.18 0.19 0.2 0.21 ∆ 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 10−1 100 101 102 103 ˜∆ P (˜∆) m (a) Estimated power at different times tm 0.17 0.18 0.19 0.2 0.21 ∆ 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 10−4 10−3 10−2 10−1 100 101 102 103 104 105 ˜∆ (b) Variance of the estimated power Figure: Blind estimation principle Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 41 / 44
  • 42. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Outline 1 Introduction Problem formulation Proposed approach 2 The PNS solution Signal model Sampling frequency requirements PNS sampling scheme and reconstruction formulas Practical sampling device: the TI-ADCs 3 Improved PNS Principle Convergence speed improvement Selective reconstruction with interference cancelation Analytic signal reconstruction 4 PNS delay estimation PNS delay estimation with a learning sequence Blind PNS delay estimation 5 Conclusion Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 42 / 44
  • 43. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Conclusion Contributions PNS as an alternative sampling scheme proposed for TI-ADCs. Additional functionalities for telecommunications: improved convergence speeda , selective reconstruction with interference rejectionb , analytical signal reconstructionc . Estimation of the desynchronisation: from a learning sequenced , blindlye . aM. Chabert and B. Lacaze. “Fast convergence reconstruction formulas for periodic nonuniform sampling of order 2”. In: IEEE ICASSP 2012. bJ.-A. Vernhes, M. Chabert, and B. Lacaze. “Conversion Num´erique-Analogique s´elective d’un signal passe-bande soumis `a des interf´erences”. In: GRETSI 2013. cJ.-A. Vernhes et al. “Selective Analytic Signal Construction From A Non-Uniformly Sampled Bandpass Signal”. In: IEEE ICASSP 2014. dJ.-A. Vernhes et al. “Adaptive Estimation and Compensation of the Time Delay in a Periodic Non-uniform Sampling Scheme”. In: SampTA 2015. eJ.-A. Vernhes et al. “Estimation du retard en ´echantillonnage p´eriodique non uniforme - Application aux CAN entrelac´es d´esynchronis´es”. In: GRETSI 2015. Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 43 / 44
  • 44. Introduction The PNS solution Improved PNS PNS delay estimation Conclusion Thanks for your attention Questions? Marie Chabert IRIT-ENSEEIHT – T´eSA – CNES – TAS Periodic Non-Uniform Sampling (PNS) for Satellite Communications 44 / 44