SlideShare ist ein Scribd-Unternehmen logo
1 von 47
Glycolysis
Copyright © 1998-2007 by Joyce J. Diwan.
All rights reserved.
Biochemistry of Metabolism
Glycolysis takes place in the cytosol of cells.
Glucose enters the Glycolysis pathway by conversion
to glucose-6-phosphate.
Initially there is energy input corresponding to
cleavage of two ~P bonds of ATP.
H O
OH
H
OH
H
OH
CH2OPO3
2
H
OH
H
1
6
5
4
3 2
glucose-6-phosphate
H O
OH
H
OH
H
OH
CH2OH
H
OH
H H O
OH
H
OH
H
OH
CH2OPO3
2
H
OH
H
2
3
4
5
6
1 1
6
5
4
3 2
ATP ADP
Mg2+
glucose glucose-6-phosphate
Hexokinase
1. Hexokinase catalyzes:
Glucose + ATP  glucose-6-P + ADP
The reaction involves nucleophilic attack of the C6
hydroxyl O of glucose on P of the terminal phosphate
of ATP.
ATP binds to the enzyme as a complex with Mg++.
Mg++ interacts with negatively charged phosphate
oxygen atoms, providing charge compensation &
promoting a favorable conformation of ATP at the
active site of the Hexokinase enzyme.
N
N
N
N
NH2
O
OH
OH
H
H
H
CH2
H
O
P
O
P
O
P

O
O
O

O

O O
O

adenine
ribose
ATP
adenosine triphosphate
The reaction catalyzed by Hexokinase is highly
spontaneous.
A phosphoanhydride bond of ATP (~P) is cleaved.
The phosphate ester formed in glucose-6-phosphate
has a lower DG of hydrolysis.
H O
OH
H
OH
H
OH
CH2OH
H
OH
H H O
OH
H
OH
H
OH
CH2OPO3
2
H
OH
H
2
3
4
5
6
1 1
6
5
4
3 2
ATP ADP
Mg2+
glucose glucose-6-phosphate
Hexokinase
 the C6 hydroxyl of the
bound glucose is close to
the terminal phosphate of
ATP, promoting catalysis.
 water is excluded from the active site.
This prevents the enzyme from catalyzing ATP
hydrolysis, rather than transfer of phosphate to glucose.
glucose
Hexokinase
H O
OH
H
OH
H
OH
CH2OH
H
OH
H H O
OH
H
OH
H
OH
CH2OPO3
2
H
OH
H
2
3
4
5
6
1 1
6
5
4
3 2
ATP ADP
Mg2+
glucose glucose-6-phosphate
Hexokinase
Induced fit:
Glucose binding
to Hexokinase
stabilizes a
conformation
in which:
It is a common motif for an enzyme active site to be
located at an interface between protein domains that are
connected by a flexible hinge region.
The structural flexibility allows access to the active site,
while permitting precise positioning of active site
residues, and in some cases exclusion of water, as
substrate binding promotes a particular conformation.
glucose
Hexokinase
2. Phosphoglucose Isomerase catalyzes:
glucose-6-P (aldose)  fructose-6-P (ketose)
The mechanism involves acid/base catalysis, with ring
opening, isomerization via an enediolate intermediate,
and then ring closure. A similar reaction catalyzed by
Triosephosphate Isomerase will be presented in detail.
H O
OH
H
OH
H
OH
CH2OPO3
2
H
OH
H
1
6
5
4
3 2
CH2OPO3
2
OH
CH2OH
H
OH H
H HO
O
6
5
4 3
2
1
glucose-6-phosphate fructose-6-phosphate
Phosphoglucose Isomerase
3. Phosphofructokinase catalyzes:
fructose-6-P + ATP  fructose-1,6-bisP + ADP
This highly spontaneous reaction has a mechanism similar
to that of Hexokinase.
The Phosphofructokinase reaction is the rate-limiting step
of Glycolysis.
The enzyme is highly regulated, as will be discussed later.
CH2OPO3
2
OH
CH2OH
H
OH H
H HO
O
6
5
4 3
2
1 CH2OPO3
2
OH
CH2OPO3
2
H
OH H
H HO
O
6
5
4 3
2
1
ATP ADP
Mg2+
fructose-6-phosphate fructose-1,6-bisphosphate
Phosphofructokinase
4. Aldolase catalyzes: fructose-1,6-bisphosphate 
dihydroxyacetone-P + glyceraldehyde-3-P
The reaction is an aldol cleavage, the reverse of an aldol
condensation.
Note that C atoms are renumbered in products of Aldolase.
6
5
4
3
2
1CH2OPO3
2
C
C
C
C
CH2OPO3
2
O
HO H
H OH
H OH
3
2
1
CH2OPO3
2
C
CH2OH
O
C
C
CH2OPO3
2
H O
H OH
+
1
2
3
fructose-1,6-
bisphosphate
Aldolase
dihydroxyacetone glyceraldehyde-3-
phosphate phosphate
Triosephosphate Isomerase
A lysine residue at the active site functions in catalysis.
The keto group of fructose-1,6-bisphosphate reacts with
the e-amino group of the active site lysine, to form a
protonated Schiff base intermediate.
Cleavage of the bond between C3 & C4 follows.
CH2OPO3
2
C
CH
C
C
CH2OPO3
2
NH
HO
H OH
H OH
(CH2)4 Enzyme
6
5
4
3
2
1
+
Schiff base intermediate of
Aldolase reaction
H3N+
C COO
CH2
CH2
CH2
CH2
NH3
H

lysine
5. Triose Phosphate Isomerase (TIM) catalyzes:
dihydroxyacetone-P  glyceraldehyde-3-P
Glycolysis continues from glyceraldehyde-3-P. TIM's Keq
favors dihydroxyacetone-P. Removal of glyceraldehyde-3-P
by a subsequent spontaneous reaction allows throughput.
6
5
4
3
2
1CH2OPO3
2
C
C
C
C
CH2OPO3
2
O
HO H
H OH
H OH
3
2
1
CH2OPO3
2
C
CH2OH
O
C
C
CH2OPO3
2
H O
H OH
+
1
2
3
fructose-1,6-
bisphosphate
Aldolase
dihydroxyacetone glyceraldehyde-3-
phosphate phosphate
Triosephosphate Isomerase
The ketose/aldose conversion involves acid/base catalysis,
and is thought to proceed via an enediol intermediate, as
with Phosphoglucose Isomerase.
Active site Glu and His residues are thought to extract and
donate protons during catalysis.
C
C
CH2OPO3
2
O
C
C
CH2OPO3
2
H O
H OH
C
C
CH2OPO3
2
H OH
OH
H
H OH H+
H+
H+
H+
dihydroxyacetone enediol glyceraldehyde-
phosphate intermediate 3-phosphate
Triosephosphate Isomerase
C
CH2OPO3
2
O O
C
CH2OPO3
2
HC O
OH
proposed
enediolate
intermediate
phosphoglycolate
transition state
analog
2-Phosphoglycolate is a transition state analog that
binds tightly at the active site of Triose Phosphate
Isomerase (TIM).
This inhibitor of catalysis by TIM is similar in structure to
the proposed enediolate intermediate.
TIM is judged a "perfect enzyme." Reaction rate is limited
only by the rate that substrate collides with the enzyme.
TIM
Triosephosphate Isomerase
structure is an ab barrel, or
TIM barrel.
In an ab barrel there are
8 parallel b-strands surrounded
by 8 a-helices.
Short loops connect alternating
b-strands & a-helices.
TIM
TIM barrels serve as scaffolds
for active site residues in a
diverse array of enzymes.
Residues of the active site are
always at the same end of the
barrel, on C-terminal ends of
b-strands & loops connecting
these to a-helices.
There is debate whether the many different enzymes with
TIM barrel structures are evolutionarily related.
In spite of the structural similarities there is tremendous
diversity in catalytic functions of these enzymes and
little sequence homology.
C
C
CH2OPO3
2
H O
H OH
C
C
CH2OPO3
2
O OPO3
2
H OH
+ Pi
+ H+
NAD+
NADH 1
2
3
2
3
1
glyceraldehyde- 1,3-bisphospho-
3-phosphate glycerate
Glyceraldehyde-3-phosphate
Dehydrogenase
6. Glyceraldehyde-3-phosphate Dehydrogenase
catalyzes:
glyceraldehyde-3-P + NAD+ + Pi 
1,3-bisphosphoglycerate + NADH + H+
C
C
CH2OPO3
2
H O
H OH
C
C
CH2OPO3
2
O OPO3
2
H OH
+ Pi
+ H+
NAD+
NADH 1
2
3
2
3
1
glyceraldehyde- 1,3-bisphospho-
3-phosphate glycerate
Glyceraldehyde-3-phosphate
Dehydrogenase
Exergonic oxidation of the aldehyde in glyceraldehyde-
3-phosphate, to a carboxylic acid, drives formation of an
acyl phosphate, a "high energy" bond (~P).
This is the only step in Glycolysis in which NAD+ is
reduced to NADH.
A cysteine thiol at the active site of Glyceraldehyde-
3-phosphate Dehydrogenase has a role in catalysis.
The aldehyde of glyceraldehyde-3-phosphate reacts
with the cysteine thiol to form a thiohemiacetal
intermediate.
H3N+
C COO
CH2
SH
H
cysteine
C
C
CH2OPO3
2
H O
H OH
1
2
3
glyceraldehyde-3-
phosphate
The “high energy” acyl thioester is attacked by Pi to
yield the acyl phosphate (~P) product.
CH CH2OPO3
2
OH
Enz-Cys SH
Enz-Cys S CH CH CH2OPO3
2
OH
OH
Enz-Cys S C CH CH2OPO3
2
OH
O
HC
NAD+
NADH
Enz-Cys SH
Pi
C CH CH2OPO3
2
OH
O
O3PO
2
O
glyceraldehyde-3-
phosphate
1,3-bisphosphoglycerate
thiohemiacetal
intermediate
acyl-thioester
intermediate
Oxidation to a
carboxylic acid
(in a ~ thioester)
occurs, as NAD+
is reduced to
NADH.
Recall that NAD+ accepts 2 e plus one H+ (a hydride)
in going to its reduced form.
N
R
H
C
NH2
O
N
R
C
NH2
O
H H
+
2e
+ H
+
NAD+
NADH
C
C
CH2OPO3
2
O OPO3
2
H OH
C
C
CH2OPO3
2
O O
H OH
ADP ATP
1
2
2
3 3
1
Mg2+
1,3-bisphospho- 3-phosphoglycerate
glycerate
Phosphoglycerate Kinase
7. Phosphoglycerate Kinase catalyzes:
1,3-bisphosphoglycerate + ADP 
3-phosphoglycerate + ATP
This phosphate transfer is reversible (low DG), since
one ~P bond is cleaved & another synthesized.
The enzyme undergoes substrate-induced conformational
change similar to that of Hexokinase.
C
C
CH2OH
O O
H OPO3
2
2
3
1
C
C
CH2OPO3
2
O O
H OH
2
3
1
3-phosphoglycerate 2-phosphoglycerate
Phosphoglycerate Mutase
8. Phosphoglycerate Mutase catalyzes:
3-phosphoglycerate  2-phosphoglycerate
Phosphate is shifted from the OH on C3 to the
OH on C2.
C
C
CH2OH
O O
H OPO3
2
2
3
1
C
C
CH2OPO3
2
O O
H OH
2
3
1
3-phosphoglycerate 2-phosphoglycerate
Phosphoglycerate Mutase
C
C
CH2OPO3
2
O O
H OPO3
2
2
3
1
2,3-bisphosphoglycerate
An active site histidine side-chain
participates in Pi transfer, by
donating & accepting phosphate.
The process involves a
2,3-bisphosphate intermediate.
H3N+
C COO
CH2
C
HN
HC NH
CH
H

histidine
9. Enolase catalyzes:
2-phosphoglycerate  phosphoenolpyruvate + H2O
This dehydration reaction is Mg++-dependent.
2 Mg++ ions interact with oxygen atoms of the substrate
carboxyl group at the active site.
The Mg++ ions help to stabilize the enolate anion
intermediate that forms when a Lys extracts H+ from C #2.
C
C
CH2OH
O O
H OPO3
2
C
C
CH2OH

O O
OPO3
2
C
C
CH2
O O
OPO3
2
OH
2
3
1
2
3
1
H
2-phosphoglycerate enolate intermediate phosphoenolpyruvate
Enolase
10. Pyruvate Kinase catalyzes:
phosphoenolpyruvate + ADP  pyruvate + ATP
C
C
CH3
O O
O
2
3
1
ADP ATP
C
C
CH2
O O
OPO3
2
2
3
1
phosphoenolpyruvate pyruvate
Pyruvate Kinase
This phosphate transfer from PEP to ADP is spontaneous.
 PEP has a larger DG of phosphate hydrolysis than ATP.
 Removal of Pi from PEP yields an unstable enol, which
spontaneously converts to the keto form of pyruvate.
Required inorganic cations K+ and Mg++ bind to anionic
residues at the active site of Pyruvate Kinase.
C
C
CH3
O O
O
2
3
1
ADP ATP
C
C
CH2
O O
OPO3
2
2
3
1
C
C
CH2
O O
OH
2
3
1
phosphoenolpyruvate enolpyruvate pyruvate
Pyruvate Kinase
Hexokinase
Phosphofructokinase
glucose Glycolysis
ATP
ADP
glucose-6-phosphate
Phosphoglucose Isomerase
fructose-6-phosphate
ATP
ADP
fructose-1,6-bisphosphate
Aldolase
glyceraldehyde-3-phosphate + dihydroxyacetone-phosphate
Triosephosphate
Isomerase
Glycolysis continued
Glyceraldehyde-3-phosphate
Dehydrogenase
Phosphoglycerate Kinase
Enolase
Pyruvate Kinase
glyceraldehyde-3-phosphate
NAD+
+ Pi
NADH + H+
1,3-bisphosphoglycerate
ADP
ATP
3-phosphoglycerate
Phosphoglycerate Mutase
2-phosphoglycerate
H2O
phosphoenolpyruvate
ADP
ATP
pyruvate
Glycolysis
continued.
Recall that
there are 2
GAP per
glucose.
Glycolysis
Balance sheet for ~P bonds of ATP:
 How many ATP ~P bonds expended? ________
 How many ~P bonds of ATP produced? (Remember
there are two 3C fragments from glucose.) ________
 Net production of ~P bonds of ATP per glucose:
________
2
4
2
Balance sheet for ~P bonds of ATP:
 2 ATP expended
 4 ATP produced (2 from each of two 3C fragments
from glucose)
 Net production of 2 ~P bonds of ATP per glucose.
Glycolysis - total pathway, omitting H+:
glucose + 2 NAD+ + 2 ADP + 2 Pi 
2 pyruvate + 2 NADH + 2 ATP
In aerobic organisms:
 pyruvate produced in Glycolysis is oxidized to CO2
via Krebs Cycle
 NADH produced in Glycolysis & Krebs Cycle is
reoxidized via the respiratory chain, with production
of much additional ATP.
They must reoxidize NADH produced in Glycolysis
through some other reaction, because NAD+ is needed for
the Glyceraldehyde-3-phosphate Dehydrogenase reaction.
Usually NADH is reoxidized as pyruvate is converted to
a more reduced compound.
The complete pathway, including Glycolysis and the
reoxidation of NADH, is called fermentation.
C
C
CH2OPO3
2
H O
H OH
C
C
CH2OPO3
2
O OPO3
2
H OH
+ Pi
+ H+
NAD+
NADH 1
2
3
2
3
1
glyceraldehyde- 1,3-bisphospho-
3-phosphate glycerate
Glyceraldehyde-3-phosphate
Dehydrogenase
Fermentation:
Anaerobic
organisms lack a
respiratory chain.
C
C
CH3
O
O
O
C
HC
CH3
O
OH
O
NADH + H+
NAD+
Lactate Dehydrogenase
pyruvate lactate
E.g., Lactate Dehydrogenase catalyzes reduction of
the keto in pyruvate to a hydroxyl, yielding lactate, as
NADH is oxidized to NAD+.
Lactate, in addition to being an end-product of
fermentation, serves as a mobile form of nutrient energy,
& possibly as a signal molecule in mammalian organisms.
Cell membranes contain carrier proteins that facilitate
transport of lactate.
C
C
CH3
O
O
O
C
HC
CH3
O
OH
O
NADH + H+
NAD+
Lactate Dehydrogenase
pyruvate lactate
Skeletal muscles ferment glucose to lactate during
exercise, when the exertion is brief and intense.
Lactate released to the blood may be taken up by other
tissues, or by skeletal muscle after exercise, and converted
via Lactate Dehydrogenase back to pyruvate, which may
be oxidized in Krebs Cycle or (in liver) converted to back
to glucose via gluconeogenesis
C
C
CH3
O
O
O
C
HC
CH3
O
OH
O
NADH + H+
NAD+
Lactate Dehydrogenase
pyruvate lactate
Lactate serves as a fuel source for cardiac muscle as
well as brain neurons.
Astrocytes, which surround and protect neurons in the
brain, ferment glucose to lactate and release it.
Lactate taken up by adjacent neurons is converted to
pyruvate that is oxidized via Krebs Cycle.
C
C
CH3
O
O
O
C
CH3
OH
C
CH3
O
H H
H
NADH + H+
NAD+
CO2
Pyruvate Alcohol
Decarboxylase Dehydrogenase
pyruvate acetaldehyde ethanol
Some anaerobic organisms metabolize pyruvate to
ethanol, which is excreted as a waste product.
NADH is converted to NAD+ in the reaction
catalyzed by Alcohol Dehydrogenase.
Glycolysis, omitting H+:
glucose + 2 NAD+ + 2 ADP + 2 Pi 
2 pyruvate + 2 NADH + 2 ATP
Fermentation, from glucose to lactate:
glucose + 2 ADP + 2 Pi  2 lactate + 2 ATP
Anaerobic catabolism of glucose yields only 2 “high
energy” bonds of ATP.
Glycolysis Enzyme/Reaction
DGo'
kJ/mol
DG
kJ/mol
Hexokinase -20.9 -27.2
Phosphoglucose Isomerase +2.2 -1.4
Phosphofructokinase -17.2 -25.9
Aldolase +22.8 -5.9
Triosephosphate Isomerase +7.9 negative
Glyceraldehyde-3-P Dehydrogenase
& Phosphoglycerate Kinase
-16.7 -1.1
Phosphoglycerate Mutase +4.7 -0.6
Enolase -3.2 -2.4
Pyruvate Kinase -23.0 -13.9
*Values in this table from D. Voet & J. G. Voet (2004) Biochemistry, 3rd Edition, John
Wiley & Sons, New York, p. 613.
Flux through the Glycolysis pathway is regulated by
control of 3 enzymes that catalyze spontaneous reactions:
Hexokinase, Phosphofructokinase & Pyruvate Kinase.
 Local control of metabolism involves regulatory effects
of varied concentrations of pathway substrates or
intermediates, to benefit the cell.
 Global control is for the benefit of the whole organism,
& often involves hormone-activated signal cascades.
Liver cells have major roles in metabolism, including
maintaining blood levels various of nutrients such as
glucose. Thus global control especially involves liver.
Hexokinase is inhibited by product glucose-6-phosphate:
 by competition at the active site
 by allosteric interaction at a separate enzyme site.
Cells trap glucose by phosphorylating it, preventing exit
on glucose carriers.
Product inhibition of Hexokinase ensures that cells will
not continue to accumulate glucose from the blood, if
[glucose-6-phosphate] within the cell is ample.
H O
OH
H
OH
H
OH
CH2OH
H
OH
H H O
OH
H
OH
H
OH
CH2OPO3
2
H
OH
H
2
3
4
5
6
1 1
6
5
4
3 2
ATP ADP
Mg2+
glucose glucose-6-phosphate
Hexokinase
 Glucokinase has a high KM for glucose.
It is active only at high [glucose].
 One effect of insulin, a hormone produced when blood
glucose is high, is activation in liver of transcription of
the gene that encodes the Glucokinase enzyme.
 Glucokinase is not subject to product inhibition by
glucose-6-phosphate. Liver will take up & phosphorylate
glucose even when liver [glucose-6-phosphate] is high.
H O
OH
H
OH
H
OH
CH2OH
H
OH
H H O
OH
H
OH
H
OH
CH2OPO3
2
H
OH
H
2
3
4
5
6
1 1
6
5
4
3 2
ATP ADP
Mg2+
glucose glucose-6-phosphate
Hexokinase
Glucokinase
is a variant of
Hexokinase
found in liver.
 Glucokinase is subject to inhibition by glucokinase
regulatory protein (GKRP).
The ratio of Glucokinase to GKRP in liver changes in
different metabolic states, providing a mechanism for
modulating glucose phosphorylation.
Glucose-6-phosphatase catalyzes hydrolytic release of Pi
from glucose-6-P. Thus glucose is released from the liver
to the blood as needed to maintain blood [glucose].
The enzymes Glucokinase & Glucose-6-phosphatase, both
found in liver but not in most other body cells, allow the
liver to control blood [glucose].
Glycogen Glucose
Hexokinase or Glucokinase
Glucose-6-Pase
Glucose-1-P Glucose-6-P Glucose + Pi
Glycolysis
Pathway
Pyruvate
Glucose metabolism in liver.
Glucokinase,
with high KM
for glucose,
allows liver to
store glucose
as glycogen in
the fed state
when blood [glucose] is high.
High [glucose] within liver cells causes a transcription
factor carbohydrate responsive element binding protein
(ChREBP) to be transferred into the nucleus, where it
activates transcription of the gene for Pyruvate Kinase.
This facilitates converting excess glucose to pyruvate,
which is metabolized to acetyl-CoA, the main precursor
for synthesis of fatty acids, for long term energy storage.
C
C
CH3
O O
O
2
3
1
ADP ATP
C
C
CH2
O O
OPO3
2
2
3
1
phosphoenolpyruvate pyruvate
Pyruvate Kinase
Pyruvate Kinase, the
last step Glycolysis, is
controlled in liver partly
by modulation of the
amount of enzyme.
Phosphofructokinase is usually the rate-limiting step of
the Glycolysis pathway.
Phosphofructokinase is allosterically inhibited by ATP.
 At low concentration, the substrate ATP binds only at
the active site.
 At high concentration, ATP binds also at a low-affinity
regulatory site, promoting the tense conformation.
CH2OPO3
2
OH
CH2OH
H
OH H
H HO
O
6
5
4 3
2
1 CH2OPO3
2
OH
CH2OPO3
2
H
OH H
H HO
O
6
5
4 3
2
1
ATP ADP
Mg2+
fructose-6-phosphate fructose-1,6-bisphosphate
Phosphofructokinase
The tense conformation of PFK, at high [ATP], has lower
affinity for the other substrate, fructose-6-P. Sigmoidal
dependence of reaction rate on [fructose-6-P] is seen.
AMP, present at significant levels only when there is
extensive ATP hydrolysis, antagonizes effects of high ATP.
0
10
20
30
40
50
60
0 0.5 1 1.5 2
[Fructose-6-phosphate] mM
PFK
Activity
high [ATP]
low [ATP]
Inhibition of the Glycolysis enzyme Phosphofructokinase
when [ATP] is high prevents breakdown of glucose in a
pathway whose main role is to make ATP.
It is more useful to the cell to store glucose as glycogen
when ATP is plentiful.
Glycogen Glucose
Hexokinase or Glucokinase
Glucose-6-Pase
Glucose-1-P Glucose-6-P Glucose + Pi
Glycolysis
Pathway
Pyruvate
Glucose metabolism in liver.

Weitere ähnliche Inhalte

Ähnlich wie 8-glycolysis.ppt

Sacharidy3 11 angl
Sacharidy3 11 anglSacharidy3 11 angl
Sacharidy3 11 angl
MUBOSScz
 
Glycolysis
GlycolysisGlycolysis
Glycolysis
Stanz Ng
 

Ähnlich wie 8-glycolysis.ppt (20)

Carbohydrate Metabolism (Glycolysis).pptx
Carbohydrate Metabolism (Glycolysis).pptxCarbohydrate Metabolism (Glycolysis).pptx
Carbohydrate Metabolism (Glycolysis).pptx
 
Glycolysis
GlycolysisGlycolysis
Glycolysis
 
Metabolism ii-chp-17-bioc-361-version-dec-2012 - Glycolysis
Metabolism ii-chp-17-bioc-361-version-dec-2012 - GlycolysisMetabolism ii-chp-17-bioc-361-version-dec-2012 - Glycolysis
Metabolism ii-chp-17-bioc-361-version-dec-2012 - Glycolysis
 
Calvin cycle and regulation
Calvin cycle and regulationCalvin cycle and regulation
Calvin cycle and regulation
 
Digestion of glycolysis --Sir Khalid (Biochem)
Digestion of glycolysis --Sir Khalid (Biochem)Digestion of glycolysis --Sir Khalid (Biochem)
Digestion of glycolysis --Sir Khalid (Biochem)
 
Digestion glycolysis
Digestion glycolysisDigestion glycolysis
Digestion glycolysis
 
Glycolysis (with animated pathway)
Glycolysis (with animated pathway)Glycolysis (with animated pathway)
Glycolysis (with animated pathway)
 
Glycolysis-general introduction and pathway with biochemical logic
Glycolysis-general introduction and pathway with biochemical logicGlycolysis-general introduction and pathway with biochemical logic
Glycolysis-general introduction and pathway with biochemical logic
 
GLYCOLYSIS-1.ppt
GLYCOLYSIS-1.pptGLYCOLYSIS-1.ppt
GLYCOLYSIS-1.ppt
 
Sacharidy3 11 angl
Sacharidy3 11 anglSacharidy3 11 angl
Sacharidy3 11 angl
 
Gluconeogenesis for medical school
Gluconeogenesis for medical schoolGluconeogenesis for medical school
Gluconeogenesis for medical school
 
Hmp shunt
Hmp shunt Hmp shunt
Hmp shunt
 
Dark reactions
Dark reactionsDark reactions
Dark reactions
 
Glycolysis
GlycolysisGlycolysis
Glycolysis
 
8 glycolysis
8 glycolysis8 glycolysis
8 glycolysis
 
Glycolysis
GlycolysisGlycolysis
Glycolysis
 
Hmp shunt
Hmp shuntHmp shunt
Hmp shunt
 
Gluconeogenesis
GluconeogenesisGluconeogenesis
Gluconeogenesis
 
Phosphate Shunt boichemistry and bioenergetics
Phosphate Shunt boichemistry and bioenergeticsPhosphate Shunt boichemistry and bioenergetics
Phosphate Shunt boichemistry and bioenergetics
 
Chapter 14 glycolysis
Chapter 14 glycolysisChapter 14 glycolysis
Chapter 14 glycolysis
 

Mehr von MuhammadRizwan863722 (7)

Plant sensing and responding to stress
Plant sensing and responding to stress Plant sensing and responding to stress
Plant sensing and responding to stress
 
somatic-hybridization.ppt
somatic-hybridization.pptsomatic-hybridization.ppt
somatic-hybridization.ppt
 
protein Modeling Abi.pptx
protein Modeling Abi.pptxprotein Modeling Abi.pptx
protein Modeling Abi.pptx
 
Phylogeny-Abida.pptx
Phylogeny-Abida.pptxPhylogeny-Abida.pptx
Phylogeny-Abida.pptx
 
Lecture-6 Energy, Enzymes, and Metabolism.ppt
Lecture-6 Energy, Enzymes, and Metabolism.pptLecture-6 Energy, Enzymes, and Metabolism.ppt
Lecture-6 Energy, Enzymes, and Metabolism.ppt
 
Workshop -Mendeley Reference Management.pptx
Workshop -Mendeley Reference Management.pptxWorkshop -Mendeley Reference Management.pptx
Workshop -Mendeley Reference Management.pptx
 
lecture-9.ppt
lecture-9.pptlecture-9.ppt
lecture-9.ppt
 

Kürzlich hochgeladen

Introduction,importance and scope of horticulture.pptx
Introduction,importance and scope of horticulture.pptxIntroduction,importance and scope of horticulture.pptx
Introduction,importance and scope of horticulture.pptx
Bhagirath Gogikar
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
PirithiRaju
 
Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptx
AlMamun560346
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
Areesha Ahmad
 
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
ssuser79fe74
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Sérgio Sacani
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
1301aanya
 
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
levieagacer
 

Kürzlich hochgeladen (20)

Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
Introduction,importance and scope of horticulture.pptx
Introduction,importance and scope of horticulture.pptxIntroduction,importance and scope of horticulture.pptx
Introduction,importance and scope of horticulture.pptx
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
 
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
 
Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptx
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
 
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
 
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICESAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts ServiceJustdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
 
IDENTIFICATION OF THE LIVING- forensic medicine
IDENTIFICATION OF THE LIVING- forensic medicineIDENTIFICATION OF THE LIVING- forensic medicine
IDENTIFICATION OF THE LIVING- forensic medicine
 
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
 

8-glycolysis.ppt

  • 1. Glycolysis Copyright © 1998-2007 by Joyce J. Diwan. All rights reserved. Biochemistry of Metabolism
  • 2. Glycolysis takes place in the cytosol of cells. Glucose enters the Glycolysis pathway by conversion to glucose-6-phosphate. Initially there is energy input corresponding to cleavage of two ~P bonds of ATP. H O OH H OH H OH CH2OPO3 2 H OH H 1 6 5 4 3 2 glucose-6-phosphate
  • 3. H O OH H OH H OH CH2OH H OH H H O OH H OH H OH CH2OPO3 2 H OH H 2 3 4 5 6 1 1 6 5 4 3 2 ATP ADP Mg2+ glucose glucose-6-phosphate Hexokinase 1. Hexokinase catalyzes: Glucose + ATP  glucose-6-P + ADP The reaction involves nucleophilic attack of the C6 hydroxyl O of glucose on P of the terminal phosphate of ATP. ATP binds to the enzyme as a complex with Mg++.
  • 4. Mg++ interacts with negatively charged phosphate oxygen atoms, providing charge compensation & promoting a favorable conformation of ATP at the active site of the Hexokinase enzyme. N N N N NH2 O OH OH H H H CH2 H O P O P O P  O O O  O  O O O  adenine ribose ATP adenosine triphosphate
  • 5. The reaction catalyzed by Hexokinase is highly spontaneous. A phosphoanhydride bond of ATP (~P) is cleaved. The phosphate ester formed in glucose-6-phosphate has a lower DG of hydrolysis. H O OH H OH H OH CH2OH H OH H H O OH H OH H OH CH2OPO3 2 H OH H 2 3 4 5 6 1 1 6 5 4 3 2 ATP ADP Mg2+ glucose glucose-6-phosphate Hexokinase
  • 6.  the C6 hydroxyl of the bound glucose is close to the terminal phosphate of ATP, promoting catalysis.  water is excluded from the active site. This prevents the enzyme from catalyzing ATP hydrolysis, rather than transfer of phosphate to glucose. glucose Hexokinase H O OH H OH H OH CH2OH H OH H H O OH H OH H OH CH2OPO3 2 H OH H 2 3 4 5 6 1 1 6 5 4 3 2 ATP ADP Mg2+ glucose glucose-6-phosphate Hexokinase Induced fit: Glucose binding to Hexokinase stabilizes a conformation in which:
  • 7. It is a common motif for an enzyme active site to be located at an interface between protein domains that are connected by a flexible hinge region. The structural flexibility allows access to the active site, while permitting precise positioning of active site residues, and in some cases exclusion of water, as substrate binding promotes a particular conformation. glucose Hexokinase
  • 8. 2. Phosphoglucose Isomerase catalyzes: glucose-6-P (aldose)  fructose-6-P (ketose) The mechanism involves acid/base catalysis, with ring opening, isomerization via an enediolate intermediate, and then ring closure. A similar reaction catalyzed by Triosephosphate Isomerase will be presented in detail. H O OH H OH H OH CH2OPO3 2 H OH H 1 6 5 4 3 2 CH2OPO3 2 OH CH2OH H OH H H HO O 6 5 4 3 2 1 glucose-6-phosphate fructose-6-phosphate Phosphoglucose Isomerase
  • 9. 3. Phosphofructokinase catalyzes: fructose-6-P + ATP  fructose-1,6-bisP + ADP This highly spontaneous reaction has a mechanism similar to that of Hexokinase. The Phosphofructokinase reaction is the rate-limiting step of Glycolysis. The enzyme is highly regulated, as will be discussed later. CH2OPO3 2 OH CH2OH H OH H H HO O 6 5 4 3 2 1 CH2OPO3 2 OH CH2OPO3 2 H OH H H HO O 6 5 4 3 2 1 ATP ADP Mg2+ fructose-6-phosphate fructose-1,6-bisphosphate Phosphofructokinase
  • 10. 4. Aldolase catalyzes: fructose-1,6-bisphosphate  dihydroxyacetone-P + glyceraldehyde-3-P The reaction is an aldol cleavage, the reverse of an aldol condensation. Note that C atoms are renumbered in products of Aldolase. 6 5 4 3 2 1CH2OPO3 2 C C C C CH2OPO3 2 O HO H H OH H OH 3 2 1 CH2OPO3 2 C CH2OH O C C CH2OPO3 2 H O H OH + 1 2 3 fructose-1,6- bisphosphate Aldolase dihydroxyacetone glyceraldehyde-3- phosphate phosphate Triosephosphate Isomerase
  • 11. A lysine residue at the active site functions in catalysis. The keto group of fructose-1,6-bisphosphate reacts with the e-amino group of the active site lysine, to form a protonated Schiff base intermediate. Cleavage of the bond between C3 & C4 follows. CH2OPO3 2 C CH C C CH2OPO3 2 NH HO H OH H OH (CH2)4 Enzyme 6 5 4 3 2 1 + Schiff base intermediate of Aldolase reaction H3N+ C COO CH2 CH2 CH2 CH2 NH3 H  lysine
  • 12. 5. Triose Phosphate Isomerase (TIM) catalyzes: dihydroxyacetone-P  glyceraldehyde-3-P Glycolysis continues from glyceraldehyde-3-P. TIM's Keq favors dihydroxyacetone-P. Removal of glyceraldehyde-3-P by a subsequent spontaneous reaction allows throughput. 6 5 4 3 2 1CH2OPO3 2 C C C C CH2OPO3 2 O HO H H OH H OH 3 2 1 CH2OPO3 2 C CH2OH O C C CH2OPO3 2 H O H OH + 1 2 3 fructose-1,6- bisphosphate Aldolase dihydroxyacetone glyceraldehyde-3- phosphate phosphate Triosephosphate Isomerase
  • 13. The ketose/aldose conversion involves acid/base catalysis, and is thought to proceed via an enediol intermediate, as with Phosphoglucose Isomerase. Active site Glu and His residues are thought to extract and donate protons during catalysis. C C CH2OPO3 2 O C C CH2OPO3 2 H O H OH C C CH2OPO3 2 H OH OH H H OH H+ H+ H+ H+ dihydroxyacetone enediol glyceraldehyde- phosphate intermediate 3-phosphate Triosephosphate Isomerase
  • 14. C CH2OPO3 2 O O C CH2OPO3 2 HC O OH proposed enediolate intermediate phosphoglycolate transition state analog 2-Phosphoglycolate is a transition state analog that binds tightly at the active site of Triose Phosphate Isomerase (TIM). This inhibitor of catalysis by TIM is similar in structure to the proposed enediolate intermediate. TIM is judged a "perfect enzyme." Reaction rate is limited only by the rate that substrate collides with the enzyme.
  • 15. TIM Triosephosphate Isomerase structure is an ab barrel, or TIM barrel. In an ab barrel there are 8 parallel b-strands surrounded by 8 a-helices. Short loops connect alternating b-strands & a-helices.
  • 16. TIM TIM barrels serve as scaffolds for active site residues in a diverse array of enzymes. Residues of the active site are always at the same end of the barrel, on C-terminal ends of b-strands & loops connecting these to a-helices. There is debate whether the many different enzymes with TIM barrel structures are evolutionarily related. In spite of the structural similarities there is tremendous diversity in catalytic functions of these enzymes and little sequence homology.
  • 17. C C CH2OPO3 2 H O H OH C C CH2OPO3 2 O OPO3 2 H OH + Pi + H+ NAD+ NADH 1 2 3 2 3 1 glyceraldehyde- 1,3-bisphospho- 3-phosphate glycerate Glyceraldehyde-3-phosphate Dehydrogenase 6. Glyceraldehyde-3-phosphate Dehydrogenase catalyzes: glyceraldehyde-3-P + NAD+ + Pi  1,3-bisphosphoglycerate + NADH + H+
  • 18. C C CH2OPO3 2 H O H OH C C CH2OPO3 2 O OPO3 2 H OH + Pi + H+ NAD+ NADH 1 2 3 2 3 1 glyceraldehyde- 1,3-bisphospho- 3-phosphate glycerate Glyceraldehyde-3-phosphate Dehydrogenase Exergonic oxidation of the aldehyde in glyceraldehyde- 3-phosphate, to a carboxylic acid, drives formation of an acyl phosphate, a "high energy" bond (~P). This is the only step in Glycolysis in which NAD+ is reduced to NADH.
  • 19. A cysteine thiol at the active site of Glyceraldehyde- 3-phosphate Dehydrogenase has a role in catalysis. The aldehyde of glyceraldehyde-3-phosphate reacts with the cysteine thiol to form a thiohemiacetal intermediate. H3N+ C COO CH2 SH H cysteine C C CH2OPO3 2 H O H OH 1 2 3 glyceraldehyde-3- phosphate
  • 20. The “high energy” acyl thioester is attacked by Pi to yield the acyl phosphate (~P) product. CH CH2OPO3 2 OH Enz-Cys SH Enz-Cys S CH CH CH2OPO3 2 OH OH Enz-Cys S C CH CH2OPO3 2 OH O HC NAD+ NADH Enz-Cys SH Pi C CH CH2OPO3 2 OH O O3PO 2 O glyceraldehyde-3- phosphate 1,3-bisphosphoglycerate thiohemiacetal intermediate acyl-thioester intermediate Oxidation to a carboxylic acid (in a ~ thioester) occurs, as NAD+ is reduced to NADH.
  • 21. Recall that NAD+ accepts 2 e plus one H+ (a hydride) in going to its reduced form. N R H C NH2 O N R C NH2 O H H + 2e + H + NAD+ NADH
  • 22. C C CH2OPO3 2 O OPO3 2 H OH C C CH2OPO3 2 O O H OH ADP ATP 1 2 2 3 3 1 Mg2+ 1,3-bisphospho- 3-phosphoglycerate glycerate Phosphoglycerate Kinase 7. Phosphoglycerate Kinase catalyzes: 1,3-bisphosphoglycerate + ADP  3-phosphoglycerate + ATP This phosphate transfer is reversible (low DG), since one ~P bond is cleaved & another synthesized. The enzyme undergoes substrate-induced conformational change similar to that of Hexokinase.
  • 23. C C CH2OH O O H OPO3 2 2 3 1 C C CH2OPO3 2 O O H OH 2 3 1 3-phosphoglycerate 2-phosphoglycerate Phosphoglycerate Mutase 8. Phosphoglycerate Mutase catalyzes: 3-phosphoglycerate  2-phosphoglycerate Phosphate is shifted from the OH on C3 to the OH on C2.
  • 24. C C CH2OH O O H OPO3 2 2 3 1 C C CH2OPO3 2 O O H OH 2 3 1 3-phosphoglycerate 2-phosphoglycerate Phosphoglycerate Mutase C C CH2OPO3 2 O O H OPO3 2 2 3 1 2,3-bisphosphoglycerate An active site histidine side-chain participates in Pi transfer, by donating & accepting phosphate. The process involves a 2,3-bisphosphate intermediate. H3N+ C COO CH2 C HN HC NH CH H  histidine
  • 25. 9. Enolase catalyzes: 2-phosphoglycerate  phosphoenolpyruvate + H2O This dehydration reaction is Mg++-dependent. 2 Mg++ ions interact with oxygen atoms of the substrate carboxyl group at the active site. The Mg++ ions help to stabilize the enolate anion intermediate that forms when a Lys extracts H+ from C #2. C C CH2OH O O H OPO3 2 C C CH2OH  O O OPO3 2 C C CH2 O O OPO3 2 OH 2 3 1 2 3 1 H 2-phosphoglycerate enolate intermediate phosphoenolpyruvate Enolase
  • 26. 10. Pyruvate Kinase catalyzes: phosphoenolpyruvate + ADP  pyruvate + ATP C C CH3 O O O 2 3 1 ADP ATP C C CH2 O O OPO3 2 2 3 1 phosphoenolpyruvate pyruvate Pyruvate Kinase
  • 27. This phosphate transfer from PEP to ADP is spontaneous.  PEP has a larger DG of phosphate hydrolysis than ATP.  Removal of Pi from PEP yields an unstable enol, which spontaneously converts to the keto form of pyruvate. Required inorganic cations K+ and Mg++ bind to anionic residues at the active site of Pyruvate Kinase. C C CH3 O O O 2 3 1 ADP ATP C C CH2 O O OPO3 2 2 3 1 C C CH2 O O OH 2 3 1 phosphoenolpyruvate enolpyruvate pyruvate Pyruvate Kinase
  • 29. Glyceraldehyde-3-phosphate Dehydrogenase Phosphoglycerate Kinase Enolase Pyruvate Kinase glyceraldehyde-3-phosphate NAD+ + Pi NADH + H+ 1,3-bisphosphoglycerate ADP ATP 3-phosphoglycerate Phosphoglycerate Mutase 2-phosphoglycerate H2O phosphoenolpyruvate ADP ATP pyruvate Glycolysis continued. Recall that there are 2 GAP per glucose.
  • 30. Glycolysis Balance sheet for ~P bonds of ATP:  How many ATP ~P bonds expended? ________  How many ~P bonds of ATP produced? (Remember there are two 3C fragments from glucose.) ________  Net production of ~P bonds of ATP per glucose: ________ 2 4 2
  • 31. Balance sheet for ~P bonds of ATP:  2 ATP expended  4 ATP produced (2 from each of two 3C fragments from glucose)  Net production of 2 ~P bonds of ATP per glucose. Glycolysis - total pathway, omitting H+: glucose + 2 NAD+ + 2 ADP + 2 Pi  2 pyruvate + 2 NADH + 2 ATP In aerobic organisms:  pyruvate produced in Glycolysis is oxidized to CO2 via Krebs Cycle  NADH produced in Glycolysis & Krebs Cycle is reoxidized via the respiratory chain, with production of much additional ATP.
  • 32. They must reoxidize NADH produced in Glycolysis through some other reaction, because NAD+ is needed for the Glyceraldehyde-3-phosphate Dehydrogenase reaction. Usually NADH is reoxidized as pyruvate is converted to a more reduced compound. The complete pathway, including Glycolysis and the reoxidation of NADH, is called fermentation. C C CH2OPO3 2 H O H OH C C CH2OPO3 2 O OPO3 2 H OH + Pi + H+ NAD+ NADH 1 2 3 2 3 1 glyceraldehyde- 1,3-bisphospho- 3-phosphate glycerate Glyceraldehyde-3-phosphate Dehydrogenase Fermentation: Anaerobic organisms lack a respiratory chain.
  • 33. C C CH3 O O O C HC CH3 O OH O NADH + H+ NAD+ Lactate Dehydrogenase pyruvate lactate E.g., Lactate Dehydrogenase catalyzes reduction of the keto in pyruvate to a hydroxyl, yielding lactate, as NADH is oxidized to NAD+. Lactate, in addition to being an end-product of fermentation, serves as a mobile form of nutrient energy, & possibly as a signal molecule in mammalian organisms. Cell membranes contain carrier proteins that facilitate transport of lactate.
  • 34. C C CH3 O O O C HC CH3 O OH O NADH + H+ NAD+ Lactate Dehydrogenase pyruvate lactate Skeletal muscles ferment glucose to lactate during exercise, when the exertion is brief and intense. Lactate released to the blood may be taken up by other tissues, or by skeletal muscle after exercise, and converted via Lactate Dehydrogenase back to pyruvate, which may be oxidized in Krebs Cycle or (in liver) converted to back to glucose via gluconeogenesis
  • 35. C C CH3 O O O C HC CH3 O OH O NADH + H+ NAD+ Lactate Dehydrogenase pyruvate lactate Lactate serves as a fuel source for cardiac muscle as well as brain neurons. Astrocytes, which surround and protect neurons in the brain, ferment glucose to lactate and release it. Lactate taken up by adjacent neurons is converted to pyruvate that is oxidized via Krebs Cycle.
  • 36. C C CH3 O O O C CH3 OH C CH3 O H H H NADH + H+ NAD+ CO2 Pyruvate Alcohol Decarboxylase Dehydrogenase pyruvate acetaldehyde ethanol Some anaerobic organisms metabolize pyruvate to ethanol, which is excreted as a waste product. NADH is converted to NAD+ in the reaction catalyzed by Alcohol Dehydrogenase.
  • 37. Glycolysis, omitting H+: glucose + 2 NAD+ + 2 ADP + 2 Pi  2 pyruvate + 2 NADH + 2 ATP Fermentation, from glucose to lactate: glucose + 2 ADP + 2 Pi  2 lactate + 2 ATP Anaerobic catabolism of glucose yields only 2 “high energy” bonds of ATP.
  • 38. Glycolysis Enzyme/Reaction DGo' kJ/mol DG kJ/mol Hexokinase -20.9 -27.2 Phosphoglucose Isomerase +2.2 -1.4 Phosphofructokinase -17.2 -25.9 Aldolase +22.8 -5.9 Triosephosphate Isomerase +7.9 negative Glyceraldehyde-3-P Dehydrogenase & Phosphoglycerate Kinase -16.7 -1.1 Phosphoglycerate Mutase +4.7 -0.6 Enolase -3.2 -2.4 Pyruvate Kinase -23.0 -13.9 *Values in this table from D. Voet & J. G. Voet (2004) Biochemistry, 3rd Edition, John Wiley & Sons, New York, p. 613.
  • 39. Flux through the Glycolysis pathway is regulated by control of 3 enzymes that catalyze spontaneous reactions: Hexokinase, Phosphofructokinase & Pyruvate Kinase.  Local control of metabolism involves regulatory effects of varied concentrations of pathway substrates or intermediates, to benefit the cell.  Global control is for the benefit of the whole organism, & often involves hormone-activated signal cascades. Liver cells have major roles in metabolism, including maintaining blood levels various of nutrients such as glucose. Thus global control especially involves liver.
  • 40. Hexokinase is inhibited by product glucose-6-phosphate:  by competition at the active site  by allosteric interaction at a separate enzyme site. Cells trap glucose by phosphorylating it, preventing exit on glucose carriers. Product inhibition of Hexokinase ensures that cells will not continue to accumulate glucose from the blood, if [glucose-6-phosphate] within the cell is ample. H O OH H OH H OH CH2OH H OH H H O OH H OH H OH CH2OPO3 2 H OH H 2 3 4 5 6 1 1 6 5 4 3 2 ATP ADP Mg2+ glucose glucose-6-phosphate Hexokinase
  • 41.  Glucokinase has a high KM for glucose. It is active only at high [glucose].  One effect of insulin, a hormone produced when blood glucose is high, is activation in liver of transcription of the gene that encodes the Glucokinase enzyme.  Glucokinase is not subject to product inhibition by glucose-6-phosphate. Liver will take up & phosphorylate glucose even when liver [glucose-6-phosphate] is high. H O OH H OH H OH CH2OH H OH H H O OH H OH H OH CH2OPO3 2 H OH H 2 3 4 5 6 1 1 6 5 4 3 2 ATP ADP Mg2+ glucose glucose-6-phosphate Hexokinase Glucokinase is a variant of Hexokinase found in liver.
  • 42.  Glucokinase is subject to inhibition by glucokinase regulatory protein (GKRP). The ratio of Glucokinase to GKRP in liver changes in different metabolic states, providing a mechanism for modulating glucose phosphorylation.
  • 43. Glucose-6-phosphatase catalyzes hydrolytic release of Pi from glucose-6-P. Thus glucose is released from the liver to the blood as needed to maintain blood [glucose]. The enzymes Glucokinase & Glucose-6-phosphatase, both found in liver but not in most other body cells, allow the liver to control blood [glucose]. Glycogen Glucose Hexokinase or Glucokinase Glucose-6-Pase Glucose-1-P Glucose-6-P Glucose + Pi Glycolysis Pathway Pyruvate Glucose metabolism in liver. Glucokinase, with high KM for glucose, allows liver to store glucose as glycogen in the fed state when blood [glucose] is high.
  • 44. High [glucose] within liver cells causes a transcription factor carbohydrate responsive element binding protein (ChREBP) to be transferred into the nucleus, where it activates transcription of the gene for Pyruvate Kinase. This facilitates converting excess glucose to pyruvate, which is metabolized to acetyl-CoA, the main precursor for synthesis of fatty acids, for long term energy storage. C C CH3 O O O 2 3 1 ADP ATP C C CH2 O O OPO3 2 2 3 1 phosphoenolpyruvate pyruvate Pyruvate Kinase Pyruvate Kinase, the last step Glycolysis, is controlled in liver partly by modulation of the amount of enzyme.
  • 45. Phosphofructokinase is usually the rate-limiting step of the Glycolysis pathway. Phosphofructokinase is allosterically inhibited by ATP.  At low concentration, the substrate ATP binds only at the active site.  At high concentration, ATP binds also at a low-affinity regulatory site, promoting the tense conformation. CH2OPO3 2 OH CH2OH H OH H H HO O 6 5 4 3 2 1 CH2OPO3 2 OH CH2OPO3 2 H OH H H HO O 6 5 4 3 2 1 ATP ADP Mg2+ fructose-6-phosphate fructose-1,6-bisphosphate Phosphofructokinase
  • 46. The tense conformation of PFK, at high [ATP], has lower affinity for the other substrate, fructose-6-P. Sigmoidal dependence of reaction rate on [fructose-6-P] is seen. AMP, present at significant levels only when there is extensive ATP hydrolysis, antagonizes effects of high ATP. 0 10 20 30 40 50 60 0 0.5 1 1.5 2 [Fructose-6-phosphate] mM PFK Activity high [ATP] low [ATP]
  • 47. Inhibition of the Glycolysis enzyme Phosphofructokinase when [ATP] is high prevents breakdown of glucose in a pathway whose main role is to make ATP. It is more useful to the cell to store glucose as glycogen when ATP is plentiful. Glycogen Glucose Hexokinase or Glucokinase Glucose-6-Pase Glucose-1-P Glucose-6-P Glucose + Pi Glycolysis Pathway Pyruvate Glucose metabolism in liver.