Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.
Nächste SlideShare
Event ROI Checklist
Weiter

4

Teilen

Opening Session - Keynote Presentation by Eric Beinhocker

Opening Session - Keynote Presentation by Eric Beinhocker

Ähnliche Bücher

Kostenlos mit einer 30-tägigen Testversion von Scribd

Alle anzeigen

Opening Session - Keynote Presentation by Eric Beinhocker

  1. 1. The Path from Paris: Impera'ves and Opportuni'es Eric Beinhocker Execu&ve Director, Ins&tute for New Economic Thinking at the Oxford Mar&n School University of Oxford OECD Green Growth and Sustainable Development Forum, Paris 14 December 2015
  2. 2. What was achieved at COP 21? •  Architecture – from zero sum to posi&ve sum; from top-down to boTom-up “intended na&onally determined contribu&ons” •  Ambi&on – “well below” 2˚C and “pursue efforts” to limit to 1.5˚C •  Ratchet – global stocktaking analysis and mee&ng every 5 years to increase efforts •  Funding – recogni&on of adapta&on and damages, reaffirmed $100B/year •  Poli&cs – global shi_ in the poli&cal context; no longer “whether”, now “how” •  What needs to happen next?
  3. 3. Source: IPCC AR5 WG2 (2014) Climate risks a func&on of ‘peak warming’ Paris agreement
  4. 4. CO2inducedpeak warming(°C) 2.0 3.0 Each point represents a different possible emissions trajectory over the 21st century Source: Bowerman et al. (2011) Peak warming Significant scatter shows that 2050 emissions are not the best guide to peak warming 2050 emissions GtC) Emissions in a given year (e.g. 2050) not a reliable guide to peak warming
  5. 5. CO2inducedpeak warming(°C) 2.0 3.0 Cumulative carbon emissions (CCE) since 1750 (TtC) Source: Bowerman et al. (2011) Peak warming The tight fit reflects a fundamental physical relationship between cumulative emissions and peak warming Each point represents a different possible emissions trajectory over the 21st century Instead cumula&ve carbon emissions (CCE) are a good indicator of peak warming
  6. 6. Earth’s atmospheric system is like a bathtub filling with CO2 Source: John Sterman , MIT; Climate Interactive •  Ocean satura&on •  Soil methane release •  Deforesta&on •  Economic growth •  Economic development •  Popula&on increase 1˚C 2˚C 3˚C To stabilize at any temperature, emissions must go to net zero
  7. 7. 77 118 200 241 322 377 622 731 853 0 100 200 300 400 500 600 700 800 900 < 1.5° (66%) < 1.5° (50%) < 1.5° (33%) < 2.0° (66%) < 2.0° (50%) < 2.0° (33%) < 3.0° (66%) < 3.0° (50%) < 3.0° (33%) GtC Remaining Total Carbon Budgets in 2014 Source: IPCC AR5 WG1 Remaining carbon budget for different warming scenarios Humanity has max 322 GtC (1,184 GtCO2) room le_ in the “bathtub” to meet Paris goals ImplicaBon of Paris Accord
  8. 8. Source: Pfeiffer, Millar, Hepburn and Beinhocker (2015, forthcoming) Under current projec&ons we will have consumed the remaining <2˚C | 50% budget by around 2040 (1,000.0) (800.0) (600.0) (400.0) (200.0) - 200.0 400.0 2014 2016 2018 2020 2022 2024 2026 2028 2030 2032 2034 2036 2038 2040 2042 2044 2046 2048 2050 2052 2054 2056 2058 2060 2062 2064 2066 2068 2070 2072 2074 2076 2078 2080 2082 2084 2086 2088 2090 2092 2094 2096 2098 2100 GtC Remaining Carbon Budget per Scenario (2014-2100) RCP2.6 (< 2.0° (50%)) RCP4.5 (< 2.0° (50%)) RCP6.0 (< 2.0° (50%)) RCP8.5 (< 2.0° (50%)) 450-ppm (430-480-ppm) (< 2.0° (50%)) 500-ppm (480-530-ppm) (< 2.0° (50%)) 550-ppm (530-580-ppm) (< 2.0° (50%)) 580-650-ppm (< 2.0° (50%)) 650-720-ppm (< 2.0° (50%)) 720-1000-ppm (< 2.0° (50%)) >1000-ppm (< 2.0° (50%)) Baseline (with CCS) (< 2.0° (50%)) BAU - 2040 RCP8.5 - 2038
  9. 9. 2017 Source: Pfeiffer, Millar, Hepburn and Beinhocker (2015, forthcoming) All new energy investment globally must be zero carbon by 2017 or we “commit” to >2˚C Range 2005 - 2032
  10. 10. We have already discovered more fossil fuels then we can ever burn Source: Hepburn, Beinhocker, Farmer, Teytelboym (2014); IMF
  11. 11. We have already discovered more fossil fuels then we can ever burn Stop was&ng $646bn per year of taxpayer money subsidising discovering more!
  12. 12. Our choices •  Drive all new energy investment to zero carbon star&ng by 2017 OR •  Write-off/strand large por&on of global energy system in 2020s-2040s •  Make an expensive, risky bet on massive carbon, capture and storage (CCS) deployment in 2020s-2040s •  Exceed 2˚C threshold and face major climate risks and adapta&on costs (ability to adapt not guaranteed)
  13. 13. Good news – a clean energy economy is a beTer economy
  14. 14. Clean energy will win because it is a technology not a commodity Source: Farmer and LaFond (2015) Commodity costs follow a random walk Technology costs decline over Bme
  15. 15. Solar (a technology) has dropped drama&cally in price, coal (a commodity) has not Source: Farmer and LaFond (2015)
  16. 16. Wright’s Law (1936) – technology costs decline with cumula&ve produc&on volume Cost vs. cumula&ve produc&on = power law Theodore Wright Source: Farmer and LaFond (2015)
  17. 17. Following Wright’s Law solar will likely become cheaper than coal in 2020-2030 Source: Farmer and LaFond (2015)
  18. 18. Characteris&cs of technologies with rapid improvement rates •  Small unit sizes, lots of experiments •  Short &me between “genera&ons” •  Embedded in larger ecosystem of innova&on (e.g. semiconductor, biotech) ✓Solar PV ✓Wind ✓BaTeries Clean energy technologies ✓Electric vehicles ✓Smart grid ✓Smart homes/buildings ✓Bioengineered fuels ? Biomass ? Geothermal ? Gas CCS ✗Coal CCS ✗Nuclear
  19. 19. Impera&ve to shi_ R&D and subsidies to clean energy technologies Source: Apollo Project (2015); OECD
  20. 20. Policy framework: make the good stuff cheap and the bad stuff expensive •  Make the good stuff cheap –  Drama&cally scale-up investments in R&D –  Drive up clean energy cumula&ve volumes – ride Wrights Law •  Subsidies •  Feed-in tariffs •  Renewable porvolio/carbon content standards •  Building codes •  Government purchasing –  Enable deployment •  Smart grid investments •  EV charging infrastructure •  Remove regulatory barriers •  Reform/new ins&tu&onal structures
  21. 21. Policy framework: make the good stuff cheap and the bad stuff expensive •  Make the bad stuff expensive –  Remove all fossil fuel subsidies and tax breaks –  Implement a carbon price •  Taxes at mine-head, well-head, import point, or on genera&on may be increasingly feasible –  Full disclosure of “material” stranded asset risks in the financial system (e.g. FSB task force) –  Global implementa&on of air quality and public health regula&ons •  Major health benefits •  Reduces economic aTrac&veness of coal
  22. 22. My G20 wish list •  Clear commitment to “net-zero” by 2040 •  End all fossil fuel subsidies •  No new fossil fuel investments a_er 2020 developed countries, 2025 emerging, 2030 developing •  Pledge to 10x clean energy R&D
  23. 23. THANK YOU For more informa&on please see www.inet.ox.ac.uk
  24. 24. Source: Pfeiffer, Millar, Hepburn and Beinhocker (2015, forthcoming) BACKUP – Year of carbon budget deple&on RCP2.6 RCP4.0 RCP6.5 RCP8.5 Cat. 1 Cat. 2 Cat. 3 Cat. 4 Cat. 5 Cat. 6 Cat. 7 450- ppm (430- 480- ppm) 580-720- ppm 720- 1000- ppm >1000- ppm 450- ppm (430- 480- ppm) 500- ppm (480- 530- ppm) 550- ppm (530- 580- ppm) 580-650- ppm 650-720- ppm 720- 1000- ppm >1000- ppm 66% 77 2022 2022 2023 2021 2023 2023 2023 2022 2022 2022 2021 2022 50% 118 2026 2026 2027 2024 2028 2027 2027 2026 2026 2026 2025 2025 33% 200 2037 2033 2036 2030 2040 2038 2036 2034 2034 2032 2031 2031 66% 241 2045 2037 2040 2033 2049 2044 2040 2038 2038 2036 2034 2034 50% 322 - 2044 2047 2038 - - 2052 2047 2045 2042 2039 2040 33% 377 - 2049 2051 2041 - - 2062 2053 2050 2046 2042 2043 66% 622 - 2076 2068 2054 - - - - 2078 2063 2056 2058 50% 731 - - 2075 2059 - - - - 2097 2071 2061 2063 33% 853 - - 2082 2064 - - - - - 2080 2067 2070 Warming* Likelihood** Budget (CCE)*** in 2014 Year of budget achievment (2005-2100) IPCC Baseline avg. ** Fractions of scenario simulations meeting the warming objective with that amount of CCE *** CCE at the time the temperature threshold is exceeded that are required for 66%, 50%, and 33% of the simulations assuming non-CO2 forcing follows the RCP8.5 scenario (similar emissions are implied by the other RCP scenarios). For the most scenario-threshold combinations, emissions and warming continue after the threshold is exceeded. Nevertheless, because of the cumulative nature of the CO2 emissions these figures provide an indication of the cumulative CO2 emissions implied by simulations under RCP-like scenarios. Values are rounded to the nearest 50. [GtC] < 1.5° < 2.0° < 3.0° * Warming due to CO2 and non-CO2 drivers. Temperature values are given relative to the 1861-1880 period
  25. 25. Forecast of levelised solar costs
  26. 26. Forecast of levelised wind costs
  27. 27. Incremental capital cost likely to be negligible Global investment requirements, 2015-2030, constant 2010 USD, trillions From +$4T or 4% (ex. OpEx) to -$1T or -1% (incl. OpEx) Source: Global Commission on Climate and Economy (2014)
  • Asharmike

    Jun. 24, 2019
  • SanderKes

    Apr. 21, 2016
  • shawncunningham

    Apr. 20, 2016
  • LorcanLyons

    Jan. 11, 2016

Opening Session - Keynote Presentation by Eric Beinhocker

Aufrufe

Aufrufe insgesamt

1.219

Auf Slideshare

0

Aus Einbettungen

0

Anzahl der Einbettungen

20

Befehle

Downloads

0

Geteilt

0

Kommentare

0

Likes

4

×