SlideShare ist ein Scribd-Unternehmen logo
1 von 37
Downloaden Sie, um offline zu lesen
Slide 1
Radiation-Driven Flame Extinction in Fires
Praveen Narayanan, Vivien Lecoustre
& Arnaud Trouvé
Department of Fire Protection Engineering
University of Maryland, College Park, MD 20742
• Sponsors: National Science Foundation Office of
Cyberinfrastructure (PetaApps Program); and DOE Office of
Science (INCITE - Innovative and Novel Computational Impact
on Theory and Experiment – Program).
Slide 2
• Motivation:
Combustion science
• Flame extinction has a significant impact on the performance of non-
premixed combustion systems. It determines in part the turbulent flame
structure and the levels of pollutant emission (NOx, CO, soot).
Diesel engine
Engine applications
• Extinction due to high turbulence intensities
in IC- or gas-turbine engines (momentum-
driven, high-Reynolds number flames)
Diffusion Flame Extinction
Slide 3
• Motivation:
Fire applications
• Extinction due to air vitiation in under-
ventilated compartment fires or large-scale
pool fires (buoyancy-driven, moderate-
Reynolds number flames)
• Extinction due to inert gaseous agents or
water sprays in fire suppression applications
pool fire
sprinklers
Diffusion Flame Extinction
Slide 4
• Different flame extinction phenomena:
 Aerodynamic quenching: flame weakening
due to flow-induced perturbations (i.e.
decrease in flame residence time)
 Thermal quenching: flame weakening due to
heat losses (e.g. heat losses by
convection/conduction to walls, by thermal
radiation, by water evaporative cooling in
fire suppression applications)
 Quenching by dilution: flame weakening
due to changes in fuel stream or oxidizer
stream composition (e.g. air vitiation in
under-ventilated fires)
Diffusion Flame Extinction
Fuel side Oxidizer side
Flame
aOO YY ,22
1FY
Fuel side Oxidizer side
Flame
ad
flameflame TT 
Fuel side Oxidizer side
Flame
Slide 5
• Different flame extinction phenomena:
 Single criterion to predict extinction (laminar
flame theory):
 Two fundamental limits:
• Fast mixing limit: Da is small because cst is
large (e.g., aerodynamic quenching)
• Slow mixing limit: Da is small because Tst is
small (e.g., thermal or dilution quenching)
Diffusion Flame Extinction
critical
chemical
mixing
DaDa 


)/exp(
)/1(
~
sta
st
chemical
mixing
TT
Da




Slide 6
• Different flame extinction phenomena:
 Fast mixing limit: also called kinetic
extinction
 Criterion for extinction:
 Sources: aerodynamic quenching
• Liñán (1974) Acta Astronautica
• Williams (1985) “Combustion Theory”
• Peters (2000) “Turbulent Combustion”
Diffusion Flame Extinction
criticalst  
Slide 7
• Different flame extinction phenomena:
 Slow mixing limit: also called radiation
extinction
 Criterion for extinction:
 Sources: thermal quenching in microgravity
combustion
• Sohrab, Liñán & Williams (1982)
Combustion Science and Technology
• T’ien (1986) Combustion and Flame
• Chao, Law & T’ien (1990) Proceedings
Combustion Institute 23
• Bedir & T’ien (1998) Combustion and
Flame
Diffusion Flame Extinction
criticalrad ΓΓ  *
criticalst  
Slide 8
• Relation between radiation extinction
and soot emission/smoke point studies:
 Unclear: many recent studies of radiation
extinction correspond to one-dimensional
flames that are soot-free at the extinction
limit
 But: past studies of the smoke point (SP) of
laminar jet diffusion flames suggest that SP
is controlled by the flame luminosity; hence,
SP may be interpreted as a radiation
extinction event
 Source:
• Markstein, de Ris (1984) Proceedings
Combustion Symposium
Diffusion Flame Extinction
Fuel
Air Air
Flame
Soot region
open flame
tip (flame
extinction?)
soot emission
Slide 9
• Study mechanisms responsible for diffusion flame extinction in
laminar and turbulent flames (focus on conditions relevant to
fire applications)
 Establish flame extinction criterion; construct flammability map(s)
• Tools:
 Asymptotic analysis of extinction limits of laminar counter-flow
diffusion flames exposed to different levels of radiant losses
 Direct Numerical Simulations (DNS) of laminar counter-flow and co-
flow diffusion flames, and of turbulent diffusion flames
• Explore relationship between flame extinction and soot
emission
Objectives
pool fire
Cold Soot
Hot Soot
under-ventilated fire
Slide 10
• Use direct numerical simulation (DNS)
 Leverage DOE-sponsored SciDAC collaboration on DNS solver called
S3D – Sandia Ntl. Laboratories (J.H. Chen), Univ. Michigan (H.G. Im)
• DNS solver S3D
 Navier-Stokes solver; fully compressible flow formulation
 High-order methods: 8th order finite difference; 4th order explicit
Runge-Kutta time integrator
 Characteristic-based boundary condition treatment (NSCBC)
 Structured Cartesian grids
 Parallel (MPI-based, excellent scalability)
 Flame modeling: detailed fuel-air chemistry (CHEMKIN-compatible);
simplified soot formation model; thermal radiation model (Discrete
Ordinate/Discrete Transfer Methods); Lagrangian particle model to
describe dilute liquid sprays
Numerical approach
Slide 11
Flame Modeling
• Combustion model: single-step chemistry, ethylene-air
combustion (Westbrook & Dryer, 1981)
 Counter-flow flame: comparison of laminar flame response to changes in
strain rate for single-step and detailed chemistry
)exp()()( 2
T
T
M
Y
M
Y
B aq
F
Op
F
F
RRF 


Slide 12
Flame Modeling
• Soot formation model: a phenomenological approach (Moss et
al., Lindstedt et al.)
 Two-variable model; empirical description of fundamental soot formation
processes (nucleation, surface growth, coagulation, oxidation)
 Model parameters are fuel-dependent
 No PAH chemistry
 Monodispersed soot particle size distribution
ncoagulationnucleationn
A
soot
jj
it
A
soot
iA
soot
i
iA
soot
oxidations
growth
surfacesnucleations
j
soot
j
itsoot
i
sooti
i
soot
N
n
xScx
V
N
n
xN
n
u
xN
n
t
x
Y
Scx
VY
x
Yu
x
Y
t
,,
,
,,,
,
))(()()()(
)()()()(




































Slide 13
Flame Modeling
• Thermal radiation transport model: non-scattering, gray gas
assumption; Discrete Transfer Method (Lockwood & Shah, 1981)
 Radiative transfer equation
 Mean absorption coefficient [m-1]
• ap,i is the Planck mean absorption coefficient for species i [m-1 atm-1]
and is obtained from tabulated data (TNF Workshop web site)
• ksoot is the soot mean absorption coefficient [m-1]

AbsorptionEmission
4
)/( IT
ds
dI
 

sootCOCOOHOH axaxp   )( 2222
-1-1
Km1817sootCTYCTfC sootsootsootvsootsoot )/(  
Slide 14
• Classical activation energy asymptotic (AEA) analysis
 Mass density variations handled with Howarth transformation
 Mixture fraction equation and solution (a is strain rate)
 Flame structure given by flamelet equations (in mixture fraction space)

x
dx
0
2 )/( 
st
F
p
Fst
c
H
dZ
Td

 
)(
2 2
2


AEAAnalysis
)
/2
(erf
2
1
2
1
2 

D
Z 
2
2
2


d
Zd
D
d
dZ

Flame
Slide 15
• Classical decomposition into inner/outer layers
 Perform asymptotic expansion in terms of small parameter e
 Inner layer problem
AEAAnalysis
)exp(]
)1(
[][
)(;)()(
2
2
221,












q
st
stp
st
p
FF
st
Z
Z
d
d
OZZO
c
YH
TT
(d is a reduced Damkohler number)
)(
)(1
1,
2
FF
p
a
st
YH
c
T
T
Ze 

)1/()/(;1)/( stst ZZdddd    
Slide 16
• AEA flame structure with thermal radiation
 Temperature decomposition (outer layer problem)
 Governing equation for temperature deficit due to radiant cooling
 Green’s function solution
 Consider that chemical reaction zone is thin compared to characteristic
radiation length scale ( ): inner layer problem is essentially
unchanged
AEAAnalysis
TTT ad
BS 
p
rad
c
q
T
d
d
DT
d
d



 )()( 2
2
2
1)( reaction



 ***
),()()( 

 dg
c
q
T
p
rad

Slide 17
• AEA flame structure with thermal radiation
 Green’s function solution
 Emitting/absorbing medium (spectrally-averaged gray)
Planck mean aborption coefficient:
Analytical expression for G (as a function of optical depth t):
AEAAnalysis
)4( 4
GTqrad  



 ***
),()()( 

 dg
c
q
T
p
rad

TfCaxaxp vsootOHOHCOCO  )( 2222

]')'()'(')'()'(
)()([2
1
0
1
22,21,
 

R
dEIdEI
EIEIG
bb
Rbb





Slide 18
• AEA flame structure with soot
 Two-equations model for ssot mass fraction and soot number density
(Moss et al., Lindstedt et al. )
 Soot formation and oxidation rates (C2H2-air combustion)
AEAAnalysis








soot
soot
n
A
soott
A
soot
t
Y
soot
tsoot
t
N
n
d
Vd
N
n
d
d
V
Y
d
Vd
d
dY
V




)()()(
)(
22
3/13/2
2
)()exp()(
)()exp()(
)exp()()exp()(
2
A
soot
Fn
sootsoot
OO
O
sootFFY
N
n
Tc
T
T
XTcc
nY
T
T
T
X
c
n
T
T
XTc
T
T
XTc
soot
soot















Slide 19
• AEA flame structure with soot
 External soot loading: a mechanism to simulate non-local effects
observed in multi-dimensional flames in a one-dimensional framework
 Soot loading from the flame air side
AEAAnalysis
Flame
Sootinjection
Fuel
Air Air
Flame
Soot region
Slide 20
Laminar Counter-Flow Flames
Flame
Dx = 60 mm
variable Dy
• Reference counter-flow diffusion flame configuration
 Flamelet perspective: steady flame structure obtained as a function of
flame stretch, ranging from ultra-high to ultra-low values
Slide 21
• Reference counter-flow flame configuration
 Flamelet database: steady flame structure obtained as a function of
flame stretch, ranging from ultra-high to ultra-low values
kinetic
extinction
limit
radiation
extinction
limit
ststT versus
-1
, s61ULext-1
, s025.0LLext
Laminar Counter-Flow Flames
DNS
AEA
Slide 22
• Reference counter-flow flame configuration
 Flamelet database: steady flame structure obtained as a function of
flame stretch, ranging from ultra-high to ultra-low values
Laminar Counter-Flow Flames
stradcomb qq versusand   stradcombrad qqΓ versus)/(  
%70radΓ
2/1
)( st
constant~and)(~ 1/2
radstcomb qq   
radq
combq
Slide 23
• Extinction limits: correspond to critical value of Damköhler number
*
)1()1(162
)1(
1,
)1(
*
2
)10()1(
)/exp(8
cqp
st
q
O
p
F
qp
sta
q
s
qp
F
qp
st
ZeMMb
TTArY



 


 

Laminar Counter-Flow Flames
Slide 24
• Extinction limits: correspond to critical value of Damköhler number
*
)1()1(162
)1(
1,
)1(
*
2
)10()1(
)/exp(8
cqp
st
q
O
p
F
qp
sta
q
s
qp
F
qp
st
ZeMMb
TTArY



 


 

Laminar Counter-Flow Flames
st versus*
adiabatic
soot-free
with
soot
with external
soot loading
approximate
critical value
1*
c
Extinction
Flammable
Slide 25
• Extinction limits
 Flammability map with mixing rate and fuel-air flame temperature as
coordinates
Laminar Counter-Flow Flames
stT
Extinction
st
1*
cFlammable
Engine
extinction event
Fire
extinction event
Slide 26
• Simplified turbulent flame configuration
 Two-dimensional (8×4 cm2); grid size: 1216×376 (uniform×stretched);
prescribed inflow turbulent fluctuations (u = 1-2.5 m/s; Lt = 1.7 mm)
Turbulent Wall-Jet Flames
Air
Fuel
Solid Wall
2.5-5 m/s Dy  50 mm
Dx  66 mm
Slide 27
• Analysis of flame structure (case: Tw = 300 K; d = 0.5 cm; with
soot/radiation; Csoot = 7000 m-1K-1)
Turbulent Wall-Jet Flames
radiation cooling rate
soot mass fraction
Observations:
• radiative cooling region
is not thin
• soot region is not thin
• Weak flame events
correlated with soot mass
leakage across the flame
extinction
extinction
Slide 28
• Analysis of flame structure (case: Tw = 300 K; d = 0.5 cm; with
soot/radiation; Csoot = 7000 m-1K-1)
Turbulent Wall-Jet Flames
weak spots
sTst versus sversusst
weak flame events occur at low values of
flame stretch (slow mixing limit)
Slide 29
• Extinction limits
 Flammability map with mixing rate and fuel-air flame temperature as
coordinates
Flame weakest spots (e.g., locations that show soot mass leakage)
correspond to weak burning conditions, not flame extinction
Laminar Counter-Flow Flames
stT
Extinction
st
1*
c
representative conditions of
flame weakest spots in DNS
Slide 30
• Simplified laminar flame configuration
 High air co-flow velocity, diffusive-driven incoming fuel stream, zero-g
 Recirculation zone close to fuel surface, long residence times
Laminar Co-Flow Flames
Fuel
Air
1 m/s
Air
1 m/s
Slide 31
• Simplified laminar flame configuration
 Comparison between solutions with (left) and without radiation (right)
 Flame tip temperatures differ by more than 700 K
Laminar Co-Flow Flames
Slide 32
• Simplified laminar flame configuration
 Comparison between solutions with (left) and without radiation (right)
 Both flames feature both large amounts of soot within the flame
envelope and soot mass leakage across the flame tip
Laminar Co-Flow Flames
Slide 33
• Extinction limits
 Flammability map with flame temperature and mixing rate as coordinates
Flame tip (e.g., location that show soot mass leakage) corresponds to
weak burning conditions, not flame extinction
Laminar Counter-Flow Flames
stT
Extinction
st
1*
c
conditions along flame
surface from base to tip
with radiation
without radiation
Slide 34
• AEA theory and DNS are used to make fundamental
observations of extinction phenomena in non-adiabatic turbulent
diffusion flames
• In laminar counter-flow flames, two different sets of flame
extinction conditions are observed:
 Kinetic extinction occurring under fast mixing conditions
 Radiation extinction occurring under slow mixing conditions
• These 2 different modes correspond to the same extinction limit:
 AEA analysis suggests that all extinction limits may be described by a
single criterion corresponding to a critical value of the Damköhler number
 Soot has a significant impact on the extinction limit
• In laminar co-flow flames and in turbulent flames, it is found that
soot mass leakage events do not correspond to radiation
extinction events
Conclusions
Slide 35
Slide 36
• Intermediate stretch rate: cst = 5 s-1
 Flame temperature versus distance normal to the flame
 Weak radiation effects
1)( outer
Laminar Counter-Flow Flames
Slide 37
• Low stretch rate: cst = 0.045 s-1
 Flame temperature versus distance normal to the flame
 Strong radiation effects
)1()( Oouter 
Laminar Counter-Flow Flames

Weitere ähnliche Inhalte

Was ist angesagt?

AraGasPlus - Example Report
AraGasPlus - Example ReportAraGasPlus - Example Report
AraGasPlus - Example ReportMike Marrington
 
Chapter20 atomicspectroscopych20-140709161430-phpapp02
Chapter20 atomicspectroscopych20-140709161430-phpapp02Chapter20 atomicspectroscopych20-140709161430-phpapp02
Chapter20 atomicspectroscopych20-140709161430-phpapp02Cleophas Rwemera
 
Ph d defense_rajmohan_muthaiah_University_of_oklahoma_07_28_2021
Ph d defense_rajmohan_muthaiah_University_of_oklahoma_07_28_2021Ph d defense_rajmohan_muthaiah_University_of_oklahoma_07_28_2021
Ph d defense_rajmohan_muthaiah_University_of_oklahoma_07_28_2021Rajmohan Muthaiah
 
PhD Proposal - December 2008
PhD Proposal - December 2008PhD Proposal - December 2008
PhD Proposal - December 2008VivienLecoustre
 
A. De Simone: The Quest for Dark Matter: Update and News
A. De Simone: The Quest for Dark Matter: Update and NewsA. De Simone: The Quest for Dark Matter: Update and News
A. De Simone: The Quest for Dark Matter: Update and NewsSEENET-MTP
 
Flame photometry ppt
Flame photometry  pptFlame photometry  ppt
Flame photometry pptrdeepthi1
 
Use of TiO2 nanotubes in CO2 conversion
Use of TiO2 nanotubes in CO2 conversionUse of TiO2 nanotubes in CO2 conversion
Use of TiO2 nanotubes in CO2 conversionImtenan Elmanzalawi
 
Flame Photometry, by Dr. Umesh Kumar Sharma & Shyma M. S.
Flame Photometry, by Dr. Umesh Kumar Sharma  & Shyma M. S.Flame Photometry, by Dr. Umesh Kumar Sharma  & Shyma M. S.
Flame Photometry, by Dr. Umesh Kumar Sharma & Shyma M. S.Dr. UMESH KUMAR SHARMA
 
Duncan Gordon et al., Physica B, 385-386, (2006), 511 - 513.
Duncan Gordon et al., Physica B, 385-386, (2006), 511 - 513.Duncan Gordon et al., Physica B, 385-386, (2006), 511 - 513.
Duncan Gordon et al., Physica B, 385-386, (2006), 511 - 513.Duncan Gordon
 

Was ist angesagt? (18)

Chromatography
ChromatographyChromatography
Chromatography
 
Ae4201209213
Ae4201209213Ae4201209213
Ae4201209213
 
Papastefanou2010
Papastefanou2010Papastefanou2010
Papastefanou2010
 
AraGasPlus - Example Report
AraGasPlus - Example ReportAraGasPlus - Example Report
AraGasPlus - Example Report
 
Flame Photometry
Flame PhotometryFlame Photometry
Flame Photometry
 
Chapter20 atomicspectroscopych20-140709161430-phpapp02
Chapter20 atomicspectroscopych20-140709161430-phpapp02Chapter20 atomicspectroscopych20-140709161430-phpapp02
Chapter20 atomicspectroscopych20-140709161430-phpapp02
 
Ph d defense_rajmohan_muthaiah_University_of_oklahoma_07_28_2021
Ph d defense_rajmohan_muthaiah_University_of_oklahoma_07_28_2021Ph d defense_rajmohan_muthaiah_University_of_oklahoma_07_28_2021
Ph d defense_rajmohan_muthaiah_University_of_oklahoma_07_28_2021
 
PhD Proposal - December 2008
PhD Proposal - December 2008PhD Proposal - December 2008
PhD Proposal - December 2008
 
A. De Simone: The Quest for Dark Matter: Update and News
A. De Simone: The Quest for Dark Matter: Update and NewsA. De Simone: The Quest for Dark Matter: Update and News
A. De Simone: The Quest for Dark Matter: Update and News
 
Studies of Hydrotalcite Clays for CO2 Adsorption - Professor Joe Wood at the ...
Studies of Hydrotalcite Clays for CO2 Adsorption - Professor Joe Wood at the ...Studies of Hydrotalcite Clays for CO2 Adsorption - Professor Joe Wood at the ...
Studies of Hydrotalcite Clays for CO2 Adsorption - Professor Joe Wood at the ...
 
Flame photometry ppt
Flame photometry  pptFlame photometry  ppt
Flame photometry ppt
 
Use of TiO2 nanotubes in CO2 conversion
Use of TiO2 nanotubes in CO2 conversionUse of TiO2 nanotubes in CO2 conversion
Use of TiO2 nanotubes in CO2 conversion
 
Emission measurement
Emission measurementEmission measurement
Emission measurement
 
Flame Photometry
 Flame Photometry Flame Photometry
Flame Photometry
 
Sheraz Daood (University of Sheffield) - Experimental Investigation with PACT...
Sheraz Daood (University of Sheffield) - Experimental Investigation with PACT...Sheraz Daood (University of Sheffield) - Experimental Investigation with PACT...
Sheraz Daood (University of Sheffield) - Experimental Investigation with PACT...
 
Checchi
ChecchiChecchi
Checchi
 
Flame Photometry, by Dr. Umesh Kumar Sharma & Shyma M. S.
Flame Photometry, by Dr. Umesh Kumar Sharma  & Shyma M. S.Flame Photometry, by Dr. Umesh Kumar Sharma  & Shyma M. S.
Flame Photometry, by Dr. Umesh Kumar Sharma & Shyma M. S.
 
Duncan Gordon et al., Physica B, 385-386, (2006), 511 - 513.
Duncan Gordon et al., Physica B, 385-386, (2006), 511 - 513.Duncan Gordon et al., Physica B, 385-386, (2006), 511 - 513.
Duncan Gordon et al., Physica B, 385-386, (2006), 511 - 513.
 

Andere mochten auch (20)

Blanco pesaresi
Blanco pesaresiBlanco pesaresi
Blanco pesaresi
 
Capa de aplicacion
Capa de aplicacionCapa de aplicacion
Capa de aplicacion
 
Vulvolo
VulvoloVulvolo
Vulvolo
 
Achieving Sustainable Energy for All in South Asia: Modalities of Cooperation
Achieving Sustainable Energy for All in South Asia: Modalities of CooperationAchieving Sustainable Energy for All in South Asia: Modalities of Cooperation
Achieving Sustainable Energy for All in South Asia: Modalities of Cooperation
 
Mi biografía María Angélica Carantonio
Mi biografía María Angélica Carantonio Mi biografía María Angélica Carantonio
Mi biografía María Angélica Carantonio
 
CV Mufadda
CV MufaddaCV Mufadda
CV Mufadda
 
SeanDenton CV 2016 v0.6
SeanDenton CV 2016 v0.6SeanDenton CV 2016 v0.6
SeanDenton CV 2016 v0.6
 
Practica 1
Practica 1Practica 1
Practica 1
 
Facebook
FacebookFacebook
Facebook
 
La investigacion
La investigacionLa investigacion
La investigacion
 
Presentation ellak egov2016_18o
Presentation ellak egov2016_18oPresentation ellak egov2016_18o
Presentation ellak egov2016_18o
 
Cycle Helmet Study - Cycle SOS
Cycle Helmet Study - Cycle SOSCycle Helmet Study - Cycle SOS
Cycle Helmet Study - Cycle SOS
 
Alcoholismo
AlcoholismoAlcoholismo
Alcoholismo
 
Sabores de la india
Sabores de la indiaSabores de la india
Sabores de la india
 
Trabajo componentes de un ordenador
Trabajo componentes de un ordenadorTrabajo componentes de un ordenador
Trabajo componentes de un ordenador
 
Comocrearcuentaengoogle
ComocrearcuentaengoogleComocrearcuentaengoogle
Comocrearcuentaengoogle
 
Trabajo practico n°6
Trabajo practico n°6Trabajo practico n°6
Trabajo practico n°6
 
Practica 1
Practica 1Practica 1
Practica 1
 
CV - Pratik Upadhyaya updated
CV - Pratik Upadhyaya updatedCV - Pratik Upadhyaya updated
CV - Pratik Upadhyaya updated
 
Conductismo
ConductismoConductismo
Conductismo
 

Ähnlich wie RadiationDrivenExtinctionInFires

2007 AFRC-JFRC Flare AnalysisPaper
2007 AFRC-JFRC Flare AnalysisPaper2007 AFRC-JFRC Flare AnalysisPaper
2007 AFRC-JFRC Flare AnalysisPaperJoseph Smith
 
24 upscaling of heater tests in bure rutqvist lbnl
24 upscaling of heater tests in bure rutqvist lbnl24 upscaling of heater tests in bure rutqvist lbnl
24 upscaling of heater tests in bure rutqvist lbnlleann_mays
 
Simulation of Laser Thermal Interaction with Titanium Dioxide /Polyvinyl Alco...
Simulation of Laser Thermal Interaction with Titanium Dioxide /Polyvinyl Alco...Simulation of Laser Thermal Interaction with Titanium Dioxide /Polyvinyl Alco...
Simulation of Laser Thermal Interaction with Titanium Dioxide /Polyvinyl Alco...Editor IJCATR
 
Surface Ablation in Fiber-Reinforced Composite Laminates Subjected to Continu...
Surface Ablation in Fiber-Reinforced Composite Laminates Subjected to Continu...Surface Ablation in Fiber-Reinforced Composite Laminates Subjected to Continu...
Surface Ablation in Fiber-Reinforced Composite Laminates Subjected to Continu...Mississippi State University
 
Photocatalytic reduction of CO2
Photocatalytic reduction of CO2Photocatalytic reduction of CO2
Photocatalytic reduction of CO2APRATIM KHANDELWAL
 
Heterogeneous Catalyst-opportunity and challenges.ppt
Heterogeneous Catalyst-opportunity and challenges.pptHeterogeneous Catalyst-opportunity and challenges.ppt
Heterogeneous Catalyst-opportunity and challenges.pptManoj Mohapatra
 
Heterogeneous Catalysis - Opportunities and Challenges
Heterogeneous Catalysis - Opportunities and ChallengesHeterogeneous Catalysis - Opportunities and Challenges
Heterogeneous Catalysis - Opportunities and ChallengesManoj Mohapatra
 
7BurnerTechnology-ASGE2011-Worgas-G_Berthold.pdf
7BurnerTechnology-ASGE2011-Worgas-G_Berthold.pdf7BurnerTechnology-ASGE2011-Worgas-G_Berthold.pdf
7BurnerTechnology-ASGE2011-Worgas-G_Berthold.pdfOmkarVartak6
 
Thermoplastic composites for Wind Energy
Thermoplastic composites for Wind EnergyThermoplastic composites for Wind Energy
Thermoplastic composites for Wind EnergyJohn R. Dorgan
 
Numerical analysis of confined laminar diffusion effects of chemical kinet...
Numerical analysis of confined laminar diffusion    effects of chemical kinet...Numerical analysis of confined laminar diffusion    effects of chemical kinet...
Numerical analysis of confined laminar diffusion effects of chemical kinet...IAEME Publication
 
Numerical analysis of confined laminar diffusion flame effects of chemical ...
Numerical analysis of confined laminar diffusion flame   effects of chemical ...Numerical analysis of confined laminar diffusion flame   effects of chemical ...
Numerical analysis of confined laminar diffusion flame effects of chemical ...IAEME Publication
 
Numerical analysis of confined laminar diffusion effects of chemical kinet...
Numerical analysis of confined laminar diffusion    effects of chemical kinet...Numerical analysis of confined laminar diffusion    effects of chemical kinet...
Numerical analysis of confined laminar diffusion effects of chemical kinet...IAEME Publication
 
27a febex dp collaboration overview and related sfwst r and d activities zhen...
27a febex dp collaboration overview and related sfwst r and d activities zhen...27a febex dp collaboration overview and related sfwst r and d activities zhen...
27a febex dp collaboration overview and related sfwst r and d activities zhen...leann_mays
 
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...Pawan Kumar
 
30 fe heater test at mont terri rutqvist lbnl
30 fe heater test at mont terri rutqvist lbnl30 fe heater test at mont terri rutqvist lbnl
30 fe heater test at mont terri rutqvist lbnlleann_mays
 

Ähnlich wie RadiationDrivenExtinctionInFires (20)

2007 AFRC-JFRC Flare AnalysisPaper
2007 AFRC-JFRC Flare AnalysisPaper2007 AFRC-JFRC Flare AnalysisPaper
2007 AFRC-JFRC Flare AnalysisPaper
 
Cool Flames in Space, a Hot Prospect on Earth!
Cool Flames in Space, a Hot Prospect on Earth!Cool Flames in Space, a Hot Prospect on Earth!
Cool Flames in Space, a Hot Prospect on Earth!
 
24 upscaling of heater tests in bure rutqvist lbnl
24 upscaling of heater tests in bure rutqvist lbnl24 upscaling of heater tests in bure rutqvist lbnl
24 upscaling of heater tests in bure rutqvist lbnl
 
Simulation of Laser Thermal Interaction with Titanium Dioxide /Polyvinyl Alco...
Simulation of Laser Thermal Interaction with Titanium Dioxide /Polyvinyl Alco...Simulation of Laser Thermal Interaction with Titanium Dioxide /Polyvinyl Alco...
Simulation of Laser Thermal Interaction with Titanium Dioxide /Polyvinyl Alco...
 
Surface Ablation in Fiber-Reinforced Composite Laminates Subjected to Continu...
Surface Ablation in Fiber-Reinforced Composite Laminates Subjected to Continu...Surface Ablation in Fiber-Reinforced Composite Laminates Subjected to Continu...
Surface Ablation in Fiber-Reinforced Composite Laminates Subjected to Continu...
 
proposal presentation file-linked
proposal presentation file-linkedproposal presentation file-linked
proposal presentation file-linked
 
Photocatalytic reduction of CO2
Photocatalytic reduction of CO2Photocatalytic reduction of CO2
Photocatalytic reduction of CO2
 
Heterogeneous Catalyst-opportunity and challenges.ppt
Heterogeneous Catalyst-opportunity and challenges.pptHeterogeneous Catalyst-opportunity and challenges.ppt
Heterogeneous Catalyst-opportunity and challenges.ppt
 
Heterogeneous Catalysis - Opportunities and Challenges
Heterogeneous Catalysis - Opportunities and ChallengesHeterogeneous Catalysis - Opportunities and Challenges
Heterogeneous Catalysis - Opportunities and Challenges
 
7BurnerTechnology-ASGE2011-Worgas-G_Berthold.pdf
7BurnerTechnology-ASGE2011-Worgas-G_Berthold.pdf7BurnerTechnology-ASGE2011-Worgas-G_Berthold.pdf
7BurnerTechnology-ASGE2011-Worgas-G_Berthold.pdf
 
Li - Energy Conversion and Combustion Sciences - Spring Review 2013
Li - Energy Conversion and Combustion Sciences - Spring Review 2013Li - Energy Conversion and Combustion Sciences - Spring Review 2013
Li - Energy Conversion and Combustion Sciences - Spring Review 2013
 
THIN FILMS.pdf
THIN FILMS.pdfTHIN FILMS.pdf
THIN FILMS.pdf
 
Q0440596102
Q0440596102Q0440596102
Q0440596102
 
Thermoplastic composites for Wind Energy
Thermoplastic composites for Wind EnergyThermoplastic composites for Wind Energy
Thermoplastic composites for Wind Energy
 
Numerical analysis of confined laminar diffusion effects of chemical kinet...
Numerical analysis of confined laminar diffusion    effects of chemical kinet...Numerical analysis of confined laminar diffusion    effects of chemical kinet...
Numerical analysis of confined laminar diffusion effects of chemical kinet...
 
Numerical analysis of confined laminar diffusion flame effects of chemical ...
Numerical analysis of confined laminar diffusion flame   effects of chemical ...Numerical analysis of confined laminar diffusion flame   effects of chemical ...
Numerical analysis of confined laminar diffusion flame effects of chemical ...
 
Numerical analysis of confined laminar diffusion effects of chemical kinet...
Numerical analysis of confined laminar diffusion    effects of chemical kinet...Numerical analysis of confined laminar diffusion    effects of chemical kinet...
Numerical analysis of confined laminar diffusion effects of chemical kinet...
 
27a febex dp collaboration overview and related sfwst r and d activities zhen...
27a febex dp collaboration overview and related sfwst r and d activities zhen...27a febex dp collaboration overview and related sfwst r and d activities zhen...
27a febex dp collaboration overview and related sfwst r and d activities zhen...
 
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
 
30 fe heater test at mont terri rutqvist lbnl
30 fe heater test at mont terri rutqvist lbnl30 fe heater test at mont terri rutqvist lbnl
30 fe heater test at mont terri rutqvist lbnl
 

Mehr von Praveen Narayanan

Mehr von Praveen Narayanan (8)

magellan_mongodb_workload_analysis
magellan_mongodb_workload_analysismagellan_mongodb_workload_analysis
magellan_mongodb_workload_analysis
 
S4495-plasma-turbulence-sims-gyrokinetic-tokamak-solver
S4495-plasma-turbulence-sims-gyrokinetic-tokamak-solverS4495-plasma-turbulence-sims-gyrokinetic-tokamak-solver
S4495-plasma-turbulence-sims-gyrokinetic-tokamak-solver
 
cug2011-praveen
cug2011-praveencug2011-praveen
cug2011-praveen
 
PraveenBOUT++
PraveenBOUT++PraveenBOUT++
PraveenBOUT++
 
LBNLppt
LBNLpptLBNLppt
LBNLppt
 
governing_equations_radiation_problem
governing_equations_radiation_problemgoverning_equations_radiation_problem
governing_equations_radiation_problem
 
peters_corrected-1
peters_corrected-1peters_corrected-1
peters_corrected-1
 
blasius
blasiusblasius
blasius
 

RadiationDrivenExtinctionInFires

  • 1. Slide 1 Radiation-Driven Flame Extinction in Fires Praveen Narayanan, Vivien Lecoustre & Arnaud Trouvé Department of Fire Protection Engineering University of Maryland, College Park, MD 20742 • Sponsors: National Science Foundation Office of Cyberinfrastructure (PetaApps Program); and DOE Office of Science (INCITE - Innovative and Novel Computational Impact on Theory and Experiment – Program).
  • 2. Slide 2 • Motivation: Combustion science • Flame extinction has a significant impact on the performance of non- premixed combustion systems. It determines in part the turbulent flame structure and the levels of pollutant emission (NOx, CO, soot). Diesel engine Engine applications • Extinction due to high turbulence intensities in IC- or gas-turbine engines (momentum- driven, high-Reynolds number flames) Diffusion Flame Extinction
  • 3. Slide 3 • Motivation: Fire applications • Extinction due to air vitiation in under- ventilated compartment fires or large-scale pool fires (buoyancy-driven, moderate- Reynolds number flames) • Extinction due to inert gaseous agents or water sprays in fire suppression applications pool fire sprinklers Diffusion Flame Extinction
  • 4. Slide 4 • Different flame extinction phenomena:  Aerodynamic quenching: flame weakening due to flow-induced perturbations (i.e. decrease in flame residence time)  Thermal quenching: flame weakening due to heat losses (e.g. heat losses by convection/conduction to walls, by thermal radiation, by water evaporative cooling in fire suppression applications)  Quenching by dilution: flame weakening due to changes in fuel stream or oxidizer stream composition (e.g. air vitiation in under-ventilated fires) Diffusion Flame Extinction Fuel side Oxidizer side Flame aOO YY ,22 1FY Fuel side Oxidizer side Flame ad flameflame TT  Fuel side Oxidizer side Flame
  • 5. Slide 5 • Different flame extinction phenomena:  Single criterion to predict extinction (laminar flame theory):  Two fundamental limits: • Fast mixing limit: Da is small because cst is large (e.g., aerodynamic quenching) • Slow mixing limit: Da is small because Tst is small (e.g., thermal or dilution quenching) Diffusion Flame Extinction critical chemical mixing DaDa    )/exp( )/1( ~ sta st chemical mixing TT Da    
  • 6. Slide 6 • Different flame extinction phenomena:  Fast mixing limit: also called kinetic extinction  Criterion for extinction:  Sources: aerodynamic quenching • Liñán (1974) Acta Astronautica • Williams (1985) “Combustion Theory” • Peters (2000) “Turbulent Combustion” Diffusion Flame Extinction criticalst  
  • 7. Slide 7 • Different flame extinction phenomena:  Slow mixing limit: also called radiation extinction  Criterion for extinction:  Sources: thermal quenching in microgravity combustion • Sohrab, Liñán & Williams (1982) Combustion Science and Technology • T’ien (1986) Combustion and Flame • Chao, Law & T’ien (1990) Proceedings Combustion Institute 23 • Bedir & T’ien (1998) Combustion and Flame Diffusion Flame Extinction criticalrad ΓΓ  * criticalst  
  • 8. Slide 8 • Relation between radiation extinction and soot emission/smoke point studies:  Unclear: many recent studies of radiation extinction correspond to one-dimensional flames that are soot-free at the extinction limit  But: past studies of the smoke point (SP) of laminar jet diffusion flames suggest that SP is controlled by the flame luminosity; hence, SP may be interpreted as a radiation extinction event  Source: • Markstein, de Ris (1984) Proceedings Combustion Symposium Diffusion Flame Extinction Fuel Air Air Flame Soot region open flame tip (flame extinction?) soot emission
  • 9. Slide 9 • Study mechanisms responsible for diffusion flame extinction in laminar and turbulent flames (focus on conditions relevant to fire applications)  Establish flame extinction criterion; construct flammability map(s) • Tools:  Asymptotic analysis of extinction limits of laminar counter-flow diffusion flames exposed to different levels of radiant losses  Direct Numerical Simulations (DNS) of laminar counter-flow and co- flow diffusion flames, and of turbulent diffusion flames • Explore relationship between flame extinction and soot emission Objectives pool fire Cold Soot Hot Soot under-ventilated fire
  • 10. Slide 10 • Use direct numerical simulation (DNS)  Leverage DOE-sponsored SciDAC collaboration on DNS solver called S3D – Sandia Ntl. Laboratories (J.H. Chen), Univ. Michigan (H.G. Im) • DNS solver S3D  Navier-Stokes solver; fully compressible flow formulation  High-order methods: 8th order finite difference; 4th order explicit Runge-Kutta time integrator  Characteristic-based boundary condition treatment (NSCBC)  Structured Cartesian grids  Parallel (MPI-based, excellent scalability)  Flame modeling: detailed fuel-air chemistry (CHEMKIN-compatible); simplified soot formation model; thermal radiation model (Discrete Ordinate/Discrete Transfer Methods); Lagrangian particle model to describe dilute liquid sprays Numerical approach
  • 11. Slide 11 Flame Modeling • Combustion model: single-step chemistry, ethylene-air combustion (Westbrook & Dryer, 1981)  Counter-flow flame: comparison of laminar flame response to changes in strain rate for single-step and detailed chemistry )exp()()( 2 T T M Y M Y B aq F Op F F RRF   
  • 12. Slide 12 Flame Modeling • Soot formation model: a phenomenological approach (Moss et al., Lindstedt et al.)  Two-variable model; empirical description of fundamental soot formation processes (nucleation, surface growth, coagulation, oxidation)  Model parameters are fuel-dependent  No PAH chemistry  Monodispersed soot particle size distribution ncoagulationnucleationn A soot jj it A soot iA soot i iA soot oxidations growth surfacesnucleations j soot j itsoot i sooti i soot N n xScx V N n xN n u xN n t x Y Scx VY x Yu x Y t ,, , ,,, , ))(()()()( )()()()(                                    
  • 13. Slide 13 Flame Modeling • Thermal radiation transport model: non-scattering, gray gas assumption; Discrete Transfer Method (Lockwood & Shah, 1981)  Radiative transfer equation  Mean absorption coefficient [m-1] • ap,i is the Planck mean absorption coefficient for species i [m-1 atm-1] and is obtained from tabulated data (TNF Workshop web site) • ksoot is the soot mean absorption coefficient [m-1]  AbsorptionEmission 4 )/( IT ds dI    sootCOCOOHOH axaxp   )( 2222 -1-1 Km1817sootCTYCTfC sootsootsootvsootsoot )/(  
  • 14. Slide 14 • Classical activation energy asymptotic (AEA) analysis  Mass density variations handled with Howarth transformation  Mixture fraction equation and solution (a is strain rate)  Flame structure given by flamelet equations (in mixture fraction space)  x dx 0 2 )/(  st F p Fst c H dZ Td    )( 2 2 2   AEAAnalysis ) /2 (erf 2 1 2 1 2   D Z  2 2 2   d Zd D d dZ  Flame
  • 15. Slide 15 • Classical decomposition into inner/outer layers  Perform asymptotic expansion in terms of small parameter e  Inner layer problem AEAAnalysis )exp(] )1( [][ )(;)()( 2 2 221,             q st stp st p FF st Z Z d d OZZO c YH TT (d is a reduced Damkohler number) )( )(1 1, 2 FF p a st YH c T T Ze   )1/()/(;1)/( stst ZZdddd    
  • 16. Slide 16 • AEA flame structure with thermal radiation  Temperature decomposition (outer layer problem)  Governing equation for temperature deficit due to radiant cooling  Green’s function solution  Consider that chemical reaction zone is thin compared to characteristic radiation length scale ( ): inner layer problem is essentially unchanged AEAAnalysis TTT ad BS  p rad c q T d d DT d d     )()( 2 2 2 1)( reaction     *** ),()()(    dg c q T p rad 
  • 17. Slide 17 • AEA flame structure with thermal radiation  Green’s function solution  Emitting/absorbing medium (spectrally-averaged gray) Planck mean aborption coefficient: Analytical expression for G (as a function of optical depth t): AEAAnalysis )4( 4 GTqrad       *** ),()()(    dg c q T p rad  TfCaxaxp vsootOHOHCOCO  )( 2222  ]')'()'(')'()'( )()([2 1 0 1 22,21,    R dEIdEI EIEIG bb Rbb     
  • 18. Slide 18 • AEA flame structure with soot  Two-equations model for ssot mass fraction and soot number density (Moss et al., Lindstedt et al. )  Soot formation and oxidation rates (C2H2-air combustion) AEAAnalysis         soot soot n A soott A soot t Y soot tsoot t N n d Vd N n d d V Y d Vd d dY V     )()()( )( 22 3/13/2 2 )()exp()( )()exp()( )exp()()exp()( 2 A soot Fn sootsoot OO O sootFFY N n Tc T T XTcc nY T T T X c n T T XTc T T XTc soot soot               
  • 19. Slide 19 • AEA flame structure with soot  External soot loading: a mechanism to simulate non-local effects observed in multi-dimensional flames in a one-dimensional framework  Soot loading from the flame air side AEAAnalysis Flame Sootinjection Fuel Air Air Flame Soot region
  • 20. Slide 20 Laminar Counter-Flow Flames Flame Dx = 60 mm variable Dy • Reference counter-flow diffusion flame configuration  Flamelet perspective: steady flame structure obtained as a function of flame stretch, ranging from ultra-high to ultra-low values
  • 21. Slide 21 • Reference counter-flow flame configuration  Flamelet database: steady flame structure obtained as a function of flame stretch, ranging from ultra-high to ultra-low values kinetic extinction limit radiation extinction limit ststT versus -1 , s61ULext-1 , s025.0LLext Laminar Counter-Flow Flames DNS AEA
  • 22. Slide 22 • Reference counter-flow flame configuration  Flamelet database: steady flame structure obtained as a function of flame stretch, ranging from ultra-high to ultra-low values Laminar Counter-Flow Flames stradcomb qq versusand   stradcombrad qqΓ versus)/(   %70radΓ 2/1 )( st constant~and)(~ 1/2 radstcomb qq    radq combq
  • 23. Slide 23 • Extinction limits: correspond to critical value of Damköhler number * )1()1(162 )1( 1, )1( * 2 )10()1( )/exp(8 cqp st q O p F qp sta q s qp F qp st ZeMMb TTArY           Laminar Counter-Flow Flames
  • 24. Slide 24 • Extinction limits: correspond to critical value of Damköhler number * )1()1(162 )1( 1, )1( * 2 )10()1( )/exp(8 cqp st q O p F qp sta q s qp F qp st ZeMMb TTArY           Laminar Counter-Flow Flames st versus* adiabatic soot-free with soot with external soot loading approximate critical value 1* c Extinction Flammable
  • 25. Slide 25 • Extinction limits  Flammability map with mixing rate and fuel-air flame temperature as coordinates Laminar Counter-Flow Flames stT Extinction st 1* cFlammable Engine extinction event Fire extinction event
  • 26. Slide 26 • Simplified turbulent flame configuration  Two-dimensional (8×4 cm2); grid size: 1216×376 (uniform×stretched); prescribed inflow turbulent fluctuations (u = 1-2.5 m/s; Lt = 1.7 mm) Turbulent Wall-Jet Flames Air Fuel Solid Wall 2.5-5 m/s Dy  50 mm Dx  66 mm
  • 27. Slide 27 • Analysis of flame structure (case: Tw = 300 K; d = 0.5 cm; with soot/radiation; Csoot = 7000 m-1K-1) Turbulent Wall-Jet Flames radiation cooling rate soot mass fraction Observations: • radiative cooling region is not thin • soot region is not thin • Weak flame events correlated with soot mass leakage across the flame extinction extinction
  • 28. Slide 28 • Analysis of flame structure (case: Tw = 300 K; d = 0.5 cm; with soot/radiation; Csoot = 7000 m-1K-1) Turbulent Wall-Jet Flames weak spots sTst versus sversusst weak flame events occur at low values of flame stretch (slow mixing limit)
  • 29. Slide 29 • Extinction limits  Flammability map with mixing rate and fuel-air flame temperature as coordinates Flame weakest spots (e.g., locations that show soot mass leakage) correspond to weak burning conditions, not flame extinction Laminar Counter-Flow Flames stT Extinction st 1* c representative conditions of flame weakest spots in DNS
  • 30. Slide 30 • Simplified laminar flame configuration  High air co-flow velocity, diffusive-driven incoming fuel stream, zero-g  Recirculation zone close to fuel surface, long residence times Laminar Co-Flow Flames Fuel Air 1 m/s Air 1 m/s
  • 31. Slide 31 • Simplified laminar flame configuration  Comparison between solutions with (left) and without radiation (right)  Flame tip temperatures differ by more than 700 K Laminar Co-Flow Flames
  • 32. Slide 32 • Simplified laminar flame configuration  Comparison between solutions with (left) and without radiation (right)  Both flames feature both large amounts of soot within the flame envelope and soot mass leakage across the flame tip Laminar Co-Flow Flames
  • 33. Slide 33 • Extinction limits  Flammability map with flame temperature and mixing rate as coordinates Flame tip (e.g., location that show soot mass leakage) corresponds to weak burning conditions, not flame extinction Laminar Counter-Flow Flames stT Extinction st 1* c conditions along flame surface from base to tip with radiation without radiation
  • 34. Slide 34 • AEA theory and DNS are used to make fundamental observations of extinction phenomena in non-adiabatic turbulent diffusion flames • In laminar counter-flow flames, two different sets of flame extinction conditions are observed:  Kinetic extinction occurring under fast mixing conditions  Radiation extinction occurring under slow mixing conditions • These 2 different modes correspond to the same extinction limit:  AEA analysis suggests that all extinction limits may be described by a single criterion corresponding to a critical value of the Damköhler number  Soot has a significant impact on the extinction limit • In laminar co-flow flames and in turbulent flames, it is found that soot mass leakage events do not correspond to radiation extinction events Conclusions
  • 36. Slide 36 • Intermediate stretch rate: cst = 5 s-1  Flame temperature versus distance normal to the flame  Weak radiation effects 1)( outer Laminar Counter-Flow Flames
  • 37. Slide 37 • Low stretch rate: cst = 0.045 s-1  Flame temperature versus distance normal to the flame  Strong radiation effects )1()( Oouter  Laminar Counter-Flow Flames