SlideShare ist ein Scribd-Unternehmen logo
1 von 49
Downloaden Sie, um offline zu lesen
  School	
  of	
  	
  Mechanical	
  and	
  
	
   Aerospace	
  	
   Engineering	
  
	
   Ashby	
  Building	
  
	
   Stranmillis	
  Road	
  
	
   Belfast	
  
	
   BT9	
  5AH	
  
	
  
	
  
	
  
	
  
	
  
	
  
Mechanical	
  and	
  Aerospace	
  Engineering	
  
	
  
Project	
  3	
  Report	
  
MEE3030	
  
	
  
	
  
	
  
	
  
Design	
  and	
  Fabrication	
  of	
  Coil	
  Spring	
  for	
  Soft	
  Actuator	
  Application	
  by	
  
Shape	
  Memory	
  NiTi	
  Alloy	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
   Author	
   M	
  Gibson	
  [40061742]	
  
	
   Project	
  supervisor	
   Dr	
  CW	
  Chan	
  
	
   Programme	
   BEng	
  Mechanical	
  Engineering	
  
	
   Date	
   4	
  April	
  2014	
  
	
  
	
   	
  
  	
  ii	
  
	
  
Abstract	
  
	
  
This	
   investigation	
   looked	
   at	
   the	
   material	
   NiTi	
   and	
   how	
   it	
   utilises	
   special	
   capabilities	
   with	
  
Superelasticity	
  and	
  the	
  Shape	
  Memory	
  Effect.	
  Understanding	
  how	
  the	
  material	
  behaves	
  to	
  
certain	
  external	
  manipulation	
  allows	
  the	
  material	
  to	
  be	
  tailored	
  to	
  carry	
  out	
  specific	
  tasks	
  
due	
  to	
  its	
  ‘smart’	
  nature.	
  It	
  is	
  a	
  very	
  important	
  field	
  of	
  study	
  as	
  NiTi	
  offers	
  a	
  broad	
  range	
  of	
  
applications.	
   One	
   of	
   the	
   biggest	
   areas	
   NiTi	
   is	
   used	
   in	
   is	
   the	
   medical	
   industry.	
   This	
  
investigation	
  looks	
  at	
  optimising	
  NiTi	
  to	
  be	
  used	
  as	
  an	
  actuator	
  in	
  a	
  soft	
  robot	
  application.	
  
Experimentation	
   was	
   carried	
   out	
   on	
   the	
   NiTi	
   to	
   gain	
   more	
   of	
   an	
   understanding	
   into	
   the	
  
material.	
  This	
  involved	
  various	
  heat	
  treatments	
  of	
  the	
  material.	
  In	
  order	
  to	
  understand	
  the	
  
effect	
  of	
  the	
  heat	
  treatment,	
  mechanical	
  testing	
  was	
  carried	
  out	
  to	
  assess	
  the	
  effect	
  on	
  the	
  
structure	
  of	
  the	
  material.	
  This	
  involved	
  tensile	
  to	
  fracture	
  tests	
  as	
  well	
  as	
  cyclic	
  tensile	
  tests	
  
to	
  assess	
  the	
  fatigue	
  of	
  the	
  material.	
  Analysis	
  using	
  a	
  Differential	
  Scanning	
  Calorimeter	
  was	
  
also	
   carried	
   out.	
   This	
   was	
   used	
   to	
   assess	
   the	
   effect	
   the	
   heat	
   treatment	
   had	
   on	
   the	
  
transformation	
  temperature	
  of	
  the	
  material.	
  This	
  is	
  was	
  an	
  important	
  step	
  as	
  it	
  is	
  a	
  critical	
  
factor	
  in	
  utilising	
  the	
  materials	
  Shape	
  Memory	
  Effect.	
  After	
  gaining	
  a	
  further	
  understanding	
  
from	
  the	
  experimentation,	
  a	
  coil	
  prototype	
  was	
  manufactured,	
  and	
  a	
  CAD	
  model	
  of	
  the	
  coil	
  
designed.	
  The	
  experimentation	
  on	
  the	
  NiTi	
  found	
  that	
  the	
  heat	
  treatment	
  has	
  predictable	
  
and	
  profound	
  effects	
  on	
  the	
  material.	
  The	
  appearance	
  and	
  characteristics	
  of	
  the	
  material	
  
vary	
   considerably	
   depending	
   on	
   the	
   temperature	
   of	
   heat	
   treatment.	
   The	
   balance	
   of	
  
martensite	
  to	
  austenite	
  structure	
  and	
  its	
  transformation	
  temperature	
  can	
  be	
  altered	
  using	
  
precise	
   heat	
   treatment	
   ranges.	
   This	
   allows	
   the	
   material	
   to	
   be	
   tailor-­‐made	
   to	
   a	
   specific	
  
application.	
   The	
   prototype	
   showed	
   that	
   the	
   wire	
   could	
   easily	
   be	
   drawn	
   into	
   a	
   coil	
   spring	
  
shape,	
  and	
  the	
  coil	
  behaves	
  in	
  a	
  suitable	
  manner	
  to	
  be	
  used	
  as	
  an	
  actuator.	
  
	
   	
  
  	
  iii	
  
Table	
  of	
  Contents	
  
	
  
Abstract………………………………………………………………………………………….	
   ii	
  
Table	
  of	
  Contents…………………………………………………………………………...	
   iii	
  
List	
  of	
  Figures………………………………………………………………………………….	
   v	
  
List	
  of	
  Tables…………………………………………………………………………………..	
   vii	
  
Nomenclature…………………………………………………………………………………	
   viii	
  
	
  
Chapter	
  1.	
  Introduction…………………………………………………………………....	
   1	
  
	
  
1.1.	
   Introduction	
  to	
  NiTi……………………………………………………………..	
   1	
   	
  
1.2.	
   Project	
  Objectives……………………………………………………………....	
   1	
  
1.3.	
   Previous	
  Studies……………………….................................………….	
   2	
  
	
  
Chapter	
  2.	
  Literature	
  Review……………………………………………………………	
   3	
  
	
  
2.1.	
   The	
  Shape	
  Memory	
  Effect	
  and	
  Superelasticity…………………….	
   3	
  
2.2.	
   NiTi……………..	
  ……………………………………………………………………..	
   4	
  
2.3.	
   Heat	
  Treatment	
  of	
  NiTi………………………………………………………..	
   5	
  
2.4.	
   Existing	
  applications	
  of	
  NiTi	
  under	
  SME……………………………….	
   6	
  
	
  
Chapter	
  3.	
  Methodology…………………………………………………………………...	
   7	
  
	
  
3.1.	
   Experimental	
  Design	
  and	
  Procedure……………………………………..	
   7	
  
3.1.1.	
   Heat	
  Treatment…………………………………………………………………….	
   7	
  
3.1.2.	
   Mechanical	
  Testing……………………………………………………………….	
   7	
  
3.1.3	
   Differential	
  Scanning	
  Calorimeter	
  (DSC)………………………………..	
   8	
  
3.1.4	
   Coil	
  spring	
  prototype…………………………………………………………….	
   8	
  
	
  
Chapter	
  4.	
  Results	
  and	
  Calculations…………………………………………………..	
   9	
  
	
  
4.1.	
   Experimental	
  Observations…………………………………………………..	
   9	
  
4.1.1	
   Heat	
  Treatment…………………………………………………………………….	
   9	
  
4.1.2	
   Mechanical	
  Testing……………………………………………………………….	
   11	
  
  	
  iv	
  
4.1.3	
   Differential	
  Scanning	
  Calorimeter…………………………………………	
   11	
  
4.2	
   Experimental	
  Results……………………………………………..…………….	
  	
   13	
  
4.2.1	
   Mechanical	
  Testing……………………………………………..………….......	
   13	
  
4.2.2	
   Differential	
  Scanning	
  Calorimeter	
  (DSC)…………………………….	
   16	
  
4.3	
   Fabrication	
  of	
  Coil	
  spring	
  prototype…………………………………..	
   20	
  
4.4	
   Analysis	
  of	
  prototype…………………………………………………………	
   21	
  
4.5	
   CAD	
  model	
  of	
  coil………………………………………………………………	
   24	
  
	
  
Chapter	
  5.	
  Discussion…………………………………………………….……………..	
   26	
  
	
  
5.1	
  	
   Mechanical	
  Testing…………………………………………………………..	
   26	
  
5.1.1	
   Tensile	
  fracture	
  test…………………………………………………………	
   26	
  
5.1.2	
   Tensile	
  cyclic	
  test……………………………………………………………..	
   26	
  
5.1.3	
   Differential	
  Scanning	
  Calorimeter…………………………………….	
   28	
  
5.2	
   Limitations	
  of	
  project……………………………………………………….	
   31	
  
	
  
Chapter	
  6.	
  Conclusions	
  and	
  Recommendations…………………………….	
   32	
  
	
  
References……………………………………………………………………………………	
   34	
  
Appendix	
  A.	
  Calculating	
  performance	
  of	
  prototype.…………………….	
   35	
  
Appendix	
  B.	
  CAD	
  Simulation…………………….…………………………………..	
   37	
  
Appendix	
  C.	
  Project	
  Planning	
  &	
  Time	
  Management……………………..	
   39	
  
	
  
	
   	
  
	
  
	
   	
  
  	
  v	
  
List	
  of	
  Figures	
  
	
  
Fig	
   2.1	
   Illustration	
   of	
   transformation	
   paths	
   between	
   austenite	
   and	
   martensite	
  
transformation.	
  [6]	
  
Fig	
  2.2	
  Showing	
  stress/strain	
  curves	
  graphs	
  for	
  SME	
  and	
  SE	
  transformations.	
  Taken	
  from	
  [1]	
  
Figure	
  2.3	
  Temperature	
  dependence	
  on	
  the	
  elongation	
  of	
  NiTi	
  alloy.	
  [5]	
  
Fig	
  2.4.	
  Growth	
  of	
  grain	
  size	
  due	
  to	
  heat	
  treatment.	
  [11]	
  
Fig	
  4.1	
  Untreated	
  NiTi	
  
Fig	
  4.2	
  300	
  °C	
  H-­‐T	
  NiTi	
  sample	
  
Fig	
  4.3	
  350	
  °C	
  H-­‐T	
  sample	
  
Fig	
  4.4	
  400	
  °C	
  H-­‐T	
  sample	
  
Fig	
  4.5	
  Load-­‐deflection	
  curves	
  to	
  failure	
  for	
  the	
  samples	
  under	
  a	
  tensile	
  test.	
  
Fig.	
   4.6	
   Shows	
   the	
   samples	
   at	
   the	
   ‘plateau’	
   where	
   they	
   are	
   undergoing	
   a	
   phase	
  
transformation	
  due	
  to	
  stress	
  loading.	
  
Fig	
  4.7	
  Cyclic	
  tensile	
  testing	
  of	
  untreated	
  sample	
  of	
  NiTi	
  
Fig	
  4.8	
  Cyclic	
  tensile	
  testing	
  of	
  300	
  °C	
  H-­‐T	
  NiTi	
  
Fig	
  4.9	
  Cyclic	
  tensile	
  testing	
  of	
  400	
  °C	
  H-­‐T	
  NiTi	
  
Fig	
  4.10	
  Summary	
  table	
  of	
  NiTi	
  Transformation	
  temperatures	
  
Fig.	
  4.11	
  Heat	
  flow	
  against	
  temperature	
  graph	
  for	
  untreated	
  NiTi	
  
Fig	
  4.12	
  Phase	
  transformation	
  under	
  heating	
  for	
  untreated	
  alloy.	
  
Fig	
  4.13	
  Phase	
  transformation	
  under	
  cooling	
  for	
  untreated	
  alloy.	
  	
  
Fig.	
  4.14	
  Heat	
  flow	
  against	
  temperature	
  graph	
  for	
  300	
  °C	
  H-­‐T	
  NiTi	
  
Fig.	
  4.15	
  Phase	
  transformation	
  under	
  heating	
  for	
  300	
  °C	
  H-­‐T	
  NiTi	
  
Fig.	
  4.16	
  Phase	
  transformation	
  during	
  cooling	
  for	
  300	
  C	
  H-­‐T	
  NiTi	
  
Fig	
  4.17	
  Heat	
  flow	
  against	
  temperature	
  graph	
  for	
  350	
  °C	
  H-­‐T	
  NiTi	
  
Fig	
  4.18	
  Phase	
  transformation	
  under	
  heating	
  for	
  350	
  °C	
  H-­‐T	
  NiTi	
  
Fig	
  4.19	
  Phase	
  transformation	
  under	
  cooling	
  for	
  350	
  °C	
  H-­‐T	
  NiTi	
  
Fig	
  4.20	
  Heat	
  flow	
  against	
  temperature	
  graph	
  for	
  400	
  °C	
  H-­‐T	
  NiTi	
  
Fig	
  4.21	
  Phase	
  transformation	
  under	
  heating	
  for	
  400	
  °C	
  H-­‐T	
  NiTi	
  
Fig	
  4.22	
  Phase	
  transformation	
  under	
  cooling	
  for	
  400	
  °C	
  H-­‐T	
  NiTi	
  
Fig	
  4.23	
  Coil	
  setup	
  before	
  H-­‐T	
  	
  
Fig	
  4.24	
  Coil	
  setup	
  after	
  H-­‐T	
  
Fig	
  4.25	
  NiTi	
  coil	
  in	
  incoherent	
  martensite	
  form.	
  Room	
  temperature	
  and	
  no	
  load.	
  
Fig	
  4.26	
  NiTi	
  coil	
  in	
  coherent	
  martensite	
  form	
  Room	
  temperature	
  and	
  after	
  a	
  stress	
  loading.	
  
  	
  vi	
  
Fig	
  4.27	
  NiTi	
  coil	
  in	
  austenite	
  form	
  after	
  heating	
  
Fig	
  4.28	
  450	
  °C	
  H-­‐T	
  coil	
  &	
  400	
  °C	
  H-­‐T	
  coil	
  at	
  room	
  temperature	
  
Fig	
  4.29	
  SMA	
  compression	
  spring	
  actuation	
  [13]	
  
Fig	
  4.30	
  extension	
  spring	
  actuation	
  [13]	
  
Fig	
  4.31	
  CAD	
  model	
  of	
  the	
  coil	
  in	
  High	
  temperature	
  austenite	
  phase	
  
Fig	
  4.32	
  CAD	
  model	
  of	
  the	
  coil	
  in	
  the	
  incoherent	
  martensite	
  form	
  (	
  room	
  temperature	
  free	
  
state)	
  
Fig	
  4.33	
  CAD	
  coil	
  in	
  the	
  Coherent	
  martensite	
  form	
  after	
  stress	
  loading.	
  
Fig	
  4.34	
  shows	
  the	
  relationship	
  between	
  the	
  three	
  phases.	
  [16]	
  
Fig	
  5.1	
  Extension	
  against	
  temperature	
  schematic.	
  Detailing	
  Mf,	
  Ms,	
  As,	
  Af	
  and	
  hysteresis	
  (h).	
  
[13]	
  
Fig	
  B.1	
  Stress	
  distribution	
  in	
  coil	
  under	
  100N	
  tensile	
  load.	
  
Fig	
  B.2	
  Extension	
  of	
  coil	
  under	
  100N	
  tensile	
  load.	
  
Fig	
  C.1	
  Work	
  chart	
  showing	
  planned	
  schedule	
  against	
  actual	
  schedule.	
  
	
  
	
   	
  
  	
  vii	
  
List	
  of	
  Tables	
  
	
  
Table	
  3.1	
  shows	
  a	
  summary	
  of	
  the	
  progression	
  of	
  objectives	
  throughout	
  the	
  project.	
  
	
  
Table	
  4.1	
  Summary	
  table	
  of	
  tensile	
  to	
  failure	
  tests	
  
	
  
Table	
  4.2	
  Summary	
  table	
  of	
  NiTi	
  Transformation	
  temperatures	
  
	
  
Table	
  B.1	
  Table	
  comparing	
  properties	
  of	
  Ti-­‐6Al-­‐4V	
  [15]	
  
	
  
Table	
  C.1	
  A	
  summary	
  of	
  the	
  progression	
  of	
  objectives	
  throughout	
  the	
  project.	
  
	
  
	
  
	
  
	
   	
  
  	
  viii	
  
Nomenclature	
  
	
  
Abbreviations	
  
	
  
NiTi	
   	
   Nickel	
  Titanium	
  /	
  Nitinol	
  
SMA	
   	
   Shape	
  Memory	
  Alloy	
  
SME	
   	
   Shape	
  Memory	
  Effect	
  
SE	
   	
   Superelastic	
  
CAD	
   	
   Computer	
  Aided	
  Design	
  
H-­‐T	
   	
   Heat	
  Treatment	
  
DSC	
   	
   Differential	
  Scanning	
  Calorimeter	
  
XRD	
   	
   X-­‐Ray	
  Diffraction	
  
SEM	
   	
   Scanning	
  Electron	
  Microscope	
  
TEM	
   	
   Transmission	
  Electron	
  Microscope	
  
Mf	
   	
   Martensite	
  Finish	
  
Ms	
   	
   Martensite	
  Start	
  
As	
   	
   Austenite	
  Start	
  
Af	
   	
   Austenite	
  Finish	
  
h	
   	
   Hysteresis	
  	
  
Lh	
   	
   Length	
  (High	
  Temp)	
  
Ll	
   	
   Length	
  (Low	
  Temp)	
  
HT	
   	
   High	
  Temperature	
  
LT	
   	
   Low	
  Temperature	
  
S	
   	
   Stroke	
  
Symbols	
  
	
  
C	
   	
   Spring	
  Index	
  
D	
   	
   Spring	
  Diameter	
  
d	
   	
   Wire	
  Diameter	
  
w	
   	
   Wahl’s	
  Stress	
  Correction	
  Factor	
  
	
  
	
  
	
  
	
  
  	
  ix	
  
Units	
  
	
  
°C	
   	
   Degrees	
  Celsius	
  
Pa	
   	
   Pascals	
  
N	
   	
   Newton	
  
mW	
   	
   MilliWatts	
  
τmax	
   	
   Max	
  Shear	
  Stress	
  
Δϒ	
   	
   Strain	
  difference	
  between	
  austenite	
  and	
  austenite	
  
ϒA	
   	
   Strain	
  in	
  austenite	
  phase	
  
ϒmax	
   	
   Max	
  strain	
  in	
  martensite	
  phase	
  
G	
   	
   Shear	
  Modulus	
  
ΔL	
   	
   Stroke	
  Length	
  of	
  Coil	
  
n	
   	
   Number	
  of	
  turns	
  of	
  coils	
  
Fload	
   	
   External	
  Load	
  
  	
  1	
  
1. Introduction	
  	
  
	
  
1.1	
  Introduction	
  to	
  NiTi	
  
	
  
NiTi	
  is	
  one	
  of	
  the	
  most	
  common	
  shape	
  memory	
  alloys	
  (SMA)	
  that	
  has	
  the	
  ability	
  to	
  perform	
  highly	
  
as	
   an	
   actuator	
   through	
   the	
   shape	
   memory	
   and	
   SE	
   effects	
   (SME	
   and	
   SE).	
   NiTi	
   was	
   compared	
  
against	
  other	
  kinds	
  of	
  shape	
  memory	
  alloys,	
  i.e.	
  CuZnAl	
  and	
  CuAlNi	
  and	
  it	
  was	
  concluded	
  that	
  NiTi	
  
is	
  the	
  most	
  successful	
  with	
  respect	
  to	
  most	
  thermo-­‐mechanic-­‐related	
  performances	
  [1].	
  First,	
  the	
  
SME	
  and	
  SE	
  of	
  NiTi	
  can	
  be	
  tailor-­‐controlled	
  by	
  heat	
  treatment	
  (H-­‐T)	
  at	
  certain	
  temperature	
  ranges	
  
to	
  modify	
  the	
  martensitic	
  transformation	
  temperatures.	
  Second,	
  NiTi	
  is	
  an	
  energy	
  dense	
  material	
  
and	
   this	
   allows	
   it	
   to	
   store	
   more	
   potential	
   energy	
   than	
   similar	
   intermetallics.	
   Third,	
   NiTi	
   has	
   a	
  
maximum	
  strain	
  of	
  8%	
  within	
  its	
  SE	
  limit.	
  This	
  is	
  impressive	
  compared	
  to	
  similar	
  alloys	
  that	
  only	
  
achieve	
  around	
  2-­‐4%	
  strain.	
  Finally,	
  NiTi	
  has	
  good	
  biocompatibility	
  and	
  corrosion	
  resistance	
  [13].	
  
	
  
1.2	
  Project	
  Objectives	
  
	
  
Soft	
   robotics	
   is	
   an	
   emerging	
   field	
   with	
   many	
   challenges	
   for	
   roboticists.	
   One	
   of	
   the	
   most	
  
challenging	
  elements	
  is	
  the	
  soft	
  actuator	
  which	
  can	
  deform	
  along	
  with	
  the	
  surrounding	
  structure.	
  
NiTi	
  alloy	
  is	
  very	
  suitable	
  for	
  this	
  application	
  due	
  to	
  its	
  high	
  flexibility	
  and	
  energy	
  density.	
  The	
  
problem	
  under	
  investigation	
  in	
  this	
  project	
  is	
  to	
  understand	
  the	
  effect	
  H-­‐T	
  has	
  on	
  the	
  mechanical	
  
and	
  functional	
  properties	
  of	
  NiTi.	
  	
  	
  
	
  
The	
  aim	
  of	
  the	
  project	
  is	
  to	
  design	
  and	
  produce	
  a	
  coil	
  spring	
  for	
  use	
  in	
  a	
  soft	
  robot.	
  The	
  wire	
  of	
  the	
  
coil	
  produced	
  will	
  be	
  made	
  from	
  NiTi,	
  and	
  the	
  coil	
  will	
  be	
  produced	
  and	
  subsequently	
  modified	
  by	
  
H-­‐T	
   to	
   perform	
   the	
   SME	
   and	
   SE	
   that	
   are	
   most	
   desirable	
   for	
   actuator	
   applications.	
   Finally,	
   a	
  
computer	
  model	
  is	
  made	
  to	
  predict	
  the	
  performance	
  of	
  the	
  coil,	
  which	
  will	
  then	
  be	
  compared	
  
with	
  the	
  actual	
  performance	
  recorded	
  from	
  the	
  coil	
  itself.	
  The	
  main	
  reason	
  that	
  NiTi	
  is	
  used	
  for	
  
this	
  investigation	
  is	
  due	
  to	
  its	
  SME	
  effects	
  and	
  its	
  performance	
  as	
  a	
  SMA.	
  The	
  NiTi	
  coil	
  can	
  act	
  as	
  a	
  
sensor	
  and	
  actuator	
  once	
  under	
  the	
  SME,	
  so	
  is	
  able	
  to	
  react	
  to	
  a	
  change	
  in	
  temperature	
  and	
  will	
  
then	
  transform	
  its	
  shape.	
  The	
  change	
  in	
  the	
  microscopic	
  structure	
  causes	
  an	
  extension	
  of	
  the	
  coil.	
  
This	
  elongation	
  of	
  the	
  coil	
  can	
  cause	
  a	
  change	
  in	
  a	
  structure.	
  The	
  elongation	
  and	
  contraction	
  of	
  
the	
  coil	
  under	
  the	
  SME	
  could	
  replicate	
  the	
  action	
  of	
  a	
  muscle	
  in	
  a	
  joint.	
  If	
  the	
  coil	
  is	
  heated	
  it	
  will	
  
return	
  to	
  its	
  original	
  shape,	
  thus	
  acting	
  as	
  a	
  controllable	
  actuator.	
  This	
  use	
  as	
  a	
  robotic	
  device	
  
could	
  be	
  in	
  a	
  device	
  such	
  as	
  an	
  endoscope.	
  NiTi	
  is	
  said	
  to	
  be	
  a	
  ‘smart’	
  material	
  as	
  it	
  can	
  react	
  in	
  
this	
  way	
  to	
  a	
  change	
  in	
  its	
  environment.	
  On	
  the	
  other	
  hand,	
  The	
  SE	
  effect	
  allows	
  the	
  material	
  to	
  
  	
  2	
  
undergo	
  a	
  large	
  strain,	
  but	
  stops	
  it	
  from	
  going	
  beyond	
  the	
  elastic	
  limit.	
  It	
  is	
  able	
  to	
  return	
  to	
  the	
  
parent	
  shape	
  without	
  being	
  altered	
  in	
  any	
  way	
  theoretically.	
  
	
  
1.3	
  Previous	
  Studies	
  
	
  
NiTi	
  used	
  in	
  actuator	
  applications	
  due	
  to	
  its	
  SME	
  and	
  SE	
  has	
  been	
  extensively	
  studied	
  in	
  the	
  past.	
  
Sreekumar	
  et	
  al.	
  [2]	
  reported	
  that	
  trained	
  actuators	
  where	
  able	
  to	
  verify	
  predicted	
  forces	
  due	
  to	
  
the	
  SME	
  of	
  SM	
  alloys.	
  Kim	
  et	
  al.	
  [3]	
  developed	
  a	
  NiTi	
  actuator	
  using	
  the	
  two-­‐way	
  SME.	
  They	
  found	
  
that	
  the	
  recovery	
  stresses	
  were	
  almost	
  identical	
  as	
  in	
  the	
  one-­‐way	
  method.	
  Also,	
  the	
  two-­‐way	
  
method	
   does	
   not	
   require	
   compressive	
   loading	
   and	
   unloading	
   to	
   form,	
   resulting	
   in	
   an	
   easier	
  
method.	
   Predki	
   et	
   al.	
   [4]	
   showed	
   that	
   NiTi	
   can	
   be	
   used	
   for	
   technical	
   applications	
   in	
   drive	
  
technology,	
  given	
  that	
  stress-­‐strain	
  behaviour	
  for	
  NiTi	
  SMA	
  under	
  axial	
  compression,	
  necessary	
  
forces	
  and	
  compressions	
  to	
  reach	
  demanded	
  elongations	
  can	
  be	
  calculated.	
  Otsuka	
  and	
  Ren	
  [5]	
  
discussed	
   the	
   development	
   in	
   the	
   research	
   of	
   SMA	
   in	
   the	
   last	
   decade.	
   They	
   stated	
   couplings,	
  
actuators	
  and	
  smart	
  materials	
  as	
  the	
  most	
  common	
  applications	
  of	
  SMA	
  and	
  acknowledged	
  NiTi	
  
as	
  the	
  best	
  practical	
  SMA.	
  Otsuka	
  and	
  Kakeshita	
  [6]	
  explained	
  the	
  SME,	
  SE	
  effect	
  and	
  martensitic	
  
transformation	
  in	
  basic	
  detail	
  and	
  how	
  these	
  characteristics	
  make	
  intermetallics	
  under	
  the	
  SME	
  
such	
   as	
   NiTi	
   very	
   useful	
   in	
   certain	
   applications.	
   More	
   specifically	
   in	
   reference	
   to	
   this	
   report,	
  
Stoeckel	
   and	
   Waram	
   [7]	
   described	
   the	
   use	
   of	
   NiTi	
   coils	
   transforming	
   due	
   to	
   the	
   SME	
   under	
   a	
  
change	
  in	
  temperature.	
  These	
  studies	
  give	
  an	
  insight	
  into	
  the	
  SME	
  and	
  the	
  characteristics	
  of	
  NiTi.	
  
Furthermore,	
   there	
   are	
   some	
   fundamentals	
   in	
   the	
   project	
   that	
   are	
   not	
   covered	
   in	
   the	
   past.	
  In	
  
order	
  to	
  be	
  able	
  to	
  improve	
  the	
  design	
  process	
  of	
  a	
  NiTi	
  actuator,	
  the	
  relationship	
  between	
  a	
  CAD	
  
model	
   of	
   the	
   coil	
   and	
   the	
   physical	
   coil	
   must	
   be	
   better	
   understood.	
   This	
   will	
   lead	
   to	
   a	
   better	
  
understanding	
  of	
  theoretical	
  testing	
  for	
  computer	
  models.	
  
	
  
  	
  3	
  
2.	
  Literature	
  Review	
  
	
  
2.1	
  The	
  Shape	
  Memory	
  Effects	
  and	
  Superelasticity	
  
	
  
The	
   shape	
   memory	
   effect	
   is	
   the	
   name	
   given	
   to	
   the	
   process	
   in	
   which	
   a	
   material	
   can	
   be	
  
restored	
   to	
   its	
   original	
   shape	
   under	
   heating	
   after	
   being	
   plastically	
   deformed.	
   It	
   occurs	
   in	
  
intermetallic	
  compounds.	
  Materials	
  therefore	
  act	
  as	
  sensors	
  and	
  actuators	
  as	
  they	
  sense	
  a	
  
change	
  in	
  the	
  temperature	
  and	
  will	
  change	
  their	
  shape	
  subsequently.	
  They	
  are	
  said	
  to	
  be	
  
‘smart’	
  materials	
  as	
  they	
  can	
  do	
  this.	
  This	
  area	
  is	
  well	
  covered	
  in	
  literature,	
  “shape	
  memory	
  
alloys	
   show	
   great	
   potential	
   in	
   many	
   applications…Many	
   alloys	
   displaying	
   shape	
   memory	
  
have	
  been	
  found	
  and	
  considerable	
  effort	
  is	
  still	
  being	
  made	
  to	
  discover	
  new	
  materials”	
  [1].	
  
The	
  two	
  phases	
  of	
  the	
  transformation	
  are	
  the	
  martensitic	
  phase	
  of	
  lower	
  temperature	
  and	
  
the	
  austenite	
  or	
  ‘parent’	
  phase	
  of	
  higher	
  temperature,	
  when	
  the	
  material	
  is	
  in	
  its	
  natural	
  
form.	
  	
  
	
  
There	
   are	
   two	
   paths	
   of	
   transformation	
   between	
   the	
   austenite	
   and	
   martensite	
  
transformation.	
   The	
   first	
   method	
   is	
   known	
   as	
   the	
   SME	
   and	
   is	
   due	
   to	
   a	
   change	
   in	
  
temperature.	
  When	
  the	
  material	
  is	
  in	
  the	
  parent	
  phase,	
  a	
  drop	
  in	
  temperature	
  below	
  the	
  
transformation	
   temperature	
   causes	
   a	
   change	
   in	
   structure	
   to	
   an	
   incoherent	
   martensite	
   as	
  
shown	
  by	
  (b)	
  in	
  fig	
  2.1.	
  If	
  the	
  material	
  is	
  put	
  under	
  stress	
  in	
  this	
  phase	
  it	
  will	
  change	
  into	
  a	
  
more	
   coherent	
   martensite	
   form	
   as	
   shown	
   by	
   (c)	
   fig	
   2.1.	
   The	
   material	
   will	
   return	
   to	
   the	
  
parent	
   phase	
   when	
   heated	
   above	
   the	
   transformation	
   temperature.	
   Heating	
   will	
   form	
   the	
  
austenite	
  structure	
  from	
  the	
  coherent	
  or	
  incoherent	
  martensite	
  form.	
  The	
  second	
  path	
  is	
  
known	
  as	
  the	
  SE	
  effect.	
  This	
  does	
  not	
  involve	
  a	
  temperature	
  change,	
  but	
  instead	
  a	
  direct	
  
stress	
   loading	
   of	
   the	
   parent	
   phase.	
   This	
   changes	
   the	
   structure	
   directly	
   into	
   a	
   coherent	
  
martensite	
   form	
   (c)	
   in	
   fig	
   2.1.	
   This	
   process	
   is	
   called	
   stress	
   induced	
   martensitic	
  
transformation.	
  If	
  the	
  stress	
  load	
  is	
  removed	
  the	
  material	
  will	
  return	
  to	
  its	
  parent	
  form,	
  as	
  
long	
  as	
  the	
  limit	
  of	
  SE	
  is	
  not	
  exceeded	
  (8%	
  strain	
  for	
  NiTi).	
  A	
  material	
  is	
  described	
  as	
  SE	
  when	
  
it	
  is	
  able	
  to	
  reach	
  higher	
  levels	
  of	
  elongation	
  that	
  would	
  usually	
  be	
  beyond	
  the	
  elastic	
  limit	
  of	
  
the	
   material.	
   NiTi	
   is	
   described	
   as	
   having	
   ‘superelasticity’.	
   This	
   explains	
   why	
   it	
   is	
   able	
   to	
  
transform	
  under	
  the	
  stress	
  induced	
  martensitic	
  method.	
  	
  	
  The	
  transformation	
  can	
  produce	
  
relatively	
  large	
  movement	
  in	
  the	
  overall	
  structure	
  for	
  its	
  small	
  size.	
  This	
  gives	
  the	
  material	
  a	
  
high	
  work	
  output.	
  The	
  process	
  gives	
  NiTi	
  a	
  wide	
  range	
  of	
  applications	
  that	
  make	
  use	
  of	
  its	
  
SME.	
  	
  
  	
  4	
  
	
  
	
  
	
  
2.2	
  NiTi	
  
	
  
NiTi	
  has	
  been	
  chosen	
  in	
  this	
  investigation	
  as	
  it	
  has	
  the	
  best	
  SME	
  and	
  SE	
  properties	
  among	
  
existing	
  intermetallic	
  alloys.	
  This	
  has	
  been	
  covered	
  previously	
  in	
  literature.	
  “In	
  this	
  paper,	
  a	
  
systematic	
  study	
  on	
  the	
  selection	
  of	
  SMAs	
  for	
  actuators	
  is	
  presented.	
  The	
  candidates,	
  NiTi,	
  
CuZnAl,	
  CuAlNi.	
  The	
  current	
  study	
  shows	
  that	
  NiTi	
  is	
  the	
  overall	
  winner	
  in	
  respect	
  to	
  most	
  of	
  
the	
   thermo-­‐mechanic	
   related	
   performances”	
   [1].	
   NiTi	
   alloys	
   have	
   several	
   characteristics	
  
which	
  make	
  them	
  particularly	
  suitable	
  for	
  applications	
  based	
  on	
  the	
  shape	
  memory	
  effect.	
  
NiTi	
  alloys	
  are	
  very	
  ductile	
  compared	
  to	
  other	
  similar	
  intermetallics.	
  Elongation	
  of	
  50%	
  can	
  
be	
  easily	
  obtained	
  [5].	
  Materials	
  in	
  this	
  class	
  are	
  usually	
  much	
  more	
  brittle.	
  The	
  elongation	
  of	
  
NiTi	
   at	
   certain	
   temperature	
   is	
   shown	
   in	
   fig	
   2.3.	
   It	
   can	
   be	
   seen	
   that	
   the	
   highest	
   point	
   of	
  
elongation	
  is	
  closely	
  related	
  to	
  the	
  temperature	
  around	
  martensitic	
  transformation.	
  There	
  
are	
   factors	
   which	
   explain	
   this	
   relationship	
   such	
   as	
   a	
   high	
   number	
   of	
   deformation	
   modes	
  
upon	
  stress-­‐induced	
  transformation.	
  The	
  grain	
  size	
  in	
  the	
  alloy	
  is	
  usually	
  very	
  small,	
  typically	
  
around	
  30	
  μm.	
  This	
  compares	
  to	
  the	
  others	
  similar	
  alloys	
  with	
  a	
  grain	
  size	
  of	
  around	
  1mm.	
  
Also,	
  the	
  critical	
  tensile	
  stress	
  for	
  a	
  slip	
  is	
  less	
  than	
  50MPa	
  when	
  the	
  alloy	
  is	
  in	
  martensite	
  
form,	
  which	
  is	
  very	
  low	
  compared	
  to	
  around	
  400MPa	
  when	
  the	
  alloy	
  is	
  in	
  parent	
  form.	
  
	
  
The	
   ductility	
   decreases	
   significantly	
   at	
   higher	
   temperatures,	
   above	
   the	
   critical	
   level	
   for	
  
martensitic	
   transformation,	
   however	
   this	
   is	
   still	
   significantly	
   higher	
   than	
   that	
   of	
   other	
  
intermetallics	
  (20%)	
  [5].	
  Another	
  factor	
  that	
  makes	
  NiTi	
  particularly	
  suitable	
  is	
  that	
  the	
  SME	
  
can	
   be	
   improved	
   and	
   altered	
   easily	
   using	
   H-­‐T.	
   An	
   optimum	
   temperature	
   for	
   the	
   material	
  
transformation	
  from	
  martensite	
  to	
  austenite	
  can	
  be	
  easily	
  found	
  using	
  the	
  right	
  H-­‐T	
  of	
  the	
  
alloy.	
  This	
  means	
  the	
  material	
  can	
  be	
  tailored	
  to	
  perform	
  in	
  a	
  specified	
  way	
  in	
  a	
  particular	
  
Fig	
  2.1	
  Illustration	
  of	
  transformation	
  
paths	
  between	
  austenite	
  and	
  
martensite	
  transformation.	
  [6]	
  
Fig	
  2.2	
  Showing	
  stress/strain	
  curves	
  graphs	
  for	
  SME	
  and	
  SE	
  
transformations.	
  Taken	
  from	
  [1]	
  
  	
  5	
  
application.	
  NiTi	
  alloys	
  also	
  have	
  a	
  superior	
  tensile	
  strength	
  (100Mpa)	
  to	
  other	
  intermetallic	
  
as	
   well	
   high	
   corrosion	
   and	
   abrasion	
   resistance,	
   making	
   them	
   suitable	
   to	
   a	
   wide	
   range	
   of	
  
applications.	
  The	
  excellent	
  SE	
  properties	
  of	
  NiTi	
  can	
  be	
  partly	
  explained	
  due	
  to	
  their	
  high	
  
energy	
  density.	
  They	
  can	
  hold	
  a	
  particularly	
  high	
  amount	
  of	
  potential	
  energy	
  which	
  allows	
  
them	
  to	
  return	
  to	
  their	
  original	
  shape	
  under	
  strain.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
2.3	
  Heat	
  treatment	
  of	
  NiTi	
  
	
  
The	
  mechanical	
  properties	
  of	
  NiTi	
  can	
  be	
  altered	
  using	
  H-­‐T.	
  This	
  in	
  an	
  important	
  process	
  as	
  it	
  
allows	
  the	
  transformation	
  temperature	
  for	
  the	
  SME	
  to	
  be	
  changed.	
  This	
  allows	
  fine	
  tuning	
  of	
  
the	
  material	
  for	
  a	
  particular	
  process.	
  The	
  investigation	
  being	
  carried	
  out	
  will	
  involve	
  heat-­‐
treating	
  a	
  coil	
  of	
  NiTi	
  so	
  it	
  performs	
  in	
  the	
  correct	
  temperature	
  window	
  when	
  being	
  used	
  as	
  
an	
  actuator	
  in	
  soft	
  robotics.	
  The	
  temperatures	
  the	
  material	
  should	
  be	
  subjected	
  to	
  under	
  H-­‐T	
  	
  
are	
  not	
  clear,	
  which	
  is	
  part	
  of	
  what	
  will	
  be	
  investigated.	
  What	
  is	
  known	
  from	
  past	
  literature	
  
however	
   is	
   that	
   H-­‐T	
   can	
   cause	
   a	
   material	
   to	
   undergo	
   crystallisation.	
   “We	
   found	
   that	
  
equiatomic	
   amorphous	
   NiTi	
   crystallizes	
   by	
   polymorphic	
   mechanisms	
   and	
   that	
   there	
   is	
   a	
  
direct	
  correlation	
  between	
  the	
  average	
  crystal	
  size	
  and	
  the	
  processing	
  temperature”	
  [8].	
  	
  
Recrystallisation	
   causes	
   the	
   material	
   to	
   become	
   more	
   brittle	
   and	
   lose	
   its	
   elongation	
   as	
  
investigated	
  by	
  Mentz	
  at	
  el.	
  [9].	
  For	
  this	
  reason,	
  we	
  want	
  to	
  avoid	
  recrystillisation	
  of	
  the	
  
material	
  as	
  much	
  as	
  possible.	
  Chan	
  et	
  al.	
  reported	
  that	
  significant	
  grain	
  growth	
  in	
  NiTi	
  above	
  
700o
C	
   [10].	
   For	
   this	
   reason	
   it	
   is	
   necessary	
   to	
   limit	
   the	
   maximum	
   H-­‐T	
   temperature	
   at	
   a	
  
maximum	
  of	
  600o
C	
  for	
  this	
  investigation.	
  If	
  this	
  limit	
  is	
  exceeded,	
  the	
  grain	
  size	
  in	
  the	
  NiTi	
  
will	
  become	
  too	
  large.	
  This	
  results	
  in	
  it	
  becoming	
  too	
  plastic	
  or	
  brittle,	
  losing	
  its	
  SE	
  effects.	
  It	
  
is	
  known	
  already	
  that	
  H-­‐T	
  will	
  change	
  the	
  temperature	
  region	
  for	
  transformation	
  between	
  
martensitic	
  and	
  austenite	
  forms	
  of	
  NiTi.	
  This	
  investigation	
  aims	
  to	
  analyse	
  this	
  to	
  understand	
  
the	
  relationship	
  so	
  we	
  can	
  more	
  easily	
  modify	
  NiTi	
  for	
  a	
  particular	
  application.	
  
Figure	
  2.3	
  Temperature	
  dependence	
  on	
  
the	
  elongation	
  of	
  NiTi	
  alloy.	
  [5]	
  
  	
  6	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
2.4	
  Existing	
  Applications	
  of	
  NiTi	
  under	
  SM	
  
	
  
NiTi	
  is	
  known	
  as	
  the	
  best	
  performing	
  SMA	
  [1].	
  This	
  results	
  in	
  it	
  being	
  desirable	
  for	
  a	
  wide	
  
variety	
  of	
  applications.	
  They	
  are	
  most	
  commonly	
  used	
  as	
  actuators,	
  fasteners	
  and	
  couplings.	
  
The	
  NiTi	
  alloys	
  have	
  among	
  the	
  best	
  SME	
  among	
  many	
  SMA,	
  however	
  if	
  SMA	
  with	
  higher	
  
operating	
  temperatures	
  are	
  developed	
  they	
  would	
  be	
  very	
  useful	
  for	
  uses	
  in	
  automobiles,	
  
planes	
  etc.	
  Uniqueness	
  of	
  the	
  SMA	
  gives	
  them	
  a	
  very	
  high	
  potential	
  for	
  applications,	
  10000	
  
patents	
  have	
  been	
  proposed	
  previously.	
  SE	
  qualities	
  of	
  NiTi	
  make	
  it	
  useful	
  in	
  applications	
  
such	
  as	
  catheters	
  for	
  medical	
  use	
  or	
  mobile	
  phone	
  antennas.	
  This	
  is	
  because	
  of	
  the	
  flexible	
  
properties	
  and	
  the	
  fact	
  it	
  cannot	
  be	
  permanently	
  bent.	
  Fisher	
  at	
  al.	
  carried	
  out	
  a	
  project	
  in	
  
which	
  NiTi	
  was	
  used	
  in	
  an	
  endoscope	
  to	
  replace	
  existing	
  materials,	
  allowing	
  an	
  increased	
  90°	
  
angle	
  of	
  view.	
  [12].	
  	
  This	
  investigation	
  looks	
  at	
  using	
  NiTi	
  as	
  an	
  actuator	
  in	
  a	
  soft	
  robotic	
  
application.	
   One	
   such	
   application	
   of	
   soft	
   robotics	
   is	
   an	
   endoscope	
   for	
   medical	
   use.	
   The	
  
device	
  allows	
  doctors	
  to	
  examine	
  the	
  internals	
  of	
  a	
  body	
  with	
  no	
  discomfort	
  to	
  the	
  patient.	
  
Coil	
  springs	
  are	
  used	
  in	
  lots	
  of	
  other	
  applications	
  such	
  as	
  in	
  various	
  car	
  components.	
  They	
  
are	
  particularly	
  useful	
  when	
  the	
  car	
  is	
  starting	
  from	
  cold.	
  For	
  example,	
  the	
  coil	
  can	
  alter	
  the	
  
engine	
  speed	
  when	
  the	
  car	
  is	
  cold	
  so	
  that	
  the	
  engine	
  is	
  allowed	
  to	
  heat	
  up	
  faster.	
  
	
  
Fig	
  2.4.	
  Growth	
  of	
  grain	
  size	
  due	
  to	
  heat	
  
treatment.	
  [11]	
  
  	
  7	
  
3.	
  Methodology	
  
	
  
	
  3.1	
  Experimental	
  Design	
  and	
  Procedure	
  
	
  
The	
   initial	
   phase	
   of	
   the	
   project	
   involved	
   attempting	
   to	
   establish	
   an	
   understanding	
   of	
   the	
  
shape	
  memory	
  effect	
  of	
  NiTi.	
  Looking	
  at	
  the	
  theory	
  has	
  allowed	
  a	
  tentative	
  prediction	
  of	
  
how	
  the	
  material	
  will	
  behave.	
  The	
  next	
  phase	
  of	
  the	
  project	
  is	
  to	
  carry	
  out	
  experimentation	
  
to	
  validate	
  the	
  theory	
  and	
  to	
  establish	
  solid	
  understanding	
  of	
  the	
  properties	
  of	
  the	
  material.	
  
With	
   an	
   understanding	
   of	
   exactly	
   how	
   the	
   material	
   responds	
   to	
   H-­‐T,	
   implementing	
   the	
  
material	
  in	
  products	
  to	
  utilise	
  the	
  SME	
  will	
  be	
  possible.	
  
	
  
3.1.1	
  Heat	
  Treatment	
  	
  
	
  
The	
  first	
  process	
  is	
  to	
  subject	
  samples	
  of	
  NiTi	
  to	
  H-­‐T	
  at	
  varying	
  temperatures.	
  This	
  will	
  allow	
  
us	
  to	
  see	
  how	
  the	
  process	
  of	
  H-­‐T	
  affects	
  the	
  properties	
  of	
  NiTi.	
  It	
  is	
  particularly	
  important	
  to	
  
understand	
  how	
  H-­‐T	
  affects	
  the	
  transition	
  temperature	
  from	
  austenite	
  of	
  martensite	
  form	
  so	
  
that	
  the	
  material	
  can	
  be	
  tailored	
  for	
  any	
  particular	
  application.	
  
	
  
The	
   apparatus	
   used	
   for	
   this	
   stage	
   will	
   be	
   a	
   furnace.	
   There	
   will	
   be	
   three	
   different	
  	
  
temperatures.	
  These	
  are	
  300	
  °C,	
  350	
  °C	
  and	
  400°	
  C.	
  This	
  is	
  an	
  important	
  range	
  to	
  find	
  the	
  
crossover	
   between	
   the	
   austenite	
   and	
   martensite	
   structure	
   in	
   the	
   H-­‐T	
   wires.	
   The	
   reason	
  
higher	
  temperatures	
  are	
  not	
  used	
  is	
  because	
  H-­‐T	
  above	
  450	
  °C	
  produces	
  detrimental	
  results	
  
in	
  the	
  material.	
  At	
  450	
  °C	
  –	
  550	
  °C	
  H-­‐T	
  will	
  cause	
  intermetallic	
  grain	
  growth.	
  This	
  decreases	
  
the	
   effectiveness	
   of	
   SE	
   and	
   the	
   SME.	
   Above	
   600	
   °C	
   the	
   material	
   will	
   undergo	
   re-­‐
crystallization.	
  This	
  leads	
  to	
  the	
  material	
  becoming	
  too	
  soft	
  and	
  will	
  lead	
  to	
  loss	
  of	
  the	
  SME.	
  
Each	
  sample	
  should	
  be	
  treated	
  for	
  60	
  minutes,	
  followed	
  by	
  immediate	
  quenching	
  in	
  cold	
  
water.	
  	
  
	
  
3.1.2	
  Mechanical	
  Testing	
  
	
  
In	
  order	
  to	
  see	
  the	
  effect	
  that	
  the	
  H-­‐T	
  has	
  had	
  on	
  the	
  material,	
  it	
  should	
  be	
  subjected	
  to	
  a	
  
tensile	
   test.	
   Studying	
   the	
   loads	
   achieved	
   by	
   samples,	
   which	
   have	
   undergone	
   different	
  
treatments,	
  will	
  allow	
  us	
  to	
  see	
  the	
  effect	
  the	
  H-­‐T	
  has	
  on	
  the	
  tensile	
  strength	
  of	
  the	
  material.	
  
  	
  8	
  
This	
   is	
   a	
   very	
   important	
   factor,	
   because	
   different	
   mechanism	
   applications	
   require	
   the	
  
material	
  to	
  have	
  specific	
  tensile	
  strength.	
  
	
  
3.1.3	
  Differential	
  Scanning	
  Calorimeter	
  (DSC)	
  
	
  
A	
   DSC	
   machine	
   works	
   by	
   measuring	
   the	
   heat	
   flow	
   between	
   a	
   material	
   and	
   its	
   ambient	
  
surroundings	
  while	
  that	
  ambient	
  temperature	
  is	
  altered.	
  The	
  principle	
  is	
  to	
  show	
  at	
  what	
  
temperature	
   the	
   material	
   undergoes	
   a	
   physical	
   transformation.	
   Under	
   a	
   phase	
  
transformation,	
  such	
  as	
  during	
  the	
  SME	
  and	
  SE	
  in	
  NiTi,	
  there	
  will	
  be	
  a	
  difference	
  in	
  the	
  heat	
  
flow	
  between	
  the	
  material	
  and	
  the	
  surroundings.	
  This	
  is	
  picked	
  up	
  by	
  the	
  DSC	
  machine.	
  The	
  
results	
  of	
  this	
  experiment	
  should	
  show	
  a	
  spike	
  in	
  heat	
  flow	
  for	
  the	
  NiTi	
  sample	
  when	
  it	
  is	
  
tested	
  at	
  a	
  particular	
  temperature.	
  This	
  point	
  represents	
  the	
  change	
  in	
  material	
  structure	
  
from	
  martensitic	
  form	
  to	
  austenitic	
  form.	
  This	
  is	
  the	
  phase	
  transformation	
  that	
  defines	
  the	
  
SME.	
  Analysing	
  this	
  point	
  for	
  each	
  sample	
  that	
  has	
  been	
  H-­‐T	
  will	
  allow	
  us	
  to	
  see	
  exactly	
  what	
  
effect	
  the	
  H-­‐T	
  has	
  had	
  on	
  the	
  shape	
  memory	
  effect	
  of	
  the	
  NiTi	
  sample.	
  If	
  the	
  predictions	
  are	
  
correct,	
   the	
   H-­‐T	
   should	
   allow	
   us	
   to	
   change	
   the	
   transformation	
   temperature	
   in	
   the	
   NiTi	
  
sample.	
  	
  
	
  
The	
  process	
  involves	
  taking	
  a	
  sample	
  of	
  each	
  H-­‐T	
  temperature	
  and	
  analysing	
  it	
  in	
  the	
  DSC.	
  
The	
  temperature	
  range	
  used	
  in	
  the	
  DSC	
  should	
  be	
  between	
  from	
  -­‐60	
  °C	
  to	
  100	
  °C	
  in	
  order	
  to	
  
include	
  the	
  transformation	
  on	
  heating	
  and	
  cooling	
  for	
  each	
  sample.	
  
	
  
3.1.4	
  Coil	
  spring	
  prototype	
  
	
  
These	
   forms	
   of	
   testing	
   will	
   give	
   a	
   better	
   understanding	
   of	
   the	
   material.	
   Possessing	
   this,	
  
attempts	
  to	
  create	
  a	
  coil	
  prototype	
  should	
  then	
  be	
  made.	
  Having	
  a	
  physical	
  coil	
  allows	
  us	
  to	
  
make	
  some	
  calculations	
  and	
  comparisons	
  with	
  the	
  computer	
  model	
  of	
  the	
  coil.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
  	
  9	
  
4.	
  Results	
  and	
  Calculations	
  
	
  
4.1	
  Experimental	
  Observations	
  
	
  
4.1.1	
  Heat	
  Treatment	
  
	
  
The	
   NiTi	
   samples	
   were	
   successfully	
   treated	
   in	
   the	
   furnace.	
   For	
   each	
   temperature,	
   three	
  
400mm	
  samples	
  were	
  treated.	
  Each	
  treatment	
  temperature	
  showed	
  different	
  characteristics	
  
once	
  cooled.	
  The	
  untreated	
  sample	
  is	
  shown	
  in	
  fig	
  4.1.	
  
	
  
	
  
	
  
	
  
300	
  °C	
  –	
  The	
  samples	
  at	
  300	
  °C	
  had	
  lost	
  some	
  of	
  their	
  rigidity	
  compared	
  to	
  the	
  untreated	
  
sample.	
  The	
  colour	
  had	
  also	
  changed	
  from	
  a	
  grey/silver	
  to	
  a	
  straw/brass	
  colour.	
  The	
  reason	
  
for	
  the	
  colour	
  change	
  is	
  due	
  to	
  changes	
  in	
  the	
  surface	
  of	
  the	
  material	
  at	
  a	
  microscopic	
  level.	
  
The	
  light	
  refraction	
  is	
  altered	
  on	
  the	
  treated	
  sample,	
  causing	
  a	
  change	
  in	
  the	
  appearance	
  of	
  
the	
  colour.	
  The	
  treated	
  sample	
  had	
  also	
  lost	
  rigidity.	
  The	
  material	
  was	
  much	
  easier	
  to	
  bend	
  
out	
  of	
  shape	
  after	
  being	
  treated.	
  The	
  material	
  is	
  however	
  still	
  in	
  in	
  a	
  majority	
  austenite	
  form	
  
at	
  room	
  temperature,	
  and	
  the	
  wire	
  generally	
  holds	
  its	
  shape	
  well.	
  The	
  300°C	
  H-­‐T	
  sample	
  is	
  
shown	
  in	
  fig	
  4.2.	
  
Fig	
  4.1	
  
Untreated	
  
NiTi	
  
Fig	
  4.2	
  300	
  
°C	
  H-­‐T	
  NiTi	
  
sample	
  
  	
  10	
  
	
  
	
  
	
  
350	
   °C	
   –	
   The	
   samples	
   at	
   350	
   °C	
   were	
   less	
   rigid	
   than	
   those	
   at	
   300	
   °C.	
   The	
   material	
   had	
  
become	
  softer,	
  and	
  had	
  less	
  resistance	
  to	
  being	
  misshapen.	
  The	
  colour	
  had	
  changed	
  again,	
  
and	
  had	
  become	
  a	
  stronger	
  colour	
  of	
  brass.	
  The	
  material	
  is	
  still	
  in	
  a	
  majority	
  austenite	
  form	
  
at	
   room	
   temperature,	
   however	
   the	
   proportion	
   of	
   martensite	
   structure	
   has	
   increased	
  
compared	
  to	
  the	
  300	
  °C	
  sample	
  and	
  its	
  transformation	
  region	
  has	
  therefore	
  increased.	
  This	
  
explains	
  its	
  relative	
  softness	
  and	
  increased	
  ductility.	
  The	
  350	
  °C	
  H-­‐T	
  sample	
  is	
  shown	
  in	
  fig	
  
4.3.	
  
	
  
400	
  °C	
  –	
  There	
  was	
  a	
  much	
  bigger	
  change	
  with	
  the	
  400	
  °C	
  sample	
  than	
  was	
  seen	
  at	
  previous	
  
temperatures.	
   The	
   sample	
   was	
   a	
   majority	
   martensite	
   form	
   at	
   room	
   temperature.	
   The	
  
material	
  behaved	
  completely	
  plastically.	
  It	
  would	
  take	
  any	
  shape	
  it	
  was	
  bent	
  into,	
  and	
  had	
  
almost	
  no	
  rigidity	
  to	
  remain	
  in	
  its	
  original	
  shape.	
  The	
  shape	
  memory	
  effect	
  was	
  of	
  course	
  still	
  
present,	
  and	
  the	
  material	
  would	
  retain	
  its	
  original	
  form	
  when	
  heat	
  was	
  applied.	
  The	
  colour	
  
was	
   very	
   different	
   from	
   the	
   previous	
   samples.	
   It	
   had	
   changed	
   to	
   a	
   dark	
   blue	
   colour,	
  
representing	
  a	
  significant	
  change	
  in	
  its	
  surface	
  smoothness.	
  The	
  400	
  °C	
  H-­‐T	
  sample	
  is	
  shown	
  
in	
  fig	
  4.4.	
  
	
  
	
  
	
  
Fig	
  4.3	
  350	
  °C	
  H-­‐T	
  
sample	
  
Fig	
  4.4	
  400	
  °C	
  H-­‐T	
  
sample	
  
	
  
  	
  11	
  
Before	
   any	
   mechanical	
   testing	
   had	
   been	
   undertaken,	
   it	
   was	
   clear	
   to	
   see	
   there	
   was	
   a	
  
significant	
  change	
  in	
  the	
  appearance	
  and	
  behaviour	
  of	
  the	
  material.	
  
	
  
4.1.2	
  Mechanical	
  Testing	
  
	
  
To	
   understand	
   the	
   effect	
   of	
   the	
   H-­‐T,	
   mechanical	
   testing	
   would	
   allow	
   us	
   to	
   analyse	
   the	
  
change	
  to	
  the	
  structure	
  of	
  the	
  material.	
  The	
  first	
  test	
  to	
  carry	
  out	
  was	
  a	
  simple	
  tensile	
  test	
  to	
  
failure.	
  A	
  second	
  tensile	
  cyclic	
  test	
  was	
  carried	
  out	
  to	
  analyse	
  the	
  fatigue	
  in	
  the	
  material	
  over	
  
a	
  period	
  of	
  stresses.	
  
	
  
All	
   the	
   mechanical	
   testing	
   was	
   carried	
   using	
   a	
   standard	
   tensile	
   testing	
   machine	
   with	
   a	
  
maximum	
  load	
  of	
  500N.	
  	
  Special	
  grippers	
  were	
  used	
  with	
  a	
  radius	
  at	
  their	
  ends.	
  These	
  are	
  
intended	
  for	
  use	
  with	
  wires,	
  and	
  ensure	
  that	
  there	
  is	
  not	
  a	
  stress	
  concentration	
  at	
  the	
  point	
  
were	
   the	
   wire	
   is	
   secured.	
   	
   The	
   machine	
   carried	
   out	
   all	
   experiments	
   at	
   a	
   strain	
   rate	
   of	
  
5mm/min.	
  A	
  gauge	
  length	
  of	
  100mm	
  was	
  set.	
  	
  
	
  
	
  Tensile	
  test	
  to	
  failure	
  
	
  
This	
  test	
  involved	
  a	
  simple	
  stress	
  to	
  failure	
  set	
  up	
  with	
  the	
  tensile	
  machine.	
  The	
  samples	
  
were	
  loaded	
  until	
  fracture	
  occurred.	
  
	
  
Tensile	
  cyclic	
  test	
  
	
  
The	
   tensile	
   cyclic	
   test	
   was	
   to	
   show	
   how	
   a	
   series	
   of	
   loading	
   and	
   unloading	
   affected	
   the	
  
material.	
  The	
  resulting	
  load	
  extension	
  curve	
  shows	
  a	
  series	
  of	
  lines	
  representing	
  each	
  cycle.	
  
The	
  machine	
  was	
  calibrated	
  to	
  reach	
  6%	
  extension	
  (within	
  8%	
  SE	
  limit)	
  in	
  each	
  cycle	
  before	
  
unloading.	
  Each	
  sample	
  was	
  subjected	
  to	
  five	
  complete	
  cycles.	
  
	
  
4.1.3	
  Differential	
  Scanning	
  Calorimeter	
  	
  
	
  
Samples	
  for	
  each	
  H-­‐T	
  temperature	
  were	
  analysed	
  using	
  the	
  DSC.	
  The	
  machine	
  used	
  was	
  a	
  
Diamond	
   DSC.	
   It	
   is	
   designed	
   to	
   run	
   samples	
   at	
   high	
   speeds	
   (~200	
   °C/min).	
   In	
   our	
  
investigation	
  a	
  speed	
  of	
  10	
  °C/min	
  was	
  more	
  appropriate.	
  This	
  meant	
  that	
  the	
  sensitivity	
  of	
  
the	
  machine	
  was	
  relatively	
  poor	
  at	
  these	
  speeds.	
  Each	
  sample	
  was	
  run	
  for	
  the	
  temperature	
  
  	
  12	
  
range	
  of	
  -­‐60	
  °C	
  to	
  100	
  °C.	
  This	
  temperature	
  range	
  is	
  necessary	
  so	
  that	
  each	
  sample	
  will	
  go	
  
through	
   a	
   complete	
   phase	
   transformation	
   on	
   heating	
   and	
   cooling.	
   The	
   results	
   show	
   the	
  
effect	
  the	
  H-­‐T	
  has	
  on	
  the	
  transformation	
  temperature.	
  	
  
  	
  13	
  
4.2	
  Experimental	
  Results	
  
	
  
4.2.1	
  Mechanical	
  Testing	
  	
  
	
  
Table	
  4.1	
  shows	
  a	
  summary	
  of	
  the	
  tensile	
  to	
  failure	
  graphs.	
  
	
  
H-­‐T	
  Temperature	
  (°C)	
   Transformation	
   Stress	
  
(MN/m2
)	
  
Tensile	
   Strength	
  
(MN.m2
)	
  
Tensile	
  Strain	
  
Untreated	
   550	
   1536	
   0.32	
  
300	
   504	
   1512	
   0.37	
  
350	
   484	
   1528	
   0.33	
  
400	
   387	
   1533	
   0.35	
  
	
  
Fig	
  4.5	
  shows	
  the	
  results	
  for	
  each	
  sample	
  tested	
  to	
  failure	
  with	
  the	
  tensile	
  testing	
  machine.	
  
	
  
	
  
	
  
	
  
-­‐50	
  
0	
  
50	
  
100	
  
150	
  
200	
  
250	
  
300	
  
350	
  
-­‐10	
   0	
   10	
   20	
   30	
   40	
  
Load	
  (N)	
  
De+lection	
  (mm)	
  
Tensile	
  to	
  failure	
  test	
  
300	
  C	
  
350	
  C	
  
400	
  C	
  
Untreated	
  
Fig	
  4.5	
  Load-­‐deflection	
  curves	
  to	
  failure	
  for	
  the	
  samples	
  under	
  a	
  tensile	
  test.	
  
  	
  14	
  
	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Fig	
  4.6	
  is	
  a	
  zoomed	
  in	
  section	
  of	
  fig	
  4.5.	
  It	
  shows	
  an	
  important	
  section	
  of	
  the	
  load	
  deflection	
  
curve	
   in	
   more	
   detail.	
   This	
   is	
   the	
   ‘plateau’	
   region	
   where	
   they	
   undergo	
   a	
   change	
   from	
  
austenite	
  to	
  martensite	
  due	
  to	
  the	
  stress	
  loading.	
  
Fig	
  4.7,	
  4.8,	
  4.9	
  show	
  the	
  cyclic	
  tensile	
  test	
  on	
  three	
  differently	
  treated	
  specimens.	
  
	
  
	
  	
  
	
  
Fig.	
  4.6	
  Shows	
  the	
  samples	
  at	
  the	
  ‘plateau’	
  where	
  
they	
  are	
  undergoing	
  a	
  phase	
  transformation	
  due	
  
to	
  stress	
  loading.	
  
70	
  
80	
  
90	
  
100	
  
110	
  
120	
  
130	
  
0	
   5	
   10	
   15	
  
Load	
  (N)	
  
De+lection	
  (mm)	
  
300	
  C	
   350	
  C	
   400	
  C	
   Untreated	
  
-­‐20	
  
0	
  
20	
  
40	
  
60	
  
80	
  
100	
  
120	
  
-­‐1	
   0	
   1	
   2	
   3	
   4	
   5	
   6	
  
Load	
  (N)	
  
Elongation	
  (mm)	
  
Untreated	
  	
  
Cycle	
  1	
  
Cycle	
  2	
  
Cycle	
  3	
  
Cycle	
  4	
  
Cycle	
  5	
  
Fig	
  4.7	
  Cyclic	
  tensile	
  testing	
  of	
  untreated	
  sample	
  of	
  NiTi	
  
  	
  15	
  
	
  
	
  
	
  
	
  
0	
  
20	
  
40	
  
60	
  
80	
  
100	
  
120	
  
-­‐1	
   0	
   1	
   2	
   3	
   4	
   5	
   6	
  
Load	
  (N)	
  
Elongation	
  (mm)	
  
300	
  C	
  
Cycle	
  1	
  
Cycle	
  2	
  
Cycle	
  3	
  
Cycle	
  4	
  
Cycle	
  5	
  
Fig	
  4.8	
  Cyclic	
  tensile	
  testing	
  of	
  300	
  °C	
  H-­‐T	
  NiTi	
  
Fig	
  4.9	
  Cyclic	
  tensile	
  testing	
  of	
  400	
  °C	
  H-­‐T	
  NiTi	
  
-­‐5	
  
15	
  
35	
  
55	
  
75	
  
95	
  
-­‐1	
   0	
   1	
   2	
   3	
   4	
   5	
   6	
  
Load	
  (N)	
  
Elongation	
  (mm)	
  
400	
  C	
  
Cycle	
  1	
  
Cycle	
  2	
  
Cycle	
  3	
  
Cycle	
  4	
  
Cycle	
  5	
  
  	
  16	
  
4.2.2	
  Differential	
  Scanning	
  Calorimeter	
  
	
  
Table	
  4.2	
  shows	
  a	
  summary	
  table	
  for	
  the	
  DSC	
  transformation	
  temperatures.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Fig	
  4.10,	
  4.11,	
  4.12	
  show	
  the	
  DSC	
  heat	
  flow	
  results	
  for	
  the	
  untreated	
  alloy.	
  	
  
	
  
Fig	
  4.11	
  Phase	
  transformation	
  under	
  heating	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Fig	
  4.12	
  Phase	
  transformation	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
   untreated	
  NiTi	
   	
  	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  under	
  cooling	
  for	
  untreated	
  NiTi	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
H-­‐T	
  Temperature	
  (°C)	
   AS	
  (°C)	
   Af	
  (°C)	
   Ms	
  (°C)	
   Mf	
  (°C)	
  
Untreated	
   -­‐5	
   15	
   10	
   -­‐10	
  
300	
   10	
   20	
   15	
   -­‐5	
  
350	
   15	
   35	
   20	
   0	
  
400	
   30	
   45	
   45	
   25	
  
-­‐10	
  
10	
  
Fig.	
  4.10	
  Heat	
  flow	
  against	
  temperature	
  graph	
  for	
  untreated	
  NiTi	
  
  	
  17	
  
Fig.	
  4.13,	
  4.14,	
  4.15	
  DSC	
  results	
  for	
  300	
  °C	
  H-­‐T	
  NiTi	
  
	
  
	
  
	
   	
  
Fig.	
  4.14	
  Phase	
  transformation	
  under	
  heating	
  for	
  
300	
  °C	
  H-­‐T	
  NiTi	
  
Fig.	
  4.15	
  Phase	
  transformation	
  during	
  cooling	
  for	
  
300	
  °C	
  H-­‐T	
  NiTi	
  
-­‐5	
  
15	
  
Fig.	
  4.13	
  Heat	
  flow	
  against	
  temperature	
  graph	
  for	
  300	
  °C	
  H-­‐T	
  NiTi	
  
  	
  18	
  
Fig.	
  4.16,	
  4.17,	
  4.18	
  DSC	
  results	
  for	
  350	
  °C	
  treated	
  NiTi	
  
	
  
	
  
	
   	
  
Fig	
  4.17	
  Phase	
  transformation	
  under	
  heating	
  for	
  
350	
  °C	
  H-­‐T	
  NiTi	
  
Fig	
  4.18	
  Phase	
  transformation	
  under	
  cooling	
  for	
  
350	
  °C	
  H-­‐T	
  NiTi	
  
0	
  
20	
  
Fig	
  4.16	
  Heat	
  flow	
  against	
  temperature	
  graph	
  for	
  350	
  °C	
  H-­‐T	
  NiTi	
  
  	
  19	
  
Fig.	
  4.19,	
  4.20,	
  4.21	
  DSC	
  results	
  for	
  400	
  °C	
  H-­‐T	
  NiTi	
  
	
  
	
  
	
  
	
  
Fig	
  4.20	
  Phase	
  transformation	
  under	
  heating	
  
for	
  400	
  °C	
  H-­‐T	
  NiTi	
  
Fig	
  4.21	
  Phase	
  transformation	
  under	
  
cooling	
  for	
  400	
  °C	
  	
  H-­‐T	
  NiTi	
  
Fig	
  4.19	
  Heat	
  flow	
  against	
  temperature	
  graph	
  for	
  400	
  °C	
  H-­‐T	
  NiTi	
  
  	
  20	
  
4.3	
  Fabrication	
  of	
  coil	
  spring	
  prototype	
  
	
  
Having	
  gained	
  more	
  of	
  an	
  understanding	
  of	
  the	
  material,	
  it	
  was	
  important	
  to	
  try	
  and	
  make	
  a	
  
model	
  of	
  the	
  NiTi	
  in	
  the	
  coil	
  application.	
  The	
  challenge	
  of	
  this	
  was	
  coming	
  up	
  with	
  a	
  method	
  
of	
  creating	
  a	
  coil	
  from	
  a	
  length	
  of	
  straight	
  wire.	
  In	
  order	
  to	
  resolve	
  this,	
  an	
  assembly	
  was	
  
constructed.	
   This	
   involved	
   clamping	
   the	
   wire	
   tightly	
   into	
   a	
   coil	
   around	
   a	
   solid	
   bar.	
   This	
  
assembly	
  is	
  shown	
  in	
  fig	
  4.22.	
  The	
  assembly	
  was	
  then	
  treated	
  in	
  the	
  furnace	
  at	
  400	
  °C	
  for	
  
one	
  hour.	
  This	
  temperature	
  was	
  chosen	
  because	
  the	
  coil	
  would	
  work	
  well	
  under	
  the	
  SME	
  if	
  it	
  
were	
  in	
  a	
  highly	
  martensitic	
  form	
  at	
  room	
  temperature.	
  The	
  H-­‐T	
  didn’t	
  work	
  as	
  expected,	
  
because	
  the	
  cooling	
  rate	
  of	
  the	
  coil	
  during	
  quenching	
  was	
  different	
  as	
  it	
  was	
  still	
  attached	
  to	
  
the	
  fixture.	
  This	
  resulted	
  in	
  the	
  coil	
  having	
  characteristics	
  of	
  a	
  standard	
  wire	
  H-­‐T	
  to	
  350	
  °C	
  
and	
  with	
  a	
  structure	
  much	
  less	
  martensitic	
  in	
  proportion	
  than	
  desired	
  for	
  the	
  coil.	
  To	
  resolve	
  
this,	
  the	
  H-­‐T	
  was	
  carried	
  out	
  again	
  at	
  450	
  °C.	
  This	
  produced	
  a	
  coil	
  that	
  had	
  more	
  appropriate	
  
H-­‐T	
  characteristics.	
  Fig	
  4.24	
  shows	
  the	
  two	
  resulting	
  coils.	
  
Figs	
  4.25,	
  4.26,	
  4.27	
  show	
  a	
  demonstration	
  of	
  the	
  three	
  phases	
  of	
  the	
  SME	
  on	
  the	
  prototype.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
   	
  
Fig	
  4.22	
  Coil	
  setup	
  before	
  H-­‐T	
  	
   Fig	
  4.23	
  Coil	
  setup	
  after	
  
H-­‐T	
  
Fig	
  4.24	
  450	
  °C	
  H-­‐T	
  coil	
  &	
  400	
  
°C	
  H-­‐T	
  coil	
  at	
  room	
  
temperature	
  
Fig	
  4.25	
  NiTi	
  
coil	
  in	
  
incoherent	
  
martensite	
  
form.	
  Room	
  
temperature	
  
and	
  no	
  load.	
  
Fig	
  4.26	
  NiTi	
  
coil	
  in	
  
coherent	
  
martensite	
  
form	
  Room	
  
temperature	
  
and	
  after	
  a	
  
stress	
  
loading.	
  
Fig	
  4.27	
  
NiTi	
  coil	
  in	
  
austenite	
  
form	
  after	
  
heating.	
  
  	
  21	
  
4.4	
  Analysis	
  of	
  Prototype	
  
	
  
In	
  order	
  to	
  visualise	
  how	
  the	
  NiTi	
  coil	
  works	
  as	
  an	
  actuator,	
  a	
  simple	
  demonstration	
  with	
  a	
  
heat	
  gun	
  shows	
  how	
  the	
  SME	
  can	
  be	
  utilised	
  in	
  the	
  coil.	
  It	
  is	
  known	
  from	
  previous	
  content	
  in	
  
this	
  report	
  that	
  the	
  NiTi	
  will	
  change	
  from	
  the	
  parent	
  or	
  austenite	
  form	
  into	
  the	
  martensite	
  
form	
   when	
   subject	
   to	
   a	
   stress	
   loading.	
   This	
   stress	
   loading	
   can	
   be	
   replicated	
   by	
   simply	
  
stretching	
  the	
  coil	
  out	
  by	
  hand.	
  It	
  will	
  remain	
  in	
  a	
  steady	
  plastic	
  form.	
  If	
  a	
  heat	
  source	
  is	
  then	
  
applied	
  to	
  the	
  stretched	
  coil,	
  such	
  as	
  a	
  heat	
  gun,	
  it	
  will	
  return	
  to	
  the	
  austenite	
  form	
  from	
  the	
  
martensite	
  form.	
  This	
  is	
  shown	
  in	
  the	
  coil	
  by	
  returning	
  to	
  the	
  shape	
  that	
  was	
  formed	
  in	
  the	
  
H-­‐T	
  process.	
  This	
  clearly	
  demonstrates	
  how	
  the	
  application	
  of	
  heat	
  can	
  be	
  used	
  to	
  control	
  an	
  
actuator	
  exploiting	
  the	
  SME.	
  
	
  
Using	
  a	
  thermocouple	
  to	
  measure	
  the	
  exact	
  heat	
  source	
  from	
  the	
  heat	
  gun	
  allows	
  a	
  precise	
  
temperature	
   reading	
   of	
   which	
   the	
   coil	
   is	
   subjected	
   to.	
   Having	
   a	
   precise	
   reading	
   of	
   the	
  
temperature	
  allows	
  us	
  to	
  see	
  the	
  temperature	
  region	
  in	
  which	
  the	
  coil	
  undergoes	
  a	
  phase	
  
transformation.	
  This	
  information	
  allows	
  the	
  NiTi	
  coil	
  to	
  be	
  used	
  as	
  a	
  smart	
  actuator,	
  with	
  
precise	
  control	
  over	
  its	
  function.	
  Applying	
  the	
  same	
  tests	
  to	
  the	
  coil	
  treated	
  at	
  400	
  °C	
  shows	
  
similar	
  results,	
  but	
  the	
  transformation	
  is	
  less	
  apparent	
  of	
  an	
  than	
  the	
  450	
  °C.	
  This	
  is	
  because	
  
it	
  is	
  in	
  a	
  more	
  austenitic	
  form	
  at	
  room	
  temperature	
  and	
  behaves	
  less	
  plastically.	
  The	
  450	
  °C	
  
sample	
   has	
   a	
   larger	
   stroke	
   than	
   the	
   400	
   °C	
   sample	
   and	
   thus	
   the	
   SME	
   is	
   more	
   clearly	
  
displayed.	
  
	
  
After	
  seeing	
  a	
  prototype	
  of	
  what	
  the	
  coil	
  is	
  physically	
  like,	
  the	
  next	
  stage	
  was	
  to	
  establish	
  
how	
  a	
  particular	
  coil	
  could	
  be	
  created	
  or	
  treated	
  in	
  order	
  to	
  behave	
  in	
  a	
  predictable	
  way	
  and	
  
carry	
   out	
   a	
   specific	
   task.	
   The	
   experimentation	
   carried	
   out	
   previously	
   has	
   shown	
   how	
   the	
  
transformation	
  temperature	
  is	
  affected	
  by	
  H-­‐T	
  of	
  the	
  material.	
  The	
  mechanical	
  testing	
  has	
  
shown	
   some	
   ultimate	
   tensile	
   and	
   cyclic	
   tensile	
   properties	
   of	
   a	
   straight	
   NiTi	
   wire.	
   The	
  
application	
  being	
  analysed	
  by	
  this	
  report	
  is	
  in	
  the	
  use	
  of	
  a	
  coil,	
  so	
  it	
  is	
  important	
  to	
  find	
  out	
  
some	
  performance	
  figures	
  for	
  the	
  material	
  in	
  the	
  coil	
  spring	
  form.	
  
Within	
  the	
  coil	
  actuator	
  application	
  there	
  are	
  two	
  different	
  forms;	
  
	
  
  	
  22	
  
• Compression	
  spring	
  –	
  This	
  is	
  when	
  the	
  coil	
  is	
  compressed	
  at	
  low	
  temperature,	
  and	
  
extends	
  when	
  it	
  is	
  subjected	
  to	
  heat.	
  (fig	
  4.28)	
  
• 	
  
• Extension	
   spring	
   –	
   This	
   is	
   when	
   the	
   coil	
   is	
   extended	
   at	
   low	
   temperature,	
   and	
  
compresses	
  when	
  subjected	
  to	
  heat.	
  (fig	
  4.29)	
  
	
  
Activation	
  types	
  	
  
	
  
There	
  are	
  two	
  relevant	
  types	
  of	
  activation	
  that	
  fall	
  under	
  this	
  investigation;	
  
• Thermal	
  activation	
  –	
  this	
  is	
  when	
  the	
  actuation	
  of	
  the	
  coil	
  is	
  induced	
  by	
  a	
  change	
  in	
  
the	
   temperature	
   surrounding	
   the	
   coil.	
   This	
   can	
   be	
   intentionally	
   provoked	
   by	
   an	
  
external	
  source	
  from	
  the	
  user.	
  It	
  can	
  also	
  be	
  as	
  a	
  result	
  of	
  an	
  ambient	
  or	
  varying	
  
temperature	
  in	
  its	
  application,	
  eg.	
  Human	
  body.	
  
• Electrical	
  activation	
  –	
  this	
  is	
  when	
  the	
  actuation	
  of	
  the	
  coil	
  is	
  induced	
  by	
  a	
  current	
  in	
  
the	
  NiTi	
  wire.	
  NiTi	
  inherently	
  possesses	
  a	
  high	
  resistivity	
  due	
  to	
  its	
  structure	
  [13].	
  
This	
  means	
  any	
  current	
  flowing	
  through	
  it	
  will	
  increase	
  the	
  temperature	
  of	
  the	
  wire.	
  
This	
  heat	
  increase	
  is	
  able	
  to	
  activate	
  the	
  SME.	
  The	
  amount	
  of	
  power	
  flowing	
  through	
  
the	
  wire	
  for	
  activation	
  can	
  be	
  easily	
  calculated.	
  The	
  wire	
  can	
  be	
  tailored	
  to	
  conform	
  
to	
  a	
  certain	
  flow	
  requirement	
  by	
  defining	
  its	
  dimensions.	
   	
  
	
  
Fig	
  4.28	
  SMA	
  compression	
  
spring	
  actuation	
  [13]	
  
Fig	
  4.29	
  extension	
  spring	
  
actuation	
  [13]	
  
Lh=	
  Lengh	
  (High	
  temp)	
   HT=(High	
  Temp)	
  
Ll=	
  Length	
  (Low	
  temp)	
   LT=(Low	
  Temp)	
  
S=stroke	
   	
  
F=force	
  produced	
  
  	
  23	
  
The	
  area	
  this	
  investigation	
  is	
  looking	
  at	
  is	
  in	
  soft	
  robotics	
  and	
  their	
  application	
  in	
  the	
  medical	
  
field.	
  These	
  two	
  actuation	
  types	
  are	
  important,	
  as	
  they	
  are	
  both	
  applicable	
  in	
  medical	
  field.	
  
There	
  are	
  many	
  devices	
  that	
  use	
  either	
  or	
  both	
  of	
  these	
  actuation	
  types.	
  Luo	
  et	
  al.	
  describe	
  
designing	
  a	
  device	
  that	
  changes	
  shape	
  due	
  to	
  the	
  higher	
  temperature	
  in	
  the	
  human	
  body	
  
(thermal	
   activation)	
   [14].	
   For	
   an	
   application	
   such	
   as	
   an	
   endoscope,	
   the	
   user	
   must	
   have	
  
control	
   of	
   the	
   device	
   from	
   outside	
   the	
   body.	
   In	
   order	
   for	
   this,	
   electrical	
   activation	
   is	
  
necessary	
  to	
  allow	
  precise	
  remote	
  control.	
  This	
  kind	
  of	
  device	
  could	
  also	
  be	
  made	
  to	
  react	
  to	
  
a	
  direct	
  temperature	
  stimulus,	
  if	
  there	
  was	
  some	
  requirement	
  for	
  it	
  to	
  adapt	
  to	
  being	
  inside	
  
the	
  body.	
  
	
  
	
   	
  
  	
  24	
  
4.5	
  CAD	
  Model	
  of	
  Coil	
  
	
  
One	
  important	
  aspect	
  of	
  this	
  investigation	
  was	
  to	
  compare	
  data	
  predicted	
  through	
  computer	
  
modelling	
   to	
   that	
   obtained	
   from	
   fabrication	
   of	
   the	
   real	
   coil.	
   Using	
   CAD	
   to	
   design	
   is	
   an	
  
important	
  step	
  as	
  it	
  makes	
  the	
  design	
  process	
  much	
  easier.	
  In	
  order	
  to	
  fully	
  trust	
  in	
  CAD	
  
however,	
  it	
  is	
  important	
  to	
  validate	
  it	
  first.	
  
	
  
A	
  coil	
  was	
  designed	
  in	
  Solidworks	
  similar	
  based	
  on	
  the	
  coil	
  prototype	
  made.	
  The	
  CAD	
  model	
  
is	
  shown	
  in	
  fig	
  4.30.	
  This	
  model	
  illustrates	
  the	
  three	
  stages	
  in	
  the	
  cycle	
  of	
  the	
  SME.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Fig	
  4.30.	
  CAD	
  model	
  of	
  the	
  coil	
  in	
  High	
  
temperature	
  austenite	
  phase	
  
Fig	
  4.31.	
  CAD	
  model	
  of	
  the	
  coil	
  in	
  the	
  
incoherent	
  martensite	
  form	
  (	
  room	
  
temperature	
  free	
  state)	
  
	
  
  	
  25	
  
	
  
	
  
	
  
	
  
	
  
Fig	
  4.33	
  shows	
  the	
  relationship	
  between	
  the	
  three	
  phases.	
  [16]	
  
	
  
	
  
	
  
This	
   CAD	
   modelling	
   shows	
   the	
   forms	
   of	
   the	
   coil	
   in	
   the	
   three	
   phases	
   that	
   were	
   observed	
  
when	
  experimenting	
  with	
  the	
  prototype.	
  
	
  
Simulation	
  of	
  the	
  coil	
  could	
  not	
  be	
  satisfactorily	
  completed,	
  as	
  there	
  was	
  no	
  NiTi	
  material	
  
available	
  in	
  the	
  Solidworks	
  database.	
  	
  This	
  is	
  one	
  of	
  the	
  main	
  limitations	
  of	
  this	
  investigation.	
  
The	
   simulation	
   that	
   was	
   carried	
   out	
   was	
   using	
   the	
   titanium	
   alloy,	
   Ti6Al4V.	
   This	
   was	
   the	
  
closest	
  material	
  to	
  NiTi	
  available.	
  The	
  results	
  of	
  this	
  simulation	
  are	
  in	
  Appendix	
  B.	
  They	
  are	
  
not	
  included	
  in	
  this	
  report,	
  as	
  they	
  are	
  not	
  regarded	
  to	
  replicate	
  NiTi	
  closely	
  enough.	
  
	
  
Fig	
  4.32	
  CAD	
  coil	
  in	
  the	
  Coherent	
  
martensite	
  form	
  after	
  stress	
  loading.	
  
	
  
Fig	
  4.33	
  The	
  SME	
  [16]	
  
  	
  26	
  
5.	
  Discussion	
  
	
  
5.1	
  Mechanical	
  Testing	
  
	
  
5.1.1	
  Tensile	
  fracture	
  test	
  
	
  
The	
  load	
  deflection	
  curve	
  for	
  each	
  sample	
  follows	
  a	
  similar	
  trend.	
  The	
  curve	
  initially	
  follows	
  a	
  
material	
   under	
   the	
   influence	
   of	
   Hooke’s	
   law.	
   A	
   ‘plateau’	
   region	
   follows	
   this	
   in	
   which	
   the	
  
curve	
   levels	
   off.	
   This	
   is	
   when	
   the	
   material	
   is	
   changing	
   from	
   the	
   austenite	
   structure	
  
(incoherent	
   martensite	
   for	
   400	
   °C)	
   to	
   a	
   coherent	
   martensite	
   structure.	
   This	
   period	
   is	
  
followed	
  by	
  a	
  rise	
  once	
  again	
  until	
  fracture.	
  The	
  region	
  up	
  until	
  the	
  end	
  of	
  the	
  plateau	
  is	
  
when	
  the	
  previously	
  austenite	
  material	
  is	
  still	
  in	
  the	
  SE	
  region.	
  This	
  means	
  that	
  if	
  the	
  load	
  
was	
  released	
  it	
  would	
  return	
  to	
  its	
  original	
  shape.	
  The	
  maximum	
  load	
  achieved	
  at	
  fracture	
  by	
  
each	
  sample	
  was	
  within	
  1%	
  of	
  300N.	
  	
  
	
  
The	
  plateau	
  region	
  of	
  the	
  curve	
  where	
  the	
  sample	
  is	
  in	
  the	
  transformation	
  region	
  should	
  be	
  
much	
   flatter.	
   Looking	
   at	
   fig	
   4.6,	
   it	
   can	
   be	
   seen	
   that	
   this	
   is	
   not	
   the	
   case.	
   This	
   is	
   an	
   error	
  
produced	
  by	
  the	
  experiment.	
  A	
  strain	
  rate	
  of	
  5mm/min	
  was	
  too	
  high.	
  This	
  caused	
  heat	
  to	
  be	
  
produced	
  in	
  the	
  sample.	
  This	
  subsequently	
  resulted	
  in	
  the	
  friction	
  in	
  the	
  sample	
  increasing,	
  
which	
   caused	
   the	
   load	
   required	
   to	
   increase	
   slightly,	
   altering	
   the	
   shape	
   of	
   the	
   graph	
   This	
  
could	
  be	
  solved	
  by	
  using	
  external	
  cooling	
  to	
  stop	
  the	
  wire	
  from	
  heating	
  up	
  or	
  reducing	
  the	
  
strain	
  rate.	
  
	
  
The	
  whole	
  curve	
  is	
  very	
  unstable.	
  There	
  are	
  many	
  regions	
  with	
  big	
  fluctuations.	
  This	
  is	
  due	
  to	
  
having	
   an	
   unsatisfactory	
   gripper	
   to	
   hold	
   the	
   wire.	
   The	
   fastener	
   on	
   the	
   gripper	
   did	
   not	
  
perform	
   particularly	
   well,	
   and	
   allowed	
   the	
   wire	
   to	
   slip	
   very	
   slightly.	
   This	
   caused	
   minute	
  
releases	
  in	
  the	
  load	
  that	
  show	
  up	
  as	
  instabilities	
  on	
  the	
  curve.	
  
	
  
5.1.2	
  Tensile	
  Cyclic	
  Test	
  
	
  
The	
   load	
   extension	
   graph	
   for	
   each	
   sample	
   shows	
   some	
   similarities,	
   and	
   also	
   some	
  
differences	
   that	
   are	
   caused	
   by	
   the	
   H-­‐T.	
   Each	
   sample	
   initially	
   follows	
   Hooke’s	
   Law	
   before	
  
levelling	
   off;	
   the	
   next	
   section	
   is	
   the	
   ‘plateau’	
   region.	
   This	
   is	
   where	
   the	
   extension	
   of	
   the	
  
material	
   increases	
   with	
   no	
   increase	
   in	
   load.	
   This	
   period	
   is	
   when	
   the	
   material	
   structure	
   is	
  
  	
  27	
  
changing	
  from	
  the	
  austenite	
  form	
  to	
  the	
  martensite	
  form.	
  This	
  transformation	
  is	
  induced	
  by	
  
the	
  stress	
  loading.	
  The	
  cyclic	
  test	
  carried	
  up	
  only	
  loaded	
  the	
  material	
  to	
  6%	
  extension.	
  This	
  
point	
  was	
  when	
  the	
  graph	
  was	
  still	
  in	
  the	
  ‘plateau’	
  region.	
  This	
  is	
  within	
  the	
  SE	
  region	
  of	
  the	
  
material.	
   The	
   material	
   behaves	
   superelastically	
   until	
   the	
   end	
   of	
   the	
   plateau	
   region	
   (8%	
  
strain)	
  when	
  the	
  load	
  increases	
  again.	
  Beyond	
  this	
  point	
  is	
  plastic	
  deformation.	
  The	
  SE	
  effect	
  
allows	
  the	
  sample	
  to	
  return	
  to	
  its	
  original	
  length	
  when	
  the	
  load	
  is	
  removed.	
  This	
  can	
  be	
  seen	
  
figs	
  4.7,4.8,4.9	
  where	
  the	
  graph	
  returns	
  to	
  the	
  origin	
  between	
  each	
  cycle.	
  In	
  reality	
  there	
  is	
  a	
  
slight	
  difference	
  between	
  each	
  cycle.	
  The	
  maximum	
  load	
  reduces	
  slightly	
  (2%)	
  between	
  the	
  
first	
  and	
  second	
  cycle	
  for	
  the	
  required	
  extension.	
  This	
  difference	
  decreases	
  exponentially	
  for	
  
the	
  succeeding	
  cycles.	
  	
  This	
  is	
  caused	
  by	
  the	
  residual	
  stresses.	
  During	
  each	
  cycle	
  the	
  material	
  
changes	
  its	
  structure	
  from	
  austenite	
  to	
  martensite	
  and	
  back	
  again	
  during	
  unloading.	
  During	
  
each	
  cycle	
  small	
  residual	
  stresses	
  cause	
  a	
  proportion	
  of	
  the	
  martensite	
  form	
  to	
  remain	
  in	
  this	
  
phase	
  and	
  not	
  change	
  back	
  to	
  the	
  austenite	
  form.	
  This	
  means	
  the	
  next	
  cycle	
  will	
  require	
  
slightly	
  less	
  external	
  load	
  to	
  become	
  fully	
  martensite.	
  
	
  
The	
  shape	
  of	
  the	
  curves	
  are	
  distinct.	
  As	
  the	
  load	
  begins	
  to	
  release	
  the	
  graph	
  does	
  not	
  follow	
  
the	
  same	
  path	
  of	
  loading.	
  The	
  material	
  remains	
  in	
  the	
  martensite	
  form	
  until	
  below	
  50%	
  of	
  
the	
  total	
  load	
  is	
  reached.	
  At	
  this	
  point	
  the	
  transformation	
  back	
  to	
  austenite	
  begins	
  to	
  occur.	
  
This	
  transformation	
  results	
  in	
  the	
  elongation	
  reducing	
  with	
  no	
  change	
  in	
  load.	
  Much	
  like	
  the	
  
transformation	
  during	
  loading	
  except	
  in	
  reverse.	
  This	
  point	
  is	
  seen	
  in	
  the	
  ‘plateau’	
  section	
  of	
  
the	
  graph	
  during	
  the	
  unloading	
  phase	
  of	
  the	
  cycle.	
  This	
  is	
  due	
  to	
  hysteresis	
  between	
  the	
  
austenite	
  and	
  martensite	
  forms.	
  
	
  
Comparing	
  the	
  cyclic	
  tensile	
  tests	
  it	
  can	
  be	
  clearly	
  seen	
  that	
  300	
  °C	
  and	
  untreated	
  are	
  very	
  
similar.	
  The	
  300	
  C	
  sample	
  is	
  still	
  inside	
  the	
  austenite	
  range	
  at	
  room	
  temperature	
  (Fig.	
  4.14,	
  
4.15).	
  It	
  has	
  lost	
  some	
  of	
  its	
  rigidity	
  compared	
  to	
  the	
  untreated	
  sample,	
  and	
  behaves	
  slightly	
  
more	
  plastically.	
  This	
  is	
  because	
  the	
  H-­‐T	
  has	
  brought	
  it	
  closer	
  to	
  the	
  transformation	
  region,	
  
resulting	
   in	
   its	
   structure	
   having	
   an	
   increased	
   martensitic	
   proportion	
   and	
   resulting	
  
characteristics.	
   This	
   is	
   only	
   a	
   small	
   consideration	
   however,	
   and	
   it	
   would	
   be	
   expected	
   to	
  
behave	
  similarly	
  to	
  the	
  untreated	
  sample.	
  The	
  300	
  °C	
  sample	
  achieves	
  a	
  load	
  of	
  around	
  5%	
  
(100N	
  against	
  95N)	
  less	
  than	
  the	
  untreated	
  sample	
  as	
  it	
  begins	
  the	
  phase	
  transformation	
  
due	
  to	
  stress	
  loading.	
  It	
  behaves	
  similarly	
  during	
  the	
  unloading	
  phase	
  also.	
  Comparing	
  these	
  
graphs	
  shows	
  how	
  the	
  H-­‐T	
  can	
  be	
  used	
  to	
  make	
  small	
  adjustments	
  to	
  the	
  characteristics	
  of	
  
the	
  material	
  and	
  how	
  it	
  behaves	
  with	
  the	
  SME.	
  
  	
  28	
  
	
  
	
  The	
   400	
   °C	
   sample	
   behaves	
   much	
   differently	
   to	
   the	
   other	
   samples.	
   The	
   400	
   °C	
   sample	
  
plateaus	
  off	
  at	
  a	
  much	
  lower	
  load.	
  The	
  reason	
  for	
  this	
  is	
  because	
  the	
  H-­‐T	
  has	
  moved	
  this	
  
sample	
  into	
  an	
  incoherent	
  martensite	
  structure	
  at	
  room	
  temperature.	
  When	
  the	
  300	
  °C	
  and	
  
untreated	
  samples	
  were	
  transformed	
  into	
  martensite	
  due	
  to	
  loading,	
  this	
  was	
  a	
  coherent	
  
martensite	
  form.	
  When	
  the	
  400	
  °C	
  sample	
  is	
  subject	
  to	
  load	
  it	
  changes	
  from	
  an	
  incoherent	
  
martensite	
   form	
   to	
   a	
   coherent	
   martensite	
   form.	
   This	
   requires	
   less	
   load	
   than	
   a	
  
transformation	
  from	
  austenite	
  as	
  it	
  already	
  in	
  a	
  high	
  proportion	
  of	
  the	
  martensite	
  structure.	
  
400	
  °C	
  also	
  behaves	
  more	
  plastically	
  than	
  the	
  other	
  samples	
  due	
  to	
  its	
  martensitic	
  form,	
  it	
  
does	
  not	
  return	
  to	
  its	
  original	
  shape	
  as	
  definitely	
  as	
  the	
  other	
  samples.	
  Comparing	
  with	
  the	
  
graphs	
  for	
  300	
  °C	
  and	
  untreated,	
  there	
  is	
  a	
  definite	
  ‘plateau’	
  period	
  on	
  the	
  unloading	
  side	
  of	
  
the	
  graph	
  that	
  signifies	
  the	
  martensite	
  changing	
  back	
  to	
  austenite.	
  In	
  the	
  case	
  of	
  the	
  400	
  °C	
  
sample	
  there	
  is	
  no	
  ‘plateau’	
  region.	
  Instead,	
  it	
  is	
  an	
  exponential	
  decrease	
  until	
  the	
  load	
  is	
  
released.	
  This	
  difference	
  is	
  due	
  to	
  the	
  400	
  °C	
  sample	
  returning	
  to	
  an	
  incoherent	
  martensite	
  
form	
  instead	
  of	
  the	
  austenite	
  form	
  of	
  the	
  lower	
  temperature	
  treated	
  sample.	
  There	
  is	
  no	
  
defined	
  transformation	
  phase,	
  as	
  the	
  material	
  does	
  not	
  change	
  back	
  to	
  the	
  austenite	
  form.	
  
	
  
5.1.3	
  Differential	
  Scanning	
  Calorimeter	
  
	
  
Figs	
  4.10,	
  4.13,	
  4.16,	
  4.19	
  show	
  the	
  shape	
  of	
  graph	
  produced	
  in	
  the	
  DSC	
  analysis.	
  The	
  curve	
  
shows	
  a	
  steady	
  rise,	
  before	
  a	
  drop	
  and	
  then	
  steady	
  decline.	
  The	
  upper	
  curve	
  of	
  the	
  graph	
  
represents	
   the	
   heating	
   phase	
   of	
   the	
   process.	
   This	
   is	
   when	
   the	
   sample	
   begins	
   at	
   a	
   low	
  
temperature	
  (-­‐60	
  °C)	
  and	
  is	
  heated.	
  The	
  DSC	
  records	
  the	
  heat	
  flow	
  movement	
  between	
  the	
  
surroundings	
  and	
  the	
  sample.	
  This	
  is	
  plotted	
  against	
  the	
  ambient	
  temperature.	
  The	
  lower	
  
section	
  of	
  the	
  graph	
  shows	
  the	
  same	
  data	
  except	
  from	
  when	
  the	
  ambient	
  temperature	
  is	
  at	
  
its	
  highest	
  (100	
  °C)	
  and	
  is	
  cooled	
  back	
  to	
  its	
  original	
  temperature.	
  
The	
  piece	
  of	
  data	
  from	
  these	
  graphs	
  of	
  most	
  interest	
  is	
  the	
  phase	
  transformation,	
  when	
  the	
  
material	
  changes	
  between	
  austenite	
  and	
  martensite.	
  This	
  point	
  is	
  shown	
  on	
  each	
  curve	
  as	
  a	
  
fluctuation	
  of	
  the	
  heat	
  flow	
  at	
  a	
  particular	
  point	
  (t).	
  The	
  heating	
  transformation	
  regions	
  are	
  
slightly	
  more	
  distinct	
  than	
  the	
  cooling	
  regions.	
  With	
  more	
  appropriate	
  equipment	
  providing	
  
a	
  higher	
  sensitivity,	
  the	
  transformation	
  regions	
  would	
  be	
  more	
  clearly	
  defined.	
  However	
  this	
  
was	
  not	
  possible	
  as	
  discussed	
  previously.	
  
	
  
  	
  29	
  
If	
  the	
  heat	
  and	
  cool	
  transformations	
  are	
  compared	
  for	
  each	
  cycle,	
  (300	
  °C	
  treated	
  sample	
  –	
  
10	
  C	
  to	
  20	
  °C	
  on	
  heating,	
  -­‐5	
  to	
  15	
  °C	
  on	
  cooling.	
  350	
  °C	
  treated	
  sample	
  –	
  15	
  to	
  35	
  °C	
  on	
  
heating,	
   0	
   to	
   20	
   °C	
   on	
   cooling.)	
   the	
   temperature	
   range	
   for	
   each	
   transformation	
   does	
   not	
  
coincide.	
   This	
   is	
   caused	
   by	
  a	
  temperature	
   hysteresis.	
   Because	
   of	
   this	
   there	
   is	
   no	
   ‘defined	
  
point	
  of	
  transformation’.	
  There	
  are	
  four	
  important	
  temperature	
  points	
  [13];	
  
1. Martensite	
  Finish	
  (Mf)	
  
2. Martensite	
  Start	
  (Ms)	
  
3. Austenite	
  Start	
  (As)	
  
4. Austenite	
  Finish	
  (Af)	
  
	
  
The	
  distribution	
  of	
  these	
  points	
  and	
  the	
  hysteresis	
  between	
  them	
  is	
  illustrated	
  in	
  fig	
  5.1.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Looking	
  at	
  the	
  cooling	
  graphs	
  from	
  the	
  DSC.	
  The	
  phase	
  transformation	
  can	
  be	
  seen	
  to	
  be	
  
shifting	
  on	
  each	
  sample.	
  Untreated	
  has	
  a	
  heating/cooling	
  transformation	
  range	
  of	
  (-­‐5	
  to	
  15	
  
°C/-­‐10	
  to	
  10	
  °C).	
  This	
  progresses	
  to	
  (10	
  to	
  20	
  °C/-­‐5	
  to	
  15	
  °C)	
  on	
  the	
  300	
  °C	
  sample	
  and	
  (15	
  to	
  
35	
  °C/0	
  to	
  20	
  °C)	
  on	
  the	
  350	
  °C	
  sample.	
  There	
  is	
  a	
  much	
  larger	
  jump	
  to	
  the	
  400	
  °C	
  sample.	
  Its	
  
transformation	
  region	
  is	
  (30	
  to	
  45	
  °C/25	
  to	
  45	
  °C).	
  The	
  DSC	
  data	
  shows	
  that	
  H-­‐T	
  of	
  NiTi	
  has	
  a	
  
direct	
   effect	
   on	
   the	
   transformation	
   temperature	
   region.	
   H-­‐T	
   of	
   NiTi	
   increases	
   the	
  
transformation	
  temperature	
  of	
  the	
  sample.	
  Using	
  smaller	
  intervals	
  of	
  H-­‐T,	
  its	
  effect	
  can	
  be	
  
Fig	
  5.1	
  Extension	
  against	
  temperature	
  schematic.	
  Detailing	
  
Mf,	
  Ms,	
  As,	
  Af	
  and	
  hysteresis	
  (h).	
  [13]	
  
  	
  30	
  
defined	
   even	
   more	
   so	
   that	
   a	
   precise	
   relationship	
   between	
   the	
   H-­‐T	
   temperature	
   and	
   the	
  
material	
   transformation	
   temperature	
   can	
   be	
   documented.	
   With	
   this	
   knowledge,	
   the	
  
material	
  can	
  be	
  treated	
  to	
  produce	
  a	
  specifically	
  desired	
  transformation	
  region.	
  This	
  is	
  a	
  very	
  
important	
   factor	
   in	
   utilising	
   the	
   materials	
   SME.	
   It	
   allows	
   NiTi	
   to	
   be	
   used	
   as	
   a	
   precisely	
  
controlled	
  actuator	
  among	
  many	
  other	
  applications.	
  
  	
  31	
  
Limitations	
  of	
  project	
  
	
  
There	
   were	
   several	
   areas	
   where	
   external	
   limitations	
   hindered	
   the	
   investigation	
   to	
   some	
  
extent;	
  
• Limited	
   availability	
   of	
   the	
   furnaces	
   meant	
   there	
   was	
   a	
   delay	
   starting	
   the	
  
experimentation.	
  This	
  can	
  be	
  seen	
  to	
  push	
  everything	
  back	
  in	
  fig	
  3.1.	
  It	
  also	
  meant	
  
the	
  time	
  with	
  use	
  of	
  the	
  equipment	
  was	
  relatively	
  low	
  and	
  meant	
  only	
  several	
  broad	
  
H-­‐T	
  temperatures	
  could	
  be	
  used.	
  
• NiTi	
  is	
  an	
  expensive	
  material.	
  As	
  a	
  result	
  its	
  availability	
  for	
  this	
  experiment	
  was	
  a	
  
limiting	
   factor.	
   Had	
   there	
   been	
   a	
   greater	
   supply	
   available,	
   more	
   experimentation	
  
could	
  have	
  been	
  carried	
  out.	
   	
  
• The	
   student	
   budget	
   was	
   relatively	
   low	
   and	
   lead	
   to	
   only	
   being	
   able	
   to	
   use	
   limited	
  
machines	
   for	
   experimentation.	
   Ideally,	
   X-­‐Ray	
   Diffraction	
   (XRD),	
   Scanning	
   Electron	
  
Microscope	
   (SEM)	
   and	
   Transmission	
   Electron	
   Microscope	
   (TEM)	
   apparatus	
   would	
  
have	
  been	
  available	
  to	
  us.	
  This	
  was	
  not	
  the	
  case	
  due	
  to	
  the	
  limited	
  budget.	
  Using	
  
this	
   apparatus	
   would	
   have	
   allowed	
   us	
   to	
   have	
   a	
   much	
   more	
   comprehensive	
  
understanding	
  of	
  the	
  structure	
  of	
  the	
  samples	
  on	
  a	
  microscopic	
  scale.	
  
• The	
   limited	
   time	
   available	
   on	
   the	
   equipment	
   that	
   was	
   used	
   allowed	
   only	
   limited	
  
samples	
   to	
   be	
   tested.	
   Carry	
   out	
   experimentation	
   on	
   more	
   samples	
   would	
   allow	
  
statistically	
  significant	
  results.	
  
• The	
   available	
   software	
   did	
   not	
   include	
   NiTi	
   as	
   a	
   suitable	
   material.	
   Ti6Al4V	
   was	
  
simulated	
  instead	
  as	
  it	
  was	
  the	
  closest	
  available	
  to	
  NiTi.	
  The	
  materials	
  however	
  are	
  
too	
   dissimilar	
   to	
   include	
   in	
   this	
   study.	
   The	
   simulation	
   for	
   Ti6Al4V	
   is	
   included	
   in	
  
Appendix	
  B.	
  	
  
	
  
  	
  32	
  
6.	
  Conclusions	
  &	
  Recommendations	
  
	
  
1. H-­‐T	
  of	
  NiTi	
  produces	
  a	
  thorough	
  change	
  in	
  the	
  characteristics	
  and	
  structure	
  of	
  the	
  
material.	
   It	
   alters	
   the	
   proportions	
   of	
   austenite	
   and	
   martensite	
   structure	
   in	
   the	
  
material	
   structure.	
   	
   A	
   higher	
   temperature	
   H-­‐T,	
   and	
   higher	
   martensite	
   proportion	
  
leads	
  to	
  lower	
  phase-­‐inducing	
  transformation	
  load.	
  (100N	
  for	
  untreated,	
  80N	
  for	
  400	
  
°C).	
   SE	
   limit	
   of	
   NiTi	
   wire	
   under	
   load	
   is	
   105-­‐115N	
   (austenite)	
   &	
   85N(martensite).	
  
Cyclic	
  loading	
  of	
  NiTi	
  results	
  in	
  an	
  exponentially	
  decreasing	
  load	
  bearing	
  per	
  cycle.	
  
This	
   fatigue	
   in	
   the	
   material	
   is	
   caused	
   by	
   ‘residual	
   strain’.	
   An	
   increase	
   in	
   the	
   H-­‐T	
  
temperature	
  causes	
  an	
  increase	
  in	
  the	
  transformation	
  temperature	
  for	
  the	
  material.	
  
Comparing	
  each	
  DSC	
  curve	
  shows	
  a	
  rise	
  of	
  (~10	
  °C	
  per	
  50	
  °C	
  of	
  H-­‐T).	
  	
  
2. 400	
   °C	
   H-­‐T	
   sample	
   shows	
   the	
   best	
   qualities	
   for	
   actuator	
   use.	
   It	
   behaves	
   more	
  
plastically,	
   so	
   can	
   deform	
   more	
   than	
   other	
   samples.	
   This	
   allows	
   for	
   a	
   greater	
  
deformation	
  and	
  resulting	
  stroke	
  length	
  under	
  the	
  SME.	
  
3. Mathematical	
  equations	
  allow	
  performance	
  parameters	
  of	
  the	
  coil	
  to	
  be	
  predicted.	
  
These	
  can	
  be	
  used	
  to	
  analyse	
  an	
  existing	
  coil	
  or	
  to	
  generate	
  a	
  design	
  of	
  a	
  coil	
  for	
  a	
  
specified	
  application.	
  (Appendix	
  A)	
  
	
  
Recommendations	
  for	
  further	
  Study	
  
	
  
This	
  study	
  has	
  given	
  a	
  good	
  understanding	
  of	
  NiTi	
  and	
  its	
  applications	
  utilising	
  SE	
  and	
  the	
  
SME.	
  The	
  limitations	
  previously	
  discussed	
  justify	
  further	
  study	
  in	
  this	
  area.	
  The	
  budget	
  and	
  
equipment	
   shortage	
   meant	
   that	
   the	
   quantity	
   of	
   samples	
   to	
   be	
   tested	
   as	
   desired	
   was	
   not	
  
met.	
  Further	
  studies	
  would	
  carry	
  out	
  more	
  precise	
  testing,	
  such	
  as	
  narrower	
  temperature	
  
treatment	
  to	
  more	
  precisely	
  determine	
  the	
  effect	
  of	
  H-­‐T.	
  The	
  budget	
  dictated	
  that	
  only	
  one	
  
set	
   of	
   DSC	
   results	
   were	
   achievable.	
   The	
   lack	
   of	
   suitable	
   equipment	
   also	
   meant	
   that	
   the	
  
machine	
  used	
  was	
  not	
  suited	
  to	
  the	
  analysis	
  required.	
  Other	
  analysis	
  of	
  the	
  material	
  that	
  
would	
   have	
   been	
   beneficial	
   such	
   as	
   X-­‐Ray	
   Diffraction	
   (XRD)	
   and	
   the	
   use	
   of	
   a	
  
Transmission/Scanning	
  Electron	
  Microscope	
  (TEM/SEM)	
  was	
  not	
  a	
  realistic	
  proposition	
  due	
  
to	
  the	
  budget	
  constraints.	
  Having	
  access	
  to	
  these	
  instruments	
  allows	
  the	
  structure	
  of	
  the	
  
material	
   to	
   be	
   seen	
   at	
   a	
   microscopic	
   scale.	
   Access	
   to	
   data	
   like	
   this	
   allows	
   further	
  
understanding	
  of	
  the	
  structure	
  of	
  the	
  material	
  and	
  how	
  it	
  changes	
  during	
  H-­‐T	
  and	
  during	
  
mechanical	
  testing.	
  In	
  order	
  to	
  assess	
  the	
  simulation	
  of	
  NiTi	
  with	
  CAD,	
  further	
  study	
  into	
  this	
  
area	
  should	
  be	
  undertaken.	
  Software	
  which	
  can	
  fully	
  model	
  NiTi	
  is	
  necessary.	
  
  	
  33	
  
The	
   investigation	
   involved	
   making	
   a	
   prototype	
   coil	
   spring	
   to	
   investigate	
   how	
   it	
   could	
   be	
  
designed	
   and	
   created	
   to	
   carry	
   out	
   the	
   application	
   of	
   an	
   actuator.	
   The	
   next	
   stage	
   in	
   this	
  
process	
  is	
  to	
  use	
  the	
  principles	
  determined	
  in	
  this	
  report	
  to	
  design	
  and	
  create	
  a	
  coil	
  and	
  test	
  
it	
  as	
  an	
  actuator	
  in	
  a	
  device	
  
	
  
	
  
	
  
  	
  34	
  
References	
  
	
  
[1]	
  Selection	
  of	
  shape	
  memory	
  alloys	
  for	
  actuators,	
  Materials	
  and	
  Design	
  23	
  (2002)	
  11-­‐19,	
  
Huang	
  W.	
  
[2]	
   Application	
   of	
   trained	
   NiTi	
   SMA	
   actuators	
   in	
   a	
   spatial	
   compliant	
   mechanism:	
  
~Experimental	
  investigations	
  (2008),	
  Sreekumer	
  M,	
  Nagarajan	
  T,	
  Singaperumal	
  M.	
  	
  
[3]	
   Development	
   of	
   NiTi	
   actuator	
   using	
   a	
   two-­‐way	
   SMA	
   induced	
   by	
   compressive	
   loading	
  
cycles	
  (2008),	
  Kim	
  HC,	
  Yoo	
  YI,	
  Lee	
  JJ.	
  
[4]	
  Engineering	
  applications	
  of	
  NiTi	
  shape	
  memory	
  alloys	
  (2006),	
  Predki	
  W,	
  Knopik	
  A,	
  Bauer	
  
B.	
  	
  
[5]	
  Recent	
  developments	
  in	
  the	
  research	
  of	
  shape	
  memory	
  alloys	
  (1998),	
  Otsuka	
  K,	
  Ren	
  X.	
  
[6]	
  Science	
  and	
  Technology	
  of	
  Shape-­‐Memory	
  Alloys:New	
  Developments	
  (2002),	
  Otsuka	
  K,	
  
Kakeshita	
  T.	
  
[7]	
  Use	
  of	
  NiTi	
  Shape	
  Memory	
  Alloys	
  for	
  Thermal	
  Sensor-­‐Actuators	
  (1991),	
  Stoeckel,	
  Waram.	
  
[8]	
  Crystallisation	
  of	
  amorphous	
  sputtered	
  NiTi	
  thin	
  films,	
  2006,	
  Ramirez	
  AG,	
  Hai	
  Ni,	
  Lee	
  HJ.	
  
[9]	
   Influence	
   of	
   heat	
   treatments	
   on	
   the	
   mechanical	
   properties	
   of	
   high-­‐quality	
   Ni-­‐rich	
   NiTi	
  
produced	
   by	
   powder	
   metallurgical	
   methods,	
   2006,	
   Mentz	
   J,	
   Bram	
   M,	
   Buchkremer	
   HP,	
  
Sto	
  ̈ver	
  D.	
  
[10]	
  Effect	
  of	
  post-­‐weld-­‐annealing	
  on	
  the	
  tensile	
  deformation	
  characteristics	
  of	
  laser	
  welded	
  
NiTi	
  thin	
  foil,	
  2011,	
  Chan	
  CW,	
  Man	
  HC,	
  Yuen	
  TM.	
  
[11]	
  XRD	
  and	
  TEM	
  study	
  of	
  heteroepitaxial	
  growth	
  of	
  zirconia	
  on	
  magnesia	
  single	
  crystal,	
  
1998,	
  Guinebretiere	
  R,	
  Soulestin	
  B,	
  Dauger	
  A.	
  
[12]	
  Flexible	
  distal	
  tip	
  made	
  of	
  nitinol	
  (NiTi)	
  for	
  a	
  steerable	
  endoscopic	
  camera	
  system,	
  1999,	
  
Fischer	
  H,	
  Vogel	
  B,	
  Pfleging	
  W,	
  Besser	
  H.	
  
[13]	
  Large	
  Force	
  Shape	
  Memory	
  Alloy	
  Linear	
  Actuator,	
  2002,	
  Santiago	
  Anadon	
  JR.	
  
[14]	
  Design	
  of	
  SMA	
  Actuator	
  Based	
  Access	
  Device	
  for	
  Transanal	
  Endoscopic	
  Microsurgery,	
  
2010,	
  Luo	
  H,	
  Abel	
  E,	
  Slade	
  A,	
  Wang,	
  Z,	
  Steele	
  R.	
  
[15]	
  Matweb.	
  (2010).	
  Nitinol	
  -­‐	
  NiTi	
  Shape	
  Memory	
  Alloy;	
  Low-­‐Temperature	
  Phase.	
  Available:	
  
http://www.matweb.com/search/datasheetText.aspx?bassnum=MTiNi1.	
   Last	
   accessed	
  
10/3/2014.	
  
[16]	
   Mmm-­‐jun.	
   (2012).	
  Nickel	
   Titanium.	
  Available:	
  
http://en.wikipedia.org/wiki/Nickel_titanium.	
  Last	
  accessed	
  11/3/2014.	
  
	
  
	
  
Project 3B Final
Project 3B Final
Project 3B Final
Project 3B Final
Project 3B Final
Project 3B Final

Weitere ähnliche Inhalte

Andere mochten auch

NHQ SAF PPT Current 2015
NHQ SAF PPT Current 2015NHQ SAF PPT Current 2015
NHQ SAF PPT Current 2015
Esther Valverde
 
s4h1-1-ConfirmationOfParticipation
s4h1-1-ConfirmationOfParticipations4h1-1-ConfirmationOfParticipation
s4h1-1-ConfirmationOfParticipation
Gerhardus Vorster
 
softwareanalytics2015-ConfirmationOfParticipation
softwareanalytics2015-ConfirmationOfParticipationsoftwareanalytics2015-ConfirmationOfParticipation
softwareanalytics2015-ConfirmationOfParticipation
Gerhardus Vorster
 
Ex Ed English- research paper
Ex Ed English- research paperEx Ed English- research paper
Ex Ed English- research paper
Pendarvis Ben
 
CV_GFlanagan current 2016
CV_GFlanagan current 2016CV_GFlanagan current 2016
CV_GFlanagan current 2016
Gareth Flanagan
 

Andere mochten auch (15)

Mejores consejos para el cabello seco - Thermo Group CA
Mejores consejos para el cabello seco - Thermo Group CAMejores consejos para el cabello seco - Thermo Group CA
Mejores consejos para el cabello seco - Thermo Group CA
 
Storyboard (3)
Storyboard (3)Storyboard (3)
Storyboard (3)
 
Presentación1
Presentación1Presentación1
Presentación1
 
NHQ SAF PPT Current 2015
NHQ SAF PPT Current 2015NHQ SAF PPT Current 2015
NHQ SAF PPT Current 2015
 
Lumira
LumiraLumira
Lumira
 
s4h1-1-ConfirmationOfParticipation
s4h1-1-ConfirmationOfParticipations4h1-1-ConfirmationOfParticipation
s4h1-1-ConfirmationOfParticipation
 
Jeux_video_2010
Jeux_video_2010Jeux_video_2010
Jeux_video_2010
 
softwareanalytics2015-ConfirmationOfParticipation
softwareanalytics2015-ConfirmationOfParticipationsoftwareanalytics2015-ConfirmationOfParticipation
softwareanalytics2015-ConfirmationOfParticipation
 
Funciones que desempeñan los signos de comunicación no verbal
Funciones que desempeñan los signos de comunicación no verbalFunciones que desempeñan los signos de comunicación no verbal
Funciones que desempeñan los signos de comunicación no verbal
 
1er. Paquete Tributario 2016
1er. Paquete Tributario 20161er. Paquete Tributario 2016
1er. Paquete Tributario 2016
 
Ex Ed English- research paper
Ex Ed English- research paperEx Ed English- research paper
Ex Ed English- research paper
 
Icom4015 lecture3-f16
Icom4015 lecture3-f16Icom4015 lecture3-f16
Icom4015 lecture3-f16
 
Sap abap on hana
Sap abap on hanaSap abap on hana
Sap abap on hana
 
CV_GFlanagan current 2016
CV_GFlanagan current 2016CV_GFlanagan current 2016
CV_GFlanagan current 2016
 
CV Victorianus Cahya Prakasa-Dec 2016
CV Victorianus Cahya Prakasa-Dec 2016CV Victorianus Cahya Prakasa-Dec 2016
CV Victorianus Cahya Prakasa-Dec 2016
 

Ähnlich wie Project 3B Final

MasterThesis-YimingHu
MasterThesis-YimingHuMasterThesis-YimingHu
MasterThesis-YimingHu
Yiming Hu
 
MICROSTRUCTURAL & MICRO HARDNESS ANALYSIS OF DEFECTIVE AND DEFECT FREE MULTI ...
MICROSTRUCTURAL & MICRO HARDNESS ANALYSIS OF DEFECTIVE AND DEFECT FREE MULTI ...MICROSTRUCTURAL & MICRO HARDNESS ANALYSIS OF DEFECTIVE AND DEFECT FREE MULTI ...
MICROSTRUCTURAL & MICRO HARDNESS ANALYSIS OF DEFECTIVE AND DEFECT FREE MULTI ...
Joseph Stynes B. Eng.
 
Martin_Ness_Bachelor_Thesis
Martin_Ness_Bachelor_ThesisMartin_Ness_Bachelor_Thesis
Martin_Ness_Bachelor_Thesis
Martín Ness
 
Masterthesis20151202
Masterthesis20151202Masterthesis20151202
Masterthesis20151202
Tianchi Xu
 
Vortex lattice modelling of winglets on wind turbine blades
Vortex lattice modelling of winglets on wind turbine bladesVortex lattice modelling of winglets on wind turbine blades
Vortex lattice modelling of winglets on wind turbine blades
Dickdick Maulana
 
Verification of a Thermal Model for Affordable Solar Assisted Biogas Digester...
Verification of a Thermal Model for Affordable Solar Assisted Biogas Digester...Verification of a Thermal Model for Affordable Solar Assisted Biogas Digester...
Verification of a Thermal Model for Affordable Solar Assisted Biogas Digester...
Vergil Weatherford, P.E.
 
MSc_Thesis_Wake_Dynamics_Study_of_an_H-type_Vertical_Axis_Wind_Turbine
MSc_Thesis_Wake_Dynamics_Study_of_an_H-type_Vertical_Axis_Wind_TurbineMSc_Thesis_Wake_Dynamics_Study_of_an_H-type_Vertical_Axis_Wind_Turbine
MSc_Thesis_Wake_Dynamics_Study_of_an_H-type_Vertical_Axis_Wind_Turbine
Chenguang He
 

Ähnlich wie Project 3B Final (20)

MasterThesis-YimingHu
MasterThesis-YimingHuMasterThesis-YimingHu
MasterThesis-YimingHu
 
Master Thesis
Master ThesisMaster Thesis
Master Thesis
 
Design a geared industrial roll mill
Design a geared industrial roll millDesign a geared industrial roll mill
Design a geared industrial roll mill
 
MICROSTRUCTURAL & MICRO HARDNESS ANALYSIS OF DEFECTIVE AND DEFECT FREE MULTI ...
MICROSTRUCTURAL & MICRO HARDNESS ANALYSIS OF DEFECTIVE AND DEFECT FREE MULTI ...MICROSTRUCTURAL & MICRO HARDNESS ANALYSIS OF DEFECTIVE AND DEFECT FREE MULTI ...
MICROSTRUCTURAL & MICRO HARDNESS ANALYSIS OF DEFECTIVE AND DEFECT FREE MULTI ...
 
EHP_PhD-Thesis
EHP_PhD-ThesisEHP_PhD-Thesis
EHP_PhD-Thesis
 
1018 Steel and PLA Tensile Test and Hardness Report
1018 Steel and PLA Tensile Test and Hardness Report1018 Steel and PLA Tensile Test and Hardness Report
1018 Steel and PLA Tensile Test and Hardness Report
 
Download
DownloadDownload
Download
 
MS Research Thesis Work
MS Research Thesis WorkMS Research Thesis Work
MS Research Thesis Work
 
Tr140fraçãodevazio6
Tr140fraçãodevazio6Tr140fraçãodevazio6
Tr140fraçãodevazio6
 
Martin_Ness_Bachelor_Thesis
Martin_Ness_Bachelor_ThesisMartin_Ness_Bachelor_Thesis
Martin_Ness_Bachelor_Thesis
 
Fatigue ti6 al4v
Fatigue ti6 al4vFatigue ti6 al4v
Fatigue ti6 al4v
 
thesis
thesisthesis
thesis
 
REPORT ON CHARACTERIZATION OF SHAPE MEMORY ALLOY FOR VIBRATION ATTENUATION IN...
REPORT ON CHARACTERIZATION OF SHAPE MEMORY ALLOY FOR VIBRATION ATTENUATION IN...REPORT ON CHARACTERIZATION OF SHAPE MEMORY ALLOY FOR VIBRATION ATTENUATION IN...
REPORT ON CHARACTERIZATION OF SHAPE MEMORY ALLOY FOR VIBRATION ATTENUATION IN...
 
Masterthesis20151202
Masterthesis20151202Masterthesis20151202
Masterthesis20151202
 
Crankshaft Manufacturing Project report
Crankshaft Manufacturing Project report Crankshaft Manufacturing Project report
Crankshaft Manufacturing Project report
 
Vortex lattice modelling of winglets on wind turbine blades
Vortex lattice modelling of winglets on wind turbine bladesVortex lattice modelling of winglets on wind turbine blades
Vortex lattice modelling of winglets on wind turbine blades
 
Verification of a Thermal Model for Affordable Solar Assisted Biogas Digester...
Verification of a Thermal Model for Affordable Solar Assisted Biogas Digester...Verification of a Thermal Model for Affordable Solar Assisted Biogas Digester...
Verification of a Thermal Model for Affordable Solar Assisted Biogas Digester...
 
Semester_Sebastien
Semester_SebastienSemester_Sebastien
Semester_Sebastien
 
Briscoe umn 0130_e_11103
Briscoe umn 0130_e_11103Briscoe umn 0130_e_11103
Briscoe umn 0130_e_11103
 
MSc_Thesis_Wake_Dynamics_Study_of_an_H-type_Vertical_Axis_Wind_Turbine
MSc_Thesis_Wake_Dynamics_Study_of_an_H-type_Vertical_Axis_Wind_TurbineMSc_Thesis_Wake_Dynamics_Study_of_an_H-type_Vertical_Axis_Wind_Turbine
MSc_Thesis_Wake_Dynamics_Study_of_an_H-type_Vertical_Axis_Wind_Turbine
 

Project 3B Final

  • 1.   School  of    Mechanical  and     Aerospace     Engineering     Ashby  Building     Stranmillis  Road     Belfast     BT9  5AH               Mechanical  and  Aerospace  Engineering     Project  3  Report   MEE3030           Design  and  Fabrication  of  Coil  Spring  for  Soft  Actuator  Application  by   Shape  Memory  NiTi  Alloy                         Author   M  Gibson  [40061742]     Project  supervisor   Dr  CW  Chan     Programme   BEng  Mechanical  Engineering     Date   4  April  2014        
  • 2.    ii     Abstract     This   investigation   looked   at   the   material   NiTi   and   how   it   utilises   special   capabilities   with   Superelasticity  and  the  Shape  Memory  Effect.  Understanding  how  the  material  behaves  to   certain  external  manipulation  allows  the  material  to  be  tailored  to  carry  out  specific  tasks   due  to  its  ‘smart’  nature.  It  is  a  very  important  field  of  study  as  NiTi  offers  a  broad  range  of   applications.   One   of   the   biggest   areas   NiTi   is   used   in   is   the   medical   industry.   This   investigation  looks  at  optimising  NiTi  to  be  used  as  an  actuator  in  a  soft  robot  application.   Experimentation   was   carried   out   on   the   NiTi   to   gain   more   of   an   understanding   into   the   material.  This  involved  various  heat  treatments  of  the  material.  In  order  to  understand  the   effect  of  the  heat  treatment,  mechanical  testing  was  carried  out  to  assess  the  effect  on  the   structure  of  the  material.  This  involved  tensile  to  fracture  tests  as  well  as  cyclic  tensile  tests   to  assess  the  fatigue  of  the  material.  Analysis  using  a  Differential  Scanning  Calorimeter  was   also   carried   out.   This   was   used   to   assess   the   effect   the   heat   treatment   had   on   the   transformation  temperature  of  the  material.  This  is  was  an  important  step  as  it  is  a  critical   factor  in  utilising  the  materials  Shape  Memory  Effect.  After  gaining  a  further  understanding   from  the  experimentation,  a  coil  prototype  was  manufactured,  and  a  CAD  model  of  the  coil   designed.  The  experimentation  on  the  NiTi  found  that  the  heat  treatment  has  predictable   and  profound  effects  on  the  material.  The  appearance  and  characteristics  of  the  material   vary   considerably   depending   on   the   temperature   of   heat   treatment.   The   balance   of   martensite  to  austenite  structure  and  its  transformation  temperature  can  be  altered  using   precise   heat   treatment   ranges.   This   allows   the   material   to   be   tailor-­‐made   to   a   specific   application.   The   prototype   showed   that   the   wire   could   easily   be   drawn   into   a   coil   spring   shape,  and  the  coil  behaves  in  a  suitable  manner  to  be  used  as  an  actuator.      
  • 3.    iii   Table  of  Contents     Abstract………………………………………………………………………………………….   ii   Table  of  Contents…………………………………………………………………………...   iii   List  of  Figures………………………………………………………………………………….   v   List  of  Tables…………………………………………………………………………………..   vii   Nomenclature…………………………………………………………………………………   viii     Chapter  1.  Introduction…………………………………………………………………....   1     1.1.   Introduction  to  NiTi……………………………………………………………..   1     1.2.   Project  Objectives……………………………………………………………....   1   1.3.   Previous  Studies……………………….................................………….   2     Chapter  2.  Literature  Review……………………………………………………………   3     2.1.   The  Shape  Memory  Effect  and  Superelasticity…………………….   3   2.2.   NiTi……………..  ……………………………………………………………………..   4   2.3.   Heat  Treatment  of  NiTi………………………………………………………..   5   2.4.   Existing  applications  of  NiTi  under  SME……………………………….   6     Chapter  3.  Methodology…………………………………………………………………...   7     3.1.   Experimental  Design  and  Procedure……………………………………..   7   3.1.1.   Heat  Treatment…………………………………………………………………….   7   3.1.2.   Mechanical  Testing……………………………………………………………….   7   3.1.3   Differential  Scanning  Calorimeter  (DSC)………………………………..   8   3.1.4   Coil  spring  prototype…………………………………………………………….   8     Chapter  4.  Results  and  Calculations…………………………………………………..   9     4.1.   Experimental  Observations…………………………………………………..   9   4.1.1   Heat  Treatment…………………………………………………………………….   9   4.1.2   Mechanical  Testing……………………………………………………………….   11  
  • 4.    iv   4.1.3   Differential  Scanning  Calorimeter…………………………………………   11   4.2   Experimental  Results……………………………………………..…………….     13   4.2.1   Mechanical  Testing……………………………………………..………….......   13   4.2.2   Differential  Scanning  Calorimeter  (DSC)…………………………….   16   4.3   Fabrication  of  Coil  spring  prototype…………………………………..   20   4.4   Analysis  of  prototype…………………………………………………………   21   4.5   CAD  model  of  coil………………………………………………………………   24     Chapter  5.  Discussion…………………………………………………….……………..   26     5.1     Mechanical  Testing…………………………………………………………..   26   5.1.1   Tensile  fracture  test…………………………………………………………   26   5.1.2   Tensile  cyclic  test……………………………………………………………..   26   5.1.3   Differential  Scanning  Calorimeter…………………………………….   28   5.2   Limitations  of  project……………………………………………………….   31     Chapter  6.  Conclusions  and  Recommendations…………………………….   32     References……………………………………………………………………………………   34   Appendix  A.  Calculating  performance  of  prototype.…………………….   35   Appendix  B.  CAD  Simulation…………………….…………………………………..   37   Appendix  C.  Project  Planning  &  Time  Management……………………..   39              
  • 5.    v   List  of  Figures     Fig   2.1   Illustration   of   transformation   paths   between   austenite   and   martensite   transformation.  [6]   Fig  2.2  Showing  stress/strain  curves  graphs  for  SME  and  SE  transformations.  Taken  from  [1]   Figure  2.3  Temperature  dependence  on  the  elongation  of  NiTi  alloy.  [5]   Fig  2.4.  Growth  of  grain  size  due  to  heat  treatment.  [11]   Fig  4.1  Untreated  NiTi   Fig  4.2  300  °C  H-­‐T  NiTi  sample   Fig  4.3  350  °C  H-­‐T  sample   Fig  4.4  400  °C  H-­‐T  sample   Fig  4.5  Load-­‐deflection  curves  to  failure  for  the  samples  under  a  tensile  test.   Fig.   4.6   Shows   the   samples   at   the   ‘plateau’   where   they   are   undergoing   a   phase   transformation  due  to  stress  loading.   Fig  4.7  Cyclic  tensile  testing  of  untreated  sample  of  NiTi   Fig  4.8  Cyclic  tensile  testing  of  300  °C  H-­‐T  NiTi   Fig  4.9  Cyclic  tensile  testing  of  400  °C  H-­‐T  NiTi   Fig  4.10  Summary  table  of  NiTi  Transformation  temperatures   Fig.  4.11  Heat  flow  against  temperature  graph  for  untreated  NiTi   Fig  4.12  Phase  transformation  under  heating  for  untreated  alloy.   Fig  4.13  Phase  transformation  under  cooling  for  untreated  alloy.     Fig.  4.14  Heat  flow  against  temperature  graph  for  300  °C  H-­‐T  NiTi   Fig.  4.15  Phase  transformation  under  heating  for  300  °C  H-­‐T  NiTi   Fig.  4.16  Phase  transformation  during  cooling  for  300  C  H-­‐T  NiTi   Fig  4.17  Heat  flow  against  temperature  graph  for  350  °C  H-­‐T  NiTi   Fig  4.18  Phase  transformation  under  heating  for  350  °C  H-­‐T  NiTi   Fig  4.19  Phase  transformation  under  cooling  for  350  °C  H-­‐T  NiTi   Fig  4.20  Heat  flow  against  temperature  graph  for  400  °C  H-­‐T  NiTi   Fig  4.21  Phase  transformation  under  heating  for  400  °C  H-­‐T  NiTi   Fig  4.22  Phase  transformation  under  cooling  for  400  °C  H-­‐T  NiTi   Fig  4.23  Coil  setup  before  H-­‐T     Fig  4.24  Coil  setup  after  H-­‐T   Fig  4.25  NiTi  coil  in  incoherent  martensite  form.  Room  temperature  and  no  load.   Fig  4.26  NiTi  coil  in  coherent  martensite  form  Room  temperature  and  after  a  stress  loading.  
  • 6.    vi   Fig  4.27  NiTi  coil  in  austenite  form  after  heating   Fig  4.28  450  °C  H-­‐T  coil  &  400  °C  H-­‐T  coil  at  room  temperature   Fig  4.29  SMA  compression  spring  actuation  [13]   Fig  4.30  extension  spring  actuation  [13]   Fig  4.31  CAD  model  of  the  coil  in  High  temperature  austenite  phase   Fig  4.32  CAD  model  of  the  coil  in  the  incoherent  martensite  form  (  room  temperature  free   state)   Fig  4.33  CAD  coil  in  the  Coherent  martensite  form  after  stress  loading.   Fig  4.34  shows  the  relationship  between  the  three  phases.  [16]   Fig  5.1  Extension  against  temperature  schematic.  Detailing  Mf,  Ms,  As,  Af  and  hysteresis  (h).   [13]   Fig  B.1  Stress  distribution  in  coil  under  100N  tensile  load.   Fig  B.2  Extension  of  coil  under  100N  tensile  load.   Fig  C.1  Work  chart  showing  planned  schedule  against  actual  schedule.        
  • 7.    vii   List  of  Tables     Table  3.1  shows  a  summary  of  the  progression  of  objectives  throughout  the  project.     Table  4.1  Summary  table  of  tensile  to  failure  tests     Table  4.2  Summary  table  of  NiTi  Transformation  temperatures     Table  B.1  Table  comparing  properties  of  Ti-­‐6Al-­‐4V  [15]     Table  C.1  A  summary  of  the  progression  of  objectives  throughout  the  project.            
  • 8.    viii   Nomenclature     Abbreviations     NiTi     Nickel  Titanium  /  Nitinol   SMA     Shape  Memory  Alloy   SME     Shape  Memory  Effect   SE     Superelastic   CAD     Computer  Aided  Design   H-­‐T     Heat  Treatment   DSC     Differential  Scanning  Calorimeter   XRD     X-­‐Ray  Diffraction   SEM     Scanning  Electron  Microscope   TEM     Transmission  Electron  Microscope   Mf     Martensite  Finish   Ms     Martensite  Start   As     Austenite  Start   Af     Austenite  Finish   h     Hysteresis     Lh     Length  (High  Temp)   Ll     Length  (Low  Temp)   HT     High  Temperature   LT     Low  Temperature   S     Stroke   Symbols     C     Spring  Index   D     Spring  Diameter   d     Wire  Diameter   w     Wahl’s  Stress  Correction  Factor          
  • 9.    ix   Units     °C     Degrees  Celsius   Pa     Pascals   N     Newton   mW     MilliWatts   τmax     Max  Shear  Stress   Δϒ     Strain  difference  between  austenite  and  austenite   ϒA     Strain  in  austenite  phase   ϒmax     Max  strain  in  martensite  phase   G     Shear  Modulus   ΔL     Stroke  Length  of  Coil   n     Number  of  turns  of  coils   Fload     External  Load  
  • 10.    1   1. Introduction       1.1  Introduction  to  NiTi     NiTi  is  one  of  the  most  common  shape  memory  alloys  (SMA)  that  has  the  ability  to  perform  highly   as   an   actuator   through   the   shape   memory   and   SE   effects   (SME   and   SE).   NiTi   was   compared   against  other  kinds  of  shape  memory  alloys,  i.e.  CuZnAl  and  CuAlNi  and  it  was  concluded  that  NiTi   is  the  most  successful  with  respect  to  most  thermo-­‐mechanic-­‐related  performances  [1].  First,  the   SME  and  SE  of  NiTi  can  be  tailor-­‐controlled  by  heat  treatment  (H-­‐T)  at  certain  temperature  ranges   to  modify  the  martensitic  transformation  temperatures.  Second,  NiTi  is  an  energy  dense  material   and   this   allows   it   to   store   more   potential   energy   than   similar   intermetallics.   Third,   NiTi   has   a   maximum  strain  of  8%  within  its  SE  limit.  This  is  impressive  compared  to  similar  alloys  that  only   achieve  around  2-­‐4%  strain.  Finally,  NiTi  has  good  biocompatibility  and  corrosion  resistance  [13].     1.2  Project  Objectives     Soft   robotics   is   an   emerging   field   with   many   challenges   for   roboticists.   One   of   the   most   challenging  elements  is  the  soft  actuator  which  can  deform  along  with  the  surrounding  structure.   NiTi  alloy  is  very  suitable  for  this  application  due  to  its  high  flexibility  and  energy  density.  The   problem  under  investigation  in  this  project  is  to  understand  the  effect  H-­‐T  has  on  the  mechanical   and  functional  properties  of  NiTi.         The  aim  of  the  project  is  to  design  and  produce  a  coil  spring  for  use  in  a  soft  robot.  The  wire  of  the   coil  produced  will  be  made  from  NiTi,  and  the  coil  will  be  produced  and  subsequently  modified  by   H-­‐T   to   perform   the   SME   and   SE   that   are   most   desirable   for   actuator   applications.   Finally,   a   computer  model  is  made  to  predict  the  performance  of  the  coil,  which  will  then  be  compared   with  the  actual  performance  recorded  from  the  coil  itself.  The  main  reason  that  NiTi  is  used  for   this  investigation  is  due  to  its  SME  effects  and  its  performance  as  a  SMA.  The  NiTi  coil  can  act  as  a   sensor  and  actuator  once  under  the  SME,  so  is  able  to  react  to  a  change  in  temperature  and  will   then  transform  its  shape.  The  change  in  the  microscopic  structure  causes  an  extension  of  the  coil.   This  elongation  of  the  coil  can  cause  a  change  in  a  structure.  The  elongation  and  contraction  of   the  coil  under  the  SME  could  replicate  the  action  of  a  muscle  in  a  joint.  If  the  coil  is  heated  it  will   return  to  its  original  shape,  thus  acting  as  a  controllable  actuator.  This  use  as  a  robotic  device   could  be  in  a  device  such  as  an  endoscope.  NiTi  is  said  to  be  a  ‘smart’  material  as  it  can  react  in   this  way  to  a  change  in  its  environment.  On  the  other  hand,  The  SE  effect  allows  the  material  to  
  • 11.    2   undergo  a  large  strain,  but  stops  it  from  going  beyond  the  elastic  limit.  It  is  able  to  return  to  the   parent  shape  without  being  altered  in  any  way  theoretically.     1.3  Previous  Studies     NiTi  used  in  actuator  applications  due  to  its  SME  and  SE  has  been  extensively  studied  in  the  past.   Sreekumar  et  al.  [2]  reported  that  trained  actuators  where  able  to  verify  predicted  forces  due  to   the  SME  of  SM  alloys.  Kim  et  al.  [3]  developed  a  NiTi  actuator  using  the  two-­‐way  SME.  They  found   that  the  recovery  stresses  were  almost  identical  as  in  the  one-­‐way  method.  Also,  the  two-­‐way   method   does   not   require   compressive   loading   and   unloading   to   form,   resulting   in   an   easier   method.   Predki   et   al.   [4]   showed   that   NiTi   can   be   used   for   technical   applications   in   drive   technology,  given  that  stress-­‐strain  behaviour  for  NiTi  SMA  under  axial  compression,  necessary   forces  and  compressions  to  reach  demanded  elongations  can  be  calculated.  Otsuka  and  Ren  [5]   discussed   the   development   in   the   research   of   SMA   in   the   last   decade.   They   stated   couplings,   actuators  and  smart  materials  as  the  most  common  applications  of  SMA  and  acknowledged  NiTi   as  the  best  practical  SMA.  Otsuka  and  Kakeshita  [6]  explained  the  SME,  SE  effect  and  martensitic   transformation  in  basic  detail  and  how  these  characteristics  make  intermetallics  under  the  SME   such   as   NiTi   very   useful   in   certain   applications.   More   specifically   in   reference   to   this   report,   Stoeckel   and   Waram   [7]   described   the   use   of   NiTi   coils   transforming   due   to   the   SME   under   a   change  in  temperature.  These  studies  give  an  insight  into  the  SME  and  the  characteristics  of  NiTi.   Furthermore,   there   are   some   fundamentals   in   the   project   that   are   not   covered   in   the   past.  In   order  to  be  able  to  improve  the  design  process  of  a  NiTi  actuator,  the  relationship  between  a  CAD   model   of   the   coil   and   the   physical   coil   must   be   better   understood.   This   will   lead   to   a   better   understanding  of  theoretical  testing  for  computer  models.    
  • 12.    3   2.  Literature  Review     2.1  The  Shape  Memory  Effects  and  Superelasticity     The   shape   memory   effect   is   the   name   given   to   the   process   in   which   a   material   can   be   restored   to   its   original   shape   under   heating   after   being   plastically   deformed.   It   occurs   in   intermetallic  compounds.  Materials  therefore  act  as  sensors  and  actuators  as  they  sense  a   change  in  the  temperature  and  will  change  their  shape  subsequently.  They  are  said  to  be   ‘smart’  materials  as  they  can  do  this.  This  area  is  well  covered  in  literature,  “shape  memory   alloys   show   great   potential   in   many   applications…Many   alloys   displaying   shape   memory   have  been  found  and  considerable  effort  is  still  being  made  to  discover  new  materials”  [1].   The  two  phases  of  the  transformation  are  the  martensitic  phase  of  lower  temperature  and   the  austenite  or  ‘parent’  phase  of  higher  temperature,  when  the  material  is  in  its  natural   form.       There   are   two   paths   of   transformation   between   the   austenite   and   martensite   transformation.   The   first   method   is   known   as   the   SME   and   is   due   to   a   change   in   temperature.  When  the  material  is  in  the  parent  phase,  a  drop  in  temperature  below  the   transformation   temperature   causes   a   change   in   structure   to   an   incoherent   martensite   as   shown  by  (b)  in  fig  2.1.  If  the  material  is  put  under  stress  in  this  phase  it  will  change  into  a   more   coherent   martensite   form   as   shown   by   (c)   fig   2.1.   The   material   will   return   to   the   parent   phase   when   heated   above   the   transformation   temperature.   Heating   will   form   the   austenite  structure  from  the  coherent  or  incoherent  martensite  form.  The  second  path  is   known  as  the  SE  effect.  This  does  not  involve  a  temperature  change,  but  instead  a  direct   stress   loading   of   the   parent   phase.   This   changes   the   structure   directly   into   a   coherent   martensite   form   (c)   in   fig   2.1.   This   process   is   called   stress   induced   martensitic   transformation.  If  the  stress  load  is  removed  the  material  will  return  to  its  parent  form,  as   long  as  the  limit  of  SE  is  not  exceeded  (8%  strain  for  NiTi).  A  material  is  described  as  SE  when   it  is  able  to  reach  higher  levels  of  elongation  that  would  usually  be  beyond  the  elastic  limit  of   the   material.   NiTi   is   described   as   having   ‘superelasticity’.   This   explains   why   it   is   able   to   transform  under  the  stress  induced  martensitic  method.      The  transformation  can  produce   relatively  large  movement  in  the  overall  structure  for  its  small  size.  This  gives  the  material  a   high  work  output.  The  process  gives  NiTi  a  wide  range  of  applications  that  make  use  of  its   SME.    
  • 13.    4         2.2  NiTi     NiTi  has  been  chosen  in  this  investigation  as  it  has  the  best  SME  and  SE  properties  among   existing  intermetallic  alloys.  This  has  been  covered  previously  in  literature.  “In  this  paper,  a   systematic  study  on  the  selection  of  SMAs  for  actuators  is  presented.  The  candidates,  NiTi,   CuZnAl,  CuAlNi.  The  current  study  shows  that  NiTi  is  the  overall  winner  in  respect  to  most  of   the   thermo-­‐mechanic   related   performances”   [1].   NiTi   alloys   have   several   characteristics   which  make  them  particularly  suitable  for  applications  based  on  the  shape  memory  effect.   NiTi  alloys  are  very  ductile  compared  to  other  similar  intermetallics.  Elongation  of  50%  can   be  easily  obtained  [5].  Materials  in  this  class  are  usually  much  more  brittle.  The  elongation  of   NiTi   at   certain   temperature   is   shown   in   fig   2.3.   It   can   be   seen   that   the   highest   point   of   elongation  is  closely  related  to  the  temperature  around  martensitic  transformation.  There   are   factors   which   explain   this   relationship   such   as   a   high   number   of   deformation   modes   upon  stress-­‐induced  transformation.  The  grain  size  in  the  alloy  is  usually  very  small,  typically   around  30  μm.  This  compares  to  the  others  similar  alloys  with  a  grain  size  of  around  1mm.   Also,  the  critical  tensile  stress  for  a  slip  is  less  than  50MPa  when  the  alloy  is  in  martensite   form,  which  is  very  low  compared  to  around  400MPa  when  the  alloy  is  in  parent  form.     The   ductility   decreases   significantly   at   higher   temperatures,   above   the   critical   level   for   martensitic   transformation,   however   this   is   still   significantly   higher   than   that   of   other   intermetallics  (20%)  [5].  Another  factor  that  makes  NiTi  particularly  suitable  is  that  the  SME   can   be   improved   and   altered   easily   using   H-­‐T.   An   optimum   temperature   for   the   material   transformation  from  martensite  to  austenite  can  be  easily  found  using  the  right  H-­‐T  of  the   alloy.  This  means  the  material  can  be  tailored  to  perform  in  a  specified  way  in  a  particular   Fig  2.1  Illustration  of  transformation   paths  between  austenite  and   martensite  transformation.  [6]   Fig  2.2  Showing  stress/strain  curves  graphs  for  SME  and  SE   transformations.  Taken  from  [1]  
  • 14.    5   application.  NiTi  alloys  also  have  a  superior  tensile  strength  (100Mpa)  to  other  intermetallic   as   well   high   corrosion   and   abrasion   resistance,   making   them   suitable   to   a   wide   range   of   applications.  The  excellent  SE  properties  of  NiTi  can  be  partly  explained  due  to  their  high   energy  density.  They  can  hold  a  particularly  high  amount  of  potential  energy  which  allows   them  to  return  to  their  original  shape  under  strain.                     2.3  Heat  treatment  of  NiTi     The  mechanical  properties  of  NiTi  can  be  altered  using  H-­‐T.  This  in  an  important  process  as  it   allows  the  transformation  temperature  for  the  SME  to  be  changed.  This  allows  fine  tuning  of   the  material  for  a  particular  process.  The  investigation  being  carried  out  will  involve  heat-­‐ treating  a  coil  of  NiTi  so  it  performs  in  the  correct  temperature  window  when  being  used  as   an  actuator  in  soft  robotics.  The  temperatures  the  material  should  be  subjected  to  under  H-­‐T     are  not  clear,  which  is  part  of  what  will  be  investigated.  What  is  known  from  past  literature   however   is   that   H-­‐T   can   cause   a   material   to   undergo   crystallisation.   “We   found   that   equiatomic   amorphous   NiTi   crystallizes   by   polymorphic   mechanisms   and   that   there   is   a   direct  correlation  between  the  average  crystal  size  and  the  processing  temperature”  [8].     Recrystallisation   causes   the   material   to   become   more   brittle   and   lose   its   elongation   as   investigated  by  Mentz  at  el.  [9].  For  this  reason,  we  want  to  avoid  recrystillisation  of  the   material  as  much  as  possible.  Chan  et  al.  reported  that  significant  grain  growth  in  NiTi  above   700o C   [10].   For   this   reason   it   is   necessary   to   limit   the   maximum   H-­‐T   temperature   at   a   maximum  of  600o C  for  this  investigation.  If  this  limit  is  exceeded,  the  grain  size  in  the  NiTi   will  become  too  large.  This  results  in  it  becoming  too  plastic  or  brittle,  losing  its  SE  effects.  It   is  known  already  that  H-­‐T  will  change  the  temperature  region  for  transformation  between   martensitic  and  austenite  forms  of  NiTi.  This  investigation  aims  to  analyse  this  to  understand   the  relationship  so  we  can  more  easily  modify  NiTi  for  a  particular  application.   Figure  2.3  Temperature  dependence  on   the  elongation  of  NiTi  alloy.  [5]  
  • 15.    6                   2.4  Existing  Applications  of  NiTi  under  SM     NiTi  is  known  as  the  best  performing  SMA  [1].  This  results  in  it  being  desirable  for  a  wide   variety  of  applications.  They  are  most  commonly  used  as  actuators,  fasteners  and  couplings.   The  NiTi  alloys  have  among  the  best  SME  among  many  SMA,  however  if  SMA  with  higher   operating  temperatures  are  developed  they  would  be  very  useful  for  uses  in  automobiles,   planes  etc.  Uniqueness  of  the  SMA  gives  them  a  very  high  potential  for  applications,  10000   patents  have  been  proposed  previously.  SE  qualities  of  NiTi  make  it  useful  in  applications   such  as  catheters  for  medical  use  or  mobile  phone  antennas.  This  is  because  of  the  flexible   properties  and  the  fact  it  cannot  be  permanently  bent.  Fisher  at  al.  carried  out  a  project  in   which  NiTi  was  used  in  an  endoscope  to  replace  existing  materials,  allowing  an  increased  90°   angle  of  view.  [12].    This  investigation  looks  at  using  NiTi  as  an  actuator  in  a  soft  robotic   application.   One   such   application   of   soft   robotics   is   an   endoscope   for   medical   use.   The   device  allows  doctors  to  examine  the  internals  of  a  body  with  no  discomfort  to  the  patient.   Coil  springs  are  used  in  lots  of  other  applications  such  as  in  various  car  components.  They   are  particularly  useful  when  the  car  is  starting  from  cold.  For  example,  the  coil  can  alter  the   engine  speed  when  the  car  is  cold  so  that  the  engine  is  allowed  to  heat  up  faster.     Fig  2.4.  Growth  of  grain  size  due  to  heat   treatment.  [11]  
  • 16.    7   3.  Methodology      3.1  Experimental  Design  and  Procedure     The   initial   phase   of   the   project   involved   attempting   to   establish   an   understanding   of   the   shape  memory  effect  of  NiTi.  Looking  at  the  theory  has  allowed  a  tentative  prediction  of   how  the  material  will  behave.  The  next  phase  of  the  project  is  to  carry  out  experimentation   to  validate  the  theory  and  to  establish  solid  understanding  of  the  properties  of  the  material.   With   an   understanding   of   exactly   how   the   material   responds   to   H-­‐T,   implementing   the   material  in  products  to  utilise  the  SME  will  be  possible.     3.1.1  Heat  Treatment       The  first  process  is  to  subject  samples  of  NiTi  to  H-­‐T  at  varying  temperatures.  This  will  allow   us  to  see  how  the  process  of  H-­‐T  affects  the  properties  of  NiTi.  It  is  particularly  important  to   understand  how  H-­‐T  affects  the  transition  temperature  from  austenite  of  martensite  form  so   that  the  material  can  be  tailored  for  any  particular  application.     The   apparatus   used   for   this   stage   will   be   a   furnace.   There   will   be   three   different     temperatures.  These  are  300  °C,  350  °C  and  400°  C.  This  is  an  important  range  to  find  the   crossover   between   the   austenite   and   martensite   structure   in   the   H-­‐T   wires.   The   reason   higher  temperatures  are  not  used  is  because  H-­‐T  above  450  °C  produces  detrimental  results   in  the  material.  At  450  °C  –  550  °C  H-­‐T  will  cause  intermetallic  grain  growth.  This  decreases   the   effectiveness   of   SE   and   the   SME.   Above   600   °C   the   material   will   undergo   re-­‐ crystallization.  This  leads  to  the  material  becoming  too  soft  and  will  lead  to  loss  of  the  SME.   Each  sample  should  be  treated  for  60  minutes,  followed  by  immediate  quenching  in  cold   water.       3.1.2  Mechanical  Testing     In  order  to  see  the  effect  that  the  H-­‐T  has  had  on  the  material,  it  should  be  subjected  to  a   tensile   test.   Studying   the   loads   achieved   by   samples,   which   have   undergone   different   treatments,  will  allow  us  to  see  the  effect  the  H-­‐T  has  on  the  tensile  strength  of  the  material.  
  • 17.    8   This   is   a   very   important   factor,   because   different   mechanism   applications   require   the   material  to  have  specific  tensile  strength.     3.1.3  Differential  Scanning  Calorimeter  (DSC)     A   DSC   machine   works   by   measuring   the   heat   flow   between   a   material   and   its   ambient   surroundings  while  that  ambient  temperature  is  altered.  The  principle  is  to  show  at  what   temperature   the   material   undergoes   a   physical   transformation.   Under   a   phase   transformation,  such  as  during  the  SME  and  SE  in  NiTi,  there  will  be  a  difference  in  the  heat   flow  between  the  material  and  the  surroundings.  This  is  picked  up  by  the  DSC  machine.  The   results  of  this  experiment  should  show  a  spike  in  heat  flow  for  the  NiTi  sample  when  it  is   tested  at  a  particular  temperature.  This  point  represents  the  change  in  material  structure   from  martensitic  form  to  austenitic  form.  This  is  the  phase  transformation  that  defines  the   SME.  Analysing  this  point  for  each  sample  that  has  been  H-­‐T  will  allow  us  to  see  exactly  what   effect  the  H-­‐T  has  had  on  the  shape  memory  effect  of  the  NiTi  sample.  If  the  predictions  are   correct,   the   H-­‐T   should   allow   us   to   change   the   transformation   temperature   in   the   NiTi   sample.       The  process  involves  taking  a  sample  of  each  H-­‐T  temperature  and  analysing  it  in  the  DSC.   The  temperature  range  used  in  the  DSC  should  be  between  from  -­‐60  °C  to  100  °C  in  order  to   include  the  transformation  on  heating  and  cooling  for  each  sample.     3.1.4  Coil  spring  prototype     These   forms   of   testing   will   give   a   better   understanding   of   the   material.   Possessing   this,   attempts  to  create  a  coil  prototype  should  then  be  made.  Having  a  physical  coil  allows  us  to   make  some  calculations  and  comparisons  with  the  computer  model  of  the  coil.                
  • 18.    9   4.  Results  and  Calculations     4.1  Experimental  Observations     4.1.1  Heat  Treatment     The   NiTi   samples   were   successfully   treated   in   the   furnace.   For   each   temperature,   three   400mm  samples  were  treated.  Each  treatment  temperature  showed  different  characteristics   once  cooled.  The  untreated  sample  is  shown  in  fig  4.1.           300  °C  –  The  samples  at  300  °C  had  lost  some  of  their  rigidity  compared  to  the  untreated   sample.  The  colour  had  also  changed  from  a  grey/silver  to  a  straw/brass  colour.  The  reason   for  the  colour  change  is  due  to  changes  in  the  surface  of  the  material  at  a  microscopic  level.   The  light  refraction  is  altered  on  the  treated  sample,  causing  a  change  in  the  appearance  of   the  colour.  The  treated  sample  had  also  lost  rigidity.  The  material  was  much  easier  to  bend   out  of  shape  after  being  treated.  The  material  is  however  still  in  in  a  majority  austenite  form   at  room  temperature,  and  the  wire  generally  holds  its  shape  well.  The  300°C  H-­‐T  sample  is   shown  in  fig  4.2.   Fig  4.1   Untreated   NiTi   Fig  4.2  300   °C  H-­‐T  NiTi   sample  
  • 19.    10         350   °C   –   The   samples   at   350   °C   were   less   rigid   than   those   at   300   °C.   The   material   had   become  softer,  and  had  less  resistance  to  being  misshapen.  The  colour  had  changed  again,   and  had  become  a  stronger  colour  of  brass.  The  material  is  still  in  a  majority  austenite  form   at   room   temperature,   however   the   proportion   of   martensite   structure   has   increased   compared  to  the  300  °C  sample  and  its  transformation  region  has  therefore  increased.  This   explains  its  relative  softness  and  increased  ductility.  The  350  °C  H-­‐T  sample  is  shown  in  fig   4.3.     400  °C  –  There  was  a  much  bigger  change  with  the  400  °C  sample  than  was  seen  at  previous   temperatures.   The   sample   was   a   majority   martensite   form   at   room   temperature.   The   material  behaved  completely  plastically.  It  would  take  any  shape  it  was  bent  into,  and  had   almost  no  rigidity  to  remain  in  its  original  shape.  The  shape  memory  effect  was  of  course  still   present,  and  the  material  would  retain  its  original  form  when  heat  was  applied.  The  colour   was   very   different   from   the   previous   samples.   It   had   changed   to   a   dark   blue   colour,   representing  a  significant  change  in  its  surface  smoothness.  The  400  °C  H-­‐T  sample  is  shown   in  fig  4.4.         Fig  4.3  350  °C  H-­‐T   sample   Fig  4.4  400  °C  H-­‐T   sample    
  • 20.    11   Before   any   mechanical   testing   had   been   undertaken,   it   was   clear   to   see   there   was   a   significant  change  in  the  appearance  and  behaviour  of  the  material.     4.1.2  Mechanical  Testing     To   understand   the   effect   of   the   H-­‐T,   mechanical   testing   would   allow   us   to   analyse   the   change  to  the  structure  of  the  material.  The  first  test  to  carry  out  was  a  simple  tensile  test  to   failure.  A  second  tensile  cyclic  test  was  carried  out  to  analyse  the  fatigue  in  the  material  over   a  period  of  stresses.     All   the   mechanical   testing   was   carried   using   a   standard   tensile   testing   machine   with   a   maximum  load  of  500N.    Special  grippers  were  used  with  a  radius  at  their  ends.  These  are   intended  for  use  with  wires,  and  ensure  that  there  is  not  a  stress  concentration  at  the  point   were   the   wire   is   secured.     The   machine   carried   out   all   experiments   at   a   strain   rate   of   5mm/min.  A  gauge  length  of  100mm  was  set.        Tensile  test  to  failure     This  test  involved  a  simple  stress  to  failure  set  up  with  the  tensile  machine.  The  samples   were  loaded  until  fracture  occurred.     Tensile  cyclic  test     The   tensile   cyclic   test   was   to   show   how   a   series   of   loading   and   unloading   affected   the   material.  The  resulting  load  extension  curve  shows  a  series  of  lines  representing  each  cycle.   The  machine  was  calibrated  to  reach  6%  extension  (within  8%  SE  limit)  in  each  cycle  before   unloading.  Each  sample  was  subjected  to  five  complete  cycles.     4.1.3  Differential  Scanning  Calorimeter       Samples  for  each  H-­‐T  temperature  were  analysed  using  the  DSC.  The  machine  used  was  a   Diamond   DSC.   It   is   designed   to   run   samples   at   high   speeds   (~200   °C/min).   In   our   investigation  a  speed  of  10  °C/min  was  more  appropriate.  This  meant  that  the  sensitivity  of   the  machine  was  relatively  poor  at  these  speeds.  Each  sample  was  run  for  the  temperature  
  • 21.    12   range  of  -­‐60  °C  to  100  °C.  This  temperature  range  is  necessary  so  that  each  sample  will  go   through   a   complete   phase   transformation   on   heating   and   cooling.   The   results   show   the   effect  the  H-­‐T  has  on  the  transformation  temperature.    
  • 22.    13   4.2  Experimental  Results     4.2.1  Mechanical  Testing       Table  4.1  shows  a  summary  of  the  tensile  to  failure  graphs.     H-­‐T  Temperature  (°C)   Transformation   Stress   (MN/m2 )   Tensile   Strength   (MN.m2 )   Tensile  Strain   Untreated   550   1536   0.32   300   504   1512   0.37   350   484   1528   0.33   400   387   1533   0.35     Fig  4.5  shows  the  results  for  each  sample  tested  to  failure  with  the  tensile  testing  machine.           -­‐50   0   50   100   150   200   250   300   350   -­‐10   0   10   20   30   40   Load  (N)   De+lection  (mm)   Tensile  to  failure  test   300  C   350  C   400  C   Untreated   Fig  4.5  Load-­‐deflection  curves  to  failure  for  the  samples  under  a  tensile  test.  
  • 23.    14                     Fig  4.6  is  a  zoomed  in  section  of  fig  4.5.  It  shows  an  important  section  of  the  load  deflection   curve   in   more   detail.   This   is   the   ‘plateau’   region   where   they   undergo   a   change   from   austenite  to  martensite  due  to  the  stress  loading.   Fig  4.7,  4.8,  4.9  show  the  cyclic  tensile  test  on  three  differently  treated  specimens.           Fig.  4.6  Shows  the  samples  at  the  ‘plateau’  where   they  are  undergoing  a  phase  transformation  due   to  stress  loading.   70   80   90   100   110   120   130   0   5   10   15   Load  (N)   De+lection  (mm)   300  C   350  C   400  C   Untreated   -­‐20   0   20   40   60   80   100   120   -­‐1   0   1   2   3   4   5   6   Load  (N)   Elongation  (mm)   Untreated     Cycle  1   Cycle  2   Cycle  3   Cycle  4   Cycle  5   Fig  4.7  Cyclic  tensile  testing  of  untreated  sample  of  NiTi  
  • 24.    15           0   20   40   60   80   100   120   -­‐1   0   1   2   3   4   5   6   Load  (N)   Elongation  (mm)   300  C   Cycle  1   Cycle  2   Cycle  3   Cycle  4   Cycle  5   Fig  4.8  Cyclic  tensile  testing  of  300  °C  H-­‐T  NiTi   Fig  4.9  Cyclic  tensile  testing  of  400  °C  H-­‐T  NiTi   -­‐5   15   35   55   75   95   -­‐1   0   1   2   3   4   5   6   Load  (N)   Elongation  (mm)   400  C   Cycle  1   Cycle  2   Cycle  3   Cycle  4   Cycle  5  
  • 25.    16   4.2.2  Differential  Scanning  Calorimeter     Table  4.2  shows  a  summary  table  for  the  DSC  transformation  temperatures.                 Fig  4.10,  4.11,  4.12  show  the  DSC  heat  flow  results  for  the  untreated  alloy.       Fig  4.11  Phase  transformation  under  heating                            Fig  4.12  Phase  transformation  for                                   untreated  NiTi                                                      under  cooling  for  untreated  NiTi                                                                                       H-­‐T  Temperature  (°C)   AS  (°C)   Af  (°C)   Ms  (°C)   Mf  (°C)   Untreated   -­‐5   15   10   -­‐10   300   10   20   15   -­‐5   350   15   35   20   0   400   30   45   45   25   -­‐10   10   Fig.  4.10  Heat  flow  against  temperature  graph  for  untreated  NiTi  
  • 26.    17   Fig.  4.13,  4.14,  4.15  DSC  results  for  300  °C  H-­‐T  NiTi           Fig.  4.14  Phase  transformation  under  heating  for   300  °C  H-­‐T  NiTi   Fig.  4.15  Phase  transformation  during  cooling  for   300  °C  H-­‐T  NiTi   -­‐5   15   Fig.  4.13  Heat  flow  against  temperature  graph  for  300  °C  H-­‐T  NiTi  
  • 27.    18   Fig.  4.16,  4.17,  4.18  DSC  results  for  350  °C  treated  NiTi           Fig  4.17  Phase  transformation  under  heating  for   350  °C  H-­‐T  NiTi   Fig  4.18  Phase  transformation  under  cooling  for   350  °C  H-­‐T  NiTi   0   20   Fig  4.16  Heat  flow  against  temperature  graph  for  350  °C  H-­‐T  NiTi  
  • 28.    19   Fig.  4.19,  4.20,  4.21  DSC  results  for  400  °C  H-­‐T  NiTi           Fig  4.20  Phase  transformation  under  heating   for  400  °C  H-­‐T  NiTi   Fig  4.21  Phase  transformation  under   cooling  for  400  °C    H-­‐T  NiTi   Fig  4.19  Heat  flow  against  temperature  graph  for  400  °C  H-­‐T  NiTi  
  • 29.    20   4.3  Fabrication  of  coil  spring  prototype     Having  gained  more  of  an  understanding  of  the  material,  it  was  important  to  try  and  make  a   model  of  the  NiTi  in  the  coil  application.  The  challenge  of  this  was  coming  up  with  a  method   of  creating  a  coil  from  a  length  of  straight  wire.  In  order  to  resolve  this,  an  assembly  was   constructed.   This   involved   clamping   the   wire   tightly   into   a   coil   around   a   solid   bar.   This   assembly  is  shown  in  fig  4.22.  The  assembly  was  then  treated  in  the  furnace  at  400  °C  for   one  hour.  This  temperature  was  chosen  because  the  coil  would  work  well  under  the  SME  if  it   were  in  a  highly  martensitic  form  at  room  temperature.  The  H-­‐T  didn’t  work  as  expected,   because  the  cooling  rate  of  the  coil  during  quenching  was  different  as  it  was  still  attached  to   the  fixture.  This  resulted  in  the  coil  having  characteristics  of  a  standard  wire  H-­‐T  to  350  °C   and  with  a  structure  much  less  martensitic  in  proportion  than  desired  for  the  coil.  To  resolve   this,  the  H-­‐T  was  carried  out  again  at  450  °C.  This  produced  a  coil  that  had  more  appropriate   H-­‐T  characteristics.  Fig  4.24  shows  the  two  resulting  coils.   Figs  4.25,  4.26,  4.27  show  a  demonstration  of  the  three  phases  of  the  SME  on  the  prototype.                           Fig  4.22  Coil  setup  before  H-­‐T     Fig  4.23  Coil  setup  after   H-­‐T   Fig  4.24  450  °C  H-­‐T  coil  &  400   °C  H-­‐T  coil  at  room   temperature   Fig  4.25  NiTi   coil  in   incoherent   martensite   form.  Room   temperature   and  no  load.   Fig  4.26  NiTi   coil  in   coherent   martensite   form  Room   temperature   and  after  a   stress   loading.   Fig  4.27   NiTi  coil  in   austenite   form  after   heating.  
  • 30.    21   4.4  Analysis  of  Prototype     In  order  to  visualise  how  the  NiTi  coil  works  as  an  actuator,  a  simple  demonstration  with  a   heat  gun  shows  how  the  SME  can  be  utilised  in  the  coil.  It  is  known  from  previous  content  in   this  report  that  the  NiTi  will  change  from  the  parent  or  austenite  form  into  the  martensite   form   when   subject   to   a   stress   loading.   This   stress   loading   can   be   replicated   by   simply   stretching  the  coil  out  by  hand.  It  will  remain  in  a  steady  plastic  form.  If  a  heat  source  is  then   applied  to  the  stretched  coil,  such  as  a  heat  gun,  it  will  return  to  the  austenite  form  from  the   martensite  form.  This  is  shown  in  the  coil  by  returning  to  the  shape  that  was  formed  in  the   H-­‐T  process.  This  clearly  demonstrates  how  the  application  of  heat  can  be  used  to  control  an   actuator  exploiting  the  SME.     Using  a  thermocouple  to  measure  the  exact  heat  source  from  the  heat  gun  allows  a  precise   temperature   reading   of   which   the   coil   is   subjected   to.   Having   a   precise   reading   of   the   temperature  allows  us  to  see  the  temperature  region  in  which  the  coil  undergoes  a  phase   transformation.  This  information  allows  the  NiTi  coil  to  be  used  as  a  smart  actuator,  with   precise  control  over  its  function.  Applying  the  same  tests  to  the  coil  treated  at  400  °C  shows   similar  results,  but  the  transformation  is  less  apparent  of  an  than  the  450  °C.  This  is  because   it  is  in  a  more  austenitic  form  at  room  temperature  and  behaves  less  plastically.  The  450  °C   sample   has   a   larger   stroke   than   the   400   °C   sample   and   thus   the   SME   is   more   clearly   displayed.     After  seeing  a  prototype  of  what  the  coil  is  physically  like,  the  next  stage  was  to  establish   how  a  particular  coil  could  be  created  or  treated  in  order  to  behave  in  a  predictable  way  and   carry   out   a   specific   task.   The   experimentation   carried   out   previously   has   shown   how   the   transformation  temperature  is  affected  by  H-­‐T  of  the  material.  The  mechanical  testing  has   shown   some   ultimate   tensile   and   cyclic   tensile   properties   of   a   straight   NiTi   wire.   The   application  being  analysed  by  this  report  is  in  the  use  of  a  coil,  so  it  is  important  to  find  out   some  performance  figures  for  the  material  in  the  coil  spring  form.   Within  the  coil  actuator  application  there  are  two  different  forms;    
  • 31.    22   • Compression  spring  –  This  is  when  the  coil  is  compressed  at  low  temperature,  and   extends  when  it  is  subjected  to  heat.  (fig  4.28)   •   • Extension   spring   –   This   is   when   the   coil   is   extended   at   low   temperature,   and   compresses  when  subjected  to  heat.  (fig  4.29)     Activation  types       There  are  two  relevant  types  of  activation  that  fall  under  this  investigation;   • Thermal  activation  –  this  is  when  the  actuation  of  the  coil  is  induced  by  a  change  in   the   temperature   surrounding   the   coil.   This   can   be   intentionally   provoked   by   an   external  source  from  the  user.  It  can  also  be  as  a  result  of  an  ambient  or  varying   temperature  in  its  application,  eg.  Human  body.   • Electrical  activation  –  this  is  when  the  actuation  of  the  coil  is  induced  by  a  current  in   the  NiTi  wire.  NiTi  inherently  possesses  a  high  resistivity  due  to  its  structure  [13].   This  means  any  current  flowing  through  it  will  increase  the  temperature  of  the  wire.   This  heat  increase  is  able  to  activate  the  SME.  The  amount  of  power  flowing  through   the  wire  for  activation  can  be  easily  calculated.  The  wire  can  be  tailored  to  conform   to  a  certain  flow  requirement  by  defining  its  dimensions.       Fig  4.28  SMA  compression   spring  actuation  [13]   Fig  4.29  extension  spring   actuation  [13]   Lh=  Lengh  (High  temp)   HT=(High  Temp)   Ll=  Length  (Low  temp)   LT=(Low  Temp)   S=stroke     F=force  produced  
  • 32.    23   The  area  this  investigation  is  looking  at  is  in  soft  robotics  and  their  application  in  the  medical   field.  These  two  actuation  types  are  important,  as  they  are  both  applicable  in  medical  field.   There  are  many  devices  that  use  either  or  both  of  these  actuation  types.  Luo  et  al.  describe   designing  a  device  that  changes  shape  due  to  the  higher  temperature  in  the  human  body   (thermal   activation)   [14].   For   an   application   such   as   an   endoscope,   the   user   must   have   control   of   the   device   from   outside   the   body.   In   order   for   this,   electrical   activation   is   necessary  to  allow  precise  remote  control.  This  kind  of  device  could  also  be  made  to  react  to   a  direct  temperature  stimulus,  if  there  was  some  requirement  for  it  to  adapt  to  being  inside   the  body.        
  • 33.    24   4.5  CAD  Model  of  Coil     One  important  aspect  of  this  investigation  was  to  compare  data  predicted  through  computer   modelling   to   that   obtained   from   fabrication   of   the   real   coil.   Using   CAD   to   design   is   an   important  step  as  it  makes  the  design  process  much  easier.  In  order  to  fully  trust  in  CAD   however,  it  is  important  to  validate  it  first.     A  coil  was  designed  in  Solidworks  similar  based  on  the  coil  prototype  made.  The  CAD  model   is  shown  in  fig  4.30.  This  model  illustrates  the  three  stages  in  the  cycle  of  the  SME.                                       Fig  4.30.  CAD  model  of  the  coil  in  High   temperature  austenite  phase   Fig  4.31.  CAD  model  of  the  coil  in  the   incoherent  martensite  form  (  room   temperature  free  state)    
  • 34.    25             Fig  4.33  shows  the  relationship  between  the  three  phases.  [16]         This   CAD   modelling   shows   the   forms   of   the   coil   in   the   three   phases   that   were   observed   when  experimenting  with  the  prototype.     Simulation  of  the  coil  could  not  be  satisfactorily  completed,  as  there  was  no  NiTi  material   available  in  the  Solidworks  database.    This  is  one  of  the  main  limitations  of  this  investigation.   The   simulation   that   was   carried   out   was   using   the   titanium   alloy,   Ti6Al4V.   This   was   the   closest  material  to  NiTi  available.  The  results  of  this  simulation  are  in  Appendix  B.  They  are   not  included  in  this  report,  as  they  are  not  regarded  to  replicate  NiTi  closely  enough.     Fig  4.32  CAD  coil  in  the  Coherent   martensite  form  after  stress  loading.     Fig  4.33  The  SME  [16]  
  • 35.    26   5.  Discussion     5.1  Mechanical  Testing     5.1.1  Tensile  fracture  test     The  load  deflection  curve  for  each  sample  follows  a  similar  trend.  The  curve  initially  follows  a   material   under   the   influence   of   Hooke’s   law.   A   ‘plateau’   region   follows   this   in   which   the   curve   levels   off.   This   is   when   the   material   is   changing   from   the   austenite   structure   (incoherent   martensite   for   400   °C)   to   a   coherent   martensite   structure.   This   period   is   followed  by  a  rise  once  again  until  fracture.  The  region  up  until  the  end  of  the  plateau  is   when  the  previously  austenite  material  is  still  in  the  SE  region.  This  means  that  if  the  load   was  released  it  would  return  to  its  original  shape.  The  maximum  load  achieved  at  fracture  by   each  sample  was  within  1%  of  300N.       The  plateau  region  of  the  curve  where  the  sample  is  in  the  transformation  region  should  be   much   flatter.   Looking   at   fig   4.6,   it   can   be   seen   that   this   is   not   the   case.   This   is   an   error   produced  by  the  experiment.  A  strain  rate  of  5mm/min  was  too  high.  This  caused  heat  to  be   produced  in  the  sample.  This  subsequently  resulted  in  the  friction  in  the  sample  increasing,   which   caused   the   load   required   to   increase   slightly,   altering   the   shape   of   the   graph   This   could  be  solved  by  using  external  cooling  to  stop  the  wire  from  heating  up  or  reducing  the   strain  rate.     The  whole  curve  is  very  unstable.  There  are  many  regions  with  big  fluctuations.  This  is  due  to   having   an   unsatisfactory   gripper   to   hold   the   wire.   The   fastener   on   the   gripper   did   not   perform   particularly   well,   and   allowed   the   wire   to   slip   very   slightly.   This   caused   minute   releases  in  the  load  that  show  up  as  instabilities  on  the  curve.     5.1.2  Tensile  Cyclic  Test     The   load   extension   graph   for   each   sample   shows   some   similarities,   and   also   some   differences   that   are   caused   by   the   H-­‐T.   Each   sample   initially   follows   Hooke’s   Law   before   levelling   off;   the   next   section   is   the   ‘plateau’   region.   This   is   where   the   extension   of   the   material   increases   with   no   increase   in   load.   This   period   is   when   the   material   structure   is  
  • 36.    27   changing  from  the  austenite  form  to  the  martensite  form.  This  transformation  is  induced  by   the  stress  loading.  The  cyclic  test  carried  up  only  loaded  the  material  to  6%  extension.  This   point  was  when  the  graph  was  still  in  the  ‘plateau’  region.  This  is  within  the  SE  region  of  the   material.   The   material   behaves   superelastically   until   the   end   of   the   plateau   region   (8%   strain)  when  the  load  increases  again.  Beyond  this  point  is  plastic  deformation.  The  SE  effect   allows  the  sample  to  return  to  its  original  length  when  the  load  is  removed.  This  can  be  seen   figs  4.7,4.8,4.9  where  the  graph  returns  to  the  origin  between  each  cycle.  In  reality  there  is  a   slight  difference  between  each  cycle.  The  maximum  load  reduces  slightly  (2%)  between  the   first  and  second  cycle  for  the  required  extension.  This  difference  decreases  exponentially  for   the  succeeding  cycles.    This  is  caused  by  the  residual  stresses.  During  each  cycle  the  material   changes  its  structure  from  austenite  to  martensite  and  back  again  during  unloading.  During   each  cycle  small  residual  stresses  cause  a  proportion  of  the  martensite  form  to  remain  in  this   phase  and  not  change  back  to  the  austenite  form.  This  means  the  next  cycle  will  require   slightly  less  external  load  to  become  fully  martensite.     The  shape  of  the  curves  are  distinct.  As  the  load  begins  to  release  the  graph  does  not  follow   the  same  path  of  loading.  The  material  remains  in  the  martensite  form  until  below  50%  of   the  total  load  is  reached.  At  this  point  the  transformation  back  to  austenite  begins  to  occur.   This  transformation  results  in  the  elongation  reducing  with  no  change  in  load.  Much  like  the   transformation  during  loading  except  in  reverse.  This  point  is  seen  in  the  ‘plateau’  section  of   the  graph  during  the  unloading  phase  of  the  cycle.  This  is  due  to  hysteresis  between  the   austenite  and  martensite  forms.     Comparing  the  cyclic  tensile  tests  it  can  be  clearly  seen  that  300  °C  and  untreated  are  very   similar.  The  300  C  sample  is  still  inside  the  austenite  range  at  room  temperature  (Fig.  4.14,   4.15).  It  has  lost  some  of  its  rigidity  compared  to  the  untreated  sample,  and  behaves  slightly   more  plastically.  This  is  because  the  H-­‐T  has  brought  it  closer  to  the  transformation  region,   resulting   in   its   structure   having   an   increased   martensitic   proportion   and   resulting   characteristics.   This   is   only   a   small   consideration   however,   and   it   would   be   expected   to   behave  similarly  to  the  untreated  sample.  The  300  °C  sample  achieves  a  load  of  around  5%   (100N  against  95N)  less  than  the  untreated  sample  as  it  begins  the  phase  transformation   due  to  stress  loading.  It  behaves  similarly  during  the  unloading  phase  also.  Comparing  these   graphs  shows  how  the  H-­‐T  can  be  used  to  make  small  adjustments  to  the  characteristics  of   the  material  and  how  it  behaves  with  the  SME.  
  • 37.    28      The   400   °C   sample   behaves   much   differently   to   the   other   samples.   The   400   °C   sample   plateaus  off  at  a  much  lower  load.  The  reason  for  this  is  because  the  H-­‐T  has  moved  this   sample  into  an  incoherent  martensite  structure  at  room  temperature.  When  the  300  °C  and   untreated  samples  were  transformed  into  martensite  due  to  loading,  this  was  a  coherent   martensite  form.  When  the  400  °C  sample  is  subject  to  load  it  changes  from  an  incoherent   martensite   form   to   a   coherent   martensite   form.   This   requires   less   load   than   a   transformation  from  austenite  as  it  already  in  a  high  proportion  of  the  martensite  structure.   400  °C  also  behaves  more  plastically  than  the  other  samples  due  to  its  martensitic  form,  it   does  not  return  to  its  original  shape  as  definitely  as  the  other  samples.  Comparing  with  the   graphs  for  300  °C  and  untreated,  there  is  a  definite  ‘plateau’  period  on  the  unloading  side  of   the  graph  that  signifies  the  martensite  changing  back  to  austenite.  In  the  case  of  the  400  °C   sample  there  is  no  ‘plateau’  region.  Instead,  it  is  an  exponential  decrease  until  the  load  is   released.  This  difference  is  due  to  the  400  °C  sample  returning  to  an  incoherent  martensite   form  instead  of  the  austenite  form  of  the  lower  temperature  treated  sample.  There  is  no   defined  transformation  phase,  as  the  material  does  not  change  back  to  the  austenite  form.     5.1.3  Differential  Scanning  Calorimeter     Figs  4.10,  4.13,  4.16,  4.19  show  the  shape  of  graph  produced  in  the  DSC  analysis.  The  curve   shows  a  steady  rise,  before  a  drop  and  then  steady  decline.  The  upper  curve  of  the  graph   represents   the   heating   phase   of   the   process.   This   is   when   the   sample   begins   at   a   low   temperature  (-­‐60  °C)  and  is  heated.  The  DSC  records  the  heat  flow  movement  between  the   surroundings  and  the  sample.  This  is  plotted  against  the  ambient  temperature.  The  lower   section  of  the  graph  shows  the  same  data  except  from  when  the  ambient  temperature  is  at   its  highest  (100  °C)  and  is  cooled  back  to  its  original  temperature.   The  piece  of  data  from  these  graphs  of  most  interest  is  the  phase  transformation,  when  the   material  changes  between  austenite  and  martensite.  This  point  is  shown  on  each  curve  as  a   fluctuation  of  the  heat  flow  at  a  particular  point  (t).  The  heating  transformation  regions  are   slightly  more  distinct  than  the  cooling  regions.  With  more  appropriate  equipment  providing   a  higher  sensitivity,  the  transformation  regions  would  be  more  clearly  defined.  However  this   was  not  possible  as  discussed  previously.    
  • 38.    29   If  the  heat  and  cool  transformations  are  compared  for  each  cycle,  (300  °C  treated  sample  –   10  C  to  20  °C  on  heating,  -­‐5  to  15  °C  on  cooling.  350  °C  treated  sample  –  15  to  35  °C  on   heating,   0   to   20   °C   on   cooling.)   the   temperature   range   for   each   transformation   does   not   coincide.   This   is   caused   by  a  temperature   hysteresis.   Because   of   this   there   is   no   ‘defined   point  of  transformation’.  There  are  four  important  temperature  points  [13];   1. Martensite  Finish  (Mf)   2. Martensite  Start  (Ms)   3. Austenite  Start  (As)   4. Austenite  Finish  (Af)     The  distribution  of  these  points  and  the  hysteresis  between  them  is  illustrated  in  fig  5.1.                                   Looking  at  the  cooling  graphs  from  the  DSC.  The  phase  transformation  can  be  seen  to  be   shifting  on  each  sample.  Untreated  has  a  heating/cooling  transformation  range  of  (-­‐5  to  15   °C/-­‐10  to  10  °C).  This  progresses  to  (10  to  20  °C/-­‐5  to  15  °C)  on  the  300  °C  sample  and  (15  to   35  °C/0  to  20  °C)  on  the  350  °C  sample.  There  is  a  much  larger  jump  to  the  400  °C  sample.  Its   transformation  region  is  (30  to  45  °C/25  to  45  °C).  The  DSC  data  shows  that  H-­‐T  of  NiTi  has  a   direct   effect   on   the   transformation   temperature   region.   H-­‐T   of   NiTi   increases   the   transformation  temperature  of  the  sample.  Using  smaller  intervals  of  H-­‐T,  its  effect  can  be   Fig  5.1  Extension  against  temperature  schematic.  Detailing   Mf,  Ms,  As,  Af  and  hysteresis  (h).  [13]  
  • 39.    30   defined   even   more   so   that   a   precise   relationship   between   the   H-­‐T   temperature   and   the   material   transformation   temperature   can   be   documented.   With   this   knowledge,   the   material  can  be  treated  to  produce  a  specifically  desired  transformation  region.  This  is  a  very   important   factor   in   utilising   the   materials   SME.   It   allows   NiTi   to   be   used   as   a   precisely   controlled  actuator  among  many  other  applications.  
  • 40.    31   Limitations  of  project     There   were   several   areas   where   external   limitations   hindered   the   investigation   to   some   extent;   • Limited   availability   of   the   furnaces   meant   there   was   a   delay   starting   the   experimentation.  This  can  be  seen  to  push  everything  back  in  fig  3.1.  It  also  meant   the  time  with  use  of  the  equipment  was  relatively  low  and  meant  only  several  broad   H-­‐T  temperatures  could  be  used.   • NiTi  is  an  expensive  material.  As  a  result  its  availability  for  this  experiment  was  a   limiting   factor.   Had   there   been   a   greater   supply   available,   more   experimentation   could  have  been  carried  out.     • The   student   budget   was   relatively   low   and   lead   to   only   being   able   to   use   limited   machines   for   experimentation.   Ideally,   X-­‐Ray   Diffraction   (XRD),   Scanning   Electron   Microscope   (SEM)   and   Transmission   Electron   Microscope   (TEM)   apparatus   would   have  been  available  to  us.  This  was  not  the  case  due  to  the  limited  budget.  Using   this   apparatus   would   have   allowed   us   to   have   a   much   more   comprehensive   understanding  of  the  structure  of  the  samples  on  a  microscopic  scale.   • The   limited   time   available   on   the   equipment   that   was   used   allowed   only   limited   samples   to   be   tested.   Carry   out   experimentation   on   more   samples   would   allow   statistically  significant  results.   • The   available   software   did   not   include   NiTi   as   a   suitable   material.   Ti6Al4V   was   simulated  instead  as  it  was  the  closest  available  to  NiTi.  The  materials  however  are   too   dissimilar   to   include   in   this   study.   The   simulation   for   Ti6Al4V   is   included   in   Appendix  B.      
  • 41.    32   6.  Conclusions  &  Recommendations     1. H-­‐T  of  NiTi  produces  a  thorough  change  in  the  characteristics  and  structure  of  the   material.   It   alters   the   proportions   of   austenite   and   martensite   structure   in   the   material   structure.     A   higher   temperature   H-­‐T,   and   higher   martensite   proportion   leads  to  lower  phase-­‐inducing  transformation  load.  (100N  for  untreated,  80N  for  400   °C).   SE   limit   of   NiTi   wire   under   load   is   105-­‐115N   (austenite)   &   85N(martensite).   Cyclic  loading  of  NiTi  results  in  an  exponentially  decreasing  load  bearing  per  cycle.   This   fatigue   in   the   material   is   caused   by   ‘residual   strain’.   An   increase   in   the   H-­‐T   temperature  causes  an  increase  in  the  transformation  temperature  for  the  material.   Comparing  each  DSC  curve  shows  a  rise  of  (~10  °C  per  50  °C  of  H-­‐T).     2. 400   °C   H-­‐T   sample   shows   the   best   qualities   for   actuator   use.   It   behaves   more   plastically,   so   can   deform   more   than   other   samples.   This   allows   for   a   greater   deformation  and  resulting  stroke  length  under  the  SME.   3. Mathematical  equations  allow  performance  parameters  of  the  coil  to  be  predicted.   These  can  be  used  to  analyse  an  existing  coil  or  to  generate  a  design  of  a  coil  for  a   specified  application.  (Appendix  A)     Recommendations  for  further  Study     This  study  has  given  a  good  understanding  of  NiTi  and  its  applications  utilising  SE  and  the   SME.  The  limitations  previously  discussed  justify  further  study  in  this  area.  The  budget  and   equipment   shortage   meant   that   the   quantity   of   samples   to   be   tested   as   desired   was   not   met.  Further  studies  would  carry  out  more  precise  testing,  such  as  narrower  temperature   treatment  to  more  precisely  determine  the  effect  of  H-­‐T.  The  budget  dictated  that  only  one   set   of   DSC   results   were   achievable.   The   lack   of   suitable   equipment   also   meant   that   the   machine  used  was  not  suited  to  the  analysis  required.  Other  analysis  of  the  material  that   would   have   been   beneficial   such   as   X-­‐Ray   Diffraction   (XRD)   and   the   use   of   a   Transmission/Scanning  Electron  Microscope  (TEM/SEM)  was  not  a  realistic  proposition  due   to  the  budget  constraints.  Having  access  to  these  instruments  allows  the  structure  of  the   material   to   be   seen   at   a   microscopic   scale.   Access   to   data   like   this   allows   further   understanding  of  the  structure  of  the  material  and  how  it  changes  during  H-­‐T  and  during   mechanical  testing.  In  order  to  assess  the  simulation  of  NiTi  with  CAD,  further  study  into  this   area  should  be  undertaken.  Software  which  can  fully  model  NiTi  is  necessary.  
  • 42.    33   The   investigation   involved   making   a   prototype   coil   spring   to   investigate   how   it   could   be   designed   and   created   to   carry   out   the   application   of   an   actuator.   The   next   stage   in   this   process  is  to  use  the  principles  determined  in  this  report  to  design  and  create  a  coil  and  test   it  as  an  actuator  in  a  device        
  • 43.    34   References     [1]  Selection  of  shape  memory  alloys  for  actuators,  Materials  and  Design  23  (2002)  11-­‐19,   Huang  W.   [2]   Application   of   trained   NiTi   SMA   actuators   in   a   spatial   compliant   mechanism:   ~Experimental  investigations  (2008),  Sreekumer  M,  Nagarajan  T,  Singaperumal  M.     [3]   Development   of   NiTi   actuator   using   a   two-­‐way   SMA   induced   by   compressive   loading   cycles  (2008),  Kim  HC,  Yoo  YI,  Lee  JJ.   [4]  Engineering  applications  of  NiTi  shape  memory  alloys  (2006),  Predki  W,  Knopik  A,  Bauer   B.     [5]  Recent  developments  in  the  research  of  shape  memory  alloys  (1998),  Otsuka  K,  Ren  X.   [6]  Science  and  Technology  of  Shape-­‐Memory  Alloys:New  Developments  (2002),  Otsuka  K,   Kakeshita  T.   [7]  Use  of  NiTi  Shape  Memory  Alloys  for  Thermal  Sensor-­‐Actuators  (1991),  Stoeckel,  Waram.   [8]  Crystallisation  of  amorphous  sputtered  NiTi  thin  films,  2006,  Ramirez  AG,  Hai  Ni,  Lee  HJ.   [9]   Influence   of   heat   treatments   on   the   mechanical   properties   of   high-­‐quality   Ni-­‐rich   NiTi   produced   by   powder   metallurgical   methods,   2006,   Mentz   J,   Bram   M,   Buchkremer   HP,   Sto  ̈ver  D.   [10]  Effect  of  post-­‐weld-­‐annealing  on  the  tensile  deformation  characteristics  of  laser  welded   NiTi  thin  foil,  2011,  Chan  CW,  Man  HC,  Yuen  TM.   [11]  XRD  and  TEM  study  of  heteroepitaxial  growth  of  zirconia  on  magnesia  single  crystal,   1998,  Guinebretiere  R,  Soulestin  B,  Dauger  A.   [12]  Flexible  distal  tip  made  of  nitinol  (NiTi)  for  a  steerable  endoscopic  camera  system,  1999,   Fischer  H,  Vogel  B,  Pfleging  W,  Besser  H.   [13]  Large  Force  Shape  Memory  Alloy  Linear  Actuator,  2002,  Santiago  Anadon  JR.   [14]  Design  of  SMA  Actuator  Based  Access  Device  for  Transanal  Endoscopic  Microsurgery,   2010,  Luo  H,  Abel  E,  Slade  A,  Wang,  Z,  Steele  R.   [15]  Matweb.  (2010).  Nitinol  -­‐  NiTi  Shape  Memory  Alloy;  Low-­‐Temperature  Phase.  Available:   http://www.matweb.com/search/datasheetText.aspx?bassnum=MTiNi1.   Last   accessed   10/3/2014.   [16]   Mmm-­‐jun.   (2012).  Nickel   Titanium.  Available:   http://en.wikipedia.org/wiki/Nickel_titanium.  Last  accessed  11/3/2014.