SlideShare ist ein Scribd-Unternehmen logo
1 von 17
XIV INTERNATIONAL CONGRESS OF THE 
MEXICAN HYDROGEN SOCIETY CANCUN 2014 
By: 
J. M. Sandoval Cancino, I. Domínguez Ibarvo, D. E. Pacheco Catalán, 
Y. Verde-Goméz, J. L. Durán Gómez
Content 
Introduction 
Methodology 
Converter description 
Results and discussions 
Conclusions
Introduction 
Hybrid Renewable Energy Systems (HRES) 
Intermittency Issues 
Energy Storage Systems (ESS) 
Batteries 
Supercapacitors (SC) 
Fuel Cells(FC) 
Compressed Air 
Interconnection via Integrated Bi-directional Flyback 
Converter (IBFBC)
Hybrid Renewable Energy System 
Wind 
Turbine 
Photovoltaic 
module 
DC-DC DC-DC 
+24Vdc Bus 
DC-DC 
DC Load 
Energy 
management 
DC Load DC-AC 
AC Load 
127Vac 
Supercapacitor stack Batteries 
IBFBC
Figure 1. Schematic of the proposed Integrated Bi-directional Flyback 
Converter topology 
Methodology 
Description of proposed converter
Methodology: Converter description 
Topology: 
Bi-directional Flyback converter 
Initial Data: 
Vd= +24Vdc (DC Bus Voltage) 
Vo= +48Vdc (Supercapacitor Maximum Voltage) 
Emax= 2.48 Wh/kg (Supercapacitor Maximum Energy) 
SCcap=165F
Methodology: Description of proposed convert 
Transformer 
N1=N2=63 
Lm=2.63mH 
S1 and S2 Duty Cycle (d): 
d1=67% 
d2=33% 
Switching Frecuency: 
20000Hz
Methodology: Converter description 
Duty-cycle for S1 and S2 switches: 
Voltage in S1 and S2 IGBT switches: 
Voltage in Diodes D1 and D2:
Interconnection strategy 
Source 
24V DC 
Bus 
IBFBC Supercapacitor module 
Energy 
Management
80 
40 
8 
4 
80 
40 
10 
Figure 2. Integrated Bi-directional Flyback Converter charge 
operation (+24Vcd-+48Vcd) D2 and S1wave forms simulation in 
PSIM™ 
Results 
0 
Vdiodo 2 
0 
Idiodo 2 
0 
Vsw1 
0.19465 0.1947 0.19475 0.1948 0.19485 0.1949 
Time (s) 
0 
Isw 1 
Current (A) Voltage (V) Current (A) Voltage (V)
Results 
40 
0 
Vdiodo1 
3 
2 
1 
0 
Idiodo 1 
80 
40 
0 
Vsw 2 
0.2796 0.27965 0.2797 0.27975 
Time (s) 
2.5 
0 
Isw 2 
Figure 3. Integrated Bi-directional Flyback Converter discharge operation 
(+48Vdc-+24Vdc) D1 and S2 wave forms simulation in PSIM™ 
Current (A) Voltage (V) Current (A) Voltage (V)
Results 
Figure 5. S1 voltage (blue), S1 current (cyan), D2 current (pink) and 63% 
Pulse Width Modulation signal (green) during charge operation.
Figure 4. 33% Pulse Width Modulation signal (blue), D1 current 
(cyan), S2 current (pink) and S2 voltage (green) during discharge 
operation. 
Results
Figure 6. Supercapacitor module 0Vdc - +48Vdc charge via the 
Integrated Bidirectional Flyback Converter graphic 
Results 
Time (s) 
Voltage (V)
Output voltage 
50 48 46 44 42 40 38 36 34 32 30 
25 
20 
15 
10 
Output voltage (V) 
Input voltage (V) 
Results 
Figure 7. +24Vdc output vs +48Vdc input control voltage response
Conclusions 
The IBFBC is a simple bidirectional topology that 
requires few components reducing costs an energy losses. 
This Converter can be used to charge and discharge a 
supercapacitor module with a single device. 
The IBFBC becomes unstable after 13V (27%) drop in 
supercapacitor terminals, and hence cannot reach deep 
discharge cycles. 
Further enhancements are required for better performances 
and full topology potential.
Acknowledgments 
CONACYT FOMIX Qroo-2011-001-174895, under Grant 
BS123CONACYT No. 280955. 
CICY for the movility economical support granted 
SMH for the conference scholarship 
Centro de Investigación Científica de Yucatán A.C. 
Instituto Tecnológico de Chihuahua 
Instituto Tecnológico de Cancun 
Dr. Ysmael Verde Gómez 
M.C. Enrique Escobedo 
M.C. Isaias Dominguez Ivarbo

Weitere ähnliche Inhalte

Was ist angesagt?

AP Phnysics - Chapter 19 Powerpoint
AP Phnysics - Chapter 19 PowerpointAP Phnysics - Chapter 19 Powerpoint
AP Phnysics - Chapter 19 Powerpoint
Mrreynon
 
Newton Raphson
Newton RaphsonNewton Raphson
Newton Raphson
Aisu
 

Was ist angesagt? (19)

APSA LEC 9
APSA LEC 9APSA LEC 9
APSA LEC 9
 
Lecture 10
Lecture 10Lecture 10
Lecture 10
 
Report_AKbar_PDF
Report_AKbar_PDFReport_AKbar_PDF
Report_AKbar_PDF
 
Simulation and Control of PV Based Gird Connected Energy Management System Us...
Simulation and Control of PV Based Gird Connected Energy Management System Us...Simulation and Control of PV Based Gird Connected Energy Management System Us...
Simulation and Control of PV Based Gird Connected Energy Management System Us...
 
Ece333 2018 lect18_rh power flow
Ece333 2018 lect18_rh power flowEce333 2018 lect18_rh power flow
Ece333 2018 lect18_rh power flow
 
Lecture 15
Lecture 15Lecture 15
Lecture 15
 
Load flow study
Load flow studyLoad flow study
Load flow study
 
Lecture 16
Lecture 16Lecture 16
Lecture 16
 
DISTRIBUTION LOAD FLOW ANALYSIS FOR RDIAL & MESH DISTRIBUTION SYSTEM
DISTRIBUTION LOAD FLOW ANALYSIS FOR RDIAL & MESH DISTRIBUTION SYSTEMDISTRIBUTION LOAD FLOW ANALYSIS FOR RDIAL & MESH DISTRIBUTION SYSTEM
DISTRIBUTION LOAD FLOW ANALYSIS FOR RDIAL & MESH DISTRIBUTION SYSTEM
 
Lect3 smatgrid-power systemspart2
Lect3 smatgrid-power systemspart2Lect3 smatgrid-power systemspart2
Lect3 smatgrid-power systemspart2
 
AP Phnysics - Chapter 19 Powerpoint
AP Phnysics - Chapter 19 PowerpointAP Phnysics - Chapter 19 Powerpoint
AP Phnysics - Chapter 19 Powerpoint
 
(10) stability
(10) stability(10) stability
(10) stability
 
506 267-276
506 267-276506 267-276
506 267-276
 
Gauss seidel method
Gauss seidel methodGauss seidel method
Gauss seidel method
 
Topological Comparison of Dual-Input DC-DC Converters
Topological Comparison of Dual-Input DC-DC ConvertersTopological Comparison of Dual-Input DC-DC Converters
Topological Comparison of Dual-Input DC-DC Converters
 
Exp 3 (1)3. To Formulate YBUS Matrix By Singular Transformation.
Exp 3 (1)3.	To Formulate YBUS Matrix By Singular Transformation.Exp 3 (1)3.	To Formulate YBUS Matrix By Singular Transformation.
Exp 3 (1)3. To Formulate YBUS Matrix By Singular Transformation.
 
Exp 5 (1)5. Newton Raphson load flow analysis Matlab Software
Exp 5 (1)5.	Newton Raphson load flow analysis Matlab SoftwareExp 5 (1)5.	Newton Raphson load flow analysis Matlab Software
Exp 5 (1)5. Newton Raphson load flow analysis Matlab Software
 
38
3838
38
 
Newton Raphson
Newton RaphsonNewton Raphson
Newton Raphson
 

Andere mochten auch

RESUME COLOUR bond
RESUME COLOUR bondRESUME COLOUR bond
RESUME COLOUR bond
Alex Arul
 
2 spot diagnosis
2 spot diagnosis2 spot diagnosis
2 spot diagnosis
Walaa Manaa
 

Andere mochten auch (12)

RESUME COLOUR bond
RESUME COLOUR bondRESUME COLOUR bond
RESUME COLOUR bond
 
Social by Web Design
Social by Web DesignSocial by Web Design
Social by Web Design
 
Baja kompos
Baja komposBaja kompos
Baja kompos
 
Communication and Persuasion in the Digital age
Communication and Persuasion in the Digital ageCommunication and Persuasion in the Digital age
Communication and Persuasion in the Digital age
 
Social Media e strategie aziendali
Social Media e strategie aziendaliSocial Media e strategie aziendali
Social Media e strategie aziendali
 
3 enanthem
3 enanthem3 enanthem
3 enanthem
 
Algorizm
AlgorizmAlgorizm
Algorizm
 
Bi-directional Flyback DC-DC Converter
Bi-directional Flyback DC-DC Converter Bi-directional Flyback DC-DC Converter
Bi-directional Flyback DC-DC Converter
 
2 spot diagnosis
2 spot diagnosis2 spot diagnosis
2 spot diagnosis
 
1 skin rash
1 skin rash1 skin rash
1 skin rash
 
CNS examination
CNS examinationCNS examination
CNS examination
 
Clinical approach fever +lymphadenopathy
Clinical approach fever +lymphadenopathyClinical approach fever +lymphadenopathy
Clinical approach fever +lymphadenopathy
 

Ähnlich wie Smh presentación jmsc depc

Ähnlich wie Smh presentación jmsc depc (20)

Smh presentación jmsc depc
Smh presentación  jmsc depcSmh presentación  jmsc depc
Smh presentación jmsc depc
 
10.1109@IPACT.2017.8245072.pdf
10.1109@IPACT.2017.8245072.pdf10.1109@IPACT.2017.8245072.pdf
10.1109@IPACT.2017.8245072.pdf
 
IRJET- Design of PV System using DC-DC Boost Converter Interfaced with Five L...
IRJET- Design of PV System using DC-DC Boost Converter Interfaced with Five L...IRJET- Design of PV System using DC-DC Boost Converter Interfaced with Five L...
IRJET- Design of PV System using DC-DC Boost Converter Interfaced with Five L...
 
Incremental Conductance MPPT Algorithm for PV System Implemented Using DC-DC ...
Incremental Conductance MPPT Algorithm for PV System Implemented Using DC-DC ...Incremental Conductance MPPT Algorithm for PV System Implemented Using DC-DC ...
Incremental Conductance MPPT Algorithm for PV System Implemented Using DC-DC ...
 
176 shiv kumar
176 shiv kumar176 shiv kumar
176 shiv kumar
 
Performance Evaluation of Photo-Voltaic fed Brushless Direct Current Motor fo...
Performance Evaluation of Photo-Voltaic fed Brushless Direct Current Motor fo...Performance Evaluation of Photo-Voltaic fed Brushless Direct Current Motor fo...
Performance Evaluation of Photo-Voltaic fed Brushless Direct Current Motor fo...
 
Closed Loop Control of Hybrid Boosting Converter for Renewable Energy Applica...
Closed Loop Control of Hybrid Boosting Converter for Renewable Energy Applica...Closed Loop Control of Hybrid Boosting Converter for Renewable Energy Applica...
Closed Loop Control of Hybrid Boosting Converter for Renewable Energy Applica...
 
Guiding Principles in Selecting AC To DC Converters For Power Factor Correcti...
Guiding Principles in Selecting AC To DC Converters For Power Factor Correcti...Guiding Principles in Selecting AC To DC Converters For Power Factor Correcti...
Guiding Principles in Selecting AC To DC Converters For Power Factor Correcti...
 
Simplified cascade multiphase DC-DC boost power converters for high voltage-g...
Simplified cascade multiphase DC-DC boost power converters for high voltage-g...Simplified cascade multiphase DC-DC boost power converters for high voltage-g...
Simplified cascade multiphase DC-DC boost power converters for high voltage-g...
 
Implementation of non-isolated three-port converter through augmented time re...
Implementation of non-isolated three-port converter through augmented time re...Implementation of non-isolated three-port converter through augmented time re...
Implementation of non-isolated three-port converter through augmented time re...
 
Icecds.2017.8390006
Icecds.2017.8390006Icecds.2017.8390006
Icecds.2017.8390006
 
Fuzzy Control Based Quadrupler Boost Converter
Fuzzy Control Based Quadrupler Boost ConverterFuzzy Control Based Quadrupler Boost Converter
Fuzzy Control Based Quadrupler Boost Converter
 
J0372049056
J0372049056J0372049056
J0372049056
 
Source-load-variable voltage regulated cascaded DC/DC converter for a DC mic...
Source-load-variable voltage regulated cascaded DC/DC  converter for a DC mic...Source-load-variable voltage regulated cascaded DC/DC  converter for a DC mic...
Source-load-variable voltage regulated cascaded DC/DC converter for a DC mic...
 
D05432435
D05432435D05432435
D05432435
 
Vibration Based Energy Harvesting Interface Circuit using Diode-Capacitor Top...
Vibration Based Energy Harvesting Interface Circuit using Diode-Capacitor Top...Vibration Based Energy Harvesting Interface Circuit using Diode-Capacitor Top...
Vibration Based Energy Harvesting Interface Circuit using Diode-Capacitor Top...
 
High Efficiency Dc-Dc Converter for Renewable Energy Applications and High Vo...
High Efficiency Dc-Dc Converter for Renewable Energy Applications and High Vo...High Efficiency Dc-Dc Converter for Renewable Energy Applications and High Vo...
High Efficiency Dc-Dc Converter for Renewable Energy Applications and High Vo...
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Dual output DC-DC quasi impedance source converter
Dual output DC-DC quasi impedance source converterDual output DC-DC quasi impedance source converter
Dual output DC-DC quasi impedance source converter
 
Series Voltage Compensator Modeling and Design for Reduction of Grid-Tie Sola...
Series Voltage Compensator Modeling and Design for Reduction of Grid-Tie Sola...Series Voltage Compensator Modeling and Design for Reduction of Grid-Tie Sola...
Series Voltage Compensator Modeling and Design for Reduction of Grid-Tie Sola...
 

Smh presentación jmsc depc

  • 1. XIV INTERNATIONAL CONGRESS OF THE MEXICAN HYDROGEN SOCIETY CANCUN 2014 By: J. M. Sandoval Cancino, I. Domínguez Ibarvo, D. E. Pacheco Catalán, Y. Verde-Goméz, J. L. Durán Gómez
  • 2. Content Introduction Methodology Converter description Results and discussions Conclusions
  • 3. Introduction Hybrid Renewable Energy Systems (HRES) Intermittency Issues Energy Storage Systems (ESS) Batteries Supercapacitors (SC) Fuel Cells(FC) Compressed Air Interconnection via Integrated Bi-directional Flyback Converter (IBFBC)
  • 4. Hybrid Renewable Energy System Wind Turbine Photovoltaic module DC-DC DC-DC +24Vdc Bus DC-DC DC Load Energy management DC Load DC-AC AC Load 127Vac Supercapacitor stack Batteries IBFBC
  • 5. Figure 1. Schematic of the proposed Integrated Bi-directional Flyback Converter topology Methodology Description of proposed converter
  • 6. Methodology: Converter description Topology: Bi-directional Flyback converter Initial Data: Vd= +24Vdc (DC Bus Voltage) Vo= +48Vdc (Supercapacitor Maximum Voltage) Emax= 2.48 Wh/kg (Supercapacitor Maximum Energy) SCcap=165F
  • 7. Methodology: Description of proposed convert Transformer N1=N2=63 Lm=2.63mH S1 and S2 Duty Cycle (d): d1=67% d2=33% Switching Frecuency: 20000Hz
  • 8. Methodology: Converter description Duty-cycle for S1 and S2 switches: Voltage in S1 and S2 IGBT switches: Voltage in Diodes D1 and D2:
  • 9. Interconnection strategy Source 24V DC Bus IBFBC Supercapacitor module Energy Management
  • 10. 80 40 8 4 80 40 10 Figure 2. Integrated Bi-directional Flyback Converter charge operation (+24Vcd-+48Vcd) D2 and S1wave forms simulation in PSIM™ Results 0 Vdiodo 2 0 Idiodo 2 0 Vsw1 0.19465 0.1947 0.19475 0.1948 0.19485 0.1949 Time (s) 0 Isw 1 Current (A) Voltage (V) Current (A) Voltage (V)
  • 11. Results 40 0 Vdiodo1 3 2 1 0 Idiodo 1 80 40 0 Vsw 2 0.2796 0.27965 0.2797 0.27975 Time (s) 2.5 0 Isw 2 Figure 3. Integrated Bi-directional Flyback Converter discharge operation (+48Vdc-+24Vdc) D1 and S2 wave forms simulation in PSIM™ Current (A) Voltage (V) Current (A) Voltage (V)
  • 12. Results Figure 5. S1 voltage (blue), S1 current (cyan), D2 current (pink) and 63% Pulse Width Modulation signal (green) during charge operation.
  • 13. Figure 4. 33% Pulse Width Modulation signal (blue), D1 current (cyan), S2 current (pink) and S2 voltage (green) during discharge operation. Results
  • 14. Figure 6. Supercapacitor module 0Vdc - +48Vdc charge via the Integrated Bidirectional Flyback Converter graphic Results Time (s) Voltage (V)
  • 15. Output voltage 50 48 46 44 42 40 38 36 34 32 30 25 20 15 10 Output voltage (V) Input voltage (V) Results Figure 7. +24Vdc output vs +48Vdc input control voltage response
  • 16. Conclusions The IBFBC is a simple bidirectional topology that requires few components reducing costs an energy losses. This Converter can be used to charge and discharge a supercapacitor module with a single device. The IBFBC becomes unstable after 13V (27%) drop in supercapacitor terminals, and hence cannot reach deep discharge cycles. Further enhancements are required for better performances and full topology potential.
  • 17. Acknowledgments CONACYT FOMIX Qroo-2011-001-174895, under Grant BS123CONACYT No. 280955. CICY for the movility economical support granted SMH for the conference scholarship Centro de Investigación Científica de Yucatán A.C. Instituto Tecnológico de Chihuahua Instituto Tecnológico de Cancun Dr. Ysmael Verde Gómez M.C. Enrique Escobedo M.C. Isaias Dominguez Ivarbo