machine learning h2o data science h2o.ai big data ai deep learning artificial intelligence h2o world predictive analytics data r open source sparkling water python apache spark spark applications distributed h2ony hadoop h2oopen analytics meetup driverless ai h2o open dallas h2odallas scalable gbm machine learning big data gpu algorithms ensembles arno candel glm healthcare erin ledell insurance predictive modeling ensemble learning kaggle java h2o driverless ai caffè software machine learning applications data.table flow stanford alex tellez michal malohlava 0xdata machine learning interpretability tensorflow capital one data engineering modeling smarter applications data munging nlp classification mnist scala yarn math london shiny baseball enterprise deep water automated machine learning goh2o h2onyc mxnet natural language processing data products comcast databricks cloud glrm generalized low rank models sensor data internet of things data scientists overfitting mark landry medicine h2oensemble san francisco chicago paypal random forest text mining algorithm cliff click foundations of ai introduction to ai h2o.ai training ai training ai journey ai foundations model deployment automatic machine learning lime azure interpretability automl cybersecurity visual intelligence steam aws business transformation kalman filters iot financial services cancer sas xgboost text analysis text analytics clustering churn technology consensus lasso pysparkling data analysis munging optimization genomics sri ambati marketshare stephen boyd generalized linear models workshop 6sense prediction gradient boosted models business progressive insurance progressive user craigslist gradient boosting pydata public safety mlconf strataconf atlanta auto-encoder h2oworld fraud detection regression github rest fast higgs boson ebay mrm genai h2o-3 ml workflow use case hedge fund cloudera data flow cdf ml predictions model predictions nifi processor development custom nifi processor server computing mojo scoring pipeline mojo cfm cloudera flow management apache nifi feature engineering intel ai intel rulefit lightgbm moneyball aginity ibm e-learning fashion logistic ordinal regression mlb nvidia digital brain accuracy speed hdinsight sparking water introduction tutorial code anti-money laundering word2vec security aml microsoft time series silicon valley missing values sparklyr rstudio transformation r2d3 thecge peter evans data alliances h2o open ny venkatesh yadav allison baker hca datascience vertical logistic regression fraud fintech business problems marketing risk recommendation recommendation engine design patterns aws lambda amazon hyperparameter grid search denver michal parisoma data scientist galvanize seattle sensors los angeles la scu santa clara university transamerica retirement trendkite ontology management ontology nielsen catalina solutions nielsen catalina nielsen catalina monica rogati data natives cancer detection lasso rob tibshirani domino data lab reproducible reproducible research domino caltech migrating rest api api kmeans k means lexalytics benchmarks game of war gaming machine zone slang risk analysis kp kaiser health kaiser health kaiser permanente save lives questions quora xavier amatriain engineering universal viewership nbc cable nbcuniversal data fellas genomes customer churn venture capital paxion michael marks riverwood macys advanced analytics retail macys.com pitfalls pysparkling water linear modeling business decisions keen io zurich north america zurich business users data modeling data pipelines pipelines digital advertising integral ads adobe neural nets 2015 h2o ensemble predictions corinne horn principal components analysis pca reza zadeh madeleine udell ec2 tokyo data prep boston ad click pojo developers web applications lending club data product unsupervised learning supervised learning r user group portland portland r users mountain view stanford medicine kv store distributed fork join h2o infrastructure h2o design h2o architecture user aalborg userr aalborg aalborg radix sorting matt dowle word gui h2oflow ipython wendy kan citibike dallas bootstrap stefan wagner bootstrap regularization open data city data prithvi prabhu usc ucsb mich nyc new york bordeaux cycling fight crime wine apache statistics strata open-source distributed glm jacksonville super bowl games k-means cisco predictive model factory advertising adtech outlier detection map reduce neural network neural networks in-memory hadopp tom kraljevic performance parallelism qconsf model h20 generalized linear modeling
Mehr anzeigen