SlideShare ist ein Scribd-Unternehmen logo
1 von 71
Downloaden Sie, um offline zu lesen
In	[2]: from	sklearn.datasets	import	make_classification
from	sklearn.decomposition	import	PCA
import	matplotlib.pyplot	as	plt
from	sklearn.linear_model	import	LogisticRegression
from	sklearn.metrics	import	classification_report
from	sklearn.grid_search	import	GridSearchCV
from	sklearn.cross_validation	import	KFold,	train_test_split
import	numpy	as	np
from	collections	import	Counter
from	imblearn.under_sampling	import	RandomUnderSampler,	NearMiss,	CondensedNearest
Neighbour
from	imblearn.under_sampling	import	EditedNearestNeighbours,	RepeatedEditedNearest
Neighbours,	TomekLinks
from	imblearn.over_sampling	import	RandomOverSampler,	SMOTE
from	imblearn.combine	import	SMOTEENN,	SMOTETomek
from	imblearn.ensemble	import	BalanceCascade,	EasyEnsemble
from	sklearn.ensemble	import	AdaBoostClassifier
import	warnings
from	itable	import	PrettyTable,	TableStyle,	CellStyle
import	pandas	as	pd
warnings.filterwarnings('ignore')
%pylab	inline
pylab.rcParams['figure.figsize']	=	(12,	6)
plt.style.use('fivethirtyeight')
Populating	the	interactive	namespace	from	numpy	and	matplotlib
In	[4]: #	Generate	data	with	two	classes
X,	y	=	make_classification(class_sep=1.2,	weights=[0.1,	0.9],	n_informative=3,	
																											n_redundant=1,	n_features=5,	n_clusters_per_class=1,	
																											n_samples=10000,	flip_y=0,	random_state=10)
pca	=	PCA(n_components=2)
X	=	pca.fit_transform(X)
y	=	y.astype('str')
y[y=='1']	='L'
y[y=='0']	='S'
X_train,	X_test,	y_train,	y_test	=	train_test_split(X,	y,	train_size=0.7,	
																																																				random_state=0)
X_1,	X_2	=	X_train[y_train=='S'],	X_train[y_train=='L']
In	[5]: #	Scatter	plot	of	the	data
plt.scatter(zip(*X_1)[0],	zip(*X_1)[1],	color='#1abc9c')
plt.scatter(zip(*X_2)[0],	zip(*X_2)[1],	color='#e67e22')
x_coords	=	zip(*X_1)[0]	+	zip(*X_2)[0]
y_coords	=	zip(*X_1)[1]	+	zip(*X_2)[1]
plt.axis([min(x_coords),	max(x_coords),	min(y_coords),	max(y_coords)])
plt.title("Original	Dataset")
plt.show()
In	[6]: #	Fit	a	Logistic	Regression	model
clf_base	=	LogisticRegression()
grid	=	{'C':	10.0	**	np.arange(-2,	3),
								'penalty':	['l1',	'l2']}
cv	=	KFold(X_train.shape[0],	n_folds=5,	shuffle=True,	random_state=0)
clf	=	GridSearchCV(clf_base,	grid,	cv=cv,	n_jobs=8,	scoring='f1_macro')
clf.fit(X_train,	y_train)
coef	=	clf.best_estimator_.coef_
intercept	=	clf.best_estimator_.intercept_
x1	=	np.linspace(-8,	10,	100)
x2	=	-(coef[0][0]	*	x1	+	intercept[0])	/	coef[0][1]
In	[7]: plt.scatter(zip(*X_1)[0],	zip(*X_1)[1],	color='#1abc9c')
plt.scatter(zip(*X_2)[0],	zip(*X_2)[1],	color='#e67e22')
x_coords	=	zip(*X_1)[0]	+	zip(*X_2)[0]
y_coords	=	zip(*X_1)[1]	+	zip(*X_2)[1]
plt.axis([min(x_coords),	max(x_coords),	min(y_coords),	max(y_coords)])
plt.title("Original	Dataset	-	Fitted	Logistic	Regression")
plt.plot(x1,	x2,	color='#414e8a',	linewidth=2)
plt.show()
In	[8]: print	classification_report(y_test,	clf.predict(X_test))
													precision				recall		f1-score			support
										L							0.90						0.98						0.94						2680
										S							0.39						0.12						0.19							320
avg	/	total							0.85						0.89						0.86						3000
In	[10]: #	Logistic	Regression	with	balanced	class	weights
clf_base	=	LogisticRegression()
grid	=	{'C':	10.0	**	np.arange(-2,	3),
								'penalty':	['l1',	'l2'],
								'class_weight':	['balanced']}
cv	=	KFold(X_train.shape[0],	n_folds=5,	shuffle=True,	random_state=0)
clf	=	GridSearchCV(clf_base,	grid,	cv=cv,	n_jobs=8,	scoring='f1_macro')
clf.fit(X_train,	y_train)
coef	=	clf.best_estimator_.coef_
intercept	=	clf.best_estimator_.intercept_
In	[11]: x1	=	np.linspace(-8,	10,	100)
x2	=	-(coef[0][0]	*	x1	+	intercept[0])	/	coef[0][1]
plt.scatter(zip(*X_1)[0],	zip(*X_1)[1],	color='#1abc9c')
plt.scatter(zip(*X_2)[0],	zip(*X_2)[1],	color='#e67e22')
x_coords	=	zip(*X_1)[0]	+	zip(*X_2)[0]
y_coords	=	zip(*X_1)[1]	+	zip(*X_2)[1]
plt.axis([min(x_coords),	max(x_coords),	min(y_coords),	max(y_coords)])
plt.title("Original	Dataset	-	Fitted	Logistic	Regression")
plt.plot(x1,	x2,	color='#414e8a',	linewidth=2)
plt.show()
In	[13]:
In	[14]:
print	classification_report(y_test,	clf.predict(X_test))
precision_recall_comparison
													precision				recall		f1-score			support
										L							0.98						0.79						0.88						2680
										S							0.34						0.89						0.49							320
avg	/	total							0.92						0.80						0.84						3000
Out[14]:
In	[15]: #	Random	undersampling	of	majority	class
us	=	RandomUnderSampler(ratio=0.5,	random_state=1)
X_train_res,	y_train_res	=	us.fit_sample(X_train,	y_train)
print	"Distribution	of	class	labels	before	resampling	{}".format(Counter(y_train))
print	"Distribution	of	class	labels	after	resampling	{}".format(Counter(y_train_re
s))
clf_base	=	LogisticRegression()
grid	=	{'C':	10.0	**	np.arange(-2,	3),
								'penalty':	['l1',	'l2']}
cv	=	KFold(X_train_res.shape[0],	n_folds=5,	shuffle=True,	random_state=0)
clf	=	GridSearchCV(clf_base,	grid,	cv=cv,	n_jobs=8,	scoring='f1_macro')
clf.fit(X_train_res,	y_train_res)
coef	=	clf.best_estimator_.coef_
intercept	=	clf.best_estimator_.intercept_
x1	=	np.linspace(-8,	10,	100)
x2	=	-(coef[0][0]	*	x1	+	intercept[0])	/	coef[0][1]
X_1_res	=	X_train_res[y_train_res=='S']
X_2_res	=	X_train_res[y_train_res=='L']
Distribution	of	class	labels	before	resampling	Counter({'L':	6320,	'S':	680})
Distribution	of	class	labels	after	resampling	Counter({'L':	1360,	'S':	680})
In	[16]: plt.scatter(zip(*X_1_res)[0],	zip(*X_1_res)[1],	color='#1abc9c')
plt.scatter(zip(*X_2_res)[0],	zip(*X_2_res)[1],	color='#e67e22')
x_coords	=	zip(*X_1_res)[0]	+	zip(*X_2_res)[0]
y_coords	=	zip(*X_1_res)[1]	+	zip(*X_2_res)[1]
plt.axis([min(x_coords),	max(x_coords),	min(y_coords),	max(y_coords)])
plt.title("Random	Undersampling	of	majority	class")
plt.plot(x1,	x2,	color='#414e8a',	linewidth=2)
plt.show()
In	[18]:
In	[19]:
print	classification_report(y_test,	clf.predict(X_test))
precision_recall_comparison
													precision				recall		f1-score			support
										L							0.97						0.83						0.90						2680
										S							0.36						0.82						0.50							320
avg	/	total							0.91						0.83						0.85						3000
Out[19]:
In	[20]: #	Near	Miss	1
us	=	NearMiss(ratio=0.5,	size_ngh=3,	version=1,	random_state=1)
X_train_res,	y_train_res	=	us.fit_sample(X_train,	y_train)
print	"Distribution	of	class	labels	before	resampling	{}".format(Counter(y_train))
print	"Distribution	of	class	labels	after	resampling	{}".format(Counter(y_train_re
s))
clf_base	=	LogisticRegression()
grid	=	{'C':	10.0	**	np.arange(-2,	3),
								'penalty':	['l1',	'l2']}
cv	=	KFold(X_train_res.shape[0],	n_folds=5,	shuffle=True,	random_state=0)
clf	=	GridSearchCV(clf_base,	grid,	cv=cv,	n_jobs=8,	scoring='f1_macro')
clf.fit(X_train_res,	y_train_res)
coef	=	clf.best_estimator_.coef_
intercept	=	clf.best_estimator_.intercept_
x1	=	np.linspace(-8,	10,	100)
x2	=	-(coef[0][0]	*	x1	+	intercept[0])	/	coef[0][1]
X_1_res	=	X_train_res[y_train_res=='S']
X_2_res	=	X_train_res[y_train_res=='L']
Distribution	of	class	labels	before	resampling	Counter({'L':	6320,	'S':	680})
Distribution	of	class	labels	after	resampling	Counter({'L':	1360,	'S':	680})
In	[21]: plt.scatter(zip(*X_1_res)[0],	zip(*X_1_res)[1],	color='#1abc9c')
plt.scatter(zip(*X_2_res)[0],	zip(*X_2_res)[1],	color='#e67e22')
x_coords	=	zip(*X_1_res)[0]	+	zip(*X_2_res)[0]
y_coords	=	zip(*X_1_res)[1]	+	zip(*X_2_res)[1]
plt.axis([min(x_coords),	max(x_coords),	min(y_coords),	max(y_coords)])
plt.title("Near	Miss	1")
plt.plot(x1,	x2,	color='#414e8a',	linewidth=2)
plt.show()
In	[23]:
In	[24]:
print	classification_report(y_test,	clf.predict(X_test))
precision_recall_comparison
													precision				recall		f1-score			support
										L							0.92						0.95						0.94						2680
										S							0.44						0.32						0.37							320
avg	/	total							0.87						0.88						0.88						3000
Out[24]:
In	[25]: #	Near	Miss	2
us	=	NearMiss(ratio=0.5,	size_ngh=3,	version=2,	random_state=1)
X_train_res,	y_train_res	=	us.fit_sample(X_train,	y_train)
print	"Distribution	of	class	labels	before	resampling	{}".format(Counter(y_train))
print	"Distribution	of	class	labels	after	resampling	{}".format(Counter(y_train_re
s))
clf_base	=	LogisticRegression()
grid	=	{'C':	10.0	**	np.arange(-2,	3),
								'penalty':	['l1',	'l2']}
cv	=	KFold(X_train_res.shape[0],	n_folds=5,	shuffle=True,	random_state=0)
clf	=	GridSearchCV(clf_base,	grid,	cv=cv,	n_jobs=8,	scoring='f1_macro')
clf.fit(X_train_res,	y_train_res)
coef	=	clf.best_estimator_.coef_
intercept	=	clf.best_estimator_.intercept_
x1	=	np.linspace(-8,	10,	100)
x2	=	-(coef[0][0]	*	x1	+	intercept[0])	/	coef[0][1]
X_1_res	=	X_train_res[y_train_res=='S']
X_2_res	=	X_train_res[y_train_res=='L']
Distribution	of	class	labels	before	resampling	Counter({'L':	6320,	'S':	680})
Distribution	of	class	labels	after	resampling	Counter({'L':	1360,	'S':	680})
In	[26]: plt.scatter(zip(*X_1_res)[0],	zip(*X_1_res)[1],	color='#1abc9c')
plt.scatter(zip(*X_2_res)[0],	zip(*X_2_res)[1],	color='#e67e22')
x_coords	=	zip(*X_1_res)[0]	+	zip(*X_2_res)[0]
y_coords	=	zip(*X_1_res)[1]	+	zip(*X_2_res)[1]
plt.axis([min(x_coords),	max(x_coords),	min(y_coords),	max(y_coords)])
plt.title("Near	Miss	2")
plt.plot(x1,	x2,	color='#414e8a',	linewidth=2)
plt.show()
In	[28]:
In	[29]:
print	classification_report(y_test,	clf.predict(X_test))
precision_recall_comparison
													precision				recall		f1-score			support
										L							0.95						0.89						0.92						2680
										S							0.39						0.60						0.47							320
avg	/	total							0.89						0.86						0.87						3000
Out[29]:
In	[30]: #	Near	Miss	3
us	=	NearMiss(ratio=0.5,	size_ngh=3,	ver3_samp_ngh=3,	version=3,	random_state=1)
X_train_res,	y_train_res	=	us.fit_sample(X_train,	y_train)
print	"Distribution	of	class	labels	before	resampling	{}".format(Counter(y_train))
print	"Distribution	of	class	labels	after	resampling	{}".format(Counter(y_train_re
s))
clf_base	=	LogisticRegression()
grid	=	{'C':	10.0	**	np.arange(-2,	3),
								'penalty':	['l1',	'l2']}
cv	=	KFold(X_train_res.shape[0],	n_folds=5,	shuffle=True,	random_state=0)
clf	=	GridSearchCV(clf_base,	grid,	cv=cv,	n_jobs=8,	scoring='f1_macro')
clf.fit(X_train_res,	y_train_res)
coef	=	clf.best_estimator_.coef_
intercept	=	clf.best_estimator_.intercept_
x1	=	np.linspace(-8,	10,	100)
x2	=	-(coef[0][0]	*	x1	+	intercept[0])	/	coef[0][1]
X_1_res	=	X_train_res[y_train_res=='S']
X_2_res	=	X_train_res[y_train_res=='L']
Distribution	of	class	labels	before	resampling	Counter({'L':	6320,	'S':	680})
Distribution	of	class	labels	after	resampling	Counter({'L':	964,	'S':	680})
In	[31]: plt.scatter(zip(*X_1_res)[0],	zip(*X_1_res)[1],	color='#1abc9c')
plt.scatter(zip(*X_2_res)[0],	zip(*X_2_res)[1],	color='#e67e22')
x_coords	=	zip(*X_1_res)[0]	+	zip(*X_2_res)[0]
y_coords	=	zip(*X_1_res)[1]	+	zip(*X_2_res)[1]
plt.axis([min(x_coords),	max(x_coords),	min(y_coords),	max(y_coords)])
plt.title("Near	Miss	3")
plt.plot(x1,	x2,	color='#414e8a',	linewidth=2)
plt.show()
In	[33]:
In	[34]:
print	classification_report(y_test,	clf.predict(X_test))
precision_recall_comparison
													precision				recall		f1-score			support
										L							0.91						0.97						0.94						2680
										S							0.43						0.20						0.28							320
avg	/	total							0.86						0.89						0.87						3000
Out[34]:
In	[35]: #	Condensed	Nearest	Neighbor
us	=	CondensedNearestNeighbour(random_state=1)
X_train_res,	y_train_res	=	us.fit_sample(X_train,	y_train)
print	"Distribution	of	class	labels	before	resampling	{}".format(Counter(y_train))
print	"Distribution	of	class	labels	after	resampling	{}".format(Counter(y_train_re
s))
clf_base	=	LogisticRegression()
grid	=	{'C':	10.0	**	np.arange(-2,	3),
								'penalty':	['l1',	'l2']}
cv	=	KFold(X_train_res.shape[0],	n_folds=5,	shuffle=True,	random_state=0)
clf	=	GridSearchCV(clf_base,	grid,	cv=cv,	n_jobs=8,	scoring='f1_macro')
clf.fit(X_train_res,	y_train_res)
coef	=	clf.best_estimator_.coef_
intercept	=	clf.best_estimator_.intercept_
x1	=	np.linspace(-8,	10,	100)
x2	=	-(coef[0][0]	*	x1	+	intercept[0])	/	coef[0][1]
X_1_res	=	X_train_res[y_train_res=='S']
X_2_res	=	X_train_res[y_train_res=='L']
Distribution	of	class	labels	before	resampling	Counter({'L':	6320,	'S':	680})
Distribution	of	class	labels	after	resampling	Counter({'L':	882,	'S':	680})
In	[36]: plt.scatter(zip(*X_1_res)[0],	zip(*X_1_res)[1],	color='#1abc9c')
plt.scatter(zip(*X_2_res)[0],	zip(*X_2_res)[1],	color='#e67e22')
x_coords	=	zip(*X_1_res)[0]	+	zip(*X_2_res)[0]
y_coords	=	zip(*X_1_res)[1]	+	zip(*X_2_res)[1]
plt.axis([min(x_coords),	max(x_coords),	min(y_coords),	max(y_coords)])
plt.title("Condensed	Nearest	Neighbor")
plt.plot(x1,	x2,	color='#414e8a',	linewidth=2)
plt.show()
In	[38]:
In	[39]:
print	classification_report(y_test,	clf.predict(X_test))
precision_recall_comparison
													precision				recall		f1-score			support
										L							0.93						0.94						0.93						2680
										S							0.44						0.39						0.42							320
avg	/	total							0.88						0.88						0.88						3000
Out[39]:
In	[40]: #	Edited	Nearest	Neighbor	(ENN)
us	=	EditedNearestNeighbours(size_ngh=5,	random_state=1)
X_train_res,	y_train_res	=	us.fit_sample(X_train,	y_train)
print	"Distribution	of	class	labels	before	resampling	{}".format(Counter(y_train))
print	"Distribution	of	class	labels	after	resampling	{}".format(Counter(y_train_re
s))
clf_base	=	LogisticRegression()
grid	=	{'C':	10.0	**	np.arange(-2,	3),
								'penalty':	['l1',	'l2']}
cv	=	KFold(X_train_res.shape[0],	n_folds=5,	shuffle=True,	random_state=0)
clf	=	GridSearchCV(clf_base,	grid,	cv=cv,	n_jobs=8,	scoring='f1_macro')
clf.fit(X_train_res,	y_train_res)
coef	=	clf.best_estimator_.coef_
intercept	=	clf.best_estimator_.intercept_
x1	=	np.linspace(-8,	10,	100)
x2	=	-(coef[0][0]	*	x1	+	intercept[0])	/	coef[0][1]
X_1_res	=	X_train_res[y_train_res=='S']
X_2_res	=	X_train_res[y_train_res=='L']
Distribution	of	class	labels	before	resampling	Counter({'L':	6320,	'S':	680})
Distribution	of	class	labels	after	resampling	Counter({'L':	5120,	'S':	680})
In	[41]: plt.scatter(zip(*X_1_res)[0],	zip(*X_1_res)[1],	color='#1abc9c')
plt.scatter(zip(*X_2_res)[0],	zip(*X_2_res)[1],	color='#e67e22')
x_coords	=	zip(*X_1_res)[0]	+	zip(*X_2_res)[0]
y_coords	=	zip(*X_1_res)[1]	+	zip(*X_2_res)[1]
plt.axis([min(x_coords),	max(x_coords),	min(y_coords),	max(y_coords)])
plt.title("Edited	Nearest	Neighbor")
plt.plot(x1,	x2,	color='#414e8a',	linewidth=2)
plt.show()
In	[43]:
In	[44]:
print	classification_report(y_test,	clf.predict(X_test))
precision_recall_comparison
													precision				recall		f1-score			support
										L							0.95						0.90						0.92						2680
										S							0.42						0.59						0.49							320
avg	/	total							0.89						0.87						0.88						3000
Out[44]:
In	[45]: #	Repeated	Edited	Nearest	Neighbor
us	=	RepeatedEditedNearestNeighbours(size_ngh=5,	random_state=1)
X_train_res,	y_train_res	=	us.fit_sample(X_train,	y_train)
print	"Distribution	of	class	labels	before	resampling	{}".format(Counter(y_train))
print	"Distribution	of	class	labels	after	resampling	{}".format(Counter(y_train_re
s))
clf_base	=	LogisticRegression()
grid	=	{'C':	10.0	**	np.arange(-2,	3),
								'penalty':	['l1',	'l2']}
cv	=	KFold(X_train_res.shape[0],	n_folds=5,	shuffle=True,	random_state=0)
clf	=	GridSearchCV(clf_base,	grid,	cv=cv,	n_jobs=8,	scoring='f1_macro')
clf.fit(X_train_res,	y_train_res)
coef	=	clf.best_estimator_.coef_
intercept	=	clf.best_estimator_.intercept_
x1	=	np.linspace(-8,	10,	100)
x2	=	-(coef[0][0]	*	x1	+	intercept[0])	/	coef[0][1]
X_1_res	=	X_train_res[y_train_res=='S']
X_2_res	=	X_train_res[y_train_res=='L']
Distribution	of	class	labels	before	resampling	Counter({'L':	6320,	'S':	680})
Distribution	of	class	labels	after	resampling	Counter({'L':	4796,	'S':	680})
In	[46]: plt.scatter(zip(*X_1_res)[0],	zip(*X_1_res)[1],	color='#1abc9c')
plt.scatter(zip(*X_2_res)[0],	zip(*X_2_res)[1],	color='#e67e22')
x_coords	=	zip(*X_1_res)[0]	+	zip(*X_2_res)[0]
y_coords	=	zip(*X_1_res)[1]	+	zip(*X_2_res)[1]
plt.axis([min(x_coords),	max(x_coords),	min(y_coords),	max(y_coords)])
plt.title("Repeated	Edited	Nearest	Neighbor")
plt.plot(x1,	x2,	color='#414e8a',	linewidth=2)
plt.show()
In	[48]:
In	[49]:
print	classification_report(y_test,	clf.predict(X_test))
precision_recall_comparison
													precision				recall		f1-score			support
										L							0.97						0.84						0.90						2680
										S							0.38						0.80						0.51							320
avg	/	total							0.91						0.84						0.86						3000
Out[49]:
In	[50]: #	Tomek	link	removal
us	=	TomekLinks(random_state=1)
X_train_res,	y_train_res	=	us.fit_sample(X_train,	y_train)
print	"Distribution	of	class	labels	before	resampling	{}".format(Counter(y_train))
print	"Distribution	of	class	labels	after	resampling	{}".format(Counter(y_train_re
s))
clf_base	=	LogisticRegression()
grid	=	{'C':	10.0	**	np.arange(-2,	3),
								'penalty':	['l1',	'l2']}
cv	=	KFold(X_train_res.shape[0],	n_folds=5,	shuffle=True,	random_state=0)
clf	=	GridSearchCV(clf_base,	grid,	cv=cv,	n_jobs=8,	scoring='f1_macro')
clf.fit(X_train_res,	y_train_res)
coef	=	clf.best_estimator_.coef_
intercept	=	clf.best_estimator_.intercept_
x1	=	np.linspace(-8,	10,	100)
x2	=	-(coef[0][0]	*	x1	+	intercept[0])	/	coef[0][1]
X_1_res	=	X_train_res[y_train_res=='S']
X_2_res	=	X_train_res[y_train_res=='L']
Distribution	of	class	labels	before	resampling	Counter({'L':	6320,	'S':	680})
Distribution	of	class	labels	after	resampling	Counter({'L':	6051,	'S':	680})
In	[51]: plt.scatter(zip(*X_1_res)[0],	zip(*X_1_res)[1],	color='#1abc9c')
plt.scatter(zip(*X_2_res)[0],	zip(*X_2_res)[1],	color='#e67e22')
x_coords	=	zip(*X_1_res)[0]	+	zip(*X_2_res)[0]
y_coords	=	zip(*X_1_res)[1]	+	zip(*X_2_res)[1]
plt.axis([min(x_coords),	max(x_coords),	min(y_coords),	max(y_coords)])
plt.title("Tomek	Link	Removal")
plt.plot(x1,	x2,	color='#414e8a',	linewidth=2)
plt.show()
In	[53]:
In	[54]:
print	classification_report(y_test,	clf.predict(X_test))
precision_recall_comparison
													precision				recall		f1-score			support
										L							0.91						0.97						0.94						2680
										S							0.44						0.21						0.29							320
avg	/	total							0.86						0.89						0.87						3000
Out[54]:
In	[55]: #	Random	oversampling	of	minority	class
os	=	RandomOverSampler(ratio=0.5,	random_state=1)
X_train_res,	y_train_res	=	os.fit_sample(X_train,	y_train)
print	"Distribution	of	class	labels	before	resampling	{}".format(Counter(y_train))
print	"Distribution	of	class	labels	after	resampling	{}".format(Counter(y_train_re
s))
clf_base	=	LogisticRegression()
grid	=	{'C':	10.0	**	np.arange(-2,	3),
								'penalty':	['l1',	'l2']}
cv	=	KFold(X_train_res.shape[0],	n_folds=5,	shuffle=True,	random_state=0)
clf	=	GridSearchCV(clf_base,	grid,	cv=cv,	n_jobs=8,	scoring='f1_macro')
clf.fit(X_train_res,	y_train_res)
coef	=	clf.best_estimator_.coef_
intercept	=	clf.best_estimator_.intercept_
x1	=	np.linspace(-8,	10,	100)
x2	=	-(coef[0][0]	*	x1	+	intercept[0])	/	coef[0][1]
X_1_res	=	X_train_res[y_train_res=='S']
X_2_res	=	X_train_res[y_train_res=='L']
Distribution	of	class	labels	before	resampling	Counter({'L':	6320,	'S':	680})
Distribution	of	class	labels	after	resampling	Counter({'L':	6320,	'S':	3160})
In	[56]: plt.scatter(zip(*X_1_res)[0],	zip(*X_1_res)[1],	color='#1abc9c')
plt.scatter(zip(*X_2_res)[0],	zip(*X_2_res)[1],	color='#e67e22')
x_coords	=	zip(*X_1_res)[0]	+	zip(*X_2_res)[0]
y_coords	=	zip(*X_1_res)[1]	+	zip(*X_2_res)[1]
plt.axis([min(x_coords),	max(x_coords),	min(y_coords),	max(y_coords)])
plt.title("Random	Oversampling	of	minority	class")
plt.plot(x1,	x2,	color='#414e8a',	linewidth=2)
plt.show()
In	[58]:
In	[59]:
print	classification_report(y_test,	clf.predict(X_test))
precision_recall_comparison
													precision				recall		f1-score			support
										L							0.97						0.85						0.91						2680
										S							0.38						0.76						0.51							320
avg	/	total							0.91						0.84						0.86						3000
Out[59]:
In	[60]: #	Synthetic	Minority	Oversampling	Technique	(SMOTE)
os	=	SMOTE(ratio=0.5,	k=5,	random_state=1)
X_train_res,	y_train_res	=	os.fit_sample(X_train,	y_train)
print	"Distribution	of	class	labels	before	resampling	{}".format(Counter(y_train))
print	"Distribution	of	class	labels	after	resampling	{}".format(Counter(y_train_re
s))
clf_base	=	LogisticRegression()
grid	=	{'C':	10.0	**	np.arange(-2,	3),
								'penalty':	['l1',	'l2']}
cv	=	KFold(X_train_res.shape[0],	n_folds=5,	shuffle=True,	random_state=0)
clf	=	GridSearchCV(clf_base,	grid,	cv=cv,	n_jobs=8,	scoring='f1_macro')
clf.fit(X_train_res,	y_train_res)
coef	=	clf.best_estimator_.coef_
intercept	=	clf.best_estimator_.intercept_
x1	=	np.linspace(-8,	10,	100)
x2	=	-(coef[0][0]	*	x1	+	intercept[0])	/	coef[0][1]
X_1_res	=	X_train_res[y_train_res=='S']
X_2_res	=	X_train_res[y_train_res=='L']
Distribution	of	class	labels	before	resampling	Counter({'L':	6320,	'S':	680})
Distribution	of	class	labels	after	resampling	Counter({'L':	6320,	'S':	3160})
In	[61]: plt.scatter(zip(*X_1_res)[0],	zip(*X_1_res)[1],	color='#1abc9c')
plt.scatter(zip(*X_2_res)[0],	zip(*X_2_res)[1],	color='#e67e22')
x_coords	=	zip(*X_1_res)[0]	+	zip(*X_2_res)[0]
y_coords	=	zip(*X_1_res)[1]	+	zip(*X_2_res)[1]
plt.axis([min(x_coords),	max(x_coords),	min(y_coords),	max(y_coords)])
plt.title("SMOTE")
plt.plot(x1,	x2,	color='#414e8a',	linewidth=2)
plt.show()
In	[63]:
In	[64]:
print	classification_report(y_test,	clf.predict(X_test))
precision_recall_comparison
													precision				recall		f1-score			support
										L							0.97						0.85						0.91						2680
										S							0.38						0.77						0.51							320
avg	/	total							0.91						0.84						0.86						3000
Out[64]:
In	[65]: #	SMOTE	+	Tomek	link	removal
os_us	=	SMOTETomek(ratio=0.5,	k=5,	random_state=1)
X_train_res,	y_train_res	=	os_us.fit_sample(X_train,	y_train)
print	"Distribution	of	class	labels	before	resampling	{}".format(Counter(y_train))
print	"Distribution	of	class	labels	after	resampling	{}".format(Counter(y_train_re
s))
clf_base	=	LogisticRegression()
grid	=	{'C':	10.0	**	np.arange(-2,	3),
								'penalty':	['l1',	'l2']}
cv	=	KFold(X_train_res.shape[0],	n_folds=5,	shuffle=True,	random_state=0)
clf	=	GridSearchCV(clf_base,	grid,	cv=cv,	n_jobs=8,	scoring='f1_macro')
clf.fit(X_train_res,	y_train_res)
coef	=	clf.best_estimator_.coef_
intercept	=	clf.best_estimator_.intercept_
x1	=	np.linspace(-8,	10,	100)
x2	=	-(coef[0][0]	*	x1	+	intercept[0])	/	coef[0][1]
X_1_res	=	X_train_res[y_train_res=='S']
X_2_res	=	X_train_res[y_train_res=='L']
Distribution	of	class	labels	before	resampling	Counter({'L':	6320,	'S':	680})
Distribution	of	class	labels	after	resampling	Counter({'L':	6050,	'S':	3160})
In	[66]: plt.scatter(zip(*X_1_res)[0],	zip(*X_1_res)[1],	color='#1abc9c')
plt.scatter(zip(*X_2_res)[0],	zip(*X_2_res)[1],	color='#e67e22')
x_coords	=	zip(*X_1_res)[0]	+	zip(*X_2_res)[0]
y_coords	=	zip(*X_1_res)[1]	+	zip(*X_2_res)[1]
plt.axis([min(x_coords),	max(x_coords),	min(y_coords),	max(y_coords)])
plt.title("SMOTE+Tomek	Link	Removal")
plt.plot(x1,	x2,	color='#414e8a',	linewidth=2)
plt.show()
In	[68]:
In	[69]:
print	classification_report(y_test,	clf.predict(X_test))
precision_recall_comparison
													precision				recall		f1-score			support
										L							0.97						0.84						0.90						2680
										S							0.38						0.80						0.51							320
avg	/	total							0.91						0.84						0.86						3000
Out[69]:
In	[70]: #	SMOTE	+	ENN
os_us	=	SMOTEENN(ratio=0.5,	k=5,	size_ngh=5,	random_state=1)
X_train_res,	y_train_res	=	os_us.fit_sample(X_train,	y_train)
print	"Distribution	of	class	labels	before	resampling	{}".format(Counter(y_train))
print	"Distribution	of	class	labels	after	resampling	{}".format(Counter(y_train_re
s))
clf_base	=	LogisticRegression()
grid	=	{'C':	10.0	**	np.arange(-2,	3),
								'penalty':	['l1',	'l2']}
cv	=	KFold(X_train_res.shape[0],	n_folds=5,	shuffle=True,	random_state=0)
clf	=	GridSearchCV(clf_base,	grid,	cv=cv,	n_jobs=8,	scoring='f1_macro')
clf.fit(X_train_res,	y_train_res)
coef	=	clf.best_estimator_.coef_
intercept	=	clf.best_estimator_.intercept_
x1	=	np.linspace(-8,	10,	100)
x2	=	-(coef[0][0]	*	x1	+	intercept[0])	/	coef[0][1]
X_1_res	=	X_train_res[y_train_res=='S']
X_2_res	=	X_train_res[y_train_res=='L']
Distribution	of	class	labels	before	resampling	Counter({'L':	6320,	'S':	680})
Distribution	of	class	labels	after	resampling	Counter({'L':	4894,	'S':	3160})
In	[71]: plt.scatter(zip(*X_1_res)[0],	zip(*X_1_res)[1],	color='#1abc9c')
plt.scatter(zip(*X_2_res)[0],	zip(*X_2_res)[1],	color='#e67e22')
x_coords	=	zip(*X_1_res)[0]	+	zip(*X_2_res)[0]
y_coords	=	zip(*X_1_res)[1]	+	zip(*X_2_res)[1]
plt.axis([min(x_coords),	max(x_coords),	min(y_coords),	max(y_coords)])
plt.title("SMOTE	+	ENN")
plt.plot(x1,	x2,	color='#414e8a',	linewidth=2)
plt.show()
In	[73]:
In	[74]:
print	classification_report(y_test,	clf.predict(X_test))
precision_recall_comparison
													precision				recall		f1-score			support
										L							0.99						0.78						0.87						2680
										S							0.33						0.92						0.49							320
avg	/	total							0.92						0.79						0.83						3000
Out[74]:
In	[75]: #	EasyEnsemble
ens	=	EasyEnsemble()
X_train_res,	y_train_res	=	ens.fit_sample(X_train,	y_train)
y_pred_proba	=	np.zeros(len(y_test))
for	idx	in	range(len(y_train_res)):
				clf_base	=	AdaBoostClassifier()
				grid	=	{'n_estimators':	[10,	50,	100]}
				cv	=	KFold(X_train_res.shape[0],	n_folds=5,	shuffle=True,	random_state=0)
				clf	=	GridSearchCV(clf_base,	grid,	cv=cv,	n_jobs=8,	scoring='f1_macro')
				clf.fit(X_train_res[idx],	y_train_res[idx])
				y_pred_proba	+=	zip(*clf.predict_proba(X_test))[0]
				
y_pred_proba	=	y_pred_proba/len(y_train_res)
y_pred	=	(y_pred_proba	>	0.5).astype(int)
y_pred	=	y_pred.astype('str')
y_pred[y_pred=='1']	='L'
y_pred[y_pred=='0']	='S'
In	[77]:
In	[78]:
print	classification_report(y_test,	y_pred)
precision_recall_comparison
													precision				recall		f1-score			support
										L							0.98						0.80						0.88						2680
										S							0.35						0.90						0.50							320
avg	/	total							0.92						0.81						0.84						3000
Out[78]:
In	[79]: #	BalanceCascade
#	Note	this	is	not	a	true	implementation	of	BalancaCacade	since	the	library
#	does	not	return	the	fitted	classifiers	used	in	generating	the	subsets
ens	=	BalanceCascade(classifier='adaboost',	random_state=1)
X_train_res,	y_train_res	=	ens.fit_sample(X_train,	y_train)
y_pred_proba	=	np.zeros(len(y_test))
for	idx	in	range(len(y_train_res)):
				#	imblearn	uses	AdaBoostClassiifer	with	default	hyperparams	to	select	subsets
				#	a	variant	implementation	with	grid	search	for	each	subsample	is	shown	in	the
	next	cell
				clf	=	AdaBoostClassifier(random_state=1)
				clf.fit(X_train_res[idx],	y_train_res[idx])
				y_pred_proba	+=	zip(*clf.predict_proba(X_test))[0]
				
y_pred_proba	=	y_pred_proba/len(y_train_res)
y_pred	=	(y_pred_proba	>	0.5).astype(int)
y_pred	=	y_pred.astype('str')
y_pred[y_pred=='1']	='L'
y_pred[y_pred=='0']	='S'
In	[81]:
In	[82]:
print	classification_report(y_test,	y_pred)
precision_recall_comparison
													precision				recall		f1-score			support
										L							0.99						0.81						0.89						2680
										S							0.36						0.91						0.51							320
avg	/	total							0.92						0.82						0.85						3000
Out[82]:
In	[83]: #	Note	this	is	not	a	true	implementation	of	BalancaCacade	since	the	library
#	does	not	return	the	fitted	classifiers	used	in	generating	the	subsets
ens	=	BalanceCascade(classifier='adaboost',	random_state=1)
X_train_res,	y_train_res	=	ens.fit_sample(X_train,	y_train)
y_pred_proba	=	np.zeros(len(y_test))
for	idx	in	range(len(y_train_res)):
				clf_base	=	AdaBoostClassifier(random_state=1)
				grid	=	{'n_estimators':	[10,	50,	100]}
				cv	=	KFold(X_train_res.shape[0],	n_folds=5,	shuffle=True,	random_state=0)
				clf	=	GridSearchCV(clf_base,	grid,	cv=cv,	n_jobs=8,	scoring='f1_macro')
				clf.fit(X_train_res[idx],	y_train_res[idx])
				y_pred_proba	+=	zip(*clf.predict_proba(X_test))[0]
				
y_pred_proba	=	y_pred_proba/len(y_train_res)
y_pred	=	(y_pred_proba	>	0.5).astype(int)
y_pred	=	y_pred.astype('str')
y_pred[y_pred=='1']	='L'
y_pred[y_pred=='0']	='S'
In	[85]:
In	[86]:
print	classification_report(y_test,	y_pred)
precision_recall_comparison
													precision				recall		f1-score			support
										L							0.99						0.80						0.88						2680
										S							0.35						0.90						0.50							320
avg	/	total							0.92						0.81						0.84						3000
Out[86]:
Python resampling
Python resampling

Weitere ähnliche Inhalte

Was ist angesagt?

Firebase Remote Config + Kotlin = EasyFRC
Firebase Remote Config + Kotlin = EasyFRCFirebase Remote Config + Kotlin = EasyFRC
Firebase Remote Config + Kotlin = EasyFRCOmar Miatello
 
Java script – basic auroskills (2)
Java script – basic   auroskills (2)Java script – basic   auroskills (2)
Java script – basic auroskills (2)BoneyGawande
 
Advanced Java Practical File
Advanced Java Practical FileAdvanced Java Practical File
Advanced Java Practical FileSoumya Behera
 
Java script advance-auroskills (2)
Java script advance-auroskills (2)Java script advance-auroskills (2)
Java script advance-auroskills (2)BoneyGawande
 
How to Think in RxJava Before Reacting
How to Think in RxJava Before ReactingHow to Think in RxJava Before Reacting
How to Think in RxJava Before ReactingIndicThreads
 
Reactive Programming for a demanding world: building event-driven and respons...
Reactive Programming for a demanding world: building event-driven and respons...Reactive Programming for a demanding world: building event-driven and respons...
Reactive Programming for a demanding world: building event-driven and respons...Mario Fusco
 
Currying and Partial Function Application (PFA)
Currying and Partial Function Application (PFA)Currying and Partial Function Application (PFA)
Currying and Partial Function Application (PFA)Dhaval Dalal
 
Creating Lazy stream in CSharp
Creating Lazy stream in CSharpCreating Lazy stream in CSharp
Creating Lazy stream in CSharpDhaval Dalal
 
Java programming lab_manual_by_rohit_jaiswar
Java programming lab_manual_by_rohit_jaiswarJava programming lab_manual_by_rohit_jaiswar
Java programming lab_manual_by_rohit_jaiswarROHIT JAISWAR
 
Finagle and Java Service Framework at Pinterest
Finagle and Java Service Framework at PinterestFinagle and Java Service Framework at Pinterest
Finagle and Java Service Framework at PinterestPavan Chitumalla
 
Lab 3 nust control
Lab 3 nust controlLab 3 nust control
Lab 3 nust controltalhawaqar
 
DRYing to Monad in Java8
DRYing to Monad in Java8DRYing to Monad in Java8
DRYing to Monad in Java8Dhaval Dalal
 
Testing Hadoop jobs with MRUnit
Testing Hadoop jobs with MRUnitTesting Hadoop jobs with MRUnit
Testing Hadoop jobs with MRUnitEric Wendelin
 
Volley lab btc_bbit
Volley lab btc_bbitVolley lab btc_bbit
Volley lab btc_bbitCarWash1
 

Was ist angesagt? (19)

Pragmatic sbt
Pragmatic sbtPragmatic sbt
Pragmatic sbt
 
Firebase Remote Config + Kotlin = EasyFRC
Firebase Remote Config + Kotlin = EasyFRCFirebase Remote Config + Kotlin = EasyFRC
Firebase Remote Config + Kotlin = EasyFRC
 
Java script – basic auroskills (2)
Java script – basic   auroskills (2)Java script – basic   auroskills (2)
Java script – basic auroskills (2)
 
Java Lab Manual
Java Lab ManualJava Lab Manual
Java Lab Manual
 
Advanced Java Practical File
Advanced Java Practical FileAdvanced Java Practical File
Advanced Java Practical File
 
Java script advance-auroskills (2)
Java script advance-auroskills (2)Java script advance-auroskills (2)
Java script advance-auroskills (2)
 
How to Think in RxJava Before Reacting
How to Think in RxJava Before ReactingHow to Think in RxJava Before Reacting
How to Think in RxJava Before Reacting
 
Reactive Programming for a demanding world: building event-driven and respons...
Reactive Programming for a demanding world: building event-driven and respons...Reactive Programming for a demanding world: building event-driven and respons...
Reactive Programming for a demanding world: building event-driven and respons...
 
Currying and Partial Function Application (PFA)
Currying and Partial Function Application (PFA)Currying and Partial Function Application (PFA)
Currying and Partial Function Application (PFA)
 
Creating Lazy stream in CSharp
Creating Lazy stream in CSharpCreating Lazy stream in CSharp
Creating Lazy stream in CSharp
 
C++11 - STL Additions
C++11 - STL AdditionsC++11 - STL Additions
C++11 - STL Additions
 
Parallel streams in java 8
Parallel streams in java 8Parallel streams in java 8
Parallel streams in java 8
 
Java programming lab_manual_by_rohit_jaiswar
Java programming lab_manual_by_rohit_jaiswarJava programming lab_manual_by_rohit_jaiswar
Java programming lab_manual_by_rohit_jaiswar
 
Finagle and Java Service Framework at Pinterest
Finagle and Java Service Framework at PinterestFinagle and Java Service Framework at Pinterest
Finagle and Java Service Framework at Pinterest
 
Lab 3 nust control
Lab 3 nust controlLab 3 nust control
Lab 3 nust control
 
C++11 Multithreading - Futures
C++11 Multithreading - FuturesC++11 Multithreading - Futures
C++11 Multithreading - Futures
 
DRYing to Monad in Java8
DRYing to Monad in Java8DRYing to Monad in Java8
DRYing to Monad in Java8
 
Testing Hadoop jobs with MRUnit
Testing Hadoop jobs with MRUnitTesting Hadoop jobs with MRUnit
Testing Hadoop jobs with MRUnit
 
Volley lab btc_bbit
Volley lab btc_bbitVolley lab btc_bbit
Volley lab btc_bbit
 

Andere mochten auch

Brains & Brawn: the Logic and Implementation of a Redesigned Advertising Mark...
Brains & Brawn: the Logic and Implementation of a Redesigned Advertising Mark...Brains & Brawn: the Logic and Implementation of a Redesigned Advertising Mark...
Brains & Brawn: the Logic and Implementation of a Redesigned Advertising Mark...PyData
 
Speed Without Drag by Saul Diez-Guerra PyData SV 2014
Speed Without Drag by Saul Diez-Guerra PyData SV 2014Speed Without Drag by Saul Diez-Guerra PyData SV 2014
Speed Without Drag by Saul Diez-Guerra PyData SV 2014PyData
 
Robert Meyer- pypet
Robert Meyer- pypetRobert Meyer- pypet
Robert Meyer- pypetPyData
 
Evolutionary Algorithms: Perfecting the Art of "Good Enough"
Evolutionary Algorithms: Perfecting the Art of "Good Enough"Evolutionary Algorithms: Perfecting the Art of "Good Enough"
Evolutionary Algorithms: Perfecting the Art of "Good Enough"PyData
 
Nipype
NipypeNipype
NipypePyData
 
Crushing the Head of the Snake by Robert Brewer PyData SV 2014
Crushing the Head of the Snake by Robert Brewer PyData SV 2014Crushing the Head of the Snake by Robert Brewer PyData SV 2014
Crushing the Head of the Snake by Robert Brewer PyData SV 2014PyData
 
Numba: Flexible analytics written in Python with machine-code speeds and avo...
Numba:  Flexible analytics written in Python with machine-code speeds and avo...Numba:  Flexible analytics written in Python with machine-code speeds and avo...
Numba: Flexible analytics written in Python with machine-code speeds and avo...PyData
 
Dark Data: A Data Scientists Exploration of the Unknown by Rob Witoff PyData ...
Dark Data: A Data Scientists Exploration of the Unknown by Rob Witoff PyData ...Dark Data: A Data Scientists Exploration of the Unknown by Rob Witoff PyData ...
Dark Data: A Data Scientists Exploration of the Unknown by Rob Witoff PyData ...PyData
 
Interactive Financial Analytics with Python & Ipython by Dr Yves Hilpisch
Interactive Financial Analytics with Python & Ipython by Dr Yves HilpischInteractive Financial Analytics with Python & Ipython by Dr Yves Hilpisch
Interactive Financial Analytics with Python & Ipython by Dr Yves HilpischPyData
 
How Soon is Now: automatically extracting publication dates of news articles ...
How Soon is Now: automatically extracting publication dates of news articles ...How Soon is Now: automatically extracting publication dates of news articles ...
How Soon is Now: automatically extracting publication dates of news articles ...PyData
 
Faster Python Programs Through Optimization by Dr.-Ing Mike Muller
Faster Python Programs Through Optimization by Dr.-Ing Mike MullerFaster Python Programs Through Optimization by Dr.-Ing Mike Muller
Faster Python Programs Through Optimization by Dr.-Ing Mike MullerPyData
 
Doing frequentist statistics with scipy
Doing frequentist statistics with scipyDoing frequentist statistics with scipy
Doing frequentist statistics with scipyPyData
 
Fang Xu- Enriching content with Knowledge Base by Search Keywords and Wikidata
Fang Xu- Enriching content with Knowledge Base by Search Keywords and WikidataFang Xu- Enriching content with Knowledge Base by Search Keywords and Wikidata
Fang Xu- Enriching content with Knowledge Base by Search Keywords and WikidataPyData
 
Low-rank matrix approximations in Python by Christian Thurau PyData 2014
Low-rank matrix approximations in Python by Christian Thurau PyData 2014Low-rank matrix approximations in Python by Christian Thurau PyData 2014
Low-rank matrix approximations in Python by Christian Thurau PyData 2014PyData
 
Promoting a Data Driven Culture in a Microservices Environment
Promoting a Data Driven Culture in a Microservices EnvironmentPromoting a Data Driven Culture in a Microservices Environment
Promoting a Data Driven Culture in a Microservices EnvironmentPyData
 
Making your code faster cython and parallel processing in the jupyter notebook
Making your code faster   cython and parallel processing in the jupyter notebookMaking your code faster   cython and parallel processing in the jupyter notebook
Making your code faster cython and parallel processing in the jupyter notebookPyData
 
Large scale-ctr-prediction lessons-learned-florian-hartl
Large scale-ctr-prediction lessons-learned-florian-hartlLarge scale-ctr-prediction lessons-learned-florian-hartl
Large scale-ctr-prediction lessons-learned-florian-hartlPyData
 
Jan vitek distributedrandomforest_5-2-2013
Jan vitek distributedrandomforest_5-2-2013Jan vitek distributedrandomforest_5-2-2013
Jan vitek distributedrandomforest_5-2-2013Sri Ambati
 
GraphGen: Conducting Graph Analytics over Relational Databases
GraphGen: Conducting Graph Analytics over Relational DatabasesGraphGen: Conducting Graph Analytics over Relational Databases
GraphGen: Conducting Graph Analytics over Relational DatabasesPyData
 

Andere mochten auch (20)

Brains & Brawn: the Logic and Implementation of a Redesigned Advertising Mark...
Brains & Brawn: the Logic and Implementation of a Redesigned Advertising Mark...Brains & Brawn: the Logic and Implementation of a Redesigned Advertising Mark...
Brains & Brawn: the Logic and Implementation of a Redesigned Advertising Mark...
 
Utilitarismo
UtilitarismoUtilitarismo
Utilitarismo
 
Speed Without Drag by Saul Diez-Guerra PyData SV 2014
Speed Without Drag by Saul Diez-Guerra PyData SV 2014Speed Without Drag by Saul Diez-Guerra PyData SV 2014
Speed Without Drag by Saul Diez-Guerra PyData SV 2014
 
Robert Meyer- pypet
Robert Meyer- pypetRobert Meyer- pypet
Robert Meyer- pypet
 
Evolutionary Algorithms: Perfecting the Art of "Good Enough"
Evolutionary Algorithms: Perfecting the Art of "Good Enough"Evolutionary Algorithms: Perfecting the Art of "Good Enough"
Evolutionary Algorithms: Perfecting the Art of "Good Enough"
 
Nipype
NipypeNipype
Nipype
 
Crushing the Head of the Snake by Robert Brewer PyData SV 2014
Crushing the Head of the Snake by Robert Brewer PyData SV 2014Crushing the Head of the Snake by Robert Brewer PyData SV 2014
Crushing the Head of the Snake by Robert Brewer PyData SV 2014
 
Numba: Flexible analytics written in Python with machine-code speeds and avo...
Numba:  Flexible analytics written in Python with machine-code speeds and avo...Numba:  Flexible analytics written in Python with machine-code speeds and avo...
Numba: Flexible analytics written in Python with machine-code speeds and avo...
 
Dark Data: A Data Scientists Exploration of the Unknown by Rob Witoff PyData ...
Dark Data: A Data Scientists Exploration of the Unknown by Rob Witoff PyData ...Dark Data: A Data Scientists Exploration of the Unknown by Rob Witoff PyData ...
Dark Data: A Data Scientists Exploration of the Unknown by Rob Witoff PyData ...
 
Interactive Financial Analytics with Python & Ipython by Dr Yves Hilpisch
Interactive Financial Analytics with Python & Ipython by Dr Yves HilpischInteractive Financial Analytics with Python & Ipython by Dr Yves Hilpisch
Interactive Financial Analytics with Python & Ipython by Dr Yves Hilpisch
 
How Soon is Now: automatically extracting publication dates of news articles ...
How Soon is Now: automatically extracting publication dates of news articles ...How Soon is Now: automatically extracting publication dates of news articles ...
How Soon is Now: automatically extracting publication dates of news articles ...
 
Faster Python Programs Through Optimization by Dr.-Ing Mike Muller
Faster Python Programs Through Optimization by Dr.-Ing Mike MullerFaster Python Programs Through Optimization by Dr.-Ing Mike Muller
Faster Python Programs Through Optimization by Dr.-Ing Mike Muller
 
Doing frequentist statistics with scipy
Doing frequentist statistics with scipyDoing frequentist statistics with scipy
Doing frequentist statistics with scipy
 
Fang Xu- Enriching content with Knowledge Base by Search Keywords and Wikidata
Fang Xu- Enriching content with Knowledge Base by Search Keywords and WikidataFang Xu- Enriching content with Knowledge Base by Search Keywords and Wikidata
Fang Xu- Enriching content with Knowledge Base by Search Keywords and Wikidata
 
Low-rank matrix approximations in Python by Christian Thurau PyData 2014
Low-rank matrix approximations in Python by Christian Thurau PyData 2014Low-rank matrix approximations in Python by Christian Thurau PyData 2014
Low-rank matrix approximations in Python by Christian Thurau PyData 2014
 
Promoting a Data Driven Culture in a Microservices Environment
Promoting a Data Driven Culture in a Microservices EnvironmentPromoting a Data Driven Culture in a Microservices Environment
Promoting a Data Driven Culture in a Microservices Environment
 
Making your code faster cython and parallel processing in the jupyter notebook
Making your code faster   cython and parallel processing in the jupyter notebookMaking your code faster   cython and parallel processing in the jupyter notebook
Making your code faster cython and parallel processing in the jupyter notebook
 
Large scale-ctr-prediction lessons-learned-florian-hartl
Large scale-ctr-prediction lessons-learned-florian-hartlLarge scale-ctr-prediction lessons-learned-florian-hartl
Large scale-ctr-prediction lessons-learned-florian-hartl
 
Jan vitek distributedrandomforest_5-2-2013
Jan vitek distributedrandomforest_5-2-2013Jan vitek distributedrandomforest_5-2-2013
Jan vitek distributedrandomforest_5-2-2013
 
GraphGen: Conducting Graph Analytics over Relational Databases
GraphGen: Conducting Graph Analytics over Relational DatabasesGraphGen: Conducting Graph Analytics over Relational Databases
GraphGen: Conducting Graph Analytics over Relational Databases
 

Ähnlich wie Python resampling

I have tried running this code below- and it is working- but the accur.pdf
I have tried running this code below- and it is working- but the accur.pdfI have tried running this code below- and it is working- but the accur.pdf
I have tried running this code below- and it is working- but the accur.pdfGordonF2XPatersonh
 
logistic regression with python and R
logistic regression with python and Rlogistic regression with python and R
logistic regression with python and RAkhilesh Joshi
 
Machine Learning Model for M.S admissions
Machine Learning Model for M.S admissionsMachine Learning Model for M.S admissions
Machine Learning Model for M.S admissionsOmkar Rane
 
Machine Learning - Introduction
Machine Learning - IntroductionMachine Learning - Introduction
Machine Learning - IntroductionEmpatika
 
Pydata DC 2018 (Skorch - A Union of Scikit-learn and PyTorch)
Pydata DC 2018 (Skorch - A Union of Scikit-learn and PyTorch)Pydata DC 2018 (Skorch - A Union of Scikit-learn and PyTorch)
Pydata DC 2018 (Skorch - A Union of Scikit-learn and PyTorch)Thomas Fan
 
Yellowbrick: Steering machine learning with visual transformers
Yellowbrick: Steering machine learning with visual transformersYellowbrick: Steering machine learning with visual transformers
Yellowbrick: Steering machine learning with visual transformersRebecca Bilbro
 
I want you to add the output of the F1 score- Precision- ROC AUC- and.pdf
I want you to add the output of the F1 score- Precision- ROC AUC- and.pdfI want you to add the output of the F1 score- Precision- ROC AUC- and.pdf
I want you to add the output of the F1 score- Precision- ROC AUC- and.pdfGordonF2XPatersonh
 
Visualizing the Model Selection Process
Visualizing the Model Selection ProcessVisualizing the Model Selection Process
Visualizing the Model Selection ProcessBenjamin Bengfort
 
Hybrid quantum classical neural networks with pytorch and qiskit
Hybrid quantum classical neural networks with pytorch and qiskitHybrid quantum classical neural networks with pytorch and qiskit
Hybrid quantum classical neural networks with pytorch and qiskitVijayananda Mohire
 
6.3.2 CLIMADA model demo
6.3.2 CLIMADA model demo6.3.2 CLIMADA model demo
6.3.2 CLIMADA model demoNAP Events
 
Lab 2: Classification and Regression Prediction Models, training and testing ...
Lab 2: Classification and Regression Prediction Models, training and testing ...Lab 2: Classification and Regression Prediction Models, training and testing ...
Lab 2: Classification and Regression Prediction Models, training and testing ...Yao Yao
 
Applying Reinforcement Learning for Network Routing
Applying Reinforcement Learning for Network RoutingApplying Reinforcement Learning for Network Routing
Applying Reinforcement Learning for Network Routingbutest
 

Ähnlich wie Python resampling (17)

svm classification
svm classificationsvm classification
svm classification
 
knn classification
knn classificationknn classification
knn classification
 
I have tried running this code below- and it is working- but the accur.pdf
I have tried running this code below- and it is working- but the accur.pdfI have tried running this code below- and it is working- but the accur.pdf
I have tried running this code below- and it is working- but the accur.pdf
 
logistic regression with python and R
logistic regression with python and Rlogistic regression with python and R
logistic regression with python and R
 
Machine Learning Model for M.S admissions
Machine Learning Model for M.S admissionsMachine Learning Model for M.S admissions
Machine Learning Model for M.S admissions
 
Machine Learning - Introduction
Machine Learning - IntroductionMachine Learning - Introduction
Machine Learning - Introduction
 
Pydata DC 2018 (Skorch - A Union of Scikit-learn and PyTorch)
Pydata DC 2018 (Skorch - A Union of Scikit-learn and PyTorch)Pydata DC 2018 (Skorch - A Union of Scikit-learn and PyTorch)
Pydata DC 2018 (Skorch - A Union of Scikit-learn and PyTorch)
 
Yellowbrick: Steering machine learning with visual transformers
Yellowbrick: Steering machine learning with visual transformersYellowbrick: Steering machine learning with visual transformers
Yellowbrick: Steering machine learning with visual transformers
 
I want you to add the output of the F1 score- Precision- ROC AUC- and.pdf
I want you to add the output of the F1 score- Precision- ROC AUC- and.pdfI want you to add the output of the F1 score- Precision- ROC AUC- and.pdf
I want you to add the output of the F1 score- Precision- ROC AUC- and.pdf
 
Visualizing the Model Selection Process
Visualizing the Model Selection ProcessVisualizing the Model Selection Process
Visualizing the Model Selection Process
 
Hybrid quantum classical neural networks with pytorch and qiskit
Hybrid quantum classical neural networks with pytorch and qiskitHybrid quantum classical neural networks with pytorch and qiskit
Hybrid quantum classical neural networks with pytorch and qiskit
 
6.3.2 CLIMADA model demo
6.3.2 CLIMADA model demo6.3.2 CLIMADA model demo
6.3.2 CLIMADA model demo
 
Lab 2: Classification and Regression Prediction Models, training and testing ...
Lab 2: Classification and Regression Prediction Models, training and testing ...Lab 2: Classification and Regression Prediction Models, training and testing ...
Lab 2: Classification and Regression Prediction Models, training and testing ...
 
BPstudy sklearn 20180925
BPstudy sklearn 20180925BPstudy sklearn 20180925
BPstudy sklearn 20180925
 
Quantum neural network
Quantum neural networkQuantum neural network
Quantum neural network
 
Applying Reinforcement Learning for Network Routing
Applying Reinforcement Learning for Network RoutingApplying Reinforcement Learning for Network Routing
Applying Reinforcement Learning for Network Routing
 
K Means Clustering in ML.pptx
K Means Clustering in ML.pptxK Means Clustering in ML.pptx
K Means Clustering in ML.pptx
 

Mehr von PyData

Michal Mucha: Build and Deploy an End-to-end Streaming NLP Insight System | P...
Michal Mucha: Build and Deploy an End-to-end Streaming NLP Insight System | P...Michal Mucha: Build and Deploy an End-to-end Streaming NLP Insight System | P...
Michal Mucha: Build and Deploy an End-to-end Streaming NLP Insight System | P...PyData
 
Unit testing data with marbles - Jane Stewart Adams, Leif Walsh
Unit testing data with marbles - Jane Stewart Adams, Leif WalshUnit testing data with marbles - Jane Stewart Adams, Leif Walsh
Unit testing data with marbles - Jane Stewart Adams, Leif WalshPyData
 
The TileDB Array Data Storage Manager - Stavros Papadopoulos, Jake Bolewski
The TileDB Array Data Storage Manager - Stavros Papadopoulos, Jake BolewskiThe TileDB Array Data Storage Manager - Stavros Papadopoulos, Jake Bolewski
The TileDB Array Data Storage Manager - Stavros Papadopoulos, Jake BolewskiPyData
 
Using Embeddings to Understand the Variance and Evolution of Data Science... ...
Using Embeddings to Understand the Variance and Evolution of Data Science... ...Using Embeddings to Understand the Variance and Evolution of Data Science... ...
Using Embeddings to Understand the Variance and Evolution of Data Science... ...PyData
 
Deploying Data Science for Distribution of The New York Times - Anne Bauer
Deploying Data Science for Distribution of The New York Times - Anne BauerDeploying Data Science for Distribution of The New York Times - Anne Bauer
Deploying Data Science for Distribution of The New York Times - Anne BauerPyData
 
Graph Analytics - From the Whiteboard to Your Toolbox - Sam Lerma
Graph Analytics - From the Whiteboard to Your Toolbox - Sam LermaGraph Analytics - From the Whiteboard to Your Toolbox - Sam Lerma
Graph Analytics - From the Whiteboard to Your Toolbox - Sam LermaPyData
 
Do Your Homework! Writing tests for Data Science and Stochastic Code - David ...
Do Your Homework! Writing tests for Data Science and Stochastic Code - David ...Do Your Homework! Writing tests for Data Science and Stochastic Code - David ...
Do Your Homework! Writing tests for Data Science and Stochastic Code - David ...PyData
 
RESTful Machine Learning with Flask and TensorFlow Serving - Carlo Mazzaferro
RESTful Machine Learning with Flask and TensorFlow Serving - Carlo MazzaferroRESTful Machine Learning with Flask and TensorFlow Serving - Carlo Mazzaferro
RESTful Machine Learning with Flask and TensorFlow Serving - Carlo MazzaferroPyData
 
Mining dockless bikeshare and dockless scootershare trip data - Stefanie Brod...
Mining dockless bikeshare and dockless scootershare trip data - Stefanie Brod...Mining dockless bikeshare and dockless scootershare trip data - Stefanie Brod...
Mining dockless bikeshare and dockless scootershare trip data - Stefanie Brod...PyData
 
Avoiding Bad Database Surprises: Simulation and Scalability - Steven Lott
Avoiding Bad Database Surprises: Simulation and Scalability - Steven LottAvoiding Bad Database Surprises: Simulation and Scalability - Steven Lott
Avoiding Bad Database Surprises: Simulation and Scalability - Steven LottPyData
 
Words in Space - Rebecca Bilbro
Words in Space - Rebecca BilbroWords in Space - Rebecca Bilbro
Words in Space - Rebecca BilbroPyData
 
End-to-End Machine learning pipelines for Python driven organizations - Nick ...
End-to-End Machine learning pipelines for Python driven organizations - Nick ...End-to-End Machine learning pipelines for Python driven organizations - Nick ...
End-to-End Machine learning pipelines for Python driven organizations - Nick ...PyData
 
Pydata beautiful soup - Monica Puerto
Pydata beautiful soup - Monica PuertoPydata beautiful soup - Monica Puerto
Pydata beautiful soup - Monica PuertoPyData
 
1D Convolutional Neural Networks for Time Series Modeling - Nathan Janos, Jef...
1D Convolutional Neural Networks for Time Series Modeling - Nathan Janos, Jef...1D Convolutional Neural Networks for Time Series Modeling - Nathan Janos, Jef...
1D Convolutional Neural Networks for Time Series Modeling - Nathan Janos, Jef...PyData
 
Extending Pandas with Custom Types - Will Ayd
Extending Pandas with Custom Types - Will AydExtending Pandas with Custom Types - Will Ayd
Extending Pandas with Custom Types - Will AydPyData
 
Measuring Model Fairness - Stephen Hoover
Measuring Model Fairness - Stephen HooverMeasuring Model Fairness - Stephen Hoover
Measuring Model Fairness - Stephen HooverPyData
 
What's the Science in Data Science? - Skipper Seabold
What's the Science in Data Science? - Skipper SeaboldWhat's the Science in Data Science? - Skipper Seabold
What's the Science in Data Science? - Skipper SeaboldPyData
 
Applying Statistical Modeling and Machine Learning to Perform Time-Series For...
Applying Statistical Modeling and Machine Learning to Perform Time-Series For...Applying Statistical Modeling and Machine Learning to Perform Time-Series For...
Applying Statistical Modeling and Machine Learning to Perform Time-Series For...PyData
 
Solving very simple substitution ciphers algorithmically - Stephen Enright-Ward
Solving very simple substitution ciphers algorithmically - Stephen Enright-WardSolving very simple substitution ciphers algorithmically - Stephen Enright-Ward
Solving very simple substitution ciphers algorithmically - Stephen Enright-WardPyData
 
The Face of Nanomaterials: Insightful Classification Using Deep Learning - An...
The Face of Nanomaterials: Insightful Classification Using Deep Learning - An...The Face of Nanomaterials: Insightful Classification Using Deep Learning - An...
The Face of Nanomaterials: Insightful Classification Using Deep Learning - An...PyData
 

Mehr von PyData (20)

Michal Mucha: Build and Deploy an End-to-end Streaming NLP Insight System | P...
Michal Mucha: Build and Deploy an End-to-end Streaming NLP Insight System | P...Michal Mucha: Build and Deploy an End-to-end Streaming NLP Insight System | P...
Michal Mucha: Build and Deploy an End-to-end Streaming NLP Insight System | P...
 
Unit testing data with marbles - Jane Stewart Adams, Leif Walsh
Unit testing data with marbles - Jane Stewart Adams, Leif WalshUnit testing data with marbles - Jane Stewart Adams, Leif Walsh
Unit testing data with marbles - Jane Stewart Adams, Leif Walsh
 
The TileDB Array Data Storage Manager - Stavros Papadopoulos, Jake Bolewski
The TileDB Array Data Storage Manager - Stavros Papadopoulos, Jake BolewskiThe TileDB Array Data Storage Manager - Stavros Papadopoulos, Jake Bolewski
The TileDB Array Data Storage Manager - Stavros Papadopoulos, Jake Bolewski
 
Using Embeddings to Understand the Variance and Evolution of Data Science... ...
Using Embeddings to Understand the Variance and Evolution of Data Science... ...Using Embeddings to Understand the Variance and Evolution of Data Science... ...
Using Embeddings to Understand the Variance and Evolution of Data Science... ...
 
Deploying Data Science for Distribution of The New York Times - Anne Bauer
Deploying Data Science for Distribution of The New York Times - Anne BauerDeploying Data Science for Distribution of The New York Times - Anne Bauer
Deploying Data Science for Distribution of The New York Times - Anne Bauer
 
Graph Analytics - From the Whiteboard to Your Toolbox - Sam Lerma
Graph Analytics - From the Whiteboard to Your Toolbox - Sam LermaGraph Analytics - From the Whiteboard to Your Toolbox - Sam Lerma
Graph Analytics - From the Whiteboard to Your Toolbox - Sam Lerma
 
Do Your Homework! Writing tests for Data Science and Stochastic Code - David ...
Do Your Homework! Writing tests for Data Science and Stochastic Code - David ...Do Your Homework! Writing tests for Data Science and Stochastic Code - David ...
Do Your Homework! Writing tests for Data Science and Stochastic Code - David ...
 
RESTful Machine Learning with Flask and TensorFlow Serving - Carlo Mazzaferro
RESTful Machine Learning with Flask and TensorFlow Serving - Carlo MazzaferroRESTful Machine Learning with Flask and TensorFlow Serving - Carlo Mazzaferro
RESTful Machine Learning with Flask and TensorFlow Serving - Carlo Mazzaferro
 
Mining dockless bikeshare and dockless scootershare trip data - Stefanie Brod...
Mining dockless bikeshare and dockless scootershare trip data - Stefanie Brod...Mining dockless bikeshare and dockless scootershare trip data - Stefanie Brod...
Mining dockless bikeshare and dockless scootershare trip data - Stefanie Brod...
 
Avoiding Bad Database Surprises: Simulation and Scalability - Steven Lott
Avoiding Bad Database Surprises: Simulation and Scalability - Steven LottAvoiding Bad Database Surprises: Simulation and Scalability - Steven Lott
Avoiding Bad Database Surprises: Simulation and Scalability - Steven Lott
 
Words in Space - Rebecca Bilbro
Words in Space - Rebecca BilbroWords in Space - Rebecca Bilbro
Words in Space - Rebecca Bilbro
 
End-to-End Machine learning pipelines for Python driven organizations - Nick ...
End-to-End Machine learning pipelines for Python driven organizations - Nick ...End-to-End Machine learning pipelines for Python driven organizations - Nick ...
End-to-End Machine learning pipelines for Python driven organizations - Nick ...
 
Pydata beautiful soup - Monica Puerto
Pydata beautiful soup - Monica PuertoPydata beautiful soup - Monica Puerto
Pydata beautiful soup - Monica Puerto
 
1D Convolutional Neural Networks for Time Series Modeling - Nathan Janos, Jef...
1D Convolutional Neural Networks for Time Series Modeling - Nathan Janos, Jef...1D Convolutional Neural Networks for Time Series Modeling - Nathan Janos, Jef...
1D Convolutional Neural Networks for Time Series Modeling - Nathan Janos, Jef...
 
Extending Pandas with Custom Types - Will Ayd
Extending Pandas with Custom Types - Will AydExtending Pandas with Custom Types - Will Ayd
Extending Pandas with Custom Types - Will Ayd
 
Measuring Model Fairness - Stephen Hoover
Measuring Model Fairness - Stephen HooverMeasuring Model Fairness - Stephen Hoover
Measuring Model Fairness - Stephen Hoover
 
What's the Science in Data Science? - Skipper Seabold
What's the Science in Data Science? - Skipper SeaboldWhat's the Science in Data Science? - Skipper Seabold
What's the Science in Data Science? - Skipper Seabold
 
Applying Statistical Modeling and Machine Learning to Perform Time-Series For...
Applying Statistical Modeling and Machine Learning to Perform Time-Series For...Applying Statistical Modeling and Machine Learning to Perform Time-Series For...
Applying Statistical Modeling and Machine Learning to Perform Time-Series For...
 
Solving very simple substitution ciphers algorithmically - Stephen Enright-Ward
Solving very simple substitution ciphers algorithmically - Stephen Enright-WardSolving very simple substitution ciphers algorithmically - Stephen Enright-Ward
Solving very simple substitution ciphers algorithmically - Stephen Enright-Ward
 
The Face of Nanomaterials: Insightful Classification Using Deep Learning - An...
The Face of Nanomaterials: Insightful Classification Using Deep Learning - An...The Face of Nanomaterials: Insightful Classification Using Deep Learning - An...
The Face of Nanomaterials: Insightful Classification Using Deep Learning - An...
 

Kürzlich hochgeladen

Halmar dropshipping via API with DroFx
Halmar  dropshipping  via API with DroFxHalmar  dropshipping  via API with DroFx
Halmar dropshipping via API with DroFxolyaivanovalion
 
Log Analysis using OSSEC sasoasasasas.pptx
Log Analysis using OSSEC sasoasasasas.pptxLog Analysis using OSSEC sasoasasasas.pptx
Log Analysis using OSSEC sasoasasasas.pptxJohnnyPlasten
 
Market Analysis in the 5 Largest Economic Countries in Southeast Asia.pdf
Market Analysis in the 5 Largest Economic Countries in Southeast Asia.pdfMarket Analysis in the 5 Largest Economic Countries in Southeast Asia.pdf
Market Analysis in the 5 Largest Economic Countries in Southeast Asia.pdfRachmat Ramadhan H
 
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...Valters Lauzums
 
Zuja dropshipping via API with DroFx.pptx
Zuja dropshipping via API with DroFx.pptxZuja dropshipping via API with DroFx.pptx
Zuja dropshipping via API with DroFx.pptxolyaivanovalion
 
Best VIP Call Girls Noida Sector 22 Call Me: 8448380779
Best VIP Call Girls Noida Sector 22 Call Me: 8448380779Best VIP Call Girls Noida Sector 22 Call Me: 8448380779
Best VIP Call Girls Noida Sector 22 Call Me: 8448380779Delhi Call girls
 
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...amitlee9823
 
Schema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdfSchema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdfLars Albertsson
 
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...amitlee9823
 
Invezz.com - Grow your wealth with trading signals
Invezz.com - Grow your wealth with trading signalsInvezz.com - Grow your wealth with trading signals
Invezz.com - Grow your wealth with trading signalsInvezz1
 
Cheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 night
Cheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 nightCheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 night
Cheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 nightDelhi Call girls
 
CebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptxCebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptxolyaivanovalion
 
Vip Model Call Girls (Delhi) Karol Bagh 9711199171✔️Body to body massage wit...
Vip Model  Call Girls (Delhi) Karol Bagh 9711199171✔️Body to body massage wit...Vip Model  Call Girls (Delhi) Karol Bagh 9711199171✔️Body to body massage wit...
Vip Model Call Girls (Delhi) Karol Bagh 9711199171✔️Body to body massage wit...shivangimorya083
 
Determinants of health, dimensions of health, positive health and spectrum of...
Determinants of health, dimensions of health, positive health and spectrum of...Determinants of health, dimensions of health, positive health and spectrum of...
Determinants of health, dimensions of health, positive health and spectrum of...shambhavirathore45
 
BigBuy dropshipping via API with DroFx.pptx
BigBuy dropshipping via API with DroFx.pptxBigBuy dropshipping via API with DroFx.pptx
BigBuy dropshipping via API with DroFx.pptxolyaivanovalion
 
BabyOno dropshipping via API with DroFx.pptx
BabyOno dropshipping via API with DroFx.pptxBabyOno dropshipping via API with DroFx.pptx
BabyOno dropshipping via API with DroFx.pptxolyaivanovalion
 
Generative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and MilvusGenerative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and MilvusTimothy Spann
 

Kürzlich hochgeladen (20)

Halmar dropshipping via API with DroFx
Halmar  dropshipping  via API with DroFxHalmar  dropshipping  via API with DroFx
Halmar dropshipping via API with DroFx
 
Log Analysis using OSSEC sasoasasasas.pptx
Log Analysis using OSSEC sasoasasasas.pptxLog Analysis using OSSEC sasoasasasas.pptx
Log Analysis using OSSEC sasoasasasas.pptx
 
Market Analysis in the 5 Largest Economic Countries in Southeast Asia.pdf
Market Analysis in the 5 Largest Economic Countries in Southeast Asia.pdfMarket Analysis in the 5 Largest Economic Countries in Southeast Asia.pdf
Market Analysis in the 5 Largest Economic Countries in Southeast Asia.pdf
 
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
 
Zuja dropshipping via API with DroFx.pptx
Zuja dropshipping via API with DroFx.pptxZuja dropshipping via API with DroFx.pptx
Zuja dropshipping via API with DroFx.pptx
 
Best VIP Call Girls Noida Sector 22 Call Me: 8448380779
Best VIP Call Girls Noida Sector 22 Call Me: 8448380779Best VIP Call Girls Noida Sector 22 Call Me: 8448380779
Best VIP Call Girls Noida Sector 22 Call Me: 8448380779
 
(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7
(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7
(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7
 
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
 
Schema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdfSchema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdf
 
Call Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts Service
Call Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts ServiceCall Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts Service
Call Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts Service
 
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
 
Invezz.com - Grow your wealth with trading signals
Invezz.com - Grow your wealth with trading signalsInvezz.com - Grow your wealth with trading signals
Invezz.com - Grow your wealth with trading signals
 
Cheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 night
Cheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 nightCheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 night
Cheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 night
 
Sampling (random) method and Non random.ppt
Sampling (random) method and Non random.pptSampling (random) method and Non random.ppt
Sampling (random) method and Non random.ppt
 
CebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptxCebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptx
 
Vip Model Call Girls (Delhi) Karol Bagh 9711199171✔️Body to body massage wit...
Vip Model  Call Girls (Delhi) Karol Bagh 9711199171✔️Body to body massage wit...Vip Model  Call Girls (Delhi) Karol Bagh 9711199171✔️Body to body massage wit...
Vip Model Call Girls (Delhi) Karol Bagh 9711199171✔️Body to body massage wit...
 
Determinants of health, dimensions of health, positive health and spectrum of...
Determinants of health, dimensions of health, positive health and spectrum of...Determinants of health, dimensions of health, positive health and spectrum of...
Determinants of health, dimensions of health, positive health and spectrum of...
 
BigBuy dropshipping via API with DroFx.pptx
BigBuy dropshipping via API with DroFx.pptxBigBuy dropshipping via API with DroFx.pptx
BigBuy dropshipping via API with DroFx.pptx
 
BabyOno dropshipping via API with DroFx.pptx
BabyOno dropshipping via API with DroFx.pptxBabyOno dropshipping via API with DroFx.pptx
BabyOno dropshipping via API with DroFx.pptx
 
Generative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and MilvusGenerative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and Milvus
 

Python resampling