SlideShare ist ein Scribd-Unternehmen logo
1 von 28
A New Multi-Objective Mixed-Discrete
Particle Swarm Optimization Algorithm
(MO-MDPSO)
Weiyang Tong*, Souma Chowdhury#, and Achille Messac#
* Syracuse University, Department of Mechanical and Aerospace Engineering
# Mississippi State University, Department of Aerospace Engineering
ASME 2014 International Design Engineering Technical Conference
August 18-20, 2014
Buffalo, NY
Particle Swarm Optimization
2
• Particle Swarm Optimization (PSO)
• was introduced by Eberhart and Kennedy in 1995
• was inspired by the swarm behavior observed in nature
• is a population based stochastic algorithm
• Advantages of basic PSO:
• Fast convergence
• Easy implementation
• Few parameters to adjust
PSO suffers from pre-stagnation, which is mainly attributed to
the loss of diversity during the fast convergence
Powerful optimizer for single objective
unconstrained continuous problems
Single Objective Mixed-Discrete PSO*
Position update:
𝒙𝑖 𝑡 + 1 = 𝒙𝑖 𝑡 + 𝒗𝑖 𝑡 + 1
Velocity update:
𝒗𝑖 𝑡 + 1 = 𝑤𝒗𝑖 𝑡 + 𝑟1 𝐶1 𝑃𝑖
𝑙
(𝑡) − 𝒙𝑖 + 𝑟2 𝐶2 𝑃 𝑔(𝑡) − 𝒙𝑖 + 𝑟3 𝛾𝑐 𝒗𝑖(𝑡)
𝑤 – inertia weight
𝒙𝑖 – position of a particle
𝒗𝑖 – velocity of a particle
𝐶1 – cognitive parameter
𝐶2 – social parameter
𝑡 – generation
𝑟 – random number between 0-1
𝑃𝑖
𝑙
– pbest of a particle
𝑃 𝑔
– gbest of the swarm
3
Diverging velocity
Diversity
preservation
coefficient
Inertia Local search Global search
*: Chowdhury et al (2013)
Outline
• Research Motivation and Objectives
• Search Strategy in MO-MDPSO
• Dynamics of MO-MDPSO
• Multi-domain Diversity Preservation
• Numerical Experiments
• Continuous Unconstrained Test Problems
• Continuous Constrained Test Problems
• Mixed-Discrete Test Problems
• Concluding Remarks
4
Research Motivation
5
• Major attributes involved in complex engineering optimization problems:
• Nonlinearity
• Multimodality
• Constraints
• Mixed-discrete
• Multi-objective
Constrained Multiobjective
MultimodalNonlinear
Mixed types of
variables
MDPSO
addressed by
Research Objective
• Develop a Multi-Objective MDPSO (MO-MDPSO)
• Introduce the Multi-objective capability to MDPSO
• Allow the algorithm to search for Pareto solutions
• Make important advancements on the diversity preservation
technique – primary feature of MDPSO
• Avoid stagnation and capture the complete Pareto frontier
• Keep a desirably even distribution of Pareto solutions
6
Search Strategies in Multi-Objective PSO
7
• MOPSO by Parsoupulos and Vrahatis (2002)
• DNPSO by Hu and Eberhart (2002)
• NSPSO by Li (2003)
• MOPSO by Coello (2004)
• To best retain the original dynamics, the Pareto based strategy is selected
Aggregating function based
Single objective based
Hybrid with other techniques
Pareto dominance based
Basic PSO MOPSO
Local
leader
The best solution is based on a
particle’s own history
Local set with non-dominated
historical solutions are found
within the local neighborhood
Global
leader
The best solution among all
local best solutions
The global Pareto solutions are
obtained using all local ones
Solutions Comparison
if both solu-x and solu-y are infeasible
choose the one with the smaller constraint violation;
else if solu-x is feasible and solu-y is infeasible
choose solu-x;
else if solu-x is infeasible and solu-y is feasible
choose solu-y;
else both solu-x and solu-y are feasible
apply non-dominance comparison:
 solu-x strongly dominates solu-y if and only if
𝑓𝑘 𝑥 < 𝑓𝑘 𝑦 , ∀k = 1,2,…, N
 solu-x weakly dominates solu-y if
𝑓𝑘 𝑥 ≤ 𝑓𝑘 𝑦 for at least one k
 solu-x is non-dominated with solu-y when
𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑘: 𝑓𝑘 𝑥 > 𝑓𝑘 𝑦 , for the rest: 𝑓𝑘 𝑥 < 𝑓𝑘 𝑦
8
1
2
3
4
5
1
2
3
4 5
f1
f2
0 0.5 1 1.5 2 2.5 3
0
0.5
1
1.5
2
2.5
3
Infeasible
R
egion
Actual Boundary
Local
Pareto set
Dynamics of MO-MDPSO
Position update:
𝒙𝑖 𝑡 + 1 = 𝒙𝑖 𝑡 + 𝒗𝑖 𝑡 + 1
Velocity update:
𝒗𝑖 𝑡 + 1 = 𝑤𝒗𝑖 𝑡 + 𝑟1 𝐶1 𝑷𝑖
𝑙
(𝑡) − 𝒙𝑖 + 𝑟2 𝐶2 𝑷𝑖
𝑔
(𝑡) − 𝒙𝑖 + 𝑟3 𝛾 𝑐,𝑖 𝒗𝑖(𝑡)
9
𝑷𝑖
𝑙
– local leader of particle-i, which is
the selected from the local Pareto set
𝑷𝑖
𝑔
– global leader of particle-i that is
determined by a stochastic process
Crowding Distance – to manage the
size of local/global Pareto set
Multiple global leaders
Inertia Local search Global search
Applied w.r.t.
each particle’s
global leader
Current particle Stored particle
Diversity Metrics
The diversity is measured based on the spread in design space
for continuous variables:
𝐷𝑐 =
𝑗=𝑚+1
𝑛
𝑥 𝑚𝑎𝑥,𝑗(𝑡) − 𝑥 𝑚𝑖𝑛,𝑗(𝑡)
𝑋 𝑚𝑎𝑥,𝑗 − 𝑋 𝑚𝑖𝑛,𝑗
1
𝑛−𝑚
for discrete variables:
𝐷 𝑑
𝑗
=
𝑥 𝑚𝑎𝑥,𝑗(𝑡) − 𝑥 𝑚𝑖𝑛,𝑗(𝑡)
𝑋 𝑚𝑎𝑥,𝑗 − 𝑋 𝑚𝑖𝑛,𝑗
10
Considering the impact of outlier solutions, the diversity metrics are modified as
𝐷𝑐,𝑖 = 𝐹𝜆𝑖 𝐷𝑐, and 𝐷 𝑑,𝑖
𝑗
= 𝐹𝜆𝑖 𝐷 𝑑
𝑗
where
𝐹𝜆𝑖 = 𝜆
𝑁 𝑝 + 1
𝑁𝑖 + 1
1
𝑛
𝜆 is used to define the fractional domain w.r.t. the global leader of particle-i
The spread along
the jth dimension
The upper & lower bounds
along the jth dimension
Number of
candidate solutions
per global leader
Number of candidate
solutions enclosed by
the 𝜆-fractional domain
Hypercube enclosing
72 candidate solutions
X1
X2
0 1 2 3
0
1
2
3
Particles
Global leaders
Multiple λ-Fractional Domains
11
• 7 global leaders are
observed
• Ideally, each fractional
domain should enclose
10 particles
• Particles located in the
overlapping regions are
uniformly re-allocated
between domains
13
10
14
𝜆 = 0.25
Design Variable Space
Multi-domain Diversity Preservation
The boundaries of the 𝜆𝑖 - fractional domain are defined as
𝑥𝑖
𝑚𝑎𝑥,𝑗
= 𝑚𝑎𝑥
𝑥 𝑚𝑖𝑛,𝑗 + 𝜆𝑖 𝛿𝑥 𝑗,
𝑚𝑖𝑛 𝑷𝑖
𝑔,𝑗
+
1
2
𝜆𝑖 𝛿𝑥 𝑗, 𝑥 𝑚𝑎𝑥,𝑗
𝑥𝑖
𝑚𝑖𝑛,𝑗
= 𝑚𝑖𝑛
𝑥 𝑚𝑎𝑥,𝑗 − 𝜆𝑖 𝛿𝑥 𝑗,
𝑚𝑎𝑥 𝑷𝑖
𝑔,𝑗
−
1
2
𝜆𝑖 𝛿𝑥 𝑗, 𝑥 𝑚𝑖𝑛,𝑗
12
• Continuous variables
𝛾 𝑐,𝑖 = 𝛾 𝑐0 𝑒𝑥𝑝 −
1
2
𝐷𝑐,𝑖
𝜎𝑐
2
,
𝜎𝑐 =
1
2 ln 1 𝛾 𝑚𝑖𝑛
• Discrete variables
𝛾𝑑,𝑖
𝑗
= 𝛾 𝑑0 𝑒𝑥𝑝 −
1
2
𝐷 𝑑,𝑖
𝑗
𝜎 𝑑
2
,
𝜎 𝑑 =
1
2 ln 1 𝑀 𝑗
• Three classes of test problems are used to evaluate the performance of
MO-MDPSO (two performance metrics and comparison with NSGA-II)
• Each of the test problems is run 30 times to compensate for the impact of
random parameters
• Sobol’s quasirandom sequence generator is used for the initial population
User-defined parameters in MO-MDPSO
Numerical Experiment
13
Parameter
Continuous uncon-
strained problems
Continuous con-
strained problems
Mixed-discrete
constrained problems
𝑤 0.5 0.5 0.5
𝐶1 1.5 1.5 1.5
𝐶𝑐0 1.5 1.5 1.5
𝛾 𝑐0 1.0 1.0 1.0
𝛾 𝑚𝑖𝑛 1e-4 1e-6 1e-8
𝛾 𝑑0 NA NA 0.5,1.0
𝜆 0.2 0.1 0.1
Local set size 5 6 10
Global set size 50 50 Up to 100
Population size 100 100 min(5n, 100)
Performance Metric for Continuous Unconstrained Problems
Results: Continuous Unconstrained Problems
14
Function
name
Accuracy 𝜸 Diversity ∆
Mean 𝜇 𝛾 Std. deviation 𝜎𝛾 Mean 𝜇∆ Std. deviation 𝜎∆
MO-MDPSO NSGA-II MO-MDPSO NSGA-II MO-MDPSO NSGA-II MO-MDPSO NSGA-II
Fonseca 2 0.0043 0.0004 0.7900 0.0062
Coello 0.0069 0.0009 0.7101 0.0137
Schaffer 1 0.0086 0.0010 0.7131 0.0066
Schaffer 2 0.0116 0.0008 0.9655 0.0015
ZDT 1 0.0009 0.0009 0.0001 0 0.7265 0.4633 0.0045 0.0416
ZDT 2 0.0007 0.0008 7.3e-5 0 0.7248 0.4351 0.0049 0.0246
ZDT 3 0.0042 0.0434 0.0004 4.2e-5 0.7457 0.5756 0.0052 0.0051
ZDT 4 1.5922 0.5130 2.1411 0.1184 0.8306 0.7026 0.1040 0.06465
ZDT 6 0.0337 0.2965 0.0525 0.0131 0.8860 0.6680 0.2072 0.0099
Comparison of Performance Indicators
15
Performance of Accuracy
Performance of Diversity
ZDT 4
0
1
2
3
ZDT 3
0
0.01
0.02
0.03
0.04
0.05
ZDT 1
0
0.0002
0.0004
0.0006
0.0008
0.001
0.0012
0.0014
ZDT 2
0
0.0002
0.0004
0.0006
0.0008
0.001
ZDT 6
0
0.1
0.2
0.3
0.4MO-
MDPSO
NSGA2
MO-
MDPSO NSGA2
MO-
MDPSO
NSGA2
MO-
MDPSO
NSGA2
MO-
MDPSO
NSGA2
ZDT 1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
ZDT 2
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
ZDT 3
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
ZDT 4
0
5
10
ZDT 6
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
MO-
MDPSO
NSGA2
MO-
MDPSO
NSGA2
MO-
MDPSO
NSGA2
MO-
MDPSO
NSGA2
MO-
MDPSO
NSGA2
The lower the better
Plots: Continuous Unconstrained Problems
16
Number of function
evaluations for these
problems is 10,000
(25,000 was used by
NSGA-II)
f1
f2
0 0.2 0.4 0.6 0.8 1
0
0.2
0.4
0.6
0.8
1
Pareto solution by MO-MDPSO
Actual Pareto solution
f1
f2
0 0.2 0.4 0.6 0.8 1
0
0.2
0.4
0.6
0.8
1
Pareto solution by MO-MDPSO
Actual Pareto solution
f1
f2
0 0.2 0.4 0.6 0.8 1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
Pareto solution by MO-MDPSO
Actual Pareto solution
ZDT 1
30 design variables
ZDT 2
30 design variables
ZDT 3
30 design variables
f1
f2
0 0.2 0.4 0.6 0.8 1
0
0.2
0.4
0.6
0.8
1
Pareto solution by MO-MDPSO
Actual Pareto solution
f1
f2
0 0.2 0.4 0.6 0.8 1
0
0.2
0.4
0.6
0.8
1
Pareto solution by MO-MDPSO
Actual Pareto solution
ZDT 4
10 design variables
ZDT 6
10 design variables
Plots: Continuous Constrained Problems
17f1
f2
0 50 100 150 200
-200
-150
-100
-50
0 Pareto solution by MO-MDPSO
Actual Pareto solution
f1
f2
0 0.2 0.4 0.6 0.8 1
0
0.2
0.4
0.6
0.8
1
Pareto solution by MO-MDPSO
Actual Pareto solution
f1
f2
0 0.2 0.4 0.6 0.8 1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
Pareto solution by MO-MDPSO
Actual Pareto solution
f1
f2
0.4 0.6 0.8 1
0
1
2
3
4
5
6
7
8
9
Pareto solution by MO-MDPSO
Actual Pareto solution
f1
f2
0 20 40 60 80 100 120
10
20
30
40
50
Pareto solution by MO-MDPSO
Actual Pareto solution
BNH
2 design variables
CONSTR
2 design variables
KITA
2 design variables
SRN
2 design variables
TNK
2 design variables
Number of function
evaluations for these
problems is 10,000
(20,000 was used by
NSGA-II)
• The MINLP problem
adopted from Dimkou
and Papalexandri*
18
No. of design variables 6
No. of discrete variables 3 (binary)
Function evaluations 10,000
Population size 100
Elite size of NSGA-II 78
Elite size of MO-MDPSO 100
*: Dimkou and Papalexandri (1998)
Mixed-Discrete Constrained Test Problem 1
f1
f2
-60 -50 -40 -30 -20 -10 0
-20
0
20
40
60
80
100
Pareto solution by NSGA-II
Pareto solution by MO-MDPSO
19
• The design of disc brake
problem adopted from
Osyczka and Kundu*
No. of design variables 4
No. of discrete variables 1 (integer)
Function evaluations 10,000
Population size 100
Elite size of NSGA-II 87
Elite size of MO-MDPSO 100
*: Osyczka and Kundu (1998)
Mixed-Discrete Constrained Test Problem 2
Multi-objective Wind Farm Optimization
20
• Two objectives:
• Maximize the wind farm
capacity factor
• Minimize the unit land usage
• 150 design variables:
• 100 continuous variables:
Location of turbines
• 50 discrete variables: Type
of turbines
• 1225 constraints:
• Inter-turbine spacing
50 turbines with 10
turbine selections
Concluding Remarks
• We developed a new MO-MDPSO algorithm that is capable of handling
all the major attributes in complex engineering optimization problems
• The original dynamics of basic PSO is best retained by introducing the
Pareto dominance strategy to MDPSO
• The multi-domain diversity preservation technique was developed to
maintain a desirably even distribution of Pareto solutions
• MO-MDPSO showed favorable results in solving continuous bi-objective
optimization problems; the performance in solving mixed-discrete
problems is comparable with or better than NSGA-II
• Future work should test MO-MDPSO to high dimensional engineering
problems, and include problems with more than two objectives.
21
Acknowledgement
• I would like to acknowledge my research adviser
Prof. Achille Messac, and my co-adviser Dr.
Souma Chowdhury for their immense help and
support in this research.
• Support from the NSF Awards is also
acknowledged.
22
23
Thank you
Test function
BNH
0
0.05
0.1
0.15
0.2
CONSTR
0
0.002
0.004
0.006
0.008
0.01
KITA
0
0.002
0.004
0.006
0.008
0.01
0.012
SRN
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
TNK
0
0.002
0.004
0.006
0.008
0.01
0.012
Results: Continuous Constrained Problems
24
Function
name
Accuracy 𝜸 Diversity ∆
Mean 𝜇 𝛾 Std. deviation 𝜎𝛾 Mean 𝜇∆ Std. deviation 𝜎∆
BNH 0.1342 0.0204 0.7778 0.0088
CONSTR 0.0070 0.0007 0.8336 0.0101
KITA 0.0091 0.0008 0.7656 0.0086
SRN 0.4909 0.0567 0.7165 0.0046
TNK 0.0055 0.0006 0.9010 0.0216
Performance Metric for Continuous Constrained Problems
CONSTR
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
BNH
0
0.1
0.2
0.3
0.4
0.5
KITA
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
SRN
0
0.2
0.4
0.6
0.8
1
TNK
0
0.2
0.4
0.6
0.8
1
1.2
Performance of Accuracy
Performance of Diversity
Illustration of MO-MDPSO
1. Both solu-x and solu-y are
infeasible – choose the one with the
smaller constraint violation;
2. solu-x is feasible and solu-y is
infeasible – choose solu-x;
3. solu-x is infeasible and solu-y is
feasible – choose solu-y;
4. Both solu-x and solu-y are
feasible – apply non-dominance
comparison:
 solu-x strongly dominates solu-y
if and only if:
𝑓𝑘 𝑥 < 𝑓𝑘 𝑦 , ∀k = 1,2,…, N
 solu-x weakly dominates solu-y if:
𝑓𝑘 𝑥 ≤ 𝑓𝑘 𝑦 for at least one k
25
1
2
3
4
5
f1
f2
0 0.5 1 1.5 2 2.5 3
0
0.5
1
1.5
2
2.5
3
Infeasible
R
egion
Actual Boundary
1
2
3
4
5
1
2
3
4 5
f1
f2
0 0.5 1 1.5 2 2.5 3
0
0.5
1
1.5
2
2.5
3
Infeasible
R
egion
Actual Boundary
Current particle Stored particle
Local
Pareto set
A solution is non-dominated when
𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑘: 𝑓𝑘 𝑥 > 𝑓𝑘 𝑦 ,
for the rest: 𝑓𝑘 𝑥 < 𝑓𝑘 𝑦
k = 1,2,…, N
The crowding distance is used
to manage the size of Pareto set
Multi-directional Diversity Preservation (cont’d)
• Continuous variables
𝛾 𝑐,𝑖 = 𝛾 𝑐0 𝑒𝑥𝑝 −
1
2
𝐷𝑐,𝑖
𝜎𝑐
2
,
𝜎𝑐 =
1
2 ln 1 𝛾 𝑚𝑖𝑛
• The diversity coefficient for
continuous variables is to apply a
repulsion away from each of the
global leaders
• Discrete variables
𝛾𝑑,𝑖
𝑗
= 𝛾 𝑑0 𝑒𝑥𝑝 −
1
2
𝐷 𝑑,𝑖
𝑗
𝜎 𝑑
2
,
𝜎 𝑑 =
1
2 ln 1 𝑀 𝑗
• A stochastic update process is
applied to help particles jump out of
the local hypercude:
 if 𝑟 > 𝛾𝑑,𝑖
𝑗
, use the nearest
vertex approach (NVA)
 else, update randomly to the
upper or lower bound of the
local hypercube
26
The diversity coefficient is expressed as a monotonically
decreasing function of the current diversity metric
Size of feasible
values of the jth
variable
Discrete Variables and Constraints Handling
• The Nearest Vertex Approach (NVA)
is used to deal with discrete variables,
where a local hypercube is defined as
𝑯 = 𝑥 𝐿1, 𝑥 𝑈1 , 𝑥 𝐿2, 𝑥 𝑈2 , … , 𝑥 𝐿 𝑚, 𝑥 𝑈 𝑚
and 𝑥 𝐿 𝑗 < 𝑥 𝑗 < 𝑥 𝑈 𝑗, ∀𝑗 = 1,2, … , 𝑚
• The net constraint is used to handle
constraints, as given by
𝑓𝑐 =
𝑝=1
𝑃
max 𝑔 𝑞, 0 +
𝑞=1
𝑄
max ℎ 𝑞 − 𝜖, 0
27
Nearest Vertex Approach
Normalized
inequality
constraints
Normalized
equality
constraints
Tolerance
Coello Fonseca 2
f1
f2
0 0.2 0.4 0.6 0.8 1
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
1.2
Pareto solution by MO-MDPSO
Actual Pareto solution
f1
f2
0 0.2 0.4 0.6 0.8 1
0
0.2
0.4
0.6
0.8
1
Pareto solution by MO-MDPSO
Actual Pareto solution
Continuous Unconstrained Test Problems
28
Schaffer 1 Schaffer 2
f1
f2
0 1 2 3 4
0
1
2
3
4
Pareto solution by MO-MDPSO
Actual Pareto solution
f1
f2
-1 -0.5 0 0.5 1
0
5
10
15
20
Pareto solution by MO-MDPSO
Actual Pareto solution
Number of function
evaluations for these
problems is 2,000

Weitere ähnliche Inhalte

Andere mochten auch

MOWF_SchiTech_2015_Weiyang
MOWF_SchiTech_2015_WeiyangMOWF_SchiTech_2015_Weiyang
MOWF_SchiTech_2015_WeiyangMDO_Lab
 
ModelSelection1_WCSMO_2013_Ali
ModelSelection1_WCSMO_2013_AliModelSelection1_WCSMO_2013_Ali
ModelSelection1_WCSMO_2013_AliMDO_Lab
 
MCP_ES_2012_Jie
MCP_ES_2012_JieMCP_ES_2012_Jie
MCP_ES_2012_JieMDO_Lab
 
MOWF_WCSMO_2013_Weiyang
MOWF_WCSMO_2013_WeiyangMOWF_WCSMO_2013_Weiyang
MOWF_WCSMO_2013_WeiyangMDO_Lab
 
SA_SciTech_2014_Weiyang
SA_SciTech_2014_WeiyangSA_SciTech_2014_Weiyang
SA_SciTech_2014_WeiyangMDO_Lab
 
A New Multi-Objective Mixed-Discrete Particle Swarm Optimization Algorithm
A New Multi-Objective Mixed-Discrete Particle Swarm Optimization AlgorithmA New Multi-Objective Mixed-Discrete Particle Swarm Optimization Algorithm
A New Multi-Objective Mixed-Discrete Particle Swarm Optimization AlgorithmWeiyang Tong
 

Andere mochten auch (7)

MOWF_SchiTech_2015_Weiyang
MOWF_SchiTech_2015_WeiyangMOWF_SchiTech_2015_Weiyang
MOWF_SchiTech_2015_Weiyang
 
Increase AEP by 2% With Improved Wind Measurement
Increase AEP by 2% With Improved Wind MeasurementIncrease AEP by 2% With Improved Wind Measurement
Increase AEP by 2% With Improved Wind Measurement
 
ModelSelection1_WCSMO_2013_Ali
ModelSelection1_WCSMO_2013_AliModelSelection1_WCSMO_2013_Ali
ModelSelection1_WCSMO_2013_Ali
 
MCP_ES_2012_Jie
MCP_ES_2012_JieMCP_ES_2012_Jie
MCP_ES_2012_Jie
 
MOWF_WCSMO_2013_Weiyang
MOWF_WCSMO_2013_WeiyangMOWF_WCSMO_2013_Weiyang
MOWF_WCSMO_2013_Weiyang
 
SA_SciTech_2014_Weiyang
SA_SciTech_2014_WeiyangSA_SciTech_2014_Weiyang
SA_SciTech_2014_Weiyang
 
A New Multi-Objective Mixed-Discrete Particle Swarm Optimization Algorithm
A New Multi-Objective Mixed-Discrete Particle Swarm Optimization AlgorithmA New Multi-Objective Mixed-Discrete Particle Swarm Optimization Algorithm
A New Multi-Objective Mixed-Discrete Particle Swarm Optimization Algorithm
 

Ähnlich wie MOMDPSO_IDETC_2014_Weiyang

Universal approximators for Direct Policy Search in multi-purpose water reser...
Universal approximators for Direct Policy Search in multi-purpose water reser...Universal approximators for Direct Policy Search in multi-purpose water reser...
Universal approximators for Direct Policy Search in multi-purpose water reser...Andrea Castelletti
 
Particle swarm optimization (PSO) ppt presentation
Particle swarm optimization (PSO) ppt presentationParticle swarm optimization (PSO) ppt presentation
Particle swarm optimization (PSO) ppt presentationLatestShorts
 
MDPSO_SDM_2012_Souma
MDPSO_SDM_2012_SoumaMDPSO_SDM_2012_Souma
MDPSO_SDM_2012_SoumaMDO_Lab
 
Numerical and experimental investigation on existing structures: two seminars
Numerical and experimental investigation on existing structures: two seminarsNumerical and experimental investigation on existing structures: two seminars
Numerical and experimental investigation on existing structures: two seminarsPhD ISG, Sapienza University of Rome
 
PF_MAO_2010_Souam
PF_MAO_2010_SouamPF_MAO_2010_Souam
PF_MAO_2010_SouamMDO_Lab
 
Heuristic design of experiments w meta gradient search
Heuristic design of experiments w meta gradient searchHeuristic design of experiments w meta gradient search
Heuristic design of experiments w meta gradient searchGreg Makowski
 
Argumentation in Artificial Intelligence: From Theory to Practice (Practice)
Argumentation in Artificial Intelligence: From Theory to Practice (Practice)Argumentation in Artificial Intelligence: From Theory to Practice (Practice)
Argumentation in Artificial Intelligence: From Theory to Practice (Practice)Mauro Vallati
 
metaheuristic tabu pso
metaheuristic tabu psometaheuristic tabu pso
metaheuristic tabu psoheba_ahmad
 
PSO and Its application in Engineering
PSO and Its application in EngineeringPSO and Its application in Engineering
PSO and Its application in EngineeringPrince Jain
 
igor-kupczynski-msc-put-thesis
igor-kupczynski-msc-put-thesisigor-kupczynski-msc-put-thesis
igor-kupczynski-msc-put-thesisIgor Kupczyński
 
Product failure analysis using Explicit dynamic
Product failure analysis using Explicit dynamicProduct failure analysis using Explicit dynamic
Product failure analysis using Explicit dynamicnaga ram
 
A Reinforcement Learning Approach for Hybrid Flexible Flowline Scheduling Pro...
A Reinforcement Learning Approach for Hybrid Flexible Flowline Scheduling Pro...A Reinforcement Learning Approach for Hybrid Flexible Flowline Scheduling Pro...
A Reinforcement Learning Approach for Hybrid Flexible Flowline Scheduling Pro...Bert Van Vreckem
 
Tutorial rpo
Tutorial rpoTutorial rpo
Tutorial rpomosi2005
 

Ähnlich wie MOMDPSO_IDETC_2014_Weiyang (20)

Optimization Using Evolutionary Computing Techniques
Optimization Using Evolutionary Computing Techniques Optimization Using Evolutionary Computing Techniques
Optimization Using Evolutionary Computing Techniques
 
Universal approximators for Direct Policy Search in multi-purpose water reser...
Universal approximators for Direct Policy Search in multi-purpose water reser...Universal approximators for Direct Policy Search in multi-purpose water reser...
Universal approximators for Direct Policy Search in multi-purpose water reser...
 
Particle swarm optimization (PSO) ppt presentation
Particle swarm optimization (PSO) ppt presentationParticle swarm optimization (PSO) ppt presentation
Particle swarm optimization (PSO) ppt presentation
 
ga-2.ppt
ga-2.pptga-2.ppt
ga-2.ppt
 
MDPSO_SDM_2012_Souma
MDPSO_SDM_2012_SoumaMDPSO_SDM_2012_Souma
MDPSO_SDM_2012_Souma
 
Numerical and experimental investigation on existing structures: two seminars
Numerical and experimental investigation on existing structures: two seminarsNumerical and experimental investigation on existing structures: two seminars
Numerical and experimental investigation on existing structures: two seminars
 
PF_MAO_2010_Souam
PF_MAO_2010_SouamPF_MAO_2010_Souam
PF_MAO_2010_Souam
 
Heuristic design of experiments w meta gradient search
Heuristic design of experiments w meta gradient searchHeuristic design of experiments w meta gradient search
Heuristic design of experiments w meta gradient search
 
Argumentation in Artificial Intelligence: From Theory to Practice (Practice)
Argumentation in Artificial Intelligence: From Theory to Practice (Practice)Argumentation in Artificial Intelligence: From Theory to Practice (Practice)
Argumentation in Artificial Intelligence: From Theory to Practice (Practice)
 
metaheuristic tabu pso
metaheuristic tabu psometaheuristic tabu pso
metaheuristic tabu pso
 
Ds33717725
Ds33717725Ds33717725
Ds33717725
 
Ds33717725
Ds33717725Ds33717725
Ds33717725
 
Tokyo conference
Tokyo conferenceTokyo conference
Tokyo conference
 
PSO and Its application in Engineering
PSO and Its application in EngineeringPSO and Its application in Engineering
PSO and Its application in Engineering
 
igor-kupczynski-msc-put-thesis
igor-kupczynski-msc-put-thesisigor-kupczynski-msc-put-thesis
igor-kupczynski-msc-put-thesis
 
Product failure analysis using Explicit dynamic
Product failure analysis using Explicit dynamicProduct failure analysis using Explicit dynamic
Product failure analysis using Explicit dynamic
 
A Reinforcement Learning Approach for Hybrid Flexible Flowline Scheduling Pro...
A Reinforcement Learning Approach for Hybrid Flexible Flowline Scheduling Pro...A Reinforcement Learning Approach for Hybrid Flexible Flowline Scheduling Pro...
A Reinforcement Learning Approach for Hybrid Flexible Flowline Scheduling Pro...
 
Tutorial rpo
Tutorial rpoTutorial rpo
Tutorial rpo
 
Kaggle kenneth
Kaggle kennethKaggle kenneth
Kaggle kenneth
 
Sota
SotaSota
Sota
 

Mehr von MDO_Lab

WFSA_IDETC_2013_Weiyang
WFSA_IDETC_2013_WeiyangWFSA_IDETC_2013_Weiyang
WFSA_IDETC_2013_WeiyangMDO_Lab
 
WM_MAO_2012_Weiyang
WM_MAO_2012_WeiyangWM_MAO_2012_Weiyang
WM_MAO_2012_WeiyangMDO_Lab
 
CP3_SDM_2010_Souma
CP3_SDM_2010_SoumaCP3_SDM_2010_Souma
CP3_SDM_2010_SoumaMDO_Lab
 
ATI_SDM_2010_Jun
ATI_SDM_2010_JunATI_SDM_2010_Jun
ATI_SDM_2010_JunMDO_Lab
 
WFO_MAO_2010_Souma
WFO_MAO_2010_SoumaWFO_MAO_2010_Souma
WFO_MAO_2010_SoumaMDO_Lab
 
ATE_MAO_2010_Jun
ATE_MAO_2010_JunATE_MAO_2010_Jun
ATE_MAO_2010_JunMDO_Lab
 
COST_MAO_2010_Jie
COST_MAO_2010_JieCOST_MAO_2010_Jie
COST_MAO_2010_JieMDO_Lab
 
WFO_IDETC_2011_Souma
WFO_IDETC_2011_SoumaWFO_IDETC_2011_Souma
WFO_IDETC_2011_SoumaMDO_Lab
 
COSTMODEL_IDETC_2010_Jie
COSTMODEL_IDETC_2010_JieCOSTMODEL_IDETC_2010_Jie
COSTMODEL_IDETC_2010_JieMDO_Lab
 
WFO_TIERF_2011_Messac
WFO_TIERF_2011_MessacWFO_TIERF_2011_Messac
WFO_TIERF_2011_MessacMDO_Lab
 
WFO_SDM_2011_Souma
WFO_SDM_2011_SoumaWFO_SDM_2011_Souma
WFO_SDM_2011_SoumaMDO_Lab
 
RBHF_SDM_2011_Jie
RBHF_SDM_2011_JieRBHF_SDM_2011_Jie
RBHF_SDM_2011_JieMDO_Lab
 
WFO_IDETC_2011_Souma
WFO_IDETC_2011_SoumaWFO_IDETC_2011_Souma
WFO_IDETC_2011_SoumaMDO_Lab
 
AHF_IDETC_2011_Jie
AHF_IDETC_2011_JieAHF_IDETC_2011_Jie
AHF_IDETC_2011_JieMDO_Lab
 
WPPE_ES_2011_Jie
WPPE_ES_2011_JieWPPE_ES_2011_Jie
WPPE_ES_2011_JieMDO_Lab
 
MMWD_ES_2011_Jie
MMWD_ES_2011_JieMMWD_ES_2011_Jie
MMWD_ES_2011_JieMDO_Lab
 
WFO_ES_2011_Souma
WFO_ES_2011_SoumaWFO_ES_2011_Souma
WFO_ES_2011_SoumaMDO_Lab
 
WFO_FDC_2011_Messac
WFO_FDC_2011_MessacWFO_FDC_2011_Messac
WFO_FDC_2011_MessacMDO_Lab
 
PF_IDETC_2012_Souma
PF_IDETC_2012_SoumaPF_IDETC_2012_Souma
PF_IDETC_2012_SoumaMDO_Lab
 
WFO_ES_2012_Souma
WFO_ES_2012_SoumaWFO_ES_2012_Souma
WFO_ES_2012_SoumaMDO_Lab
 

Mehr von MDO_Lab (20)

WFSA_IDETC_2013_Weiyang
WFSA_IDETC_2013_WeiyangWFSA_IDETC_2013_Weiyang
WFSA_IDETC_2013_Weiyang
 
WM_MAO_2012_Weiyang
WM_MAO_2012_WeiyangWM_MAO_2012_Weiyang
WM_MAO_2012_Weiyang
 
CP3_SDM_2010_Souma
CP3_SDM_2010_SoumaCP3_SDM_2010_Souma
CP3_SDM_2010_Souma
 
ATI_SDM_2010_Jun
ATI_SDM_2010_JunATI_SDM_2010_Jun
ATI_SDM_2010_Jun
 
WFO_MAO_2010_Souma
WFO_MAO_2010_SoumaWFO_MAO_2010_Souma
WFO_MAO_2010_Souma
 
ATE_MAO_2010_Jun
ATE_MAO_2010_JunATE_MAO_2010_Jun
ATE_MAO_2010_Jun
 
COST_MAO_2010_Jie
COST_MAO_2010_JieCOST_MAO_2010_Jie
COST_MAO_2010_Jie
 
WFO_IDETC_2011_Souma
WFO_IDETC_2011_SoumaWFO_IDETC_2011_Souma
WFO_IDETC_2011_Souma
 
COSTMODEL_IDETC_2010_Jie
COSTMODEL_IDETC_2010_JieCOSTMODEL_IDETC_2010_Jie
COSTMODEL_IDETC_2010_Jie
 
WFO_TIERF_2011_Messac
WFO_TIERF_2011_MessacWFO_TIERF_2011_Messac
WFO_TIERF_2011_Messac
 
WFO_SDM_2011_Souma
WFO_SDM_2011_SoumaWFO_SDM_2011_Souma
WFO_SDM_2011_Souma
 
RBHF_SDM_2011_Jie
RBHF_SDM_2011_JieRBHF_SDM_2011_Jie
RBHF_SDM_2011_Jie
 
WFO_IDETC_2011_Souma
WFO_IDETC_2011_SoumaWFO_IDETC_2011_Souma
WFO_IDETC_2011_Souma
 
AHF_IDETC_2011_Jie
AHF_IDETC_2011_JieAHF_IDETC_2011_Jie
AHF_IDETC_2011_Jie
 
WPPE_ES_2011_Jie
WPPE_ES_2011_JieWPPE_ES_2011_Jie
WPPE_ES_2011_Jie
 
MMWD_ES_2011_Jie
MMWD_ES_2011_JieMMWD_ES_2011_Jie
MMWD_ES_2011_Jie
 
WFO_ES_2011_Souma
WFO_ES_2011_SoumaWFO_ES_2011_Souma
WFO_ES_2011_Souma
 
WFO_FDC_2011_Messac
WFO_FDC_2011_MessacWFO_FDC_2011_Messac
WFO_FDC_2011_Messac
 
PF_IDETC_2012_Souma
PF_IDETC_2012_SoumaPF_IDETC_2012_Souma
PF_IDETC_2012_Souma
 
WFO_ES_2012_Souma
WFO_ES_2012_SoumaWFO_ES_2012_Souma
WFO_ES_2012_Souma
 

Kürzlich hochgeladen

Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...PsychoTech Services
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 

Kürzlich hochgeladen (20)

Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 

MOMDPSO_IDETC_2014_Weiyang

  • 1. A New Multi-Objective Mixed-Discrete Particle Swarm Optimization Algorithm (MO-MDPSO) Weiyang Tong*, Souma Chowdhury#, and Achille Messac# * Syracuse University, Department of Mechanical and Aerospace Engineering # Mississippi State University, Department of Aerospace Engineering ASME 2014 International Design Engineering Technical Conference August 18-20, 2014 Buffalo, NY
  • 2. Particle Swarm Optimization 2 • Particle Swarm Optimization (PSO) • was introduced by Eberhart and Kennedy in 1995 • was inspired by the swarm behavior observed in nature • is a population based stochastic algorithm • Advantages of basic PSO: • Fast convergence • Easy implementation • Few parameters to adjust PSO suffers from pre-stagnation, which is mainly attributed to the loss of diversity during the fast convergence Powerful optimizer for single objective unconstrained continuous problems
  • 3. Single Objective Mixed-Discrete PSO* Position update: 𝒙𝑖 𝑡 + 1 = 𝒙𝑖 𝑡 + 𝒗𝑖 𝑡 + 1 Velocity update: 𝒗𝑖 𝑡 + 1 = 𝑤𝒗𝑖 𝑡 + 𝑟1 𝐶1 𝑃𝑖 𝑙 (𝑡) − 𝒙𝑖 + 𝑟2 𝐶2 𝑃 𝑔(𝑡) − 𝒙𝑖 + 𝑟3 𝛾𝑐 𝒗𝑖(𝑡) 𝑤 – inertia weight 𝒙𝑖 – position of a particle 𝒗𝑖 – velocity of a particle 𝐶1 – cognitive parameter 𝐶2 – social parameter 𝑡 – generation 𝑟 – random number between 0-1 𝑃𝑖 𝑙 – pbest of a particle 𝑃 𝑔 – gbest of the swarm 3 Diverging velocity Diversity preservation coefficient Inertia Local search Global search *: Chowdhury et al (2013)
  • 4. Outline • Research Motivation and Objectives • Search Strategy in MO-MDPSO • Dynamics of MO-MDPSO • Multi-domain Diversity Preservation • Numerical Experiments • Continuous Unconstrained Test Problems • Continuous Constrained Test Problems • Mixed-Discrete Test Problems • Concluding Remarks 4
  • 5. Research Motivation 5 • Major attributes involved in complex engineering optimization problems: • Nonlinearity • Multimodality • Constraints • Mixed-discrete • Multi-objective Constrained Multiobjective MultimodalNonlinear Mixed types of variables MDPSO addressed by
  • 6. Research Objective • Develop a Multi-Objective MDPSO (MO-MDPSO) • Introduce the Multi-objective capability to MDPSO • Allow the algorithm to search for Pareto solutions • Make important advancements on the diversity preservation technique – primary feature of MDPSO • Avoid stagnation and capture the complete Pareto frontier • Keep a desirably even distribution of Pareto solutions 6
  • 7. Search Strategies in Multi-Objective PSO 7 • MOPSO by Parsoupulos and Vrahatis (2002) • DNPSO by Hu and Eberhart (2002) • NSPSO by Li (2003) • MOPSO by Coello (2004) • To best retain the original dynamics, the Pareto based strategy is selected Aggregating function based Single objective based Hybrid with other techniques Pareto dominance based Basic PSO MOPSO Local leader The best solution is based on a particle’s own history Local set with non-dominated historical solutions are found within the local neighborhood Global leader The best solution among all local best solutions The global Pareto solutions are obtained using all local ones
  • 8. Solutions Comparison if both solu-x and solu-y are infeasible choose the one with the smaller constraint violation; else if solu-x is feasible and solu-y is infeasible choose solu-x; else if solu-x is infeasible and solu-y is feasible choose solu-y; else both solu-x and solu-y are feasible apply non-dominance comparison:  solu-x strongly dominates solu-y if and only if 𝑓𝑘 𝑥 < 𝑓𝑘 𝑦 , ∀k = 1,2,…, N  solu-x weakly dominates solu-y if 𝑓𝑘 𝑥 ≤ 𝑓𝑘 𝑦 for at least one k  solu-x is non-dominated with solu-y when 𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑘: 𝑓𝑘 𝑥 > 𝑓𝑘 𝑦 , for the rest: 𝑓𝑘 𝑥 < 𝑓𝑘 𝑦 8
  • 9. 1 2 3 4 5 1 2 3 4 5 f1 f2 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 Infeasible R egion Actual Boundary Local Pareto set Dynamics of MO-MDPSO Position update: 𝒙𝑖 𝑡 + 1 = 𝒙𝑖 𝑡 + 𝒗𝑖 𝑡 + 1 Velocity update: 𝒗𝑖 𝑡 + 1 = 𝑤𝒗𝑖 𝑡 + 𝑟1 𝐶1 𝑷𝑖 𝑙 (𝑡) − 𝒙𝑖 + 𝑟2 𝐶2 𝑷𝑖 𝑔 (𝑡) − 𝒙𝑖 + 𝑟3 𝛾 𝑐,𝑖 𝒗𝑖(𝑡) 9 𝑷𝑖 𝑙 – local leader of particle-i, which is the selected from the local Pareto set 𝑷𝑖 𝑔 – global leader of particle-i that is determined by a stochastic process Crowding Distance – to manage the size of local/global Pareto set Multiple global leaders Inertia Local search Global search Applied w.r.t. each particle’s global leader Current particle Stored particle
  • 10. Diversity Metrics The diversity is measured based on the spread in design space for continuous variables: 𝐷𝑐 = 𝑗=𝑚+1 𝑛 𝑥 𝑚𝑎𝑥,𝑗(𝑡) − 𝑥 𝑚𝑖𝑛,𝑗(𝑡) 𝑋 𝑚𝑎𝑥,𝑗 − 𝑋 𝑚𝑖𝑛,𝑗 1 𝑛−𝑚 for discrete variables: 𝐷 𝑑 𝑗 = 𝑥 𝑚𝑎𝑥,𝑗(𝑡) − 𝑥 𝑚𝑖𝑛,𝑗(𝑡) 𝑋 𝑚𝑎𝑥,𝑗 − 𝑋 𝑚𝑖𝑛,𝑗 10 Considering the impact of outlier solutions, the diversity metrics are modified as 𝐷𝑐,𝑖 = 𝐹𝜆𝑖 𝐷𝑐, and 𝐷 𝑑,𝑖 𝑗 = 𝐹𝜆𝑖 𝐷 𝑑 𝑗 where 𝐹𝜆𝑖 = 𝜆 𝑁 𝑝 + 1 𝑁𝑖 + 1 1 𝑛 𝜆 is used to define the fractional domain w.r.t. the global leader of particle-i The spread along the jth dimension The upper & lower bounds along the jth dimension Number of candidate solutions per global leader Number of candidate solutions enclosed by the 𝜆-fractional domain
  • 11. Hypercube enclosing 72 candidate solutions X1 X2 0 1 2 3 0 1 2 3 Particles Global leaders Multiple λ-Fractional Domains 11 • 7 global leaders are observed • Ideally, each fractional domain should enclose 10 particles • Particles located in the overlapping regions are uniformly re-allocated between domains 13 10 14 𝜆 = 0.25 Design Variable Space
  • 12. Multi-domain Diversity Preservation The boundaries of the 𝜆𝑖 - fractional domain are defined as 𝑥𝑖 𝑚𝑎𝑥,𝑗 = 𝑚𝑎𝑥 𝑥 𝑚𝑖𝑛,𝑗 + 𝜆𝑖 𝛿𝑥 𝑗, 𝑚𝑖𝑛 𝑷𝑖 𝑔,𝑗 + 1 2 𝜆𝑖 𝛿𝑥 𝑗, 𝑥 𝑚𝑎𝑥,𝑗 𝑥𝑖 𝑚𝑖𝑛,𝑗 = 𝑚𝑖𝑛 𝑥 𝑚𝑎𝑥,𝑗 − 𝜆𝑖 𝛿𝑥 𝑗, 𝑚𝑎𝑥 𝑷𝑖 𝑔,𝑗 − 1 2 𝜆𝑖 𝛿𝑥 𝑗, 𝑥 𝑚𝑖𝑛,𝑗 12 • Continuous variables 𝛾 𝑐,𝑖 = 𝛾 𝑐0 𝑒𝑥𝑝 − 1 2 𝐷𝑐,𝑖 𝜎𝑐 2 , 𝜎𝑐 = 1 2 ln 1 𝛾 𝑚𝑖𝑛 • Discrete variables 𝛾𝑑,𝑖 𝑗 = 𝛾 𝑑0 𝑒𝑥𝑝 − 1 2 𝐷 𝑑,𝑖 𝑗 𝜎 𝑑 2 , 𝜎 𝑑 = 1 2 ln 1 𝑀 𝑗
  • 13. • Three classes of test problems are used to evaluate the performance of MO-MDPSO (two performance metrics and comparison with NSGA-II) • Each of the test problems is run 30 times to compensate for the impact of random parameters • Sobol’s quasirandom sequence generator is used for the initial population User-defined parameters in MO-MDPSO Numerical Experiment 13 Parameter Continuous uncon- strained problems Continuous con- strained problems Mixed-discrete constrained problems 𝑤 0.5 0.5 0.5 𝐶1 1.5 1.5 1.5 𝐶𝑐0 1.5 1.5 1.5 𝛾 𝑐0 1.0 1.0 1.0 𝛾 𝑚𝑖𝑛 1e-4 1e-6 1e-8 𝛾 𝑑0 NA NA 0.5,1.0 𝜆 0.2 0.1 0.1 Local set size 5 6 10 Global set size 50 50 Up to 100 Population size 100 100 min(5n, 100)
  • 14. Performance Metric for Continuous Unconstrained Problems Results: Continuous Unconstrained Problems 14 Function name Accuracy 𝜸 Diversity ∆ Mean 𝜇 𝛾 Std. deviation 𝜎𝛾 Mean 𝜇∆ Std. deviation 𝜎∆ MO-MDPSO NSGA-II MO-MDPSO NSGA-II MO-MDPSO NSGA-II MO-MDPSO NSGA-II Fonseca 2 0.0043 0.0004 0.7900 0.0062 Coello 0.0069 0.0009 0.7101 0.0137 Schaffer 1 0.0086 0.0010 0.7131 0.0066 Schaffer 2 0.0116 0.0008 0.9655 0.0015 ZDT 1 0.0009 0.0009 0.0001 0 0.7265 0.4633 0.0045 0.0416 ZDT 2 0.0007 0.0008 7.3e-5 0 0.7248 0.4351 0.0049 0.0246 ZDT 3 0.0042 0.0434 0.0004 4.2e-5 0.7457 0.5756 0.0052 0.0051 ZDT 4 1.5922 0.5130 2.1411 0.1184 0.8306 0.7026 0.1040 0.06465 ZDT 6 0.0337 0.2965 0.0525 0.0131 0.8860 0.6680 0.2072 0.0099
  • 15. Comparison of Performance Indicators 15 Performance of Accuracy Performance of Diversity ZDT 4 0 1 2 3 ZDT 3 0 0.01 0.02 0.03 0.04 0.05 ZDT 1 0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 ZDT 2 0 0.0002 0.0004 0.0006 0.0008 0.001 ZDT 6 0 0.1 0.2 0.3 0.4MO- MDPSO NSGA2 MO- MDPSO NSGA2 MO- MDPSO NSGA2 MO- MDPSO NSGA2 MO- MDPSO NSGA2 ZDT 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 ZDT 2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 ZDT 3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 ZDT 4 0 5 10 ZDT 6 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 MO- MDPSO NSGA2 MO- MDPSO NSGA2 MO- MDPSO NSGA2 MO- MDPSO NSGA2 MO- MDPSO NSGA2 The lower the better
  • 16. Plots: Continuous Unconstrained Problems 16 Number of function evaluations for these problems is 10,000 (25,000 was used by NSGA-II) f1 f2 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Pareto solution by MO-MDPSO Actual Pareto solution f1 f2 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Pareto solution by MO-MDPSO Actual Pareto solution f1 f2 0 0.2 0.4 0.6 0.8 1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 Pareto solution by MO-MDPSO Actual Pareto solution ZDT 1 30 design variables ZDT 2 30 design variables ZDT 3 30 design variables f1 f2 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Pareto solution by MO-MDPSO Actual Pareto solution f1 f2 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Pareto solution by MO-MDPSO Actual Pareto solution ZDT 4 10 design variables ZDT 6 10 design variables
  • 17. Plots: Continuous Constrained Problems 17f1 f2 0 50 100 150 200 -200 -150 -100 -50 0 Pareto solution by MO-MDPSO Actual Pareto solution f1 f2 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Pareto solution by MO-MDPSO Actual Pareto solution f1 f2 0 0.2 0.4 0.6 0.8 1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 Pareto solution by MO-MDPSO Actual Pareto solution f1 f2 0.4 0.6 0.8 1 0 1 2 3 4 5 6 7 8 9 Pareto solution by MO-MDPSO Actual Pareto solution f1 f2 0 20 40 60 80 100 120 10 20 30 40 50 Pareto solution by MO-MDPSO Actual Pareto solution BNH 2 design variables CONSTR 2 design variables KITA 2 design variables SRN 2 design variables TNK 2 design variables Number of function evaluations for these problems is 10,000 (20,000 was used by NSGA-II)
  • 18. • The MINLP problem adopted from Dimkou and Papalexandri* 18 No. of design variables 6 No. of discrete variables 3 (binary) Function evaluations 10,000 Population size 100 Elite size of NSGA-II 78 Elite size of MO-MDPSO 100 *: Dimkou and Papalexandri (1998) Mixed-Discrete Constrained Test Problem 1 f1 f2 -60 -50 -40 -30 -20 -10 0 -20 0 20 40 60 80 100 Pareto solution by NSGA-II Pareto solution by MO-MDPSO
  • 19. 19 • The design of disc brake problem adopted from Osyczka and Kundu* No. of design variables 4 No. of discrete variables 1 (integer) Function evaluations 10,000 Population size 100 Elite size of NSGA-II 87 Elite size of MO-MDPSO 100 *: Osyczka and Kundu (1998) Mixed-Discrete Constrained Test Problem 2
  • 20. Multi-objective Wind Farm Optimization 20 • Two objectives: • Maximize the wind farm capacity factor • Minimize the unit land usage • 150 design variables: • 100 continuous variables: Location of turbines • 50 discrete variables: Type of turbines • 1225 constraints: • Inter-turbine spacing 50 turbines with 10 turbine selections
  • 21. Concluding Remarks • We developed a new MO-MDPSO algorithm that is capable of handling all the major attributes in complex engineering optimization problems • The original dynamics of basic PSO is best retained by introducing the Pareto dominance strategy to MDPSO • The multi-domain diversity preservation technique was developed to maintain a desirably even distribution of Pareto solutions • MO-MDPSO showed favorable results in solving continuous bi-objective optimization problems; the performance in solving mixed-discrete problems is comparable with or better than NSGA-II • Future work should test MO-MDPSO to high dimensional engineering problems, and include problems with more than two objectives. 21
  • 22. Acknowledgement • I would like to acknowledge my research adviser Prof. Achille Messac, and my co-adviser Dr. Souma Chowdhury for their immense help and support in this research. • Support from the NSF Awards is also acknowledged. 22
  • 24. BNH 0 0.05 0.1 0.15 0.2 CONSTR 0 0.002 0.004 0.006 0.008 0.01 KITA 0 0.002 0.004 0.006 0.008 0.01 0.012 SRN 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 TNK 0 0.002 0.004 0.006 0.008 0.01 0.012 Results: Continuous Constrained Problems 24 Function name Accuracy 𝜸 Diversity ∆ Mean 𝜇 𝛾 Std. deviation 𝜎𝛾 Mean 𝜇∆ Std. deviation 𝜎∆ BNH 0.1342 0.0204 0.7778 0.0088 CONSTR 0.0070 0.0007 0.8336 0.0101 KITA 0.0091 0.0008 0.7656 0.0086 SRN 0.4909 0.0567 0.7165 0.0046 TNK 0.0055 0.0006 0.9010 0.0216 Performance Metric for Continuous Constrained Problems CONSTR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 BNH 0 0.1 0.2 0.3 0.4 0.5 KITA 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 SRN 0 0.2 0.4 0.6 0.8 1 TNK 0 0.2 0.4 0.6 0.8 1 1.2 Performance of Accuracy Performance of Diversity
  • 25. Illustration of MO-MDPSO 1. Both solu-x and solu-y are infeasible – choose the one with the smaller constraint violation; 2. solu-x is feasible and solu-y is infeasible – choose solu-x; 3. solu-x is infeasible and solu-y is feasible – choose solu-y; 4. Both solu-x and solu-y are feasible – apply non-dominance comparison:  solu-x strongly dominates solu-y if and only if: 𝑓𝑘 𝑥 < 𝑓𝑘 𝑦 , ∀k = 1,2,…, N  solu-x weakly dominates solu-y if: 𝑓𝑘 𝑥 ≤ 𝑓𝑘 𝑦 for at least one k 25 1 2 3 4 5 f1 f2 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 Infeasible R egion Actual Boundary 1 2 3 4 5 1 2 3 4 5 f1 f2 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 Infeasible R egion Actual Boundary Current particle Stored particle Local Pareto set A solution is non-dominated when 𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑘: 𝑓𝑘 𝑥 > 𝑓𝑘 𝑦 , for the rest: 𝑓𝑘 𝑥 < 𝑓𝑘 𝑦 k = 1,2,…, N The crowding distance is used to manage the size of Pareto set
  • 26. Multi-directional Diversity Preservation (cont’d) • Continuous variables 𝛾 𝑐,𝑖 = 𝛾 𝑐0 𝑒𝑥𝑝 − 1 2 𝐷𝑐,𝑖 𝜎𝑐 2 , 𝜎𝑐 = 1 2 ln 1 𝛾 𝑚𝑖𝑛 • The diversity coefficient for continuous variables is to apply a repulsion away from each of the global leaders • Discrete variables 𝛾𝑑,𝑖 𝑗 = 𝛾 𝑑0 𝑒𝑥𝑝 − 1 2 𝐷 𝑑,𝑖 𝑗 𝜎 𝑑 2 , 𝜎 𝑑 = 1 2 ln 1 𝑀 𝑗 • A stochastic update process is applied to help particles jump out of the local hypercude:  if 𝑟 > 𝛾𝑑,𝑖 𝑗 , use the nearest vertex approach (NVA)  else, update randomly to the upper or lower bound of the local hypercube 26 The diversity coefficient is expressed as a monotonically decreasing function of the current diversity metric Size of feasible values of the jth variable
  • 27. Discrete Variables and Constraints Handling • The Nearest Vertex Approach (NVA) is used to deal with discrete variables, where a local hypercube is defined as 𝑯 = 𝑥 𝐿1, 𝑥 𝑈1 , 𝑥 𝐿2, 𝑥 𝑈2 , … , 𝑥 𝐿 𝑚, 𝑥 𝑈 𝑚 and 𝑥 𝐿 𝑗 < 𝑥 𝑗 < 𝑥 𝑈 𝑗, ∀𝑗 = 1,2, … , 𝑚 • The net constraint is used to handle constraints, as given by 𝑓𝑐 = 𝑝=1 𝑃 max 𝑔 𝑞, 0 + 𝑞=1 𝑄 max ℎ 𝑞 − 𝜖, 0 27 Nearest Vertex Approach Normalized inequality constraints Normalized equality constraints Tolerance
  • 28. Coello Fonseca 2 f1 f2 0 0.2 0.4 0.6 0.8 1 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 Pareto solution by MO-MDPSO Actual Pareto solution f1 f2 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Pareto solution by MO-MDPSO Actual Pareto solution Continuous Unconstrained Test Problems 28 Schaffer 1 Schaffer 2 f1 f2 0 1 2 3 4 0 1 2 3 4 Pareto solution by MO-MDPSO Actual Pareto solution f1 f2 -1 -0.5 0 0.5 1 0 5 10 15 20 Pareto solution by MO-MDPSO Actual Pareto solution Number of function evaluations for these problems is 2,000