SlideShare ist ein Scribd-Unternehmen logo
1 von 14
Downloaden Sie, um offline zu lesen
Transitions and Trajectories
in Temporal Networks
Moses A. Boudourides1 & Sergios T. Lenis2
with Martin Everett & Elisa Bellotti
Department of Mathematics
University of Patras, Greece
1Moses.Boudourides@gmail.com
2sergioslenis@gmail.com
12 June 2015
Examples and Python code:
http://mboudour.github.io/2015/06/12/Transitions-&-Trajectories-in-Temporal-Networks.html
Boudourides, Lenis, Everett & Bellotti Transitions and Trajectories in Temporal Networks
Overview
The terms “graph” and “(social) network” are used here interchangeably.
This is an elaboration of Borgatti & Halgin’s analysis of
trajectories in temporal networks.
Using Python’s NetworkX, we have developped a
computational tool
generates a random temporal network,
displays a plot of this temporal network as a multilayer graph
(layers corresponding to time slices),
displays the activity timelines of all edges in this graph,
computes all transitions induced by co–incident eges,
computes all trajectories of vertices formed by alternating
translations and transitions and
presents the table of statistics of all trajectories.
The Python scripts for all these computations are available at:
https://github.com/mboudour/TrajectoriesOfTemporalGraphs
Boudourides, Lenis, Everett & Bellotti Transitions and Trajectories in Temporal Networks
Basic Concepts and Notation
By a temporal network we understand an ordinary network,
in which edges and vertices are not active or present in all
time, but for certain time points inside a given time period
(time interval) T. In general, T ⊂ R+ and time points can be
either isolated points or (sub)intervals (of nonnegative real
numbers).
We denote by V , E the (finite) sets of vertices and edges,
respectively, of a temporal network.
Let (u, v) ∈ E be an arbitrary edge joining two vertices
u, v ∈ V . We denote by T(u,v), Tu, Tv ⊂ T the activity time
set of edge (u, v) and vertices u, v, respectively, and we
assume the following consistency condition to hold, for all
edges (u, v) and vertices u, v:
T(u,v) ⊆ Tu ∩ Tv .
Boudourides, Lenis, Everett & Bellotti Transitions and Trajectories in Temporal Networks
The activity timeline of edge (u, v) is defined as a function
α(u,v) : T(u,v) −→ {0, 1} such that
α(u,v)(t) =
1, whenever t ∈ T(u,v),
0, whenever t ∈ T T(u,v).
Similarly, the activity timeline of vertex u is defined as a
function αu : Tu −→ {0, 1} such that
αu(t) =
1, whenever t ∈ Tu,
0, whenever t ∈ T Tu.
Furthermore, given a vertex u and a time point τ ∈ Tu, we
write uτ in order to denote the (activated) vertex u at time τ.
In other words, if τ ∈ T(u,v), i.e., α(u,v)(τ) = 1, then
τ ∈ Tu ∩ Tv , αuτ (τ) = αvτ (τ) = 1, where (uτ , vτ ) is an edge
of the temporal network.
Boudourides, Lenis, Everett & Bellotti Transitions and Trajectories in Temporal Networks
Example
Boudourides, Lenis, Everett & Bellotti Transitions and Trajectories in Temporal Networks
To avoid certain technicalities, let us assume (from now on)
that we have a temporal network such that, for any edge or
vertex, the activity time set of this edge or vertex is a union of
disjoint intervals (each one having positive length).
Thus, for any edge e, the activity set Te of e is:
Te =
k
n=1
Tn(e).
Above k = k(e) and, for all n = 1, . . . , k, Tn(e) is a closed
interval of the form:
Tn(e) = [tn(e), tn(e)],
where tn(e), tn(e) ≥ 0, for n = 1, . . . , k, and:
tn(e) < tn(e) < tn+1(e).
Tn(e) is called n–th activity subinterval of the activity set Te
and tn(e), tn(e) are its left, right end points (respectively).
Boudourides, Lenis, Everett & Bellotti Transitions and Trajectories in Temporal Networks
Note that, in this way, T becomes the convex hull (i.e., the
minimum closed interval) containing the union of all activity
subintervals of all edges of the temporal network:
T = conv
e∈E
k
n=1
Tn(e) .
Any t ∈ T e∈E
k
n=1 Tn(e) is called intermitting
time point.
Furthermore, we denote by Ie the set of all end points of all
subintervals of Te, i.e.,
Ie = t0(e), t0(e), t1(e), t1(e), . . . , tk(e), tk(e) .
Lumping together all sets Ie, for all edges e, one gets the
total set of all end points of the temporal network
I =
e∈E
Ie.
Boudourides, Lenis, Everett & Bellotti Transitions and Trajectories in Temporal Networks
Definition
Let τ ∈ I. Then τ is called:
intermediate time point when, for every edge e ∈ E, if
τ ∈ Tn(e), for some n, then τ is always an interior point of
Tn(e).
co–terminal time point when, for every edge e ∈ E, if
τ ∈ Tn(e), for some n, then τ is always either the left or the
right end point of Tn(e) (but always the same for all edges),
t t tτ τ τ
e e e
f f f
intermediate time τ left co–terminal time τ right co–terminal time τ
Boudourides, Lenis, Everett & Bellotti Transitions and Trajectories in Temporal Networks
Definition
Let e, f be two edges and let τ ∈ Te ∪ Tf . Then τ is called:
anti–terminal time point (w.r.t. e, f ) when τ is the right
(or left) end point of Tn(e), for some n, and the left (right,
resp.) end point of Tm(f ), for some m,
step–like time point (w.r.t. e, f ) when τ is is an interior
point of Tn(e), for some n (or an interior point of Tm(f ), for
some m) and an end point of Tm(f ), for some m (or an end
point of Tn(e), for some n, resp.).
t tτ τ
e e
f f
anti–terminal time τ step–like time τ
Boudourides, Lenis, Everett & Bellotti Transitions and Trajectories in Temporal Networks
Definition of Transitions
Definition
Let u be a vertex of the temporal network and v, w two neighbors
of u. If τ ∈ T(u,v) ∪ T(u,w) is such that τ is either an anti–terminal
or a step–like time point (w.r.t. (u, v), (u, w)), then we say that u
passes from v to w at time τ through a transition denoted as
vτ
uτ
−→ wτ .
t tτ τ
Transition vτ
uτ
−→ wτ
(u, v) (u, v)
(u, w) (u, w)
Boudourides, Lenis, Everett & Bellotti Transitions and Trajectories in Temporal Networks
Examples of Transitions
In the following diagramm, there are 12 transitions of u
through its neighbors v, w, z:
v2
u2
−→ w2, v3
u3
−→ z3, w3
u3
−→ z3, v4
u4
−→ z4,
w4
u4
−→ z4, z6
u6
−→ v6, z6
u6
−→ w6, v8
u8
−→ w8,
v8
u8
−→ z8, w10
u10
−→ v10, w10
u10
−→ z10, z10
u10
−→ v10.
Boudourides, Lenis, Everett & Bellotti Transitions and Trajectories in Temporal Networks
Definition of Translations
Definition
Let u, v two adjacent vertices in the temporal network. If
τ, σ ∈ T(u,v), τ < σ, are such that [τ, σ] ⊂ [ti (u, v), ti (u, v)], for
some activity subinterval [ti (u, v), ti (u, v)], then we say that u
shifts from vτ to vσ through a translation denoted as vτ
u
vσ.
tti τ σ ti
Translation vτ
u
vσ
(u, v)
Remarks:
In a temporal network, neither transitions nor translations make up edges.
However, if two vertices are joined by a transition, it is possible (but not
necessary) that these vertices were joined by an edge too.
In a temporal network without self–loops, any two vertices joined by a
translation cannot be joined by an edge.
Boudourides, Lenis, Everett & Bellotti Transitions and Trajectories in Temporal Networks
Definition of Trajectories
Definition
In a temporal network, a trajectory of vertex u passing over its
neighbors v, w, z, . . . is an alternating sequence of vertices,
translations and transitions of the form:
[(v0, u, v1), (v1, u1, w1), (w1, u, w2), (w2, u2, z2), . . .]
where v0
u
v1 is a translation, v1
u1
−→ w1 is a transition,
w1
u
w2 is a translation, w2
u2
−→ z2 is a transition, etc.
Boudourides, Lenis, Everett & Bellotti Transitions and Trajectories in Temporal Networks
Example: Two Trajectories
t0 1 2 3 4
Trajectory [(v0, u, v1), (v1, u1, w1), (w1, u, w2), (w2, u2, v2), (v2, u, v3), (v3, u3, w3), (w3, u, w4)]
(u, v)
(u, w)
t0 1 2 3 4
Trajectory [(v0, u, v3), (v3, u3, w3), (w3, u, w4)]
(u, v)
(u, w)
Boudourides, Lenis, Everett & Bellotti Transitions and Trajectories in Temporal Networks

Weitere ähnliche Inhalte

Was ist angesagt?

Simple harmonic motion
Simple harmonic motionSimple harmonic motion
Simple harmonic motion
Adarsh Ang
 
periodic functions and Fourier series
periodic functions and Fourier seriesperiodic functions and Fourier series
periodic functions and Fourier series
Umang Gupta
 
Optics Fourier Transform Ii
Optics Fourier Transform IiOptics Fourier Transform Ii
Optics Fourier Transform Ii
diarmseven
 

Was ist angesagt? (18)

Unit step function
Unit step functionUnit step function
Unit step function
 
Lecture7 Signal and Systems
Lecture7 Signal and SystemsLecture7 Signal and Systems
Lecture7 Signal and Systems
 
Fourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time SignalsFourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time Signals
 
Simple harmonic motion
Simple harmonic motionSimple harmonic motion
Simple harmonic motion
 
Fourier series pgbi
Fourier series pgbiFourier series pgbi
Fourier series pgbi
 
periodic functions and Fourier series
periodic functions and Fourier seriesperiodic functions and Fourier series
periodic functions and Fourier series
 
Sp 3828 10.1007-2_f978-3-642-31265-6_20
Sp 3828 10.1007-2_f978-3-642-31265-6_20Sp 3828 10.1007-2_f978-3-642-31265-6_20
Sp 3828 10.1007-2_f978-3-642-31265-6_20
 
Unit 8
Unit 8Unit 8
Unit 8
 
Properties of fourier transform
Properties of fourier transformProperties of fourier transform
Properties of fourier transform
 
Eece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transformEece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transform
 
Fourier transforms
Fourier transforms Fourier transforms
Fourier transforms
 
Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION KERNEL AND RANGE OF LINEAR TR...
Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION   KERNEL AND RANGE OF LINEAR TR...Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION   KERNEL AND RANGE OF LINEAR TR...
Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION KERNEL AND RANGE OF LINEAR TR...
 
Sol76
Sol76Sol76
Sol76
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
Lecture10 Signal and Systems
Lecture10 Signal and SystemsLecture10 Signal and Systems
Lecture10 Signal and Systems
 
derivation of Wave equation
derivation of Wave equationderivation of Wave equation
derivation of Wave equation
 
Optics Fourier Transform Ii
Optics Fourier Transform IiOptics Fourier Transform Ii
Optics Fourier Transform Ii
 
Properties of Fourier transform
Properties of Fourier transformProperties of Fourier transform
Properties of Fourier transform
 

Andere mochten auch

Hasil pengamatan gum xantan
Hasil pengamatan gum xantanHasil pengamatan gum xantan
Hasil pengamatan gum xantan
Dn Ssd
 
Boudourides et al., Transitions and Trajectories in Temporal Networks with Ov...
Boudourides et al., Transitions and Trajectories in Temporal Networks with Ov...Boudourides et al., Transitions and Trajectories in Temporal Networks with Ov...
Boudourides et al., Transitions and Trajectories in Temporal Networks with Ov...
Moses Boudourides
 
Dye living room furniture selections
Dye living room furniture selectionsDye living room furniture selections
Dye living room furniture selections
Erica Peale
 
Dye family room furniture selections
Dye family room furniture selectionsDye family room furniture selections
Dye family room furniture selections
Erica Peale
 
Website documents
Website documentsWebsite documents
Website documents
jayam19
 

Andere mochten auch (20)

Peace of mind
Peace of mindPeace of mind
Peace of mind
 
Art 2100 Online syllabus summer i 2016
Art 2100 Online syllabus summer i 2016Art 2100 Online syllabus summer i 2016
Art 2100 Online syllabus summer i 2016
 
Hasil pengamatan gum xantan
Hasil pengamatan gum xantanHasil pengamatan gum xantan
Hasil pengamatan gum xantan
 
Stmt trisakati kel.1
Stmt trisakati kel.1Stmt trisakati kel.1
Stmt trisakati kel.1
 
Alternativas
AlternativasAlternativas
Alternativas
 
Boudourides et al., Transitions and Trajectories in Temporal Networks with Ov...
Boudourides et al., Transitions and Trajectories in Temporal Networks with Ov...Boudourides et al., Transitions and Trajectories in Temporal Networks with Ov...
Boudourides et al., Transitions and Trajectories in Temporal Networks with Ov...
 
The natural leadership talents of women
The natural leadership talents of womenThe natural leadership talents of women
The natural leadership talents of women
 
Goo Create: Import and Create
Goo Create: Import and CreateGoo Create: Import and Create
Goo Create: Import and Create
 
Η Επιστήμη των Δικτύων: Μια Πολύ Σύντομη Εισαγωγική Παρουσίαση - 8 Οκτωβρίου ...
Η Επιστήμη των Δικτύων: Μια Πολύ Σύντομη Εισαγωγική Παρουσίαση - 8 Οκτωβρίου ...Η Επιστήμη των Δικτύων: Μια Πολύ Σύντομη Εισαγωγική Παρουσίαση - 8 Οκτωβρίου ...
Η Επιστήμη των Δικτύων: Μια Πολύ Σύντομη Εισαγωγική Παρουσίαση - 8 Οκτωβρίου ...
 
Letters From Kay
Letters From KayLetters From Kay
Letters From Kay
 
Dye living room furniture selections
Dye living room furniture selectionsDye living room furniture selections
Dye living room furniture selections
 
Dye family room furniture selections
Dye family room furniture selectionsDye family room furniture selections
Dye family room furniture selections
 
Multilayerity within multilayerity? On multilayer assortativity in social net...
Multilayerity within multilayerity? On multilayer assortativity in social net...Multilayerity within multilayerity? On multilayer assortativity in social net...
Multilayerity within multilayerity? On multilayer assortativity in social net...
 
Physical activity
Physical  activityPhysical  activity
Physical activity
 
Website documents
Website documentsWebsite documents
Website documents
 
纯电动方程式赛车赞助企划书
纯电动方程式赛车赞助企划书纯电动方程式赛车赞助企划书
纯电动方程式赛车赞助企划书
 
[Up! Essência] Produtos
[Up! Essência] Produtos[Up! Essência] Produtos
[Up! Essência] Produtos
 
Fotografías
FotografíasFotografías
Fotografías
 
Vivian Murciano Media Sales Director
Vivian Murciano Media Sales DirectorVivian Murciano Media Sales Director
Vivian Murciano Media Sales Director
 
Introduction to Lights
Introduction to LightsIntroduction to Lights
Introduction to Lights
 

Ähnlich wie Transitions and Trajectories in Temporal Networks

Ss important questions
Ss important questionsSs important questions
Ss important questions
Sowji Laddu
 
Signal Processing Introduction using Fourier Transforms
Signal Processing Introduction using Fourier TransformsSignal Processing Introduction using Fourier Transforms
Signal Processing Introduction using Fourier Transforms
Arvind Devaraj
 

Ähnlich wie Transitions and Trajectories in Temporal Networks (20)

Linear transforamtion and it,s applications.(VCLA)
Linear transforamtion and it,s applications.(VCLA)Linear transforamtion and it,s applications.(VCLA)
Linear transforamtion and it,s applications.(VCLA)
 
Ss important questions
Ss important questionsSs important questions
Ss important questions
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
linear transformation and rank nullity theorem
linear transformation and rank nullity theorem linear transformation and rank nullity theorem
linear transformation and rank nullity theorem
 
unit 4,5 (1).docx
unit 4,5 (1).docxunit 4,5 (1).docx
unit 4,5 (1).docx
 
Ch1 representation of signal pg 130
Ch1 representation of signal pg 130Ch1 representation of signal pg 130
Ch1 representation of signal pg 130
 
Signal Processing Introduction using Fourier Transforms
Signal Processing Introduction using Fourier TransformsSignal Processing Introduction using Fourier Transforms
Signal Processing Introduction using Fourier Transforms
 
lecture3_2.pdf
lecture3_2.pdflecture3_2.pdf
lecture3_2.pdf
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)
 
Ist module 3
Ist module 3Ist module 3
Ist module 3
 
The wave equation
The wave equationThe wave equation
The wave equation
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
Weyl's Theorem for Algebraically Totally K - Quasi – Paranormal Operators
Weyl's Theorem for Algebraically Totally K - Quasi – Paranormal OperatorsWeyl's Theorem for Algebraically Totally K - Quasi – Paranormal Operators
Weyl's Theorem for Algebraically Totally K - Quasi – Paranormal Operators
 
Fourier Analysis
Fourier AnalysisFourier Analysis
Fourier Analysis
 
Fourier Analysis
Fourier AnalysisFourier Analysis
Fourier Analysis
 
unit 2: analysis of continues time signal
unit 2: analysis of continues time signalunit 2: analysis of continues time signal
unit 2: analysis of continues time signal
 
Sol76
Sol76Sol76
Sol76
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Fourier series
Fourier seriesFourier series
Fourier series
 

Mehr von Moses Boudourides

Boudourides & Lenis, Distribution of Groups of Vertices Across Multilayer Net...
Boudourides & Lenis, Distribution of Groups of Vertices Across Multilayer Net...Boudourides & Lenis, Distribution of Groups of Vertices Across Multilayer Net...
Boudourides & Lenis, Distribution of Groups of Vertices Across Multilayer Net...
Moses Boudourides
 

Mehr von Moses Boudourides (20)

A bibliometric study on the literature of Open Science and Open Access. By Ts...
A bibliometric study on the literature of Open Science and Open Access. By Ts...A bibliometric study on the literature of Open Science and Open Access. By Ts...
A bibliometric study on the literature of Open Science and Open Access. By Ts...
 
Boudourides: Analysis of Bibliometric Data of Publications on “Computational ...
Boudourides: Analysis of Bibliometric Data of Publications on “Computational ...Boudourides: Analysis of Bibliometric Data of Publications on “Computational ...
Boudourides: Analysis of Bibliometric Data of Publications on “Computational ...
 
Closures and Attributes in Graphs: Shadows of (Dis)Assembled Networks. By Mos...
Closures and Attributes in Graphs: Shadows of (Dis)Assembled Networks. By Mos...Closures and Attributes in Graphs: Shadows of (Dis)Assembled Networks. By Mos...
Closures and Attributes in Graphs: Shadows of (Dis)Assembled Networks. By Mos...
 
Experiments of Friedkin–Johnsen Social Influence on Graphs
Experiments of Friedkin–Johnsen Social Influence on GraphsExperiments of Friedkin–Johnsen Social Influence on Graphs
Experiments of Friedkin–Johnsen Social Influence on Graphs
 
Digital, Humanities, Latour and Networks. By Moses A. Boudourides
Digital, Humanities, Latour and Networks. By Moses A. BoudouridesDigital, Humanities, Latour and Networks. By Moses A. Boudourides
Digital, Humanities, Latour and Networks. By Moses A. Boudourides
 
Δίκτυα Λογοτεχνίας: Μια Πρώτη Εισαγωγική Προσέγγιση
Δίκτυα Λογοτεχνίας: Μια Πρώτη Εισαγωγική ΠροσέγγισηΔίκτυα Λογοτεχνίας: Μια Πρώτη Εισαγωγική Προσέγγιση
Δίκτυα Λογοτεχνίας: Μια Πρώτη Εισαγωγική Προσέγγιση
 
Boudourides: Risk in Social Networks: Network Influence & Selection on Minori...
Boudourides: Risk in Social Networks: Network Influence & Selection on Minori...Boudourides: Risk in Social Networks: Network Influence & Selection on Minori...
Boudourides: Risk in Social Networks: Network Influence & Selection on Minori...
 
Topics of Complex Social Networks: Domination, Influence and Assortativity
Topics of Complex Social Networks: Domination, Influence and AssortativityTopics of Complex Social Networks: Domination, Influence and Assortativity
Topics of Complex Social Networks: Domination, Influence and Assortativity
 
Boudourides & Lenis, Distribution of Groups of Vertices Across Multilayer Net...
Boudourides & Lenis, Distribution of Groups of Vertices Across Multilayer Net...Boudourides & Lenis, Distribution of Groups of Vertices Across Multilayer Net...
Boudourides & Lenis, Distribution of Groups of Vertices Across Multilayer Net...
 
Slides Δικτυακών Υπολογισμών με την Python
Slides Δικτυακών Υπολογισμών με την PythonSlides Δικτυακών Υπολογισμών με την Python
Slides Δικτυακών Υπολογισμών με την Python
 
Ανάλυση Δικτύων με το NetworkX της Python: Μια προκαταρκτική (αλλά ημιτελής ω...
Ανάλυση Δικτύων με το NetworkX της Python: Μια προκαταρκτική (αλλά ημιτελής ω...Ανάλυση Δικτύων με το NetworkX της Python: Μια προκαταρκτική (αλλά ημιτελής ω...
Ανάλυση Δικτύων με το NetworkX της Python: Μια προκαταρκτική (αλλά ημιτελής ω...
 
Τα Πολύ Βασικά για την Python
Τα Πολύ Βασικά για την PythonΤα Πολύ Βασικά για την Python
Τα Πολύ Βασικά για την Python
 
Short version of Dominating Sets, Multiple Egocentric Networks and Modularity...
Short version of Dominating Sets, Multiple Egocentric Networks and Modularity...Short version of Dominating Sets, Multiple Egocentric Networks and Modularity...
Short version of Dominating Sets, Multiple Egocentric Networks and Modularity...
 
The hidden rules and open secrets of corporate governance. Preliminary result...
The hidden rules and open secrets of corporate governance. Preliminary result...The hidden rules and open secrets of corporate governance. Preliminary result...
The hidden rules and open secrets of corporate governance. Preliminary result...
 
Dominating Sets, Multiple Egocentric Networks and Modularity Maximizing Clust...
Dominating Sets, Multiple Egocentric Networks and Modularity Maximizing Clust...Dominating Sets, Multiple Egocentric Networks and Modularity Maximizing Clust...
Dominating Sets, Multiple Egocentric Networks and Modularity Maximizing Clust...
 
Πανεπιστήμιο και Κοινωνία των Πολιτών: Στοιχεία & Περιπτώσεις Αποικιοποίησ...
Πανεπιστήμιο και Κοινωνία των Πολιτών: Στοιχεία & Περιπτώσεις Αποικιοποίησ...Πανεπιστήμιο και Κοινωνία των Πολιτών: Στοιχεία & Περιπτώσεις Αποικιοποίησ...
Πανεπιστήμιο και Κοινωνία των Πολιτών: Στοιχεία & Περιπτώσεις Αποικιοποίησ...
 
Διακριτά Μαθηματικά ΙI: Εισαγωγή στη Συνδυαστική. Του Μωυσή Μπουντουρίδη
Διακριτά Μαθηματικά ΙI: Εισαγωγή στη Συνδυαστική. Του Μωυσή ΜπουντουρίδηΔιακριτά Μαθηματικά ΙI: Εισαγωγή στη Συνδυαστική. Του Μωυσή Μπουντουρίδη
Διακριτά Μαθηματικά ΙI: Εισαγωγή στη Συνδυαστική. Του Μωυσή Μπουντουρίδη
 
Διακριτά Μαθηματικά Ι: Εισαγωγή στη Λογική. Του Μωυσή Μπουντουρίδη
Διακριτά Μαθηματικά Ι: Εισαγωγή στη Λογική. Του Μωυσή ΜπουντουρίδηΔιακριτά Μαθηματικά Ι: Εισαγωγή στη Λογική. Του Μωυσή Μπουντουρίδη
Διακριτά Μαθηματικά Ι: Εισαγωγή στη Λογική. Του Μωυσή Μπουντουρίδη
 
Extended Cyclic Cellular Automata: Emulating Social Influence. By Moses A. Bo...
Extended Cyclic Cellular Automata: Emulating Social Influence. By Moses A. Bo...Extended Cyclic Cellular Automata: Emulating Social Influence. By Moses A. Bo...
Extended Cyclic Cellular Automata: Emulating Social Influence. By Moses A. Bo...
 
Μαθαίνοντας την R σε μια ώρα
Μαθαίνοντας την R σε μια ώραΜαθαίνοντας την R σε μια ώρα
Μαθαίνοντας την R σε μια ώρα
 

Kürzlich hochgeladen

Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptx
AlMamun560346
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
1301aanya
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
RizalinePalanog2
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
PirithiRaju
 
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
Areesha Ahmad
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Sérgio Sacani
 

Kürzlich hochgeladen (20)

Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptx
 
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .
 
Unit5-Cloud.pptx for lpu course cse121 o
Unit5-Cloud.pptx for lpu course cse121 oUnit5-Cloud.pptx for lpu course cse121 o
Unit5-Cloud.pptx for lpu course cse121 o
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
 
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICESAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
 
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxPSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdf
 
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedConnaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
 
Call Girls Alandi Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Alandi Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Alandi Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Alandi Call Me 7737669865 Budget Friendly No Advance Booking
 

Transitions and Trajectories in Temporal Networks

  • 1. Transitions and Trajectories in Temporal Networks Moses A. Boudourides1 & Sergios T. Lenis2 with Martin Everett & Elisa Bellotti Department of Mathematics University of Patras, Greece 1Moses.Boudourides@gmail.com 2sergioslenis@gmail.com 12 June 2015 Examples and Python code: http://mboudour.github.io/2015/06/12/Transitions-&-Trajectories-in-Temporal-Networks.html Boudourides, Lenis, Everett & Bellotti Transitions and Trajectories in Temporal Networks
  • 2. Overview The terms “graph” and “(social) network” are used here interchangeably. This is an elaboration of Borgatti & Halgin’s analysis of trajectories in temporal networks. Using Python’s NetworkX, we have developped a computational tool generates a random temporal network, displays a plot of this temporal network as a multilayer graph (layers corresponding to time slices), displays the activity timelines of all edges in this graph, computes all transitions induced by co–incident eges, computes all trajectories of vertices formed by alternating translations and transitions and presents the table of statistics of all trajectories. The Python scripts for all these computations are available at: https://github.com/mboudour/TrajectoriesOfTemporalGraphs Boudourides, Lenis, Everett & Bellotti Transitions and Trajectories in Temporal Networks
  • 3. Basic Concepts and Notation By a temporal network we understand an ordinary network, in which edges and vertices are not active or present in all time, but for certain time points inside a given time period (time interval) T. In general, T ⊂ R+ and time points can be either isolated points or (sub)intervals (of nonnegative real numbers). We denote by V , E the (finite) sets of vertices and edges, respectively, of a temporal network. Let (u, v) ∈ E be an arbitrary edge joining two vertices u, v ∈ V . We denote by T(u,v), Tu, Tv ⊂ T the activity time set of edge (u, v) and vertices u, v, respectively, and we assume the following consistency condition to hold, for all edges (u, v) and vertices u, v: T(u,v) ⊆ Tu ∩ Tv . Boudourides, Lenis, Everett & Bellotti Transitions and Trajectories in Temporal Networks
  • 4. The activity timeline of edge (u, v) is defined as a function α(u,v) : T(u,v) −→ {0, 1} such that α(u,v)(t) = 1, whenever t ∈ T(u,v), 0, whenever t ∈ T T(u,v). Similarly, the activity timeline of vertex u is defined as a function αu : Tu −→ {0, 1} such that αu(t) = 1, whenever t ∈ Tu, 0, whenever t ∈ T Tu. Furthermore, given a vertex u and a time point τ ∈ Tu, we write uτ in order to denote the (activated) vertex u at time τ. In other words, if τ ∈ T(u,v), i.e., α(u,v)(τ) = 1, then τ ∈ Tu ∩ Tv , αuτ (τ) = αvτ (τ) = 1, where (uτ , vτ ) is an edge of the temporal network. Boudourides, Lenis, Everett & Bellotti Transitions and Trajectories in Temporal Networks
  • 5. Example Boudourides, Lenis, Everett & Bellotti Transitions and Trajectories in Temporal Networks
  • 6. To avoid certain technicalities, let us assume (from now on) that we have a temporal network such that, for any edge or vertex, the activity time set of this edge or vertex is a union of disjoint intervals (each one having positive length). Thus, for any edge e, the activity set Te of e is: Te = k n=1 Tn(e). Above k = k(e) and, for all n = 1, . . . , k, Tn(e) is a closed interval of the form: Tn(e) = [tn(e), tn(e)], where tn(e), tn(e) ≥ 0, for n = 1, . . . , k, and: tn(e) < tn(e) < tn+1(e). Tn(e) is called n–th activity subinterval of the activity set Te and tn(e), tn(e) are its left, right end points (respectively). Boudourides, Lenis, Everett & Bellotti Transitions and Trajectories in Temporal Networks
  • 7. Note that, in this way, T becomes the convex hull (i.e., the minimum closed interval) containing the union of all activity subintervals of all edges of the temporal network: T = conv e∈E k n=1 Tn(e) . Any t ∈ T e∈E k n=1 Tn(e) is called intermitting time point. Furthermore, we denote by Ie the set of all end points of all subintervals of Te, i.e., Ie = t0(e), t0(e), t1(e), t1(e), . . . , tk(e), tk(e) . Lumping together all sets Ie, for all edges e, one gets the total set of all end points of the temporal network I = e∈E Ie. Boudourides, Lenis, Everett & Bellotti Transitions and Trajectories in Temporal Networks
  • 8. Definition Let τ ∈ I. Then τ is called: intermediate time point when, for every edge e ∈ E, if τ ∈ Tn(e), for some n, then τ is always an interior point of Tn(e). co–terminal time point when, for every edge e ∈ E, if τ ∈ Tn(e), for some n, then τ is always either the left or the right end point of Tn(e) (but always the same for all edges), t t tτ τ τ e e e f f f intermediate time τ left co–terminal time τ right co–terminal time τ Boudourides, Lenis, Everett & Bellotti Transitions and Trajectories in Temporal Networks
  • 9. Definition Let e, f be two edges and let τ ∈ Te ∪ Tf . Then τ is called: anti–terminal time point (w.r.t. e, f ) when τ is the right (or left) end point of Tn(e), for some n, and the left (right, resp.) end point of Tm(f ), for some m, step–like time point (w.r.t. e, f ) when τ is is an interior point of Tn(e), for some n (or an interior point of Tm(f ), for some m) and an end point of Tm(f ), for some m (or an end point of Tn(e), for some n, resp.). t tτ τ e e f f anti–terminal time τ step–like time τ Boudourides, Lenis, Everett & Bellotti Transitions and Trajectories in Temporal Networks
  • 10. Definition of Transitions Definition Let u be a vertex of the temporal network and v, w two neighbors of u. If τ ∈ T(u,v) ∪ T(u,w) is such that τ is either an anti–terminal or a step–like time point (w.r.t. (u, v), (u, w)), then we say that u passes from v to w at time τ through a transition denoted as vτ uτ −→ wτ . t tτ τ Transition vτ uτ −→ wτ (u, v) (u, v) (u, w) (u, w) Boudourides, Lenis, Everett & Bellotti Transitions and Trajectories in Temporal Networks
  • 11. Examples of Transitions In the following diagramm, there are 12 transitions of u through its neighbors v, w, z: v2 u2 −→ w2, v3 u3 −→ z3, w3 u3 −→ z3, v4 u4 −→ z4, w4 u4 −→ z4, z6 u6 −→ v6, z6 u6 −→ w6, v8 u8 −→ w8, v8 u8 −→ z8, w10 u10 −→ v10, w10 u10 −→ z10, z10 u10 −→ v10. Boudourides, Lenis, Everett & Bellotti Transitions and Trajectories in Temporal Networks
  • 12. Definition of Translations Definition Let u, v two adjacent vertices in the temporal network. If τ, σ ∈ T(u,v), τ < σ, are such that [τ, σ] ⊂ [ti (u, v), ti (u, v)], for some activity subinterval [ti (u, v), ti (u, v)], then we say that u shifts from vτ to vσ through a translation denoted as vτ u vσ. tti τ σ ti Translation vτ u vσ (u, v) Remarks: In a temporal network, neither transitions nor translations make up edges. However, if two vertices are joined by a transition, it is possible (but not necessary) that these vertices were joined by an edge too. In a temporal network without self–loops, any two vertices joined by a translation cannot be joined by an edge. Boudourides, Lenis, Everett & Bellotti Transitions and Trajectories in Temporal Networks
  • 13. Definition of Trajectories Definition In a temporal network, a trajectory of vertex u passing over its neighbors v, w, z, . . . is an alternating sequence of vertices, translations and transitions of the form: [(v0, u, v1), (v1, u1, w1), (w1, u, w2), (w2, u2, z2), . . .] where v0 u v1 is a translation, v1 u1 −→ w1 is a transition, w1 u w2 is a translation, w2 u2 −→ z2 is a transition, etc. Boudourides, Lenis, Everett & Bellotti Transitions and Trajectories in Temporal Networks
  • 14. Example: Two Trajectories t0 1 2 3 4 Trajectory [(v0, u, v1), (v1, u1, w1), (w1, u, w2), (w2, u2, v2), (v2, u, v3), (v3, u3, w3), (w3, u, w4)] (u, v) (u, w) t0 1 2 3 4 Trajectory [(v0, u, v3), (v3, u3, w3), (w3, u, w4)] (u, v) (u, w) Boudourides, Lenis, Everett & Bellotti Transitions and Trajectories in Temporal Networks