SlideShare ist ein Scribd-Unternehmen logo
1 von 21
BJT Biasing & re model
Unit II :
Bipolar Junction Transistor: Transistor Construction, Operation, Amplification action.
Common Base, Common Emitter, Common Collector Configuration DC Biasing BJTs:
Operating Point, Fixed-Bias, Emitter Bias, Voltage-Divider Bias Configuration. Collector
Feedback, Emitter-Follower Configuration. Bias Stabilization. CE, CB, CC amplifiers and AC
analysis of single stage CE amplifier (re Model ). Field Effect Transistor: Construction and
Characteristic of JFETs. AC analysis of CS amplifier, MOSFET (Depletion and
Enhancement)Type, Transfer Characteristic
11/10/2017 1
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
BJT: DC Biasing BJTs: Operating Point
11/10/2017 2
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
Transistor operates in three regions. Junctions biasing in different
regions of operation as below
• Active (Linear)-region :
▪ BE junction forward-biased
▪ CB junction reverse-biased
• Cutoff-region : Both BE & CB junction reverse-biased
• Saturation-region : Both BE & CB junction forward-biased
Biasing: dc biasing establish a fixed level of output current and
voltage that sets a operating or quiescent point (Q-point) on the
characteristics. Quiescent means quiet, still or inactive.
If not properly biased a transistor amplifier may go into cutoff /
saturation when ac input is applied
BJT: DC Biasing BJTs: Operating Point
11/10/2017 3
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
Point B: allows variation of output,
but limited by VCE=0 V & IC=0 mA
Point C: allows output variation in
response to, +ve/-ve swing of input
Point D: D is near maximum power
level. Output swing in the +ve
direction is limited
Point E & F: device in cut-off region
& saturation region respectively
VCE(V)
IB =0 A
10 A
20 A
40 A
50 A
IC (mA) 60 A
Saturationregion
VCE Saturation
0 5 10 15 20
6
5
4
3
2
1
30 A
Cutoff region
VCE max
Pmax
A
B
C
D
E
F
Operating point is fixed point on output characteristics (by VCE & IC)
Point A: the device is fully off ie. VCE=0 V & IC=0 mA (no bias)
Point C is suitable Q point for amplification
BJT: DC Biasing BJTs: Operating Point
•increase in ac power (amplification) occurs due to transfer of energy
from dc supplies.
•So analysis/design of a transistor amplifier requires knowing both the
dc and the ac response of the system.
•To find Q point, output voltage & output current due to dc biasing has
to be known. (for CE configuration, IC , VCE and IB )
•To do dc bias analysis first remove ac input/output and open circuit
blocking/ bypass capacitor.
•Each configuration is analysed by recurring use of following equations
11/10/2017 4
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
BC
CBE
BE
II
III
V





and
)1(
7.0
BJT: Fixed-Bias
11/10/2017 5
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
Fixed bias DC equivalent of Fixed bias
 
B
BECC
C
R
VV
I



E
C
B
VCC
IC
Q
VBE
RCRB
+
-
IB
Input ac
signal
Output
ac signal
C1
C2
VCE
E
C
B
VCC
IC
Q
VBE
RCRB
+
-
IB
VCC
VCE
VVII BEBC 7.0and  
CCCCCE RIVV 
• VCC bias collector and base through RC and
RB respectively while emitter is grounded.
• Fixed bias is common in switching circuits.
• Disadvantage is its  dependency ( varies
with temperature)
B
BECC
B
R
VV
I


BJT: Emitter Bias
11/10/2017 6
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
• Emitter bias provides improved bias stability with
respect to  ( or temperature).
• It uses a emitter resistance RE. which acts as a feedback
B
EBBECC
B
EBEEE
B
EBECC
B
R
RIVV
I
RIRIV
R
VVV
I
)1(
so
)1(as,







,as
7.0and
CE
EECCCCECCCCCE
BEBC
II
RIRIVVRIVV
VVII


 
 
EB
BECC
C
)R(βR
VVβ
I
1


 ECCCCCE RRIVV 
E
C
B
VCC
IC
Q
VBE
RCRB
+
-
IB
Input ac
signal
Output
ac signal
C1
C2
VCE
IE
RE
Emitter bias
 
EB
BECC
B
)R(βR
VV
I
1


BJT: Voltage-Divider Bias Configuration
11/10/2017 7
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
 
getwesolvingandVngsubstituti
1again
where,
B
21
21
121
21
EBBEEEBEB
BCCBBCC
B
RIVRIVV
RR
RR
R
R
V
R
V
R
V
R
VV
III








 ECCCCCE RRIVV 
  E
BECC
B
RR
V
R
R
V
I
1
1





CEEECCCCCE
BEBC
IIRIRIVV
VVII


as,again
7.0and
Voltage divider bias
E
C
B
VCC
IC
Q
VBE
RCR1
+
-
IBInput ac
signal
Output
ac signal
C1
C2
VCE
IE
RE
R2
I1
I2
• Voltage divider bias provides excellent bias stability with
respect to  or temperature changes
• Base bias is provided using a voltage divider circuit while
feedback resistance RE is used
  E
BECC
C
RR
V
R
R
V
I
1
1













BJT: Collector Feedback
11/10/2017 8
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
Collector feedback bias
E
C
B
VCC
IC
Q
VBE
RC
RF
+
-
IBInput ac
signal
Output
ac signal
C1
C2
VCE
IE
RE
 
VVII
R
RRI
R
VV
I
R
RIVRIV
I
BEBC
F
ECC
F
BECC
B
F
EEBECECC
B
7.0and 







 ECCCCCE RRIVV 
 
 ECF
BECC
C
RRR
VV
I





CEEECCCCCE IIRIRIVV  as,again
• Maintain relative bias stability with respect to  or temperature changes
• base resistor RB is connected to the collector rather than to VCC
 ECF
BECC
B
RRR
VV
I




BJT: Emitter-Follower Configuration
11/10/2017 9
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
E
C
B
-VEE
Q
VBE
RB
+
-
IBInput ac
signal
Output
ac signal
C1
C2
VCE
IE
RE
 
B
EBBEEE
B
B
EEBEEE
B
R
RIVV
I
R
RIVV
I
1




EEEECE RIVV 
  EB
BEEE
B
RR
VV
I
1



• Collector is grounded, base is connected to collector through RB and emitter is baised
• Biasing stability similar to emitter bias
  
  EB
BEEE
E
RR
VV
I
1
1





BJT: Common base Configuration bias
11/10/2017 10
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
E
BEEE
E
R
VV
I


CCCCCB RIVV 
 
CE
EEEECCCCECCE
II
VRIRIVVVV


as
RE
E C
B
VEE VCC
IE IC
IB
Q
VBE VCB
Output
ac signal
C2
Input ac
signal
C1
RC
VCE
 ECCEECCCE RRIVVV 
 
E
BEEE
C
R
VV
I



BJT: Biasing Example
11/10/2017 11
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
For the circuit in figure, Find out ICQ and VCEQ
E
C
B
20 V
I
C
=90
20 K
IBac
i/p
ac
o/p
10 F
5 K
2 K
1 K
10 F
20 F
E
C
B
VCC =20 V
IC
=90
20 K
IB
5 K
2 K
1 K




 K
x
RR
RR
R 4
520
520
21
21

 
Vx
RRIVV ECCCCCEQ
61.10313.320 

mAII BCQ 13.3 
   
mAmAA
xx
x
RR
V
R
R
xV
I
E
BECC
E 0347.0
95
3.3
101914
7.0
20
4
20
1 3
1









BJT: biasing summary
11/10/2017 12
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
B
BECC
B
R
VV
I


CCCCCE RIVV 
EB
BECC
B
)R(βR
VV
I
1


 ECCCCCE RRIVV   ECCCCCE RRIVV 
  E
BECC
B
RR
V
R
R
V
I
1
1





BJT: biasing summary
11/10/2017 13
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
 ECF
BECC
B
RRR
VV
I




 ECCCCCE RRIVV 
  EB
BEEE
B
RR
VV
I
1



EEEECE RIVV 
E
BEEE
E
R
VV
I


CCCCCB RIVV 
 ECCEECCCE RRIVVV 
BJT: Bias Stabilization.
Bias stability is a measure of the sensitivity of network to parameter
variations. In BJT amplifier circuits, collector current IC is sensitive to
each of the following parameters:
• : increases with increase in temperature
• VBE: decreases about 2.5 mV /°C with increase in temperature
• ICO : doubles in value for every 10°C increase in temperature
Any or all factors can cause the designed Q-point to drift
Stability factor S is defined for each parameter affecting bias stability
11/10/2017 14
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
CO
C
CO
I
I
IS


)(
BE
C
BE
V
I
VS


)(




 CI
S )(
  )()()(currentcollectorinchangeTotal SVVSIISI BEBECOCOC
BJT: bias stability summary
11/10/2017 15
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
Fixed bias Emitter bias Voltage divider bias Collector feedback bias
)( COIS
E
B
E
B
CO
R
R
R
R
IS










 1
)(
E
E
CO
R
R
R
R
IS












 1
)(
C
F
C
F
CO
R
R
R
R
IS










 1
)(
1
1
)(

 CI
S 















E
B
E
B
C
R
R
R
R
I
S
21
1 1
)(

















E
E
C
R
R
R
R
I
S


21
1 1
)(


 
 CF
CFC
RR
RRI
S
21
1
)(














C
F
C
BE
R
R
R
VS


)(









E
E
BE
R
R
R
VS



)(
B
BE
R
VS

)(









E
B
E
BE
R
R
R
VS


)(
The ratio RB/RE or R /RE or RF /RC should be small for better bias stability
BJT: Transistor modelling
The key to small-signal analysis is use of equivalent circuits (models)
A model is a equivalent circuit, that best approximates ac behaviour
of the transistor
There are two models commonly used in small signal AC analysis of a
transistor: re model Hybrid equivalent model
11/10/2017 16
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
SystemZi ZO
Ii
IO+
Vi
-
+
VO
-
To make ac equivalent model
• replace dc supplies by zero (short circuit)
• Replace Coupling and bypass capacitor
by short circuit
• Remove elements bypassed by short
circuit
• define the parameters Zi, ZO, Ii, and IO
BJT: re Model for CE
11/10/2017 17
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
E
IE
IC
IB

VBE
C
B
E
IE
IC
IB
IB
+
VBE
-
C
B
+
VCE
-
CE configuration CE Equivalent circuit
 

















B
C
i
O
i
e
L
eB
LB
ii
LC
i
O
V
O
CQA
CQ
A
C
CE
OO
E
BE
e
e
E
BE
B
BE
i
BCOBi
I
I
I
I
A
r
R
rI
RI
ZI
RI
V
V
A
r
IV
I
V
I
V
rZ
I
V
r
r
I
V
I
V
Z
IIIII
gainCurrent
gainVoltage
regionactiveincurveoutputofslopeis/1
currentcollectorpointQage,Early volt
diode)ofresistance(forwardas
1
and,
Ii=IB
IO=IC+
Vi
-
+
VO
-
B
E
C
E
re rO
re model for CE configuration including rO
IB
RL
BJT: re Model for CB
11/10/2017 18
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
re model for CB configuration
B
IE
ICIE
IE
-
VBE
+
CE
+
VCB
-
CB configuration CB Equivalent circuit
1gainCurrent
gainVoltage
highor very
regionactiveincurveoutputofslopeis/1
and,



















E
C
i
O
i
e
L
eE
LC
i
O
V
O
O
C
CB
OO
e
E
BE
i
ECOEi
I
I
I
I
A
r
R
rI
RI
V
V
A
r
r
I
V
rZ
r
I
V
Z
IIIII
EIE
IC

VBE
C
B
Ii=-IE
IO=IC
+
Vi
-
+
VO
-
E
B
C
B
re rOIE RL
BJT: re Model for CC
11/10/2017 19
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
   
 
























B
E
i
O
i
eL
L
eLB
LE
i
O
V
O
CQ
A
C
CE
E
E
OO
E
BE
e
eL
E
BEE
B
BEE
B
B
i
BEOBi
I
I
I
I
A
rR
R
rRI
RI
V
V
A
r
I
V
I
V
I
V
rZ
I
V
r
rR
I
VV
I
VV
I
V
Z
IIIII
gainCurrent
gainVoltage
regionactiveincurveoutputofslopeis/1
diode)ofresistance(forwardas
and,
CC configuration
C
E
B
IC
IE
IB

VBE
CC configuration
E
C
B
IC
IEIB

VBE
RL
Ii=IB
IO=-IE+
Vi
-
+
VO
-
B
C
E
(RL+re) rO
re model for CC configuration including rO
IB
RL
RL
BJT: ac modelling Example
11/10/2017 20
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
For the circuit in figure, Find out re , Zi , ZO , AV , Ai
E
C
B
20 V
IC
=90
20 K
IBac
i/p
ac
o/p
10 F
5 K
2 K
1 K
10 F
20 F
E
C
B
IC
=90
20 K
IBac i/p
ac o/p
5 K
2 K
re model for voltage divider CE configuration including rO
IB
IO=IC
+
Vi
-
+
VO
-
B
E
C
re rO
IB
RCR2R1
Ii
BJT: ac modelling Example
11/10/2017 21
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
re computation
 
 
 














23.8
16.3
26
16.3
95
3.300
101914
7.0
20
4
20
91
1
1
4
520
520
3
1
21
21
e
E
T
e
E
BECC
E
r
mA
mV
I
V
r
mAmA
A
xx
x
x
RR
V
R
R
xV
I
K
x
RR
RR
R





Zi computation


 624
7.7404000
7.7404000x
rR
I
V
Z e
i
i
i 
ZO computation (assume ro=)
2  KrR
I
V
Z OC
O
O
O
AV computation
243
23.8
2000



e
C
eB
CC
i
O
V
r
R
rI
RI
V
V
A

Ai computation
82.75
2000
624
243 

 x
Z
Z
A
Z
V
Z
V
I
I
A
O
i
V
i
i
O
O
i
O
i

Weitere ähnliche Inhalte

Was ist angesagt?

3.bipolar junction transistor (bjt)
3.bipolar junction transistor (bjt)3.bipolar junction transistor (bjt)
3.bipolar junction transistor (bjt)
firozamin
 
36.voltage divider bias
36.voltage divider bias36.voltage divider bias
36.voltage divider bias
DoCircuits
 

Was ist angesagt? (20)

Hybrid model for Transistor, small signal Analysis
Hybrid model for Transistor, small signal AnalysisHybrid model for Transistor, small signal Analysis
Hybrid model for Transistor, small signal Analysis
 
Bjt amplifiers
Bjt amplifiersBjt amplifiers
Bjt amplifiers
 
Mosfet’s
Mosfet’sMosfet’s
Mosfet’s
 
Transistor Fundamentals
Transistor FundamentalsTransistor Fundamentals
Transistor Fundamentals
 
BJT AC Analisi 5
BJT AC Analisi 5 BJT AC Analisi 5
BJT AC Analisi 5
 
Tuned amplifiers
Tuned amplifiersTuned amplifiers
Tuned amplifiers
 
Differential amplifier
Differential amplifierDifferential amplifier
Differential amplifier
 
3.bipolar junction transistor (bjt)
3.bipolar junction transistor (bjt)3.bipolar junction transistor (bjt)
3.bipolar junction transistor (bjt)
 
36.voltage divider bias
36.voltage divider bias36.voltage divider bias
36.voltage divider bias
 
Active Filter (Low Pass)
Active Filter (Low Pass)Active Filter (Low Pass)
Active Filter (Low Pass)
 
Bipolar Junction Transistor (BJT).pptx
Bipolar Junction Transistor (BJT).pptxBipolar Junction Transistor (BJT).pptx
Bipolar Junction Transistor (BJT).pptx
 
Overview of Crystal Oscillator Circuit Working and Its Application
Overview of Crystal Oscillator Circuit Working and Its ApplicationOverview of Crystal Oscillator Circuit Working and Its Application
Overview of Crystal Oscillator Circuit Working and Its Application
 
dc biasing of bjt
dc biasing of bjtdc biasing of bjt
dc biasing of bjt
 
Basic MOSFET structure
Basic MOSFET structureBasic MOSFET structure
Basic MOSFET structure
 
Multistage amplifier
Multistage amplifierMultistage amplifier
Multistage amplifier
 
Transistor basics
Transistor   basicsTransistor   basics
Transistor basics
 
MOSFETs
MOSFETsMOSFETs
MOSFETs
 
Bjt oscillators
Bjt oscillatorsBjt oscillators
Bjt oscillators
 
Bipolar Junction Transistor
Bipolar Junction TransistorBipolar Junction Transistor
Bipolar Junction Transistor
 
Comparison of cb,ce and cc configuration
Comparison of cb,ce and cc configurationComparison of cb,ce and cc configuration
Comparison of cb,ce and cc configuration
 

Andere mochten auch

Group 1 Audio Amplifier Final Presentation
Group 1 Audio Amplifier Final PresentationGroup 1 Audio Amplifier Final Presentation
Group 1 Audio Amplifier Final Presentation
Dan Greenwood
 
Op-Amp Fundamental
Op-Amp FundamentalOp-Amp Fundamental
Op-Amp Fundamental
Gaensan
 

Andere mochten auch (18)

Rec101 unit iii operational amplifier
Rec101 unit iii operational amplifierRec101 unit iii operational amplifier
Rec101 unit iii operational amplifier
 
Amplifier report
Amplifier reportAmplifier report
Amplifier report
 
Group 1 Audio Amplifier Final Presentation
Group 1 Audio Amplifier Final PresentationGroup 1 Audio Amplifier Final Presentation
Group 1 Audio Amplifier Final Presentation
 
DIFFERENTIAL AMPLIFIER using MOSFET
DIFFERENTIAL AMPLIFIER using MOSFETDIFFERENTIAL AMPLIFIER using MOSFET
DIFFERENTIAL AMPLIFIER using MOSFET
 
Operational amplifier
Operational amplifierOperational amplifier
Operational amplifier
 
Design of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCEDesign of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCE
 
Op amp-electronics
Op amp-electronicsOp amp-electronics
Op amp-electronics
 
Basic op amp circuits
Basic op amp circuitsBasic op amp circuits
Basic op amp circuits
 
OP AMP Applications
OP AMP ApplicationsOP AMP Applications
OP AMP Applications
 
Ajal op amp
Ajal op ampAjal op amp
Ajal op amp
 
Op-Amp Basics Part I
Op-Amp Basics Part IOp-Amp Basics Part I
Op-Amp Basics Part I
 
Op amp basics
Op amp basicsOp amp basics
Op amp basics
 
2 op-amp concepts
2 op-amp concepts2 op-amp concepts
2 op-amp concepts
 
Op-Amp Fundamental
Op-Amp FundamentalOp-Amp Fundamental
Op-Amp Fundamental
 
Operational Amplifier Part 1
Operational Amplifier Part 1Operational Amplifier Part 1
Operational Amplifier Part 1
 
Operational Amplifier (OpAmp)
Operational Amplifier (OpAmp)Operational Amplifier (OpAmp)
Operational Amplifier (OpAmp)
 
Op amp(operational amplifier)
Op amp(operational amplifier)Op amp(operational amplifier)
Op amp(operational amplifier)
 
Slideshare ppt
Slideshare pptSlideshare ppt
Slideshare ppt
 

Ähnlich wie Rec101 unit ii (part 2) bjt biasing and re model

BJT BIASING-SOWMIYA.pdf
BJT BIASING-SOWMIYA.pdfBJT BIASING-SOWMIYA.pdf
BJT BIASING-SOWMIYA.pdf
GunaG14
 
Lecture trans bias_1
Lecture trans bias_1Lecture trans bias_1
Lecture trans bias_1
Napex Terra
 

Ähnlich wie Rec101 unit ii (part 2) bjt biasing and re model (20)

Rec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristicsRec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristics
 
Analog & Digital Electronics
Analog & Digital ElectronicsAnalog & Digital Electronics
Analog & Digital Electronics
 
Lec-7.pdf
Lec-7.pdfLec-7.pdf
Lec-7.pdf
 
Various configurations in BJT
Various configurations in BJTVarious configurations in BJT
Various configurations in BJT
 
Edcqnaunit 4
Edcqnaunit 4Edcqnaunit 4
Edcqnaunit 4
 
BJT Biasing for B.Tech Ist Year Engineering
BJT Biasing for B.Tech Ist Year EngineeringBJT Biasing for B.Tech Ist Year Engineering
BJT Biasing for B.Tech Ist Year Engineering
 
Mba admssion in india
Mba admssion in indiaMba admssion in india
Mba admssion in india
 
dc biasing
dc biasingdc biasing
dc biasing
 
13 bjt
13 bjt13 bjt
13 bjt
 
Edc unit 4
Edc unit 4Edc unit 4
Edc unit 4
 
Bjts
BjtsBjts
Bjts
 
Bjts
Bjts Bjts
Bjts
 
99992505.pdf
99992505.pdf99992505.pdf
99992505.pdf
 
BJT BIASING-SOWMIYA.pdf
BJT BIASING-SOWMIYA.pdfBJT BIASING-SOWMIYA.pdf
BJT BIASING-SOWMIYA.pdf
 
Lecture trans bias_1
Lecture trans bias_1Lecture trans bias_1
Lecture trans bias_1
 
Phy 4240 lec (9) and (10)
Phy 4240 lec (9) and (10)Phy 4240 lec (9) and (10)
Phy 4240 lec (9) and (10)
 
bjt ppt project.ppt
bjt ppt  project.pptbjt ppt  project.ppt
bjt ppt project.ppt
 
Lecture 06 transistorremodel
Lecture 06 transistorremodelLecture 06 transistorremodel
Lecture 06 transistorremodel
 
Chp1 1 bjt [read only]
Chp1 1 bjt [read only]Chp1 1 bjt [read only]
Chp1 1 bjt [read only]
 
Bjt transistors converted
Bjt transistors convertedBjt transistors converted
Bjt transistors converted
 

Mehr von Dr Naim R Kidwai

Mehr von Dr Naim R Kidwai (20)

Asynchronous sequential circuit analysis
Asynchronous sequential circuit analysisAsynchronous sequential circuit analysis
Asynchronous sequential circuit analysis
 
synchronous Sequential circuit counters and registers
synchronous Sequential circuit counters and registerssynchronous Sequential circuit counters and registers
synchronous Sequential circuit counters and registers
 
Clocked Sequential circuit analysis and design
Clocked Sequential circuit analysis and designClocked Sequential circuit analysis and design
Clocked Sequential circuit analysis and design
 
Sequential circuit-flip flops
Sequential circuit-flip flopsSequential circuit-flip flops
Sequential circuit-flip flops
 
Sampling Theorem
Sampling TheoremSampling Theorem
Sampling Theorem
 
Moodle introduction
Moodle introductionMoodle introduction
Moodle introduction
 
Project financial feasibility
Project financial feasibilityProject financial feasibility
Project financial feasibility
 
financing infrastructure projects
financing infrastructure projectsfinancing infrastructure projects
financing infrastructure projects
 
financing projects
financing projectsfinancing projects
financing projects
 
multiple projects and constraints
multiple projects and constraintsmultiple projects and constraints
multiple projects and constraints
 
project risk analysis
project risk analysisproject risk analysis
project risk analysis
 
Nec 602 unit ii Random Variables and Random process
Nec 602 unit ii Random Variables and Random processNec 602 unit ii Random Variables and Random process
Nec 602 unit ii Random Variables and Random process
 
spread spectrum communication
spread spectrum communicationspread spectrum communication
spread spectrum communication
 
Error Control coding
Error Control codingError Control coding
Error Control coding
 
information theory
information theoryinformation theory
information theory
 
Rec101 unit ii (part 3) field effect transistor
Rec101 unit ii (part 3) field effect transistorRec101 unit ii (part 3) field effect transistor
Rec101 unit ii (part 3) field effect transistor
 
Rec101 unit v communication engg
Rec101 unit v communication enggRec101 unit v communication engg
Rec101 unit v communication engg
 
Rec101 unit iv emi
Rec101 unit iv emiRec101 unit iv emi
Rec101 unit iv emi
 
Rec101 unit 1 (part iii) diode applications
Rec101 unit 1 (part iii) diode applicationsRec101 unit 1 (part iii) diode applications
Rec101 unit 1 (part iii) diode applications
 
Rec101 unit 1 (part ii) pn junction diode
Rec101 unit 1 (part ii)  pn junction diodeRec101 unit 1 (part ii)  pn junction diode
Rec101 unit 1 (part ii) pn junction diode
 

Kürzlich hochgeladen

Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Christo Ananth
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
rknatarajan
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 

Kürzlich hochgeladen (20)

Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
Vivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design SpainVivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design Spain
 
Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 

Rec101 unit ii (part 2) bjt biasing and re model

  • 1. BJT Biasing & re model Unit II : Bipolar Junction Transistor: Transistor Construction, Operation, Amplification action. Common Base, Common Emitter, Common Collector Configuration DC Biasing BJTs: Operating Point, Fixed-Bias, Emitter Bias, Voltage-Divider Bias Configuration. Collector Feedback, Emitter-Follower Configuration. Bias Stabilization. CE, CB, CC amplifiers and AC analysis of single stage CE amplifier (re Model ). Field Effect Transistor: Construction and Characteristic of JFETs. AC analysis of CS amplifier, MOSFET (Depletion and Enhancement)Type, Transfer Characteristic 11/10/2017 1 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad
  • 2. BJT: DC Biasing BJTs: Operating Point 11/10/2017 2 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad Transistor operates in three regions. Junctions biasing in different regions of operation as below • Active (Linear)-region : ▪ BE junction forward-biased ▪ CB junction reverse-biased • Cutoff-region : Both BE & CB junction reverse-biased • Saturation-region : Both BE & CB junction forward-biased Biasing: dc biasing establish a fixed level of output current and voltage that sets a operating or quiescent point (Q-point) on the characteristics. Quiescent means quiet, still or inactive. If not properly biased a transistor amplifier may go into cutoff / saturation when ac input is applied
  • 3. BJT: DC Biasing BJTs: Operating Point 11/10/2017 3 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad Point B: allows variation of output, but limited by VCE=0 V & IC=0 mA Point C: allows output variation in response to, +ve/-ve swing of input Point D: D is near maximum power level. Output swing in the +ve direction is limited Point E & F: device in cut-off region & saturation region respectively VCE(V) IB =0 A 10 A 20 A 40 A 50 A IC (mA) 60 A Saturationregion VCE Saturation 0 5 10 15 20 6 5 4 3 2 1 30 A Cutoff region VCE max Pmax A B C D E F Operating point is fixed point on output characteristics (by VCE & IC) Point A: the device is fully off ie. VCE=0 V & IC=0 mA (no bias) Point C is suitable Q point for amplification
  • 4. BJT: DC Biasing BJTs: Operating Point •increase in ac power (amplification) occurs due to transfer of energy from dc supplies. •So analysis/design of a transistor amplifier requires knowing both the dc and the ac response of the system. •To find Q point, output voltage & output current due to dc biasing has to be known. (for CE configuration, IC , VCE and IB ) •To do dc bias analysis first remove ac input/output and open circuit blocking/ bypass capacitor. •Each configuration is analysed by recurring use of following equations 11/10/2017 4 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad BC CBE BE II III V      and )1( 7.0
  • 5. BJT: Fixed-Bias 11/10/2017 5 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad Fixed bias DC equivalent of Fixed bias   B BECC C R VV I    E C B VCC IC Q VBE RCRB + - IB Input ac signal Output ac signal C1 C2 VCE E C B VCC IC Q VBE RCRB + - IB VCC VCE VVII BEBC 7.0and   CCCCCE RIVV  • VCC bias collector and base through RC and RB respectively while emitter is grounded. • Fixed bias is common in switching circuits. • Disadvantage is its  dependency ( varies with temperature) B BECC B R VV I  
  • 6. BJT: Emitter Bias 11/10/2017 6 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad • Emitter bias provides improved bias stability with respect to  ( or temperature). • It uses a emitter resistance RE. which acts as a feedback B EBBECC B EBEEE B EBECC B R RIVV I RIRIV R VVV I )1( so )1(as,        ,as 7.0and CE EECCCCECCCCCE BEBC II RIRIVVRIVV VVII       EB BECC C )R(βR VVβ I 1    ECCCCCE RRIVV  E C B VCC IC Q VBE RCRB + - IB Input ac signal Output ac signal C1 C2 VCE IE RE Emitter bias   EB BECC B )R(βR VV I 1  
  • 7. BJT: Voltage-Divider Bias Configuration 11/10/2017 7 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad   getwesolvingandVngsubstituti 1again where, B 21 21 121 21 EBBEEEBEB BCCBBCC B RIVRIVV RR RR R R V R V R V R VV III          ECCCCCE RRIVV    E BECC B RR V R R V I 1 1      CEEECCCCCE BEBC IIRIRIVV VVII   as,again 7.0and Voltage divider bias E C B VCC IC Q VBE RCR1 + - IBInput ac signal Output ac signal C1 C2 VCE IE RE R2 I1 I2 • Voltage divider bias provides excellent bias stability with respect to  or temperature changes • Base bias is provided using a voltage divider circuit while feedback resistance RE is used   E BECC C RR V R R V I 1 1             
  • 8. BJT: Collector Feedback 11/10/2017 8 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad Collector feedback bias E C B VCC IC Q VBE RC RF + - IBInput ac signal Output ac signal C1 C2 VCE IE RE   VVII R RRI R VV I R RIVRIV I BEBC F ECC F BECC B F EEBECECC B 7.0and          ECCCCCE RRIVV     ECF BECC C RRR VV I      CEEECCCCCE IIRIRIVV  as,again • Maintain relative bias stability with respect to  or temperature changes • base resistor RB is connected to the collector rather than to VCC  ECF BECC B RRR VV I    
  • 9. BJT: Emitter-Follower Configuration 11/10/2017 9 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad E C B -VEE Q VBE RB + - IBInput ac signal Output ac signal C1 C2 VCE IE RE   B EBBEEE B B EEBEEE B R RIVV I R RIVV I 1     EEEECE RIVV    EB BEEE B RR VV I 1    • Collector is grounded, base is connected to collector through RB and emitter is baised • Biasing stability similar to emitter bias      EB BEEE E RR VV I 1 1     
  • 10. BJT: Common base Configuration bias 11/10/2017 10 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad E BEEE E R VV I   CCCCCB RIVV    CE EEEECCCCECCE II VRIRIVVVV   as RE E C B VEE VCC IE IC IB Q VBE VCB Output ac signal C2 Input ac signal C1 RC VCE  ECCEECCCE RRIVVV    E BEEE C R VV I   
  • 11. BJT: Biasing Example 11/10/2017 11 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad For the circuit in figure, Find out ICQ and VCEQ E C B 20 V I C =90 20 K IBac i/p ac o/p 10 F 5 K 2 K 1 K 10 F 20 F E C B VCC =20 V IC =90 20 K IB 5 K 2 K 1 K      K x RR RR R 4 520 520 21 21    Vx RRIVV ECCCCCEQ 61.10313.320   mAII BCQ 13.3      mAmAA xx x RR V R R xV I E BECC E 0347.0 95 3.3 101914 7.0 20 4 20 1 3 1         
  • 12. BJT: biasing summary 11/10/2017 12 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad B BECC B R VV I   CCCCCE RIVV  EB BECC B )R(βR VV I 1    ECCCCCE RRIVV   ECCCCCE RRIVV    E BECC B RR V R R V I 1 1     
  • 13. BJT: biasing summary 11/10/2017 13 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad  ECF BECC B RRR VV I      ECCCCCE RRIVV    EB BEEE B RR VV I 1    EEEECE RIVV  E BEEE E R VV I   CCCCCB RIVV   ECCEECCCE RRIVVV 
  • 14. BJT: Bias Stabilization. Bias stability is a measure of the sensitivity of network to parameter variations. In BJT amplifier circuits, collector current IC is sensitive to each of the following parameters: • : increases with increase in temperature • VBE: decreases about 2.5 mV /°C with increase in temperature • ICO : doubles in value for every 10°C increase in temperature Any or all factors can cause the designed Q-point to drift Stability factor S is defined for each parameter affecting bias stability 11/10/2017 14 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad CO C CO I I IS   )( BE C BE V I VS   )(      CI S )(   )()()(currentcollectorinchangeTotal SVVSIISI BEBECOCOC
  • 15. BJT: bias stability summary 11/10/2017 15 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad Fixed bias Emitter bias Voltage divider bias Collector feedback bias )( COIS E B E B CO R R R R IS            1 )( E E CO R R R R IS              1 )( C F C F CO R R R R IS            1 )( 1 1 )(   CI S                 E B E B C R R R R I S 21 1 1 )(                  E E C R R R R I S   21 1 1 )(      CF CFC RR RRI S 21 1 )(               C F C BE R R R VS   )(          E E BE R R R VS    )( B BE R VS  )(          E B E BE R R R VS   )( The ratio RB/RE or R /RE or RF /RC should be small for better bias stability
  • 16. BJT: Transistor modelling The key to small-signal analysis is use of equivalent circuits (models) A model is a equivalent circuit, that best approximates ac behaviour of the transistor There are two models commonly used in small signal AC analysis of a transistor: re model Hybrid equivalent model 11/10/2017 16 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad SystemZi ZO Ii IO+ Vi - + VO - To make ac equivalent model • replace dc supplies by zero (short circuit) • Replace Coupling and bypass capacitor by short circuit • Remove elements bypassed by short circuit • define the parameters Zi, ZO, Ii, and IO
  • 17. BJT: re Model for CE 11/10/2017 17 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad E IE IC IB  VBE C B E IE IC IB IB + VBE - C B + VCE - CE configuration CE Equivalent circuit                    B C i O i e L eB LB ii LC i O V O CQA CQ A C CE OO E BE e e E BE B BE i BCOBi I I I I A r R rI RI ZI RI V V A r IV I V I V rZ I V r r I V I V Z IIIII gainCurrent gainVoltage regionactiveincurveoutputofslopeis/1 currentcollectorpointQage,Early volt diode)ofresistance(forwardas 1 and, Ii=IB IO=IC+ Vi - + VO - B E C E re rO re model for CE configuration including rO IB RL
  • 18. BJT: re Model for CB 11/10/2017 18 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad re model for CB configuration B IE ICIE IE - VBE + CE + VCB - CB configuration CB Equivalent circuit 1gainCurrent gainVoltage highor very regionactiveincurveoutputofslopeis/1 and,                    E C i O i e L eE LC i O V O O C CB OO e E BE i ECOEi I I I I A r R rI RI V V A r r I V rZ r I V Z IIIII EIE IC  VBE C B Ii=-IE IO=IC + Vi - + VO - E B C B re rOIE RL
  • 19. BJT: re Model for CC 11/10/2017 19 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad                               B E i O i eL L eLB LE i O V O CQ A C CE E E OO E BE e eL E BEE B BEE B B i BEOBi I I I I A rR R rRI RI V V A r I V I V I V rZ I V r rR I VV I VV I V Z IIIII gainCurrent gainVoltage regionactiveincurveoutputofslopeis/1 diode)ofresistance(forwardas and, CC configuration C E B IC IE IB  VBE CC configuration E C B IC IEIB  VBE RL Ii=IB IO=-IE+ Vi - + VO - B C E (RL+re) rO re model for CC configuration including rO IB RL RL
  • 20. BJT: ac modelling Example 11/10/2017 20 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad For the circuit in figure, Find out re , Zi , ZO , AV , Ai E C B 20 V IC =90 20 K IBac i/p ac o/p 10 F 5 K 2 K 1 K 10 F 20 F E C B IC =90 20 K IBac i/p ac o/p 5 K 2 K re model for voltage divider CE configuration including rO IB IO=IC + Vi - + VO - B E C re rO IB RCR2R1 Ii
  • 21. BJT: ac modelling Example 11/10/2017 21 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad re computation                     23.8 16.3 26 16.3 95 3.300 101914 7.0 20 4 20 91 1 1 4 520 520 3 1 21 21 e E T e E BECC E r mA mV I V r mAmA A xx x x RR V R R xV I K x RR RR R      Zi computation    624 7.7404000 7.7404000x rR I V Z e i i i  ZO computation (assume ro=) 2  KrR I V Z OC O O O AV computation 243 23.8 2000    e C eB CC i O V r R rI RI V V A  Ai computation 82.75 2000 624 243    x Z Z A Z V Z V I I A O i V i i O O i O i