SlideShare ist ein Scribd-Unternehmen logo
1 von 77
Downloaden Sie, um offline zu lesen
Matrices
Dr. Pankaj Das
Mail id:Pankaj.iasri@gmail.com
Matrices - Introduction
Matrix algebra has at least two advantages:
â€ĸReduces complicated systems of equations to simple
expressions
â€ĸAdaptable to systematic method of mathematical treatment
and well suited to computers
Definition:
A matrix is a set or group of numbers arranged in a square or
rectangular array enclosed by two brackets
ī› ī
1
1 ī€­ īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€­ 0
3
2
4
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
d
c
b
a
Matrices - Introduction
Properties:
â€ĸA specified number of rows and a specified number of
columns
â€ĸTwo numbers (rows x columns) describe the dimensions
or size of the matrix.
Examples:
3x3 matrix
2x4 matrix
1x2 matrix īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€­
3
3
3
5
1
4
4
2
1
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ ī€­
2
3
3
3
0
1
0
1
ī› ī
1
1 ī€­
Matrices - Introduction
A matrix is denoted by a bold capital letter and the elements
within the matrix are denoted by lower case letters
e.g. matrix [A] with elements aij
īƒē
īƒē
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
mn
ij
m
m
n
ij
in
ij
a
a
a
a
a
a
a
a
a
a
a
a
2
1
2
22
21
12
11
...
...
ī
ī
ī
ī
i goes from 1 to m
j goes from 1 to n
Amxn=
mAn
Matrices - Introduction
TYPES OF MATRICES
1. Column matrix or vector:
The number of rows may be any integer but the number of
columns is always 1
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
2
4
1
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€­3
1
īƒē
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
1
21
11
m
a
a
a
ī
Matrices - Introduction
TYPES OF MATRICES
2. Row matrix or vector
Any number of columns but only one row
ī› ī
6
1
1 ī› ī
2
5
3
0
ī› ī
n
a
a
a
a 1
13
12
11 īŒ
Matrices - Introduction
TYPES OF MATRICES
3. Rectangular matrix
Contains more than one element and number of rows is not
equal to the number of columns
īƒē
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€­
6
7
7
7
7
3
1
1
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
0
3
3
0
2
0
0
1
1
1
n
m ī‚š
Matrices - Introduction
TYPES OF MATRICES
4. Square matrix
The number of rows is equal to the number of columns
(a square matrix A has an order of m)
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
0
3
1
1
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
1
6
6
0
9
9
1
1
1
m x m
The principal or main diagonal of a square matrix is composed of all
elements aij for which i=j
Matrices - Introduction
TYPES OF MATRICES
5. Diagonal matrix
A square matrix where all the elements are zero except those on
the main diagonal
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
1
0
0
0
2
0
0
0
1
īƒē
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
9
0
0
0
0
5
0
0
0
0
3
0
0
0
0
3
i.e. aij =0 for all i = j
aij = 0 for some or all i = j
Matrices - Introduction
TYPES OF MATRICES
6. Unit or Identity matrix - I
A diagonal matrix with ones on the main diagonal
īƒē
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
1
0
0
1
i.e. aij =0 for all i = j
aij = 1 for some or all i = j
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ij
ij
a
a
0
0
Matrices - Introduction
TYPES OF MATRICES
7. Null (zero) matrix - 0
All elements in the matrix are zero
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
0
0
0
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
0
0
0
0
0
0
0
0
0
0
ī€Ŋ
ij
a For all i,j
Matrices - Introduction
TYPES OF MATRICES
8. Triangular matrix
A square matrix whose elements above or below the main
diagonal are all zero
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
3
2
5
0
1
2
0
0
1
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
3
2
5
0
1
2
0
0
1
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
3
0
0
6
1
0
9
8
1
Matrices - Introduction
TYPES OF MATRICES
8a. Upper triangular matrix
A square matrix whose elements below the main
diagonal are all zero
i.e. aij = 0 for all i > j
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
3
0
0
8
1
0
7
8
1
īƒē
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
3
0
0
0
8
7
0
0
4
7
1
0
4
4
7
1
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ij
ij
ij
ij
ij
ij
a
a
a
a
a
a
0
0
0
Matrices - Introduction
TYPES OF MATRICES
A square matrix whose elements above the main diagonal are all
zero
8b. Lower triangular matrix
i.e. aij = 0 for all i < j
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
3
2
5
0
1
2
0
0
1
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ij
ij
ij
ij
ij
ij
a
a
a
a
a
a
0
0
0
Matrices – Introduction
TYPES OF MATRICES
9. Scalar matrix
A diagonal matrix whose main diagonal elements are
equal to the same scalar
A scalar is defined as a single number or constant
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
1
0
0
0
1
0
0
0
1
īƒē
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
6
0
0
0
0
6
0
0
0
0
6
0
0
0
0
6
i.e. aij = 0 for all i = j
aij = a for all i = j
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ij
ij
ij
a
a
a
0
0
0
0
0
0
Matrices
Matrix Operations
Matrices - Operations
EQUALITY OF MATRICES
Two matrices are said to be equal only when all
corresponding elements are equal
Therefore their size or dimensions are equal as well
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
3
2
5
0
1
2
0
0
1
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
3
2
5
0
1
2
0
0
1
A = B = A = B
Matrices - Operations
Some properties of equality:
â€ĸIIf A = B, then B = A for all A and B
â€ĸIIf A = B, and B = C, then A = C for all A, B and C
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
3
2
5
0
1
2
0
0
1
A = B =
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
33
32
31
23
22
21
13
12
11
b
b
b
b
b
b
b
b
b
If A = B then ij
ij b
a ī€Ŋ
Matrices - Operations
ADDITION AND SUBTRACTION OF MATRICES
The sum or difference of two matrices, A and B of the same
size yields a matrix C of the same size
ij
ij
ij b
a
c ī€Ģ
ī€Ŋ
Matrices of different sizes cannot be added or subtracted
Matrices - Operations
Commutative Law:
A + B = B + A
Associative Law:
A + (B + C) = (A + B) + C = A + B + C
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
ī€Ŋ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
ī€Ģ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
9
7
2
5
8
8
3
2
4
6
5
1
6
5
2
1
3
7
A
2x3
B
2x3
C
2x3
Matrices - Operations
A + 0 = 0 + A = A
A + (-A) = 0 (where –A is the matrix composed of –aij as elements)
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€Ŋ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€­
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
1
2
2
2
2
5
8
0
1
0
2
1
7
2
3
2
4
6
Matrices - Operations
SCALAR MULTIPLICATION OF MATRICES
Matrices can be multiplied by a scalar (constant or single
element)
Let k be a scalar quantity; then
kA = Ak
Ex. If k=4 and
īƒē
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
ī€Ŋ
1
4
3
2
1
2
1
3
A
Matrices - Operations
īƒē
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
ī€Ŋ
ī‚´
īƒē
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
ī€Ŋ
īƒē
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
ī‚´
4
16
12
8
4
8
4
12
4
1
4
3
2
1
2
1
3
1
4
3
2
1
2
1
3
4
Properties:
â€ĸ k (A + B) = kA + kB
â€ĸ (k + g)A = kA + gA
â€ĸ k(AB) = (kA)B = A(k)B
â€ĸ k(gA) = (kg)A
Matrices - Operations
MULTIPLICATION OF MATRICES
The product of two matrices is another matrix
Two matrices A and B must be conformable for multiplication to
be possible
i.e. the number of columns of A must equal the number of rows
of B
Example.
A x B = C
(1x3) (3x1) (1x1)
Matrices - Operations
B x A = Not possible!
(2x1) (4x2)
A x B = Not possible!
(6x2) (6x3)
Example
A x B = C
(2x3) (3x2) (2x2)
Matrices - Operations
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
22
21
12
11
32
31
22
21
12
11
23
22
21
13
12
11
c
c
c
c
b
b
b
b
b
b
a
a
a
a
a
a
22
32
23
22
22
12
21
21
31
23
21
22
11
21
12
32
13
22
12
12
11
11
31
13
21
12
11
11
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
c
b
a
b
a
b
a
c
b
a
b
a
b
a
c
b
a
b
a
b
a
c
b
a
b
a
b
a
ī€Ŋ
ī‚´
ī€Ģ
ī‚´
ī€Ģ
ī‚´
ī€Ŋ
ī‚´
ī€Ģ
ī‚´
ī€Ģ
ī‚´
ī€Ŋ
ī‚´
ī€Ģ
ī‚´
ī€Ģ
ī‚´
ī€Ŋ
ī‚´
ī€Ģ
ī‚´
ī€Ģ
ī‚´
Successive multiplication of row i of A with column j of
B – row by column multiplication
Matrices - Operations
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī‚´
ī€Ģ
ī‚´
ī€Ģ
ī‚´
ī‚´
ī€Ģ
ī‚´
ī€Ģ
ī‚´
ī‚´
ī€Ģ
ī‚´
ī€Ģ
ī‚´
ī‚´
ī€Ģ
ī‚´
ī€Ģ
ī‚´
ī€Ŋ
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
)
3
7
(
)
2
2
(
)
8
4
(
)
5
7
(
)
6
2
(
)
4
4
(
)
3
3
(
)
2
2
(
)
8
1
(
)
5
3
(
)
6
2
(
)
4
1
(
3
5
2
6
8
4
7
2
4
3
2
1
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
57
63
21
31
Remember also:
IA = A
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
1
0
0
1
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
57
63
21
31
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
57
63
21
31
Matrices - Operations
Assuming that matrices A, B and C are conformable for
the operations indicated, the following are true:
1. AI = IA = A
2. A(BC) = (AB)C = ABC - (associative law)
3. A(B+C) = AB + AC - (first distributive law)
4. (A+B)C = AC + BC - (second distributive law)
Caution!
1. AB not generally equal to BA, BA may not be conformable
2. If AB = 0, neither A nor B necessarily = 0
3. If AB = AC, B not necessarily = C
Matrices - Operations
AB not generally equal to BA, BA may not be conformable
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
0
10
6
23
0
5
2
1
2
0
4
3
20
15
8
3
2
0
4
3
0
5
2
1
2
0
4
3
0
5
2
1
ST
TS
S
T
Matrices - Operations
If AB = 0, neither A nor B necessarily = 0
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
0
0
0
0
3
2
3
2
0
0
1
1
Matrices - Operations
TRANSPOSE OF A MATRIX
If :
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
ī€Ŋ
1
3
5
7
4
2
3
2 A
A
2x3
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
ī€Ŋ
1
7
3
4
5
2
3
2
T
T
A
A
Then transpose of A, denoted AT is:
T
ji
ij a
a ī€Ŋ For all i and j
Matrices - Operations
To transpose:
Interchange rows and columns
The dimensions of AT are the reverse of the dimensions of A
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
ī€Ŋ
1
3
5
7
4
2
3
2 A
A
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
ī€Ŋ
1
7
3
4
5
2
2
3
T
T
A
A
2 x 3
3 x 2
Matrices - Operations
Properties of transposed matrices:
1. (A+B)T = AT + BT
2. (AB)T = BT AT
3. (kA)T = kAT
4. (AT)T = A
Matrices - Operations
1. (A+B)T = AT + BT
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
ī€Ŋ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
ī€Ģ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
9
7
2
5
8
8
3
2
4
6
5
1
6
5
2
1
3
7
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
9
5
7
8
2
8
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
ī€Ŋ
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
ī€Ģ
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
9
5
7
8
2
8
3
6
2
5
4
1
6
1
5
3
2
7
Matrices - Operations
(AB)T = BT AT
ī› ī
ī› ī ī› ī
8
2
3
0
2
1
0
1
2
1
1
8
2
8
2
2
1
1
3
2
0
0
1
1
ī€Ŋ
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
īƒž
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
Matrices - Operations
SYMMETRIC MATRICES
A Square matrix is symmetric if it is equal to its
transpose:
A = AT
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
d
b
b
a
A
d
b
b
a
A
T
Matrices - Operations
When the original matrix is square, transposition does not
affect the elements of the main diagonal
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
d
b
c
a
A
d
c
b
a
A
T
The identity matrix, I, a diagonal matrix D, and a scalar matrix, K,
are equal to their transpose since the diagonal is unaffected.
Matrices - Operations
INVERSE OF A MATRIX
Consider a scalar k. The inverse is the reciprocal or division of 1
by the scalar.
Example:
k=7 the inverse of k or k-1 = 1/k = 1/7
Division of matrices is not defined since there may be AB = AC
while B = C
Instead matrix inversion is used.
The inverse of a square matrix, A, if it exists, is the unique matrix
A-1 where:
AA-1 = A-1 A = I
Matrices - Operations
Example:
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
ī€Ŋ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
ī€Ŋ
ī€­
3
2
1
1
1
2
1
3
1
2
2
A
A
A
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
1
0
0
1
3
2
1
1
1
2
1
3
1
0
0
1
1
2
1
3
3
2
1
1
Because:
Matrices - Operations
Properties of the inverse:
1
1
1
1
1
1
1
1
1
1
)
(
)
(
)
(
)
(
)
(
ī€­
ī€­
ī€­
ī€­
ī€­
ī€­
ī€­
ī€­
ī€­
ī€Ŋ
ī€Ŋ
ī€Ŋ
ī€Ŋ
A
k
kA
A
A
A
A
A
B
AB
T
T
A square matrix that has an inverse is called a nonsingular matrix
A matrix that does not have an inverse is called a singular matrix
Square matrices have inverses except when the determinant is zero
When the determinant of a matrix is zero the matrix is singular
Matrices - Operations
DETERMINANT OF A MATRIX
To compute the inverse of a matrix, the determinant is required
Each square matrix A has a unit scalar value called the
determinant of A, denoted by det A or |A|
5
6
2
1
5
6
2
1
ī€Ŋ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
A
A
If
then
Matrices - Operations
If A = [A] is a single element (1x1), then the determinant is
defined as the value of the element
Then |A| =det A = a11
If A is (n x n), its determinant may be defined in terms of order
(n-1) or less.
Matrices - Operations
MINORS
If A is an n x n matrix and one row and one column are deleted,
the resulting matrix is an (n-1) x (n-1) submatrix of A.
The determinant of such a submatrix is called a minor of A and
is designated by mij , where i and j correspond to the deleted
row and column, respectively.
mij is the minor of the element aij in A.
Matrices - Operations
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
33
32
31
23
22
21
13
12
11
a
a
a
a
a
a
a
a
a
A
Each element in A has a minor
Delete first row and column from A .
The determinant of the remaining 2 x 2 submatrix is the minor
of a11
eg.
33
32
23
22
11
a
a
a
a
m ī€Ŋ
Matrices - Operations
Therefore the minor of a12 is:
And the minor for a13 is:
33
31
23
21
12
a
a
a
a
m ī€Ŋ
32
31
22
21
13
a
a
a
a
m ī€Ŋ
Matrices - Operations
COFACTORS
The cofactor Cij of an element aij is defined as:
ij
j
i
ij m
C ī€Ģ
ī€­
ī€Ŋ )
1
(
When the sum of a row number i and column j is even, cij = mij and
when i+j is odd, cij =-mij
13
13
3
1
13
12
12
2
1
12
11
11
1
1
11
)
1
(
)
3
,
1
(
)
1
(
)
2
,
1
(
)
1
(
)
1
,
1
(
m
m
j
i
c
m
m
j
i
c
m
m
j
i
c
ī€Ģ
ī€Ŋ
ī€­
ī€Ŋ
ī€Ŋ
ī€Ŋ
ī€­
ī€Ŋ
ī€­
ī€Ŋ
ī€Ŋ
ī€Ŋ
ī€Ģ
ī€Ŋ
ī€­
ī€Ŋ
ī€Ŋ
ī€Ŋ
ī€Ģ
ī€Ģ
ī€Ģ
Matrices - Operations
DETERMINANTS CONTINUED
The determinant of an n x n matrix A can now be defined as
n
nc
a
c
a
c
a
A
A 1
1
12
12
11
11
det ī€Ģ
ī€Ģ
ī€Ģ
ī€Ŋ
ī€Ŋ ī‹
The determinant of A is therefore the sum of the products of the
elements of the first row of A and their corresponding cofactors.
(It is possible to define |A| in terms of any other row or column
but for simplicity, the first row only is used)
Matrices - Operations
Therefore the 2 x 2 matrix :
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
22
21
12
11
a
a
a
a
A
Has cofactors :
22
22
11
11 a
a
m
c ī€Ŋ
ī€Ŋ
ī€Ŋ
And:
21
21
12
12 a
a
m
c ī€­
ī€Ŋ
ī€­
ī€Ŋ
ī€­
ī€Ŋ
And the determinant of A is:
21
12
22
11
12
12
11
11 a
a
a
a
c
a
c
a
A ī€­
ī€Ŋ
ī€Ģ
ī€Ŋ
Matrices - Operations
Example 1:
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
2
1
1
3
A
5
)
1
)(
1
(
)
2
)(
3
( ī€Ŋ
ī€­
ī€Ŋ
A
Matrices - Operations
For a 3 x 3 matrix:
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
33
32
31
23
22
21
13
12
11
a
a
a
a
a
a
a
a
a
A
The cofactors of the first row are:
31
22
32
21
32
31
22
21
13
31
23
33
21
33
31
23
21
12
32
23
33
22
33
32
23
22
11
)
(
a
a
a
a
a
a
a
a
c
a
a
a
a
a
a
a
a
c
a
a
a
a
a
a
a
a
c
ī€­
ī€Ŋ
ī€Ŋ
ī€­
ī€­
ī€Ŋ
ī€­
ī€Ŋ
ī€­
ī€Ŋ
ī€Ŋ
Matrices - Operations
The determinant of a matrix A is:
21
12
22
11
12
12
11
11 a
a
a
a
c
a
c
a
A ī€­
ī€Ŋ
ī€Ģ
ī€Ŋ
Which by substituting for the cofactors in this case is:
)
(
)
(
)
( 31
22
32
21
13
31
23
33
21
12
32
23
33
22
11 a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
A ī€­
ī€Ģ
ī€­
ī€­
ī€­
ī€Ŋ
Matrices - Operations
Example 2:
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€Ŋ
1
0
1
3
2
0
1
0
1
A
4
)
2
0
)(
1
(
)
3
0
)(
0
(
)
0
2
)(
1
( ī€Ŋ
ī€Ģ
ī€Ģ
ī€Ģ
ī€­
ī€­
ī€Ŋ
A
)
(
)
(
)
( 31
22
32
21
13
31
23
33
21
12
32
23
33
22
11 a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
A ī€­
ī€Ģ
ī€­
ī€­
ī€­
ī€Ŋ
Matrices - Operations
ADJOINT MATRICES
A cofactor matrix C of a matrix A is the square matrix of the same
order as A in which each element aij is replaced by its cofactor cij .
Example:
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€Ŋ
4
3
2
1
A
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€Ŋ
1
2
3
4
C
If
The cofactor C of A is
Matrices - Operations
The adjoint matrix of A, denoted by adj A, is the transpose of its
cofactor matrix
T
C
adjAī€Ŋ
It can be shown that:
A(adj A) = (adjA) A = |A| I
Example:
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ ī€­
ī€Ŋ
ī€Ŋ
ī€Ŋ
ī€­
ī€­
ī€Ŋ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€Ŋ
1
3
2
4
10
)
3
)(
2
(
)
4
)(
1
(
4
3
2
1
T
C
adjA
A
A
Matrices - Operations
I
adjA
A 10
10
0
0
10
1
3
2
4
4
3
2
1
)
( ī€Ŋ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ ī€­
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€Ŋ
I
A
adjA 10
10
0
0
10
4
3
2
1
1
3
2
4
)
( ī€Ŋ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€­
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ ī€­
ī€Ŋ
Matrices - Operations
USING THE ADJOINT MATRIX IN MATRIX INVERSION
A
adjA
A ī€Ŋ
ī€­1
Since
AA-1 = A-1 A = I
and
A(adj A) = (adjA) A = |A| I
then
Matrices - Operations
Example
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ ī€­
ī€Ŋ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ ī€­
ī€Ŋ
ī€­
1
.
0
3
.
0
2
.
0
4
.
0
1
3
2
4
10
1
1
A
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€­ 4
3
2
1
A =
To check AA-1 = A-1 A = I
I
A
A
I
AA
ī€Ŋ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€­
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ ī€­
ī€Ŋ
ī€Ŋ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ ī€­
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€Ŋ
ī€­
ī€­
1
0
0
1
4
3
2
1
1
.
0
3
.
0
2
.
0
4
.
0
1
0
0
1
1
.
0
3
.
0
2
.
0
4
.
0
4
3
2
1
1
1
Matrices - Operations
Example 2
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
ī€Ŋ
1
2
1
0
1
2
1
1
3
A
|A| = (3)(-1-0)-(-1)(-2-0)+(1)(4-1) = -2
),
1
(
),
1
(
),
1
(
31
21
11
ī€­
ī€Ģ
ī€Ŋ
ī€­
ī€­
ī€Ŋ
ī€­
ī€Ģ
ī€Ŋ
c
c
c
The determinant of A is
The elements of the cofactor matrix are
),
2
(
),
4
(
),
2
(
32
22
12
ī€­
ī€­
ī€Ŋ
ī€­
ī€Ģ
ī€Ŋ
ī€­
ī€­
ī€Ŋ
c
c
c
),
5
(
),
7
(
),
3
(
33
23
13
ī€Ģ
ī€Ŋ
ī€­
ī€Ŋ
ī€Ģ
ī€Ŋ
c
c
c
Matrices - Operations
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
ī€­
ī€­
ī€Ŋ
5
2
1
7
4
1
3
2
1
C
The cofactor matrix is therefore
so
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
ī€­
ī€­
ī€Ŋ
ī€Ŋ
5
7
3
2
4
2
1
1
1
T
C
adjA
and
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
ī€­
ī€­
ī€­
ī€Ŋ
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
ī€­
ī€­
ī€­
ī€Ŋ
ī€Ŋ
ī€­
5
.
2
5
.
3
5
.
1
0
.
1
0
.
2
0
.
1
5
.
0
5
.
0
5
.
0
5
7
3
2
4
2
1
1
1
2
1
1
A
adjA
A
Matrices - Operations
The result can be checked using
AA-1 = A-1 A = I
The determinant of a matrix must not be zero for the inverse to
exist as there will not be a solution
Nonsingular matrices have non-zero determinants
Singular matrices have zero determinants
Matrix Inversion
Simple 2 x 2 case
Simple 2 x 2 case
Let
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
d
c
b
a
A
and
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
ī€­
z
y
x
w
A 1
Since it is known that
A A-1 = I
then
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
1
0
0
1
z
y
x
w
d
c
b
a
Simple 2 x 2 case
Multiplying gives
1
0
0
1
ī€Ŋ
ī€Ģ
ī€Ŋ
ī€Ģ
ī€Ŋ
ī€Ģ
ī€Ŋ
ī€Ģ
dz
cx
dy
cw
bz
ax
by
aw
bc
ad
A ī€­
ī€Ŋ
It can simply be shown that
Simple 2 x 2 case
thus
A
d
bc
da
d
w
d
cw
b
aw
d
cw
y
b
aw
y
ī€Ŋ
ī€­
ī€Ŋ
ī€­
ī€Ŋ
ī€­
ī€­
ī€Ŋ
ī€­
ī€Ŋ
1
1
Simple 2 x 2 case
A
b
bc
da
b
x
d
cx
b
ax
d
cx
z
b
ax
z
ī€­
ī€Ŋ
ī€Ģ
ī€­
ī€Ŋ
ī€­
ī€Ŋ
ī€­
ī€­
ī€Ŋ
ī€­
ī€Ŋ
1
1
Simple 2 x 2 case
A
c
cb
ad
c
y
c
dy
a
by
c
dy
w
a
by
w
ī€­
ī€Ŋ
ī€Ģ
ī€­
ī€Ŋ
ī€­
ī€Ŋ
ī€­
ī€­
ī€Ŋ
ī€­
ī€Ŋ
1
1
Simple 2 x 2 case
A
a
bc
ad
a
z
c
dz
a
bz
c
dz
x
a
bz
x
ī€Ŋ
ī€­
ī€Ŋ
ī€­
ī€Ŋ
ī€­
ī€­
ī€Ŋ
ī€­
ī€Ŋ
1
1
Simple 2 x 2 case
So that for a 2 x 2 matrix the inverse can be constructed
in a simple fashion as
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
ī€Ŋ
īƒē
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€­ a
c
b
d
A
A
a
A
c
A
b
A
d
1
â€ĸExchange elements of main diagonal
â€ĸChange sign in elements off main diagonal
â€ĸDivide resulting matrix by the determinant
ī€Ŋ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
ī€­
z
y
x
w
A 1
Simple 2 x 2 case
Example
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
ī€Ŋ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
ī€­
ī€Ŋ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
ī€­
2
.
0
4
.
0
3
.
0
1
.
0
2
4
3
1
10
1
1
4
3
2
1
A
A
Check inverse
A-1 A=I
I
ī€Ŋ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
ī€­
1
0
0
1
1
4
3
2
2
4
3
1
10
1
Matrices and Linear Equations
Linear Equations
Linear Equations
Linear equations are common and important for survey
problems
Matrices can be used to express these linear equations and
aid in the computation of unknown values
Example
n equations in n unknowns, the aij are numerical coefficients,
the bi are constants and the xj are unknowns
n
n
nn
n
n
n
n
n
n
b
x
a
x
a
x
a
b
x
a
x
a
x
a
b
x
a
x
a
x
a
ī€Ŋ
ī€Ģ
ī€Ģ
ī€Ģ
ī€Ŋ
ī€Ģ
ī€Ģ
ī€Ģ
ī€Ŋ
ī€Ģ
ī€Ģ
ī€Ģ
īŒ
ī
īŒ
īŒ
2
2
1
1
2
2
2
22
1
21
1
1
2
12
1
11
Linear Equations
The equations may be expressed in the form
AX = B
where
,
, 2
1
1
1
2
22
21
1
12
11
īƒē
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
īƒē
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
n
nn
n
n
n
n
x
x
x
X
a
a
a
a
a
a
a
a
a
A
ī
īŒ
ī
ī
īŒ
ī
īŒ
and
īƒē
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
n
b
b
b
B
ī
2
1
n x n n x 1 n x 1
Number of unknowns = number of equations = n
Linear Equations
If the determinant is nonzero, the equation can be solved to produce
n numerical values for x that satisfy all the simultaneous equations
To solve, premultiply both sides of the equation by A-1 which exists
because |A| = 0
A-1 AX = A-1 B
Now since
A-1 A = I
We get
X = A-1 B
So if the inverse of the coefficient matrix is found, the unknowns,
X would be determined
Linear Equations
Example
3
2
1
2
2
3
3
2
1
2
1
3
2
1
ī€Ŋ
ī€­
ī€Ģ
ī€Ŋ
ī€Ģ
ī€Ŋ
ī€Ģ
ī€­
x
x
x
x
x
x
x
x
The equations can be expressed as
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€Ŋ
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
3
1
2
1
2
1
0
1
2
1
1
3
3
2
1
x
x
x
Linear Equations
When A-1 is computed the equation becomes
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€Ŋ
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
ī€­
ī€­
ī€­
ī€Ŋ
ī€Ŋ ī€­
7
3
2
3
1
2
5
.
2
5
.
3
5
.
1
0
.
1
0
.
2
0
.
1
5
.
0
5
.
0
5
.
0
1
B
A
X
Therefore
7
,
3
,
2
3
2
1
ī€­
ī€Ŋ
ī€­
ī€Ŋ
ī€Ŋ
x
x
x
Linear Equations
The values for the unknowns should be checked by substitution
back into the initial equations
3
2
1
2
2
3
3
2
1
2
1
3
2
1
ī€Ŋ
ī€­
ī€Ģ
ī€Ŋ
ī€Ģ
ī€Ŋ
ī€Ģ
ī€­
x
x
x
x
x
x
x
x
3
)
7
(
)
3
(
2
)
2
(
1
)
3
(
)
2
(
2
2
)
7
(
)
3
(
)
2
(
3
ī€Ŋ
ī€­
ī€­
ī€­
ī‚´
ī€Ģ
ī€Ŋ
ī€­
ī€Ģ
ī‚´
ī€Ŋ
ī€­
ī€Ģ
ī€­
ī€­
ī‚´
7
,
3
,
2
3
2
1
ī€­
ī€Ŋ
ī€­
ī€Ŋ
ī€Ŋ
x
x
x
Matrix and its operations

Weitere ähnliche Inhalte

Was ist angesagt?

4.3 Determinants and Cramer's Rule
4.3 Determinants and Cramer's Rule4.3 Determinants and Cramer's Rule
4.3 Determinants and Cramer's Rule
hisema01
 
MATRICES
MATRICESMATRICES
MATRICES
faijmsk
 
Introduction to Matrices
Introduction to MatricesIntroduction to Matrices
Introduction to Matrices
holmsted
 
Inverse Matrix & Determinants
Inverse Matrix & DeterminantsInverse Matrix & Determinants
Inverse Matrix & Determinants
itutor
 
Linear Algebra and Matrix
Linear Algebra and MatrixLinear Algebra and Matrix
Linear Algebra and Matrix
itutor
 

Was ist angesagt? (20)

matrix algebra
matrix algebramatrix algebra
matrix algebra
 
Matrix.
Matrix.Matrix.
Matrix.
 
Matrices
MatricesMatrices
Matrices
 
4.3 Determinants and Cramer's Rule
4.3 Determinants and Cramer's Rule4.3 Determinants and Cramer's Rule
4.3 Determinants and Cramer's Rule
 
Matrices And Determinants
Matrices And DeterminantsMatrices And Determinants
Matrices And Determinants
 
Introduction of matrices
Introduction of matricesIntroduction of matrices
Introduction of matrices
 
MATRICES
MATRICESMATRICES
MATRICES
 
Matrices and System of Linear Equations ppt
Matrices and System of Linear Equations pptMatrices and System of Linear Equations ppt
Matrices and System of Linear Equations ppt
 
the inverse of the matrix
the inverse of the matrixthe inverse of the matrix
the inverse of the matrix
 
Cartesian product of two sets
Cartesian product of two setsCartesian product of two sets
Cartesian product of two sets
 
Matrix
MatrixMatrix
Matrix
 
Determinants
DeterminantsDeterminants
Determinants
 
Introduction to matices
Introduction to maticesIntroduction to matices
Introduction to matices
 
Matrices
MatricesMatrices
Matrices
 
Matrix presentation By DHEERAJ KATARIA
Matrix presentation By DHEERAJ KATARIAMatrix presentation By DHEERAJ KATARIA
Matrix presentation By DHEERAJ KATARIA
 
Introduction to Matrices
Introduction to MatricesIntroduction to Matrices
Introduction to Matrices
 
Inverse Matrix & Determinants
Inverse Matrix & DeterminantsInverse Matrix & Determinants
Inverse Matrix & Determinants
 
Presentation on matrix
Presentation on matrixPresentation on matrix
Presentation on matrix
 
Linear Algebra and Matrix
Linear Algebra and MatrixLinear Algebra and Matrix
Linear Algebra and Matrix
 
Logarithms
LogarithmsLogarithms
Logarithms
 

Ähnlich wie Matrix and its operations

matrices and function ( matrix)
matrices and function ( matrix)matrices and function ( matrix)
chap01987654etghujh76687976jgtfhhhgve.ppt
chap01987654etghujh76687976jgtfhhhgve.pptchap01987654etghujh76687976jgtfhhhgve.ppt
chap01987654etghujh76687976jgtfhhhgve.ppt
adonyasdd
 
CLASSS XII matha project.pdf
CLASSS XII matha project.pdfCLASSS XII matha project.pdf
CLASSS XII matha project.pdf
HarshRuhal2
 

Ähnlich wie Matrix and its operations (20)

ALLIED MATHEMATICS -I UNIT III MATRICES.ppt
ALLIED MATHEMATICS -I UNIT III MATRICES.pptALLIED MATHEMATICS -I UNIT III MATRICES.ppt
ALLIED MATHEMATICS -I UNIT III MATRICES.ppt
 
Matrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANK
Matrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANKMatrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANK
Matrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANK
 
Calculus and matrix algebra notes
Calculus and matrix algebra notesCalculus and matrix algebra notes
Calculus and matrix algebra notes
 
Ppt on matrices and Determinants
Ppt on matrices and DeterminantsPpt on matrices and Determinants
Ppt on matrices and Determinants
 
R.Ganesh Kumar
R.Ganesh KumarR.Ganesh Kumar
R.Ganesh Kumar
 
matrices and function ( matrix)
matrices and function ( matrix)matrices and function ( matrix)
matrices and function ( matrix)
 
Matrices & Determinants.pdf
Matrices & Determinants.pdfMatrices & Determinants.pdf
Matrices & Determinants.pdf
 
GATE Preparation : Matrix Algebra
GATE Preparation : Matrix AlgebraGATE Preparation : Matrix Algebra
GATE Preparation : Matrix Algebra
 
Matrices
MatricesMatrices
Matrices
 
chap01987654etghujh76687976jgtfhhhgve.ppt
chap01987654etghujh76687976jgtfhhhgve.pptchap01987654etghujh76687976jgtfhhhgve.ppt
chap01987654etghujh76687976jgtfhhhgve.ppt
 
matrix
matrixmatrix
matrix
 
Matrix introduction
Matrix introduction Matrix introduction
Matrix introduction
 
Matrix introduction and matrix operations.
Matrix introduction and matrix operations. Matrix introduction and matrix operations.
Matrix introduction and matrix operations.
 
1. matrix introduction
1. matrix  introduction1. matrix  introduction
1. matrix introduction
 
Engg maths k notes(4)
Engg maths k notes(4)Engg maths k notes(4)
Engg maths k notes(4)
 
Matrices 1.pdf
Matrices 1.pdfMatrices 1.pdf
Matrices 1.pdf
 
Business mathametics and statistics b.com ii semester (2)
Business mathametics and statistics b.com ii semester (2)Business mathametics and statistics b.com ii semester (2)
Business mathametics and statistics b.com ii semester (2)
 
Matrix
MatrixMatrix
Matrix
 
Pertemuan 1 2
Pertemuan 1  2Pertemuan 1  2
Pertemuan 1 2
 
CLASSS XII matha project.pdf
CLASSS XII matha project.pdfCLASSS XII matha project.pdf
CLASSS XII matha project.pdf
 

Mehr von Pankaj Das (7)

Statistical quality control introduction
Statistical quality control introductionStatistical quality control introduction
Statistical quality control introduction
 
Methods of integration
Methods of integrationMethods of integration
Methods of integration
 
Applications of integration
Applications of integrationApplications of integration
Applications of integration
 
Set theory and its operations
Set theory and its operations Set theory and its operations
Set theory and its operations
 
Introduction of vectors
Introduction of vectorsIntroduction of vectors
Introduction of vectors
 
Introduction of matrix
Introduction of matrixIntroduction of matrix
Introduction of matrix
 
Introduction of determinant
Introduction of determinantIntroduction of determinant
Introduction of determinant
 

KÃŧrzlich hochgeladen

Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
ssuser79fe74
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
PirithiRaju
 
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
Lokesh Kothari
 
Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptx
AlMamun560346
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
Areesha Ahmad
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
SÊrgio Sacani
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
levieagacer
 

KÃŧrzlich hochgeladen (20)

Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
 
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
 
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedConnaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
 
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICESAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
 
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
 
Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptx
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
 
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
 
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts ServiceJustdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
 
American Type Culture Collection (ATCC).pptx
American Type Culture Collection (ATCC).pptxAmerican Type Culture Collection (ATCC).pptx
American Type Culture Collection (ATCC).pptx
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 

Matrix and its operations

  • 1. Matrices Dr. Pankaj Das Mail id:Pankaj.iasri@gmail.com
  • 2. Matrices - Introduction Matrix algebra has at least two advantages: â€ĸReduces complicated systems of equations to simple expressions â€ĸAdaptable to systematic method of mathematical treatment and well suited to computers Definition: A matrix is a set or group of numbers arranged in a square or rectangular array enclosed by two brackets ī› ī 1 1 ī€­ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ 0 3 2 4 īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ d c b a
  • 3. Matrices - Introduction Properties: â€ĸA specified number of rows and a specified number of columns â€ĸTwo numbers (rows x columns) describe the dimensions or size of the matrix. Examples: 3x3 matrix 2x4 matrix 1x2 matrix īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€­ 3 3 3 5 1 4 4 2 1 īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ 2 3 3 3 0 1 0 1 ī› ī 1 1 ī€­
  • 4. Matrices - Introduction A matrix is denoted by a bold capital letter and the elements within the matrix are denoted by lower case letters e.g. matrix [A] with elements aij īƒē īƒē īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ mn ij m m n ij in ij a a a a a a a a a a a a 2 1 2 22 21 12 11 ... ... ī ī ī ī i goes from 1 to m j goes from 1 to n Amxn= mAn
  • 5. Matrices - Introduction TYPES OF MATRICES 1. Column matrix or vector: The number of rows may be any integer but the number of columns is always 1 īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ 2 4 1 īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­3 1 īƒē īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ 1 21 11 m a a a ī
  • 6. Matrices - Introduction TYPES OF MATRICES 2. Row matrix or vector Any number of columns but only one row ī› ī 6 1 1 ī› ī 2 5 3 0 ī› ī n a a a a 1 13 12 11 īŒ
  • 7. Matrices - Introduction TYPES OF MATRICES 3. Rectangular matrix Contains more than one element and number of rows is not equal to the number of columns īƒē īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€­ 6 7 7 7 7 3 1 1 īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ 0 3 3 0 2 0 0 1 1 1 n m ī‚š
  • 8. Matrices - Introduction TYPES OF MATRICES 4. Square matrix The number of rows is equal to the number of columns (a square matrix A has an order of m) īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ 0 3 1 1 īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ 1 6 6 0 9 9 1 1 1 m x m The principal or main diagonal of a square matrix is composed of all elements aij for which i=j
  • 9. Matrices - Introduction TYPES OF MATRICES 5. Diagonal matrix A square matrix where all the elements are zero except those on the main diagonal īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ 1 0 0 0 2 0 0 0 1 īƒē īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ 9 0 0 0 0 5 0 0 0 0 3 0 0 0 0 3 i.e. aij =0 for all i = j aij = 0 for some or all i = j
  • 10. Matrices - Introduction TYPES OF MATRICES 6. Unit or Identity matrix - I A diagonal matrix with ones on the main diagonal īƒē īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ 1 0 0 1 i.e. aij =0 for all i = j aij = 1 for some or all i = j īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ij ij a a 0 0
  • 11. Matrices - Introduction TYPES OF MATRICES 7. Null (zero) matrix - 0 All elements in the matrix are zero īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ 0 0 0 īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ 0 0 0 0 0 0 0 0 0 0 ī€Ŋ ij a For all i,j
  • 12. Matrices - Introduction TYPES OF MATRICES 8. Triangular matrix A square matrix whose elements above or below the main diagonal are all zero īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ 3 2 5 0 1 2 0 0 1 īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ 3 2 5 0 1 2 0 0 1 īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ 3 0 0 6 1 0 9 8 1
  • 13. Matrices - Introduction TYPES OF MATRICES 8a. Upper triangular matrix A square matrix whose elements below the main diagonal are all zero i.e. aij = 0 for all i > j īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ 3 0 0 8 1 0 7 8 1 īƒē īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ 3 0 0 0 8 7 0 0 4 7 1 0 4 4 7 1 īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ij ij ij ij ij ij a a a a a a 0 0 0
  • 14. Matrices - Introduction TYPES OF MATRICES A square matrix whose elements above the main diagonal are all zero 8b. Lower triangular matrix i.e. aij = 0 for all i < j īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ 3 2 5 0 1 2 0 0 1 īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ij ij ij ij ij ij a a a a a a 0 0 0
  • 15. Matrices – Introduction TYPES OF MATRICES 9. Scalar matrix A diagonal matrix whose main diagonal elements are equal to the same scalar A scalar is defined as a single number or constant īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ 1 0 0 0 1 0 0 0 1 īƒē īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ 6 0 0 0 0 6 0 0 0 0 6 0 0 0 0 6 i.e. aij = 0 for all i = j aij = a for all i = j īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ij ij ij a a a 0 0 0 0 0 0
  • 17. Matrices - Operations EQUALITY OF MATRICES Two matrices are said to be equal only when all corresponding elements are equal Therefore their size or dimensions are equal as well īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ 3 2 5 0 1 2 0 0 1 īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ 3 2 5 0 1 2 0 0 1 A = B = A = B
  • 18. Matrices - Operations Some properties of equality: â€ĸIIf A = B, then B = A for all A and B â€ĸIIf A = B, and B = C, then A = C for all A, B and C īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ 3 2 5 0 1 2 0 0 1 A = B = īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ 33 32 31 23 22 21 13 12 11 b b b b b b b b b If A = B then ij ij b a ī€Ŋ
  • 19. Matrices - Operations ADDITION AND SUBTRACTION OF MATRICES The sum or difference of two matrices, A and B of the same size yields a matrix C of the same size ij ij ij b a c ī€Ģ ī€Ŋ Matrices of different sizes cannot be added or subtracted
  • 20. Matrices - Operations Commutative Law: A + B = B + A Associative Law: A + (B + C) = (A + B) + C = A + B + C īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ ī€­ ī€Ŋ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ ī€­ ī€Ģ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ ī€­ 9 7 2 5 8 8 3 2 4 6 5 1 6 5 2 1 3 7 A 2x3 B 2x3 C 2x3
  • 21. Matrices - Operations A + 0 = 0 + A = A A + (-A) = 0 (where –A is the matrix composed of –aij as elements) īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ ī€Ŋ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ 1 2 2 2 2 5 8 0 1 0 2 1 7 2 3 2 4 6
  • 22. Matrices - Operations SCALAR MULTIPLICATION OF MATRICES Matrices can be multiplied by a scalar (constant or single element) Let k be a scalar quantity; then kA = Ak Ex. If k=4 and īƒē īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€­ ī€­ ī€Ŋ 1 4 3 2 1 2 1 3 A
  • 24. Matrices - Operations MULTIPLICATION OF MATRICES The product of two matrices is another matrix Two matrices A and B must be conformable for multiplication to be possible i.e. the number of columns of A must equal the number of rows of B Example. A x B = C (1x3) (3x1) (1x1)
  • 25. Matrices - Operations B x A = Not possible! (2x1) (4x2) A x B = Not possible! (6x2) (6x3) Example A x B = C (2x3) (3x2) (2x2)
  • 28. Matrices - Operations Assuming that matrices A, B and C are conformable for the operations indicated, the following are true: 1. AI = IA = A 2. A(BC) = (AB)C = ABC - (associative law) 3. A(B+C) = AB + AC - (first distributive law) 4. (A+B)C = AC + BC - (second distributive law) Caution! 1. AB not generally equal to BA, BA may not be conformable 2. If AB = 0, neither A nor B necessarily = 0 3. If AB = AC, B not necessarily = C
  • 29. Matrices - Operations AB not generally equal to BA, BA may not be conformable īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€Ŋ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€Ŋ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€Ŋ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€Ŋ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€Ŋ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€Ŋ 0 10 6 23 0 5 2 1 2 0 4 3 20 15 8 3 2 0 4 3 0 5 2 1 2 0 4 3 0 5 2 1 ST TS S T
  • 30. Matrices - Operations If AB = 0, neither A nor B necessarily = 0 īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€Ŋ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ ī€­ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ 0 0 0 0 3 2 3 2 0 0 1 1
  • 31. Matrices - Operations TRANSPOSE OF A MATRIX If : īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€Ŋ ī€Ŋ 1 3 5 7 4 2 3 2 A A 2x3 īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€Ŋ ī€Ŋ 1 7 3 4 5 2 3 2 T T A A Then transpose of A, denoted AT is: T ji ij a a ī€Ŋ For all i and j
  • 32. Matrices - Operations To transpose: Interchange rows and columns The dimensions of AT are the reverse of the dimensions of A īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€Ŋ ī€Ŋ 1 3 5 7 4 2 3 2 A A īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€Ŋ ī€Ŋ 1 7 3 4 5 2 2 3 T T A A 2 x 3 3 x 2
  • 33. Matrices - Operations Properties of transposed matrices: 1. (A+B)T = AT + BT 2. (AB)T = BT AT 3. (kA)T = kAT 4. (AT)T = A
  • 34. Matrices - Operations 1. (A+B)T = AT + BT īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ ī€­ ī€Ŋ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ ī€­ ī€Ģ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ ī€­ 9 7 2 5 8 8 3 2 4 6 5 1 6 5 2 1 3 7 īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€­ ī€­ 9 5 7 8 2 8 īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€­ ī€­ ī€Ŋ īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€­ ī€­ ī€Ģ īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€­ ī€­ 9 5 7 8 2 8 3 6 2 5 4 1 6 1 5 3 2 7
  • 35. Matrices - Operations (AB)T = BT AT ī› ī ī› ī ī› ī 8 2 3 0 2 1 0 1 2 1 1 8 2 8 2 2 1 1 3 2 0 0 1 1 ī€Ŋ īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ īƒž īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€Ŋ īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ
  • 36. Matrices - Operations SYMMETRIC MATRICES A Square matrix is symmetric if it is equal to its transpose: A = AT īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€Ŋ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€Ŋ d b b a A d b b a A T
  • 37. Matrices - Operations When the original matrix is square, transposition does not affect the elements of the main diagonal īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€Ŋ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€Ŋ d b c a A d c b a A T The identity matrix, I, a diagonal matrix D, and a scalar matrix, K, are equal to their transpose since the diagonal is unaffected.
  • 38. Matrices - Operations INVERSE OF A MATRIX Consider a scalar k. The inverse is the reciprocal or division of 1 by the scalar. Example: k=7 the inverse of k or k-1 = 1/k = 1/7 Division of matrices is not defined since there may be AB = AC while B = C Instead matrix inversion is used. The inverse of a square matrix, A, if it exists, is the unique matrix A-1 where: AA-1 = A-1 A = I
  • 40. Matrices - Operations Properties of the inverse: 1 1 1 1 1 1 1 1 1 1 ) ( ) ( ) ( ) ( ) ( ī€­ ī€­ ī€­ ī€­ ī€­ ī€­ ī€­ ī€­ ī€­ ī€Ŋ ī€Ŋ ī€Ŋ ī€Ŋ A k kA A A A A A B AB T T A square matrix that has an inverse is called a nonsingular matrix A matrix that does not have an inverse is called a singular matrix Square matrices have inverses except when the determinant is zero When the determinant of a matrix is zero the matrix is singular
  • 41. Matrices - Operations DETERMINANT OF A MATRIX To compute the inverse of a matrix, the determinant is required Each square matrix A has a unit scalar value called the determinant of A, denoted by det A or |A| 5 6 2 1 5 6 2 1 ī€Ŋ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€Ŋ A A If then
  • 42. Matrices - Operations If A = [A] is a single element (1x1), then the determinant is defined as the value of the element Then |A| =det A = a11 If A is (n x n), its determinant may be defined in terms of order (n-1) or less.
  • 43. Matrices - Operations MINORS If A is an n x n matrix and one row and one column are deleted, the resulting matrix is an (n-1) x (n-1) submatrix of A. The determinant of such a submatrix is called a minor of A and is designated by mij , where i and j correspond to the deleted row and column, respectively. mij is the minor of the element aij in A.
  • 44. Matrices - Operations īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€Ŋ 33 32 31 23 22 21 13 12 11 a a a a a a a a a A Each element in A has a minor Delete first row and column from A . The determinant of the remaining 2 x 2 submatrix is the minor of a11 eg. 33 32 23 22 11 a a a a m ī€Ŋ
  • 45. Matrices - Operations Therefore the minor of a12 is: And the minor for a13 is: 33 31 23 21 12 a a a a m ī€Ŋ 32 31 22 21 13 a a a a m ī€Ŋ
  • 46. Matrices - Operations COFACTORS The cofactor Cij of an element aij is defined as: ij j i ij m C ī€Ģ ī€­ ī€Ŋ ) 1 ( When the sum of a row number i and column j is even, cij = mij and when i+j is odd, cij =-mij 13 13 3 1 13 12 12 2 1 12 11 11 1 1 11 ) 1 ( ) 3 , 1 ( ) 1 ( ) 2 , 1 ( ) 1 ( ) 1 , 1 ( m m j i c m m j i c m m j i c ī€Ģ ī€Ŋ ī€­ ī€Ŋ ī€Ŋ ī€Ŋ ī€­ ī€Ŋ ī€­ ī€Ŋ ī€Ŋ ī€Ŋ ī€Ģ ī€Ŋ ī€­ ī€Ŋ ī€Ŋ ī€Ŋ ī€Ģ ī€Ģ ī€Ģ
  • 47. Matrices - Operations DETERMINANTS CONTINUED The determinant of an n x n matrix A can now be defined as n nc a c a c a A A 1 1 12 12 11 11 det ī€Ģ ī€Ģ ī€Ģ ī€Ŋ ī€Ŋ ī‹ The determinant of A is therefore the sum of the products of the elements of the first row of A and their corresponding cofactors. (It is possible to define |A| in terms of any other row or column but for simplicity, the first row only is used)
  • 48. Matrices - Operations Therefore the 2 x 2 matrix : īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€Ŋ 22 21 12 11 a a a a A Has cofactors : 22 22 11 11 a a m c ī€Ŋ ī€Ŋ ī€Ŋ And: 21 21 12 12 a a m c ī€­ ī€Ŋ ī€­ ī€Ŋ ī€­ ī€Ŋ And the determinant of A is: 21 12 22 11 12 12 11 11 a a a a c a c a A ī€­ ī€Ŋ ī€Ģ ī€Ŋ
  • 49. Matrices - Operations Example 1: īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€Ŋ 2 1 1 3 A 5 ) 1 )( 1 ( ) 2 )( 3 ( ī€Ŋ ī€­ ī€Ŋ A
  • 50. Matrices - Operations For a 3 x 3 matrix: īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€Ŋ 33 32 31 23 22 21 13 12 11 a a a a a a a a a A The cofactors of the first row are: 31 22 32 21 32 31 22 21 13 31 23 33 21 33 31 23 21 12 32 23 33 22 33 32 23 22 11 ) ( a a a a a a a a c a a a a a a a a c a a a a a a a a c ī€­ ī€Ŋ ī€Ŋ ī€­ ī€­ ī€Ŋ ī€­ ī€Ŋ ī€­ ī€Ŋ ī€Ŋ
  • 51. Matrices - Operations The determinant of a matrix A is: 21 12 22 11 12 12 11 11 a a a a c a c a A ī€­ ī€Ŋ ī€Ģ ī€Ŋ Which by substituting for the cofactors in this case is: ) ( ) ( ) ( 31 22 32 21 13 31 23 33 21 12 32 23 33 22 11 a a a a a a a a a a a a a a a A ī€­ ī€Ģ ī€­ ī€­ ī€­ ī€Ŋ
  • 52. Matrices - Operations Example 2: īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€­ ī€Ŋ 1 0 1 3 2 0 1 0 1 A 4 ) 2 0 )( 1 ( ) 3 0 )( 0 ( ) 0 2 )( 1 ( ī€Ŋ ī€Ģ ī€Ģ ī€Ģ ī€­ ī€­ ī€Ŋ A ) ( ) ( ) ( 31 22 32 21 13 31 23 33 21 12 32 23 33 22 11 a a a a a a a a a a a a a a a A ī€­ ī€Ģ ī€­ ī€­ ī€­ ī€Ŋ
  • 53. Matrices - Operations ADJOINT MATRICES A cofactor matrix C of a matrix A is the square matrix of the same order as A in which each element aij is replaced by its cofactor cij . Example: īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ ī€Ŋ 4 3 2 1 A īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ ī€Ŋ 1 2 3 4 C If The cofactor C of A is
  • 54. Matrices - Operations The adjoint matrix of A, denoted by adj A, is the transpose of its cofactor matrix T C adjAī€Ŋ It can be shown that: A(adj A) = (adjA) A = |A| I Example: īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ ī€Ŋ ī€Ŋ ī€Ŋ ī€­ ī€­ ī€Ŋ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ ī€Ŋ 1 3 2 4 10 ) 3 )( 2 ( ) 4 )( 1 ( 4 3 2 1 T C adjA A A
  • 55. Matrices - Operations I adjA A 10 10 0 0 10 1 3 2 4 4 3 2 1 ) ( ī€Ŋ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€Ŋ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ ī€Ŋ I A adjA 10 10 0 0 10 4 3 2 1 1 3 2 4 ) ( ī€Ŋ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€Ŋ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ ī€Ŋ
  • 56. Matrices - Operations USING THE ADJOINT MATRIX IN MATRIX INVERSION A adjA A ī€Ŋ ī€­1 Since AA-1 = A-1 A = I and A(adj A) = (adjA) A = |A| I then
  • 57. Matrices - Operations Example īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ ī€Ŋ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ ī€Ŋ ī€­ 1 . 0 3 . 0 2 . 0 4 . 0 1 3 2 4 10 1 1 A īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ 4 3 2 1 A = To check AA-1 = A-1 A = I I A A I AA ī€Ŋ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€Ŋ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ ī€Ŋ ī€Ŋ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€Ŋ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ ī€Ŋ ī€­ ī€­ 1 0 0 1 4 3 2 1 1 . 0 3 . 0 2 . 0 4 . 0 1 0 0 1 1 . 0 3 . 0 2 . 0 4 . 0 4 3 2 1 1 1
  • 58. Matrices - Operations Example 2 īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€­ ī€­ ī€Ŋ 1 2 1 0 1 2 1 1 3 A |A| = (3)(-1-0)-(-1)(-2-0)+(1)(4-1) = -2 ), 1 ( ), 1 ( ), 1 ( 31 21 11 ī€­ ī€Ģ ī€Ŋ ī€­ ī€­ ī€Ŋ ī€­ ī€Ģ ī€Ŋ c c c The determinant of A is The elements of the cofactor matrix are ), 2 ( ), 4 ( ), 2 ( 32 22 12 ī€­ ī€­ ī€Ŋ ī€­ ī€Ģ ī€Ŋ ī€­ ī€­ ī€Ŋ c c c ), 5 ( ), 7 ( ), 3 ( 33 23 13 ī€Ģ ī€Ŋ ī€­ ī€Ŋ ī€Ģ ī€Ŋ c c c
  • 59. Matrices - Operations īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€­ ī€­ ī€­ ī€­ ī€Ŋ 5 2 1 7 4 1 3 2 1 C The cofactor matrix is therefore so īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€­ ī€­ ī€­ ī€­ ī€Ŋ ī€Ŋ 5 7 3 2 4 2 1 1 1 T C adjA and īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€­ ī€­ ī€­ ī€­ ī€­ ī€Ŋ īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€­ ī€­ ī€­ ī€­ ī€­ ī€Ŋ ī€Ŋ ī€­ 5 . 2 5 . 3 5 . 1 0 . 1 0 . 2 0 . 1 5 . 0 5 . 0 5 . 0 5 7 3 2 4 2 1 1 1 2 1 1 A adjA A
  • 60. Matrices - Operations The result can be checked using AA-1 = A-1 A = I The determinant of a matrix must not be zero for the inverse to exist as there will not be a solution Nonsingular matrices have non-zero determinants Singular matrices have zero determinants
  • 62. Simple 2 x 2 case Let īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€Ŋ d c b a A and īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€Ŋ ī€­ z y x w A 1 Since it is known that A A-1 = I then īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€Ŋ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ 1 0 0 1 z y x w d c b a
  • 63. Simple 2 x 2 case Multiplying gives 1 0 0 1 ī€Ŋ ī€Ģ ī€Ŋ ī€Ģ ī€Ŋ ī€Ģ ī€Ŋ ī€Ģ dz cx dy cw bz ax by aw bc ad A ī€­ ī€Ŋ It can simply be shown that
  • 64. Simple 2 x 2 case thus A d bc da d w d cw b aw d cw y b aw y ī€Ŋ ī€­ ī€Ŋ ī€­ ī€Ŋ ī€­ ī€­ ī€Ŋ ī€­ ī€Ŋ 1 1
  • 65. Simple 2 x 2 case A b bc da b x d cx b ax d cx z b ax z ī€­ ī€Ŋ ī€Ģ ī€­ ī€Ŋ ī€­ ī€Ŋ ī€­ ī€­ ī€Ŋ ī€­ ī€Ŋ 1 1
  • 66. Simple 2 x 2 case A c cb ad c y c dy a by c dy w a by w ī€­ ī€Ŋ ī€Ģ ī€­ ī€Ŋ ī€­ ī€Ŋ ī€­ ī€­ ī€Ŋ ī€­ ī€Ŋ 1 1
  • 67. Simple 2 x 2 case A a bc ad a z c dz a bz c dz x a bz x ī€Ŋ ī€­ ī€Ŋ ī€­ ī€Ŋ ī€­ ī€­ ī€Ŋ ī€­ ī€Ŋ 1 1
  • 68. Simple 2 x 2 case So that for a 2 x 2 matrix the inverse can be constructed in a simple fashion as īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ ī€­ ī€Ŋ īƒē īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€­ a c b d A A a A c A b A d 1 â€ĸExchange elements of main diagonal â€ĸChange sign in elements off main diagonal â€ĸDivide resulting matrix by the determinant ī€Ŋ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€Ŋ ī€­ z y x w A 1
  • 69. Simple 2 x 2 case Example īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ ī€­ ī€Ŋ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ ī€­ ī€­ ī€Ŋ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€Ŋ ī€­ 2 . 0 4 . 0 3 . 0 1 . 0 2 4 3 1 10 1 1 4 3 2 1 A A Check inverse A-1 A=I I ī€Ŋ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€Ŋ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ ī€­ ī€­ 1 0 0 1 1 4 3 2 2 4 3 1 10 1
  • 70. Matrices and Linear Equations Linear Equations
  • 71. Linear Equations Linear equations are common and important for survey problems Matrices can be used to express these linear equations and aid in the computation of unknown values Example n equations in n unknowns, the aij are numerical coefficients, the bi are constants and the xj are unknowns n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a ī€Ŋ ī€Ģ ī€Ģ ī€Ģ ī€Ŋ ī€Ģ ī€Ģ ī€Ģ ī€Ŋ ī€Ģ ī€Ģ ī€Ģ īŒ ī īŒ īŒ 2 2 1 1 2 2 2 22 1 21 1 1 2 12 1 11
  • 72. Linear Equations The equations may be expressed in the form AX = B where , , 2 1 1 1 2 22 21 1 12 11 īƒē īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€Ŋ īƒē īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€Ŋ n nn n n n n x x x X a a a a a a a a a A ī īŒ ī ī īŒ ī īŒ and īƒē īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€Ŋ n b b b B ī 2 1 n x n n x 1 n x 1 Number of unknowns = number of equations = n
  • 73. Linear Equations If the determinant is nonzero, the equation can be solved to produce n numerical values for x that satisfy all the simultaneous equations To solve, premultiply both sides of the equation by A-1 which exists because |A| = 0 A-1 AX = A-1 B Now since A-1 A = I We get X = A-1 B So if the inverse of the coefficient matrix is found, the unknowns, X would be determined
  • 74. Linear Equations Example 3 2 1 2 2 3 3 2 1 2 1 3 2 1 ī€Ŋ ī€­ ī€Ģ ī€Ŋ ī€Ģ ī€Ŋ ī€Ģ ī€­ x x x x x x x x The equations can be expressed as īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€Ŋ īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€­ ī€­ 3 1 2 1 2 1 0 1 2 1 1 3 3 2 1 x x x
  • 75. Linear Equations When A-1 is computed the equation becomes īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€­ ī€Ŋ īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€­ ī€­ ī€­ ī€­ ī€­ ī€Ŋ ī€Ŋ ī€­ 7 3 2 3 1 2 5 . 2 5 . 3 5 . 1 0 . 1 0 . 2 0 . 1 5 . 0 5 . 0 5 . 0 1 B A X Therefore 7 , 3 , 2 3 2 1 ī€­ ī€Ŋ ī€­ ī€Ŋ ī€Ŋ x x x
  • 76. Linear Equations The values for the unknowns should be checked by substitution back into the initial equations 3 2 1 2 2 3 3 2 1 2 1 3 2 1 ī€Ŋ ī€­ ī€Ģ ī€Ŋ ī€Ģ ī€Ŋ ī€Ģ ī€­ x x x x x x x x 3 ) 7 ( ) 3 ( 2 ) 2 ( 1 ) 3 ( ) 2 ( 2 2 ) 7 ( ) 3 ( ) 2 ( 3 ī€Ŋ ī€­ ī€­ ī€­ ī‚´ ī€Ģ ī€Ŋ ī€­ ī€Ģ ī‚´ ī€Ŋ ī€­ ī€Ģ ī€­ ī€­ ī‚´ 7 , 3 , 2 3 2 1 ī€­ ī€Ŋ ī€­ ī€Ŋ ī€Ŋ x x x