Wir haben unsere Datenschutzbestimmungen aktualisiert. Klicke hier, um dir die _Einzelheiten anzusehen. Tippe hier, um dir die Einzelheiten anzusehen.
Aktiviere deine kostenlose 30-tägige Testversion, um unbegrenzt zu lesen.
Erstelle deine kostenlose 30-tägige Testversion, um weiterzulesen.
Herunterladen, um offline zu lesen
Cloud Native Night July 2019, Munich: Talk by Jörg Schad (@joerg_schad, Head of Engineering & ML at ArangoDB)
=== Please download slides if blurred! ===
Abstract: With the rapid and recent rise of data science, the Machine Learning Platforms being built are becoming more complex. For example, consider the various Kubeflow components: Distributed Training, Jupyter Notebooks, CI/CD, Hyperparameter Optimization, Feature store, and more. Each of these components is producing metadata: Different (versions) Datasets, different versions a of a jupyter notebooks, different training parameters, test/training accuracy, different features, model serving statistics, and many more.
For production use it is critical to have a common view across all these metadata as we have to ask questions such as: Which jupyter notebook has been used to build Model xyz currently running in production? If there is new data for a given dataset, which models (currently serving in production) have to be updated?
In this talk, we look at existing implementations, in particular MLMD as part of the TensorFlow ecosystem. Further, propose a first draft of a (MLMD compatible) universal Metadata API. We demo the first implementation of this API using ArangoDB.
Cloud Native Night July 2019, Munich: Talk by Jörg Schad (@joerg_schad, Head of Engineering & ML at ArangoDB)
=== Please download slides if blurred! ===
Abstract: With the rapid and recent rise of data science, the Machine Learning Platforms being built are becoming more complex. For example, consider the various Kubeflow components: Distributed Training, Jupyter Notebooks, CI/CD, Hyperparameter Optimization, Feature store, and more. Each of these components is producing metadata: Different (versions) Datasets, different versions a of a jupyter notebooks, different training parameters, test/training accuracy, different features, model serving statistics, and many more.
For production use it is critical to have a common view across all these metadata as we have to ask questions such as: Which jupyter notebook has been used to build Model xyz currently running in production? If there is new data for a given dataset, which models (currently serving in production) have to be updated?
In this talk, we look at existing implementations, in particular MLMD as part of the TensorFlow ecosystem. Further, propose a first draft of a (MLMD compatible) universal Metadata API. We demo the first implementation of this API using ArangoDB.
Sie haben diese Folie bereits ins Clipboard „“ geclippt.
Sie haben Ihre erste Folie geclippt!
Durch Clippen können Sie wichtige Folien sammeln, die Sie später noch einmal ansehen möchten. Passen Sie den Namen des Clipboards an, um Ihre Clips zu speichern.Die SlideShare-Familie hat sich gerade vergrößert. Genießen Sie nun Zugriff auf Millionen eBooks, Bücher, Hörbücher, Zeitschriften und mehr von Scribd.
Jederzeit kündbar.Unbegrenztes Lesevergnügen
Lerne schneller und intelligenter von Spitzenfachleuten
Unbegrenzte Downloads
Lade es dir zum Lernen offline und unterwegs herunter
Außerdem erhältst du auch kostenlosen Zugang zu Scribd!
Sofortiger Zugriff auf Millionen von E-Books, Hörbüchern, Zeitschriften, Podcasts und mehr.
Lese und höre offline mit jedem Gerät.
Kostenloser Zugang zu Premium-Diensten wie TuneIn, Mubi und mehr.
Wir haben unsere Datenschutzbestimmungen aktualisiert, um den neuen globalen Regeln zum Thema Datenschutzbestimmungen gerecht zu werden und dir einen Einblick in die begrenzten Möglichkeiten zu geben, wie wir deine Daten nutzen.
Die Einzelheiten findest du unten. Indem du sie akzeptierst, erklärst du dich mit den aktualisierten Datenschutzbestimmungen einverstanden.
Vielen Dank!