SlideShare ist ein Scribd-Unternehmen logo
1 von 38
Optimization of H2 Production in a 
Hydrogen Generation Unit 
Márcio R. S. Garcia1, 
Renato N. Pitta2, 
Gilvan A. G. Fischer2, 
André S. R. Kuramoto2 
1Radix Engenharia e Desenvolvimento de Software Ltda, Rio de Janeiro, RJ, Brazil (e-mail: 
marcio.garcia@radixeng.com.br) 
2Refinaria Henrique Lage, São José dos Campos, SP, Brazil (e-mail: renato.pitta@petrobras.com.br , 
gilvan@petrobras.com.br , kuramoto@petrobras.com.br )
Summary 
1. Process description 
2. Advanced Process Control 
3. Modelling and Identification 
4. Results 
5. Conclusion
Process description – Hydrogen Generation Unit 
 Hydrogen Generation Units (HGU) are designed to supply the H2 
necessary for the hydrotreating process; 
 Hydrotreating Units (HDT) use H2 for Sulfur, Nitrogen, Oxygen and 
other contaminants removal from the Diesel / Naphtha streams and 
also for aromatics / olefins conversion; 
 REVAP (Henrique Lage Refinery), located in the state of São Paulo, 
Brazil is one of the largest refineries in the country and contemplates 
6 HDTs and 2 HGUs and 1 CCR (Continuous Catalytic Reforming 
Unit)
Process description - H2 Header configuration 
H2 HEADER
Process description - H2 consumption profile 
4.60% 
0.40% 
7.00% 
19.00% 
16.00% 
53.00% 
Gasoil HDT 
Diesel HDT 
Cracked Naphtha HDS 
Coker Naphtha HDT 
Naphtha / Kerosine HDT 
Tail Gas
Process description - H2 production profile 
61% 
18% 
21% 
HGU-I 
CCR 
HGU-II
Process description - H2 Generation Process 
CnHm + n H2O n CO + (n + m/2) H2 
n CO + n H2O n CO2 + n H2
Process description - Steam / Carbon ratio 
control loop
Process description - Air / Fuel Gas ratio 
control loop
Process description - H2 Venting (Before APC) 
900 
800 
700 
600 
500 
400 
300 
200 
100 
0 
0 
20 
40 
60 
80 
100 
Daily Avg Flow rate (kg/h) 
120 
140 
160 
180 
Average
Process description - Evolution of the LNG 
Cost (USD/ton) 
1,200.00 
1,000.00 
800.00 
600.00 
400.00 
200.00 
- 
Cost of LNG ($/ton) 
LNG Cost 
($/ton)
Summary 
1. Process description 
2. Advanced Process Control 
3. Modelling and Identification 
4. Results 
5. Conclusion
Advanced Process Control – Problem Statement 
 Advanced Model Predictive-based control strategies (APC) are more suitable as 
a solution than DCS (Digital Control System) leadlag control, since it is 
intrinsically multivariable and also due to the high number of disturbance 
variables; 
 DCS Leadlag control is more likely to introduce plant variability or even lead the 
plant to unstable conditions due to plant-model mismatch. APC is more robust to 
model errors. Robustness in leadlag controllers are usually associated to a highly 
limitation of its control signal; 
 APC present discrete and constrained control actions, resulting in a smoother 
operation of the unit; 
 APC is easier to tune when compared to common leadlag controllers; 
 APC optimizes plant operation. DCS Leadlag control only rejects disturbances.
Advanced Process Control - Configuration 
- Manipulated variables have their setpoints or control signals defined by the advanced controller 
in order to keep the process controlled variables (constraints) within their limits; 
- Disturbance variables are used for feedforward control, anticipating the H2 header’s pressure 
drop. The disturbance is caused by the variation on the magnitude of these variables. 
Unit Disturbance Variables Manipulated Variables 
HGU-II HGU Natural Gas feed 
Gasoil HDT 
- LCO (Light Cycle Oil) 
- Coker Gasoil / Heavy Naphtha 
Coker Naphtha HDT - Coker Light Naphtha 
Cracked Naphtha HDS - FCC’s Light Cracked Naphtha 
Diesel HDT - FCC’s Heavy Cracked Naphtha 
HGU-I - H2 production to header 
CCR - H2 production to header
Advanced Process Control - Configuration 
- Controlled variables represent the process constraints and must remain within their 
HGU Section Equipments Controlled Variables 
Feed - 
- Steam flow setpoint; 
- Steam flow control signal. 
Feed Purification 
- Dessulphurization Reactor 
- Hydrodessulphurization Reactor 
- 
Reformer 
- Forced Air Draft Fan 
- Furnace 
- Induced Draft Fan 
- Air flow setpoint / control signal; 
- Fuel gas setpoint / control signal; 
- Chamber pressure control signal. 
Steam Generation 
- Dessuperheater 
- Heat Boiler 
- Export Steam Temperature control signal. 
Shift - Shift Reactor - 
H2 Purification - PSA 
- PSA’s Inlet Temperature; 
- Header pressure; 
- Spillback control signal 
safe operational limits;
Advanced Process Control – Control Strategy 
Linear Optimizer 
- Economic Function; 
- Linear / Quadratic programing; 
- Steady state targets. 
Controller 
- ARX models; 
- Model Predictive Control. 
DIGITAL CONTROL SYSTEM (DCS) 
- Process variables; 
- Human-machine Interface. 
Targets 
U*, Yl* 
MV’s Setpoints, 
Control Actions 
MV’s, DV’s 
and CV’s
Advanced Process Control – Control Strategy 
The APC uses a two-layer control strategy: 
1. Linear Optimizer 
퐽 = min 
Δ푈,푆퐶푉 
−푊1Δ푈 + 푊2ΔU 2 2 
+ 푊3푆퐶푉 2 2 
s.t. 
Δ푈 = 푈푆 − 푢푎푡 
푈푖푛푓 ≤ 푈≤ 푈푆 
푆 푆 
푠푢푝 
푖푛푓 ≤ 푌푆 + 푆퐶푉 ≤ 푌푆 
푌푆 
푠푢푝 
 DU = Control action increment; - SCV = Slack Control Variable; 
- W1 = economic coefficient; - uat = previous control action; 
- W2 = supression factor; - Uinf, Usup = MV limits; 
- W3 = slack variables weights; - Yinf, Ysup = CV limits;
Advanced Process Control – Control Strategy 
The Controller is a DMC algorithm with Quadratic programming: 
2. Controller 
퐽 = min 
Δ푈푖,푖=1,…,푛푙 
푛푟 
푗=1 
∗ 
푊4 푌푝 − 푌푙 
2 
+ 
2 
푛푙 
푖=1 
푊5ΔU푖 2 2 
+ 
푛푙 
푖=1 
푊6 푢푖−1 − 
푖 
푘=1 
Δ푈푘 − 푢∗ 
푗 
- nr = Prediction horizon; - nl = Control horizon; 
- W4 = CV weight; - uinf , usup = Control signal limits; 
- W5 = supression factor; - Y*, u* = Targets from the linear optimizer; 
- W6 = MV weights; - Yp = prediction for the controlled variables 
2 
2 
s.t. 
−Δ푈푚푎푥 ≤ Δ푈 ≤ Δ푈푚푎푥 
푢푖푛푓 ≤ 푢푖−1 − 
푖=1 
Δ푈푖 ≤ 푢푠푢푝
Summary 
1. Process description 
2. Advanced Process Control 
3. Modelling and Identification 
4. Results 
5. Conclusion
Modelling and Identification – H2 header 
dynamic simulation 
 Identification tests were performed in the real plant and generated the 
step-response based ARX models; 
 Some disturbance variables identification tests could not be performed 
on site, due to reliability issues; 
 A dynamic simulator project was built by the time of the header 
integration and used for modelling and identification of these 
disturbance variables; 
 The software used for simulation is the RSI’s Indiss® suite. Consumers 
and producers were modelled as infinite mass generators, with the H2 
consumption / production profile adjusted to match real operation 
values.
Modelling and Identification – H2 header 
dynamic simulation 
Sheet 
Compressor 
1.18e+007 Pa 
308 K 
0.83 kg/s 
U262 
Valve1 
PV294012 
Valve14 
-0.11 kg/s 
Transmitter 
18 
612.20 
Valve11 
Transmitter 
PipeSegment11 
Transmitter 
20.07 
PipeSegment10 
Transmitter 
17 
1264.24 
5 
PC222235 
0.35 kg/s 
Transmitter 
14 
3.02 
Valve12 
0.22 kg/s 
Valve16 
0.06 kg/s 
PipeSegment4 
PipeSegment5 
0.11 kg/s 
20994 Pa 
0.17 kg/s 
0.83 kg/s 
PIDController 
4 
PipeSegment1 
Transmitter 
10 
0.00 
1.00e+004 Pa 
302 K 
0.00 kg/s 
Transmitter 
Valve6 
0.00 kg/s 
Valve7 
0.18 kg/s 
11 
20.24 
PipeSegment8 
PipeSegment6 
Transmitter 
Valve8 
0.22 kg/s 
Valve9 
0.06 kg/s 
Q 
K 
16 
19.96 
PipeSegment9 
PipeSegment12 
Transmitter 
15 
20.00 
0.22 kg/s 
11362 Pa 
Valve5 
Valve26 
Valve33 
Valve27 
PIDController 
17 
Transmitter 
28 
0.80 
1.40e+006 Pa 
303 K 
0.11 kg/s 
U266 
1.40e+006 Pa 
303 K 
0.00 kg/s 
1.40e+006 Pa 
303 K 
0.18 kg/s 
1.40e+006 Pa 
303 K 
0.22 kg/s 
U272D 
Valve34 
0.22 kg/s 
PipeSegment13 
0.06 kg/s 
8157 Pa 
PIDController 
18 
Transmitter 
29 
0.23 
1.40e+006 Pa 
303 K 
0.06 kg/s 
U272NQ 
Valve35 
0.06 kg/s 
0.17 kg/s 
2993 Pa 
0.11 kg/s 
1164 Pa 
0.11 kg/s 
Transmitter 
12 
20.32 
Transmitter 
9 
20.10 
Transmitter 
7 
19.29 
Transmitter 
6 
19.53 
4 
19.44 
0.062 6k5g /Psa 
OL 
BCF 
0.00 kg/s 
8882 Pa 
PIDController 
15 
Transmitter 
27 
0.02 
U238 
0.00 kg/s 
PIDController 
3 
Valve3 
0.00 kg/s 
PipeSegment2 
Valve32 
PipeSegment3 
0.35 kg/s 
3773 Pa 
Transmitter 
2 
19.08 
PIDController 
2 
Valve2 
0.00 kg/s 
-0.11 kg/s 
-24392 Pa 
Transmitter 
1 
19.44 
PIDController 
1 
0.00 kg/s 
0.18 kg/s 
595 Pa 
0.78 kg/s 
52494 Pa 
0.83 kg/s 
14843 Pa 
2.20e+006 Pa 
303 K 
0.83 kg/s 
U294 
0.00 kg/s 
Tocha 
Transmitter 
26 
19.29 
PIDController 
13 
PIDController 
12 
Transmitter 
24 
0.64 
Transmitter 
23 
0.40 
U264 
3.00e+006 Pa 
303 K 
0.17 kg/s 
U292 
3.00e+006 Pa 
303 K 
0.35 kg/s 
U222 
0.18 kg/s 
0.11 kg/s 
Consumers 
Producers 
H2 header 
Compressor 
Vent valves
Modelling and Identification – Spillback control 
dynamic simulation 
Transmitter 
32 
3.05 
PV262037 
1.30e+005 Pa 
299 K 
26.19 kg/s 
PIDController 
6 
Transmitter 
31 
18.71 
Valve21 
0.92 kg/s 
PIDController 
5 
PV262034 
Valve20 
Sheet 
1.40e+006 Pa 
328 K 
0.00 kg/s 
Compressor1 
V26208 
Pressure : 
3.01e+006 Pa 
Level : 
0.00 % 
Transmitter 
30 
29.71 
Valve22 
0.83 kg/s 
> 
ARout 
Recycle Valve 
2.50e+005 Pa 
298 K 
26.19 kg/s 
ARin 
0.00 kg/s 
Condensado1 
0.14 kg/s 
P26213 
0.09 kg/s 
Transmitter 
8 
50.61 
Valve19 
0.78 kg/s 
Valve15 
0.00 kg/s 
1.40e+006 Pa 
302 K 
0.00 kg/s 
Condensado 
V26207 
Lev el : 
0.00 % 
Spillback Vessel 
H2 from header
Modelling and Identification – Compressor 
dynamic simulation 
1.30e+005 Pa 
300 K 
47.15 kg/s 
1.30e+005 Pa 
300 K 
47.15 kg/s 
ARout4 
2.50e+005 Pa 
298 K 
47.15 kg/s 
2.50e+005 Pa 
298 K 
47.15 kg/s 
ARin4 
P26217 
ARout3 
ARin3 
P26216 
1.30e+005 Pa 
300 K 
47.15 kg/s 
1.30e+005 Pa 
300 K 
47.15 kg/s 
ARout2 
2.50e+005 Pa 
298 K 
47.15 kg/s 
2.50e+005 Pa 
298 K 
47.15 kg/s 
ARin2 
P26215 
ARout1 
ARin1 
P26214 
FloatBox 
FloatBox1 
90 
Valve17 
0.92 kg/s 
Transmitter 
19 
61.90 
Transmitter 
20 
37.41 
Transmitter 
21 
36519.97 
Transmitter 
3 
60.36 
Transmitter 
22 
41.47 
Valve10 
0.92 kg/s 
ReciprocatingCompressor8 
0.48 kg/s 
Valve4 
0.44 kg/s 
ReciprocatingCompressor7 
0.48 kg/s 
ReciprocatingCompressor6 
0.48 kg/s 
ReciprocatingCompressor4 
0.44 kg/s 
ReciprocatingCompressor3 
0.44 kg/s 
ReciprocatingCompressor2 
0.44 kg/s 
Transmitter 
13 
17542.85
Modelling and Identification – H2 header 
integration dynamic simulation 
Real Plant Virtual Plant
Modelling and Identification – H2 header with 
Spillback control dynamic simulation 
20 
19.5 
19 
18.5 
18 
17.5 
17 
700 
600 
500 
400 
300 
200 
100 
0 
HGU-I H2 Production (kg/h) 
Spillback pressure 
Time (minutes) 
H2 Header Pressure (kgf/cm²) 
control 
HGU-I H2 production 
Header Pressure with Spillback 
Header Pressure without Spillback
Modelling and Identification – APC model 
Matrix (ARX) 
- First-Order Plus Dead-Time models; - Time Sample = 1 minute, Settling Time Tr = 120 minutes
Summary 
1. Process description 
2. Advanced Process Control 
3. Modelling and Identification 
4. Results 
5. Conclusion
Results 
 The following results show the application of the APC strategy in the 
real plant; 
 The data set is collected from the historian software for a period of 
time of 150 days after the APC start-up and comissioning and 
compared to the units operation before the APC project; 
 All sampled data (before / after APC) was treated to match regular 
steady-state operational conditions only, in order to correctly 
evaluate the control strategy performance. The data that did not 
satisfy the analysis conditions were discarded.
Results - APC in Real Plant Operation 
Time Sample Ts = 1min; Prediction Horizon nr = 120min, Control Horizon nl = 8min: 
87.00 
86.50 
86.00 
85.50 
85.00 
84.50 
84.00 
83.50 
83.00 
82.50 
82.00 
85.00 
80.00 
75.00 
70.00 
65.00 
60.00 
55.00 
50.00 
CV (% of span) 
HGU LNG feed (APC Manipulated 
Variable) 
HDT-GOK H2 consumption 
Time (minutes) 
MV / DV (% of span) 
H2 header pressure (APC Controlled variable) 
HDT-GOK LCO Feed (APC Disturbance variable)
Results – APC in Real Plant Operation 
87.00 
85.00 
83.00 
81.00 
79.00 
77.00 
75.00 
95.00 
85.00 
75.00 
65.00 
55.00 
45.00 
CV (% of span) 
H2 header pressure (APC Controlled variable) 
HDT-GOK Spillback Presure Control 
Time (minutes) 
MV / DV (% of span) 
HGU LNG feed (APC Manipulated Variable) 
HGU-I H2 production to header (APC disturbance 
variable 
CV control limits
Results - Economic Assessment 
50 
45 
40 
35 
30 
25 
20 
15 
10 
5 
0 
900 
800 
700 
600 
500 
400 
300 
200 
100 
0 
Daily Avg Venting (%) 
Daily Avg Flow rate (kg/h) 
Avg before / after APC 
0 
20 
40 
60 
80 
100 
120 
140 
160 
180 
200 
220 
240 
260 
280 
300 
320 
Vent Opening (%) 
H2 flow to flare (kg/h) 
Time (days) 
APC Start-up
Results - Economic Assessment 
4 
3.5 
3 
2.5 
2 
1.5 
1 
0.5 
0 
0 
20 
40 
60 
80 
100 
120 
140 
160 
180 
Daily Avg Flow rate (kg/h) 
Avg before / after APC 
200 
220 
240 
260 
280 
300 
320 
Excess Natural Gas Flow (t/h) 
Time (days) 
APC Start-up
Results - Economic Assessment 
Averages 
APC off APC On D 
H2 Venting (%) 5.64 0.78 -4,86 
H2 Loss to Flare (kg/h) 415.99 57.74 -358.25 
Excess LNG Flow (t/h) 1.71 0.25 -1.46 
Economic Loss (USD/month) 920k 130k -790k 
퐸푐표푛표푚푖푐 푆푎푣푖푛푔푠 = 퐶퐿 푁퐺 ∗ 1 + 
푄퐹퐺 
푄퐻퐺푈 
∗ Δ푄푁퐺 
DQLNG = Excess Natural Gas Flow variation in t/month 
QFG = Natural gas to reformer nominal flow; 
QHGU = HGU natural gas nominal flow; 
퐶퐿 푁퐺 = 퐴푣푒푟푎푔푒 퐿푁퐺 퐶표푠푡 = 750$/푡
Results - Economic Assessment 
$1,200.00 
$1,000.00 
$800.00 
$600.00 
$400.00 
$200.00 
$- 
Time On 
Savings 
nov-13 dez-13 jan-14 fev-14 mar-14 
100.00% 
80.00% 
60.00% 
40.00% 
20.00% 
0.00% 
Savings ( x1000 ) 
Time On (%) 
nov-13 dez-13 jan-14 fev-14 mar-14 
Time On 55.07% 53.40% 88.01% 59.81% 90.76% 
Savings $385,51 $373,81 $616,08 $424,80 $635,31
Summary 
1. Process description 
2. Advanced Process Control 
3. Modelling and Identification 
4. Results 
5. Conclusion
Conclusion 
 The APC improved the operational reliability by anticipating the 
hydrogen consumption variation of the hydrotreating units; 
 The APC have shown to be a more suitable solution than regulatory-based 
leadlag control due to the high number of disturbance 
variables; 
 The economic befenits achieved by the APC control are expressive 
when compared to the low cost of implementation; 
 Dynamic simulation is a powerfull tool for modelling and identification 
and improved the control system reliability.
Conclusion – Additional optimization variables 
 Hydrogen production optimization is not limited to vent minimization. 
Other optimization variables include: 
 O2 excess control (increase the reformer’s thermal efficiency); 
 Steam / Carbon ratio (minimize steam consumption); 
 Reformer’s outlet temperature control (Catalyst savings); 
 Shift reactor inlet temperature (maximize H2 recovery in the PSA 
system); 
 PSA’s operational factor (optimize header CO / CO2 content)
Optimization of H2 Production in a 
Hydrogen Generation Unit 
Márcio R. S. Garcia1, 
Renato N. Pitta2, 
Gilvan A. G. Fischer2, 
André S. R. Kuramoto2 
1Radix Engenharia e Desenvolvimento de Software Ltda, Rio de Janeiro, RJ, Brazil (e-mail: 
marcio.garcia@radixeng.com.br) 
2Refinaria Henrique Lage, São José dos Campos, SP, Brazil (e-mail: renato.pitta@petrobras.com.br , 
gilvan@petrobras.com.br , kuramoto@petrobras.com.br )

Weitere ähnliche Inhalte

Was ist angesagt?

PRESENTATION ON INPLANT TRAINING AT MRPL
PRESENTATION ON INPLANT TRAINING AT MRPLPRESENTATION ON INPLANT TRAINING AT MRPL
PRESENTATION ON INPLANT TRAINING AT MRPL
Ankit Devatwal
 

Was ist angesagt? (20)

Burner Design, Operation and Maintenance on Ammonia Plants
Burner Design, Operation and Maintenance on Ammonia PlantsBurner Design, Operation and Maintenance on Ammonia Plants
Burner Design, Operation and Maintenance on Ammonia Plants
 
SRU Troubleshooting
SRU TroubleshootingSRU Troubleshooting
SRU Troubleshooting
 
Sulfiding of Sour Shift Catalyst
Sulfiding of Sour Shift CatalystSulfiding of Sour Shift Catalyst
Sulfiding of Sour Shift Catalyst
 
Getting the Most Out of Your Refinery Hydrogen Plant
Getting the Most Out of Your Refinery Hydrogen PlantGetting the Most Out of Your Refinery Hydrogen Plant
Getting the Most Out of Your Refinery Hydrogen Plant
 
IOCL Training Report
IOCL Training ReportIOCL Training Report
IOCL Training Report
 
Pressure Relief Systems Vol 2
Pressure Relief Systems   Vol 2Pressure Relief Systems   Vol 2
Pressure Relief Systems Vol 2
 
Steam Reforming - Types of Reformer Design
Steam Reforming - Types of Reformer DesignSteam Reforming - Types of Reformer Design
Steam Reforming - Types of Reformer Design
 
Steam Reforming - Catalyst Loading
Steam Reforming - Catalyst LoadingSteam Reforming - Catalyst Loading
Steam Reforming - Catalyst Loading
 
Lube Oil Blending Plant 2012
Lube Oil Blending Plant 2012Lube Oil Blending Plant 2012
Lube Oil Blending Plant 2012
 
GSU AND GDU
GSU AND GDUGSU AND GDU
GSU AND GDU
 
PRESENTATION ON INPLANT TRAINING AT MRPL
PRESENTATION ON INPLANT TRAINING AT MRPLPRESENTATION ON INPLANT TRAINING AT MRPL
PRESENTATION ON INPLANT TRAINING AT MRPL
 
Air Cooled Heat Exchanger Design
Air Cooled Heat Exchanger DesignAir Cooled Heat Exchanger Design
Air Cooled Heat Exchanger Design
 
GBH Enterprises Overview
GBH Enterprises OverviewGBH Enterprises Overview
GBH Enterprises Overview
 
The Design and Layout of Vertical Thermosyphon Reboilers
The Design and Layout of Vertical Thermosyphon ReboilersThe Design and Layout of Vertical Thermosyphon Reboilers
The Design and Layout of Vertical Thermosyphon Reboilers
 
Reduction and Start-Up of Steam Reforming Catalyst
Reduction and Start-Up of Steam Reforming CatalystReduction and Start-Up of Steam Reforming Catalyst
Reduction and Start-Up of Steam Reforming Catalyst
 
Steam Reforming - Tube Design
Steam Reforming - Tube DesignSteam Reforming - Tube Design
Steam Reforming - Tube Design
 
STEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTS
STEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTSSTEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTS
STEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTS
 
Kiln training
Kiln trainingKiln training
Kiln training
 
MSDS for DOWTHERM™ MX Heat Transfer Fluid
MSDS for DOWTHERM™ MX Heat Transfer FluidMSDS for DOWTHERM™ MX Heat Transfer Fluid
MSDS for DOWTHERM™ MX Heat Transfer Fluid
 
Pipe Support Field Inspection, Installation & Maintenance
Pipe Support Field Inspection, Installation & MaintenancePipe Support Field Inspection, Installation & Maintenance
Pipe Support Field Inspection, Installation & Maintenance
 

Ähnlich wie Optimization of H2 Production in a Hydrogen Generation Unit

Waterfall Turbine Development Primer - Updated
Waterfall Turbine Development Primer - UpdatedWaterfall Turbine Development Primer - Updated
Waterfall Turbine Development Primer - Updated
Jason Rota
 
Anavah corporation Group 6 2015 Design Project Presentation
Anavah corporation Group 6 2015 Design Project PresentationAnavah corporation Group 6 2015 Design Project Presentation
Anavah corporation Group 6 2015 Design Project Presentation
Wong Chiew Wee
 
4 b = 58 p 45 basic ur plant description 06.09.2021-1
4 b = 58 p  45 basic ur plant description 06.09.2021-14 b = 58 p  45 basic ur plant description 06.09.2021-1
4 b = 58 p 45 basic ur plant description 06.09.2021-1
ameermudasar
 
SPD12 Pipeline Dynamic Simulation
SPD12 Pipeline Dynamic SimulationSPD12 Pipeline Dynamic Simulation
SPD12 Pipeline Dynamic Simulation
Saleh Lari Mojarrad
 
Energy adudit methodology for boiler
Energy adudit methodology for boilerEnergy adudit methodology for boiler
Energy adudit methodology for boiler
Kongkiert Tankayura
 

Ähnlich wie Optimization of H2 Production in a Hydrogen Generation Unit (20)

Optimizing Diesel Production Using Advanced Process Control and Dynamic Simul...
Optimizing Diesel Production Using Advanced Process Control and Dynamic Simul...Optimizing Diesel Production Using Advanced Process Control and Dynamic Simul...
Optimizing Diesel Production Using Advanced Process Control and Dynamic Simul...
 
Waterfall Turbine Development Primer - Updated
Waterfall Turbine Development Primer - UpdatedWaterfall Turbine Development Primer - Updated
Waterfall Turbine Development Primer - Updated
 
Anavah corporation Group 6 2015 Design Project Presentation
Anavah corporation Group 6 2015 Design Project PresentationAnavah corporation Group 6 2015 Design Project Presentation
Anavah corporation Group 6 2015 Design Project Presentation
 
Plantwide Process Control Presentation (FCCU control)
Plantwide Process Control Presentation (FCCU control)Plantwide Process Control Presentation (FCCU control)
Plantwide Process Control Presentation (FCCU control)
 
Catalytic Reforming Technology - Infographics
Catalytic Reforming Technology - InfographicsCatalytic Reforming Technology - Infographics
Catalytic Reforming Technology - Infographics
 
Isothermal Methanol Converter (IMC) UA Distribution Analysis
Isothermal Methanol Converter (IMC) UA Distribution AnalysisIsothermal Methanol Converter (IMC) UA Distribution Analysis
Isothermal Methanol Converter (IMC) UA Distribution Analysis
 
4 b = 58 p 45 basic ur plant description 06.09.2021-1
4 b = 58 p  45 basic ur plant description 06.09.2021-14 b = 58 p  45 basic ur plant description 06.09.2021-1
4 b = 58 p 45 basic ur plant description 06.09.2021-1
 
Case study Energy Audit for Chiller Plant
Case study Energy Audit for Chiller PlantCase study Energy Audit for Chiller Plant
Case study Energy Audit for Chiller Plant
 
Electro-Hydraulic Linear Actuators for Industrial Valves
Electro-Hydraulic Linear Actuators for Industrial ValvesElectro-Hydraulic Linear Actuators for Industrial Valves
Electro-Hydraulic Linear Actuators for Industrial Valves
 
Rotor Insertion Flow Meter Technical Information
Rotor Insertion Flow Meter Technical InformationRotor Insertion Flow Meter Technical Information
Rotor Insertion Flow Meter Technical Information
 
TRANSFORMER SAMPLE REPORT DGA PHYSICAL CONDITION
TRANSFORMER SAMPLE REPORT DGA PHYSICAL CONDITION TRANSFORMER SAMPLE REPORT DGA PHYSICAL CONDITION
TRANSFORMER SAMPLE REPORT DGA PHYSICAL CONDITION
 
IRJET- Enhancement of COP of Vapor Compression Refrigeration Cycle using CFD
IRJET- Enhancement of COP of Vapor Compression Refrigeration Cycle using CFDIRJET- Enhancement of COP of Vapor Compression Refrigeration Cycle using CFD
IRJET- Enhancement of COP of Vapor Compression Refrigeration Cycle using CFD
 
Webinar - Energiebesparing bij industriële compressoren - praktijkcase
Webinar - Energiebesparing bij industriële compressoren - praktijkcaseWebinar - Energiebesparing bij industriële compressoren - praktijkcase
Webinar - Energiebesparing bij industriële compressoren - praktijkcase
 
Automate
AutomateAutomate
Automate
 
Product
ProductProduct
Product
 
Weg pump-genius-control-multiplie-pumps-with-one-drive-usapumpscfw11-brochure...
Weg pump-genius-control-multiplie-pumps-with-one-drive-usapumpscfw11-brochure...Weg pump-genius-control-multiplie-pumps-with-one-drive-usapumpscfw11-brochure...
Weg pump-genius-control-multiplie-pumps-with-one-drive-usapumpscfw11-brochure...
 
SPD12 Pipeline Dynamic Simulation
SPD12 Pipeline Dynamic SimulationSPD12 Pipeline Dynamic Simulation
SPD12 Pipeline Dynamic Simulation
 
Split Range Control - Greg McMillan Deminar
Split Range Control - Greg McMillan DeminarSplit Range Control - Greg McMillan Deminar
Split Range Control - Greg McMillan Deminar
 
City of Asheboro Carotek Process Solutions Summit presentation
City of Asheboro Carotek Process Solutions Summit presentationCity of Asheboro Carotek Process Solutions Summit presentation
City of Asheboro Carotek Process Solutions Summit presentation
 
Energy adudit methodology for boiler
Energy adudit methodology for boilerEnergy adudit methodology for boiler
Energy adudit methodology for boiler
 

Kürzlich hochgeladen

Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
MayuraD1
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
HenryBriggs2
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
pritamlangde
 

Kürzlich hochgeladen (20)

Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
Learn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic MarksLearn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic Marks
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
 
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 

Optimization of H2 Production in a Hydrogen Generation Unit

  • 1. Optimization of H2 Production in a Hydrogen Generation Unit Márcio R. S. Garcia1, Renato N. Pitta2, Gilvan A. G. Fischer2, André S. R. Kuramoto2 1Radix Engenharia e Desenvolvimento de Software Ltda, Rio de Janeiro, RJ, Brazil (e-mail: marcio.garcia@radixeng.com.br) 2Refinaria Henrique Lage, São José dos Campos, SP, Brazil (e-mail: renato.pitta@petrobras.com.br , gilvan@petrobras.com.br , kuramoto@petrobras.com.br )
  • 2. Summary 1. Process description 2. Advanced Process Control 3. Modelling and Identification 4. Results 5. Conclusion
  • 3. Process description – Hydrogen Generation Unit  Hydrogen Generation Units (HGU) are designed to supply the H2 necessary for the hydrotreating process;  Hydrotreating Units (HDT) use H2 for Sulfur, Nitrogen, Oxygen and other contaminants removal from the Diesel / Naphtha streams and also for aromatics / olefins conversion;  REVAP (Henrique Lage Refinery), located in the state of São Paulo, Brazil is one of the largest refineries in the country and contemplates 6 HDTs and 2 HGUs and 1 CCR (Continuous Catalytic Reforming Unit)
  • 4. Process description - H2 Header configuration H2 HEADER
  • 5. Process description - H2 consumption profile 4.60% 0.40% 7.00% 19.00% 16.00% 53.00% Gasoil HDT Diesel HDT Cracked Naphtha HDS Coker Naphtha HDT Naphtha / Kerosine HDT Tail Gas
  • 6. Process description - H2 production profile 61% 18% 21% HGU-I CCR HGU-II
  • 7. Process description - H2 Generation Process CnHm + n H2O n CO + (n + m/2) H2 n CO + n H2O n CO2 + n H2
  • 8. Process description - Steam / Carbon ratio control loop
  • 9. Process description - Air / Fuel Gas ratio control loop
  • 10. Process description - H2 Venting (Before APC) 900 800 700 600 500 400 300 200 100 0 0 20 40 60 80 100 Daily Avg Flow rate (kg/h) 120 140 160 180 Average
  • 11. Process description - Evolution of the LNG Cost (USD/ton) 1,200.00 1,000.00 800.00 600.00 400.00 200.00 - Cost of LNG ($/ton) LNG Cost ($/ton)
  • 12. Summary 1. Process description 2. Advanced Process Control 3. Modelling and Identification 4. Results 5. Conclusion
  • 13. Advanced Process Control – Problem Statement  Advanced Model Predictive-based control strategies (APC) are more suitable as a solution than DCS (Digital Control System) leadlag control, since it is intrinsically multivariable and also due to the high number of disturbance variables;  DCS Leadlag control is more likely to introduce plant variability or even lead the plant to unstable conditions due to plant-model mismatch. APC is more robust to model errors. Robustness in leadlag controllers are usually associated to a highly limitation of its control signal;  APC present discrete and constrained control actions, resulting in a smoother operation of the unit;  APC is easier to tune when compared to common leadlag controllers;  APC optimizes plant operation. DCS Leadlag control only rejects disturbances.
  • 14. Advanced Process Control - Configuration - Manipulated variables have their setpoints or control signals defined by the advanced controller in order to keep the process controlled variables (constraints) within their limits; - Disturbance variables are used for feedforward control, anticipating the H2 header’s pressure drop. The disturbance is caused by the variation on the magnitude of these variables. Unit Disturbance Variables Manipulated Variables HGU-II HGU Natural Gas feed Gasoil HDT - LCO (Light Cycle Oil) - Coker Gasoil / Heavy Naphtha Coker Naphtha HDT - Coker Light Naphtha Cracked Naphtha HDS - FCC’s Light Cracked Naphtha Diesel HDT - FCC’s Heavy Cracked Naphtha HGU-I - H2 production to header CCR - H2 production to header
  • 15. Advanced Process Control - Configuration - Controlled variables represent the process constraints and must remain within their HGU Section Equipments Controlled Variables Feed - - Steam flow setpoint; - Steam flow control signal. Feed Purification - Dessulphurization Reactor - Hydrodessulphurization Reactor - Reformer - Forced Air Draft Fan - Furnace - Induced Draft Fan - Air flow setpoint / control signal; - Fuel gas setpoint / control signal; - Chamber pressure control signal. Steam Generation - Dessuperheater - Heat Boiler - Export Steam Temperature control signal. Shift - Shift Reactor - H2 Purification - PSA - PSA’s Inlet Temperature; - Header pressure; - Spillback control signal safe operational limits;
  • 16. Advanced Process Control – Control Strategy Linear Optimizer - Economic Function; - Linear / Quadratic programing; - Steady state targets. Controller - ARX models; - Model Predictive Control. DIGITAL CONTROL SYSTEM (DCS) - Process variables; - Human-machine Interface. Targets U*, Yl* MV’s Setpoints, Control Actions MV’s, DV’s and CV’s
  • 17. Advanced Process Control – Control Strategy The APC uses a two-layer control strategy: 1. Linear Optimizer 퐽 = min Δ푈,푆퐶푉 −푊1Δ푈 + 푊2ΔU 2 2 + 푊3푆퐶푉 2 2 s.t. Δ푈 = 푈푆 − 푢푎푡 푈푖푛푓 ≤ 푈≤ 푈푆 푆 푆 푠푢푝 푖푛푓 ≤ 푌푆 + 푆퐶푉 ≤ 푌푆 푌푆 푠푢푝  DU = Control action increment; - SCV = Slack Control Variable; - W1 = economic coefficient; - uat = previous control action; - W2 = supression factor; - Uinf, Usup = MV limits; - W3 = slack variables weights; - Yinf, Ysup = CV limits;
  • 18. Advanced Process Control – Control Strategy The Controller is a DMC algorithm with Quadratic programming: 2. Controller 퐽 = min Δ푈푖,푖=1,…,푛푙 푛푟 푗=1 ∗ 푊4 푌푝 − 푌푙 2 + 2 푛푙 푖=1 푊5ΔU푖 2 2 + 푛푙 푖=1 푊6 푢푖−1 − 푖 푘=1 Δ푈푘 − 푢∗ 푗 - nr = Prediction horizon; - nl = Control horizon; - W4 = CV weight; - uinf , usup = Control signal limits; - W5 = supression factor; - Y*, u* = Targets from the linear optimizer; - W6 = MV weights; - Yp = prediction for the controlled variables 2 2 s.t. −Δ푈푚푎푥 ≤ Δ푈 ≤ Δ푈푚푎푥 푢푖푛푓 ≤ 푢푖−1 − 푖=1 Δ푈푖 ≤ 푢푠푢푝
  • 19. Summary 1. Process description 2. Advanced Process Control 3. Modelling and Identification 4. Results 5. Conclusion
  • 20. Modelling and Identification – H2 header dynamic simulation  Identification tests were performed in the real plant and generated the step-response based ARX models;  Some disturbance variables identification tests could not be performed on site, due to reliability issues;  A dynamic simulator project was built by the time of the header integration and used for modelling and identification of these disturbance variables;  The software used for simulation is the RSI’s Indiss® suite. Consumers and producers were modelled as infinite mass generators, with the H2 consumption / production profile adjusted to match real operation values.
  • 21. Modelling and Identification – H2 header dynamic simulation Sheet Compressor 1.18e+007 Pa 308 K 0.83 kg/s U262 Valve1 PV294012 Valve14 -0.11 kg/s Transmitter 18 612.20 Valve11 Transmitter PipeSegment11 Transmitter 20.07 PipeSegment10 Transmitter 17 1264.24 5 PC222235 0.35 kg/s Transmitter 14 3.02 Valve12 0.22 kg/s Valve16 0.06 kg/s PipeSegment4 PipeSegment5 0.11 kg/s 20994 Pa 0.17 kg/s 0.83 kg/s PIDController 4 PipeSegment1 Transmitter 10 0.00 1.00e+004 Pa 302 K 0.00 kg/s Transmitter Valve6 0.00 kg/s Valve7 0.18 kg/s 11 20.24 PipeSegment8 PipeSegment6 Transmitter Valve8 0.22 kg/s Valve9 0.06 kg/s Q K 16 19.96 PipeSegment9 PipeSegment12 Transmitter 15 20.00 0.22 kg/s 11362 Pa Valve5 Valve26 Valve33 Valve27 PIDController 17 Transmitter 28 0.80 1.40e+006 Pa 303 K 0.11 kg/s U266 1.40e+006 Pa 303 K 0.00 kg/s 1.40e+006 Pa 303 K 0.18 kg/s 1.40e+006 Pa 303 K 0.22 kg/s U272D Valve34 0.22 kg/s PipeSegment13 0.06 kg/s 8157 Pa PIDController 18 Transmitter 29 0.23 1.40e+006 Pa 303 K 0.06 kg/s U272NQ Valve35 0.06 kg/s 0.17 kg/s 2993 Pa 0.11 kg/s 1164 Pa 0.11 kg/s Transmitter 12 20.32 Transmitter 9 20.10 Transmitter 7 19.29 Transmitter 6 19.53 4 19.44 0.062 6k5g /Psa OL BCF 0.00 kg/s 8882 Pa PIDController 15 Transmitter 27 0.02 U238 0.00 kg/s PIDController 3 Valve3 0.00 kg/s PipeSegment2 Valve32 PipeSegment3 0.35 kg/s 3773 Pa Transmitter 2 19.08 PIDController 2 Valve2 0.00 kg/s -0.11 kg/s -24392 Pa Transmitter 1 19.44 PIDController 1 0.00 kg/s 0.18 kg/s 595 Pa 0.78 kg/s 52494 Pa 0.83 kg/s 14843 Pa 2.20e+006 Pa 303 K 0.83 kg/s U294 0.00 kg/s Tocha Transmitter 26 19.29 PIDController 13 PIDController 12 Transmitter 24 0.64 Transmitter 23 0.40 U264 3.00e+006 Pa 303 K 0.17 kg/s U292 3.00e+006 Pa 303 K 0.35 kg/s U222 0.18 kg/s 0.11 kg/s Consumers Producers H2 header Compressor Vent valves
  • 22. Modelling and Identification – Spillback control dynamic simulation Transmitter 32 3.05 PV262037 1.30e+005 Pa 299 K 26.19 kg/s PIDController 6 Transmitter 31 18.71 Valve21 0.92 kg/s PIDController 5 PV262034 Valve20 Sheet 1.40e+006 Pa 328 K 0.00 kg/s Compressor1 V26208 Pressure : 3.01e+006 Pa Level : 0.00 % Transmitter 30 29.71 Valve22 0.83 kg/s > ARout Recycle Valve 2.50e+005 Pa 298 K 26.19 kg/s ARin 0.00 kg/s Condensado1 0.14 kg/s P26213 0.09 kg/s Transmitter 8 50.61 Valve19 0.78 kg/s Valve15 0.00 kg/s 1.40e+006 Pa 302 K 0.00 kg/s Condensado V26207 Lev el : 0.00 % Spillback Vessel H2 from header
  • 23. Modelling and Identification – Compressor dynamic simulation 1.30e+005 Pa 300 K 47.15 kg/s 1.30e+005 Pa 300 K 47.15 kg/s ARout4 2.50e+005 Pa 298 K 47.15 kg/s 2.50e+005 Pa 298 K 47.15 kg/s ARin4 P26217 ARout3 ARin3 P26216 1.30e+005 Pa 300 K 47.15 kg/s 1.30e+005 Pa 300 K 47.15 kg/s ARout2 2.50e+005 Pa 298 K 47.15 kg/s 2.50e+005 Pa 298 K 47.15 kg/s ARin2 P26215 ARout1 ARin1 P26214 FloatBox FloatBox1 90 Valve17 0.92 kg/s Transmitter 19 61.90 Transmitter 20 37.41 Transmitter 21 36519.97 Transmitter 3 60.36 Transmitter 22 41.47 Valve10 0.92 kg/s ReciprocatingCompressor8 0.48 kg/s Valve4 0.44 kg/s ReciprocatingCompressor7 0.48 kg/s ReciprocatingCompressor6 0.48 kg/s ReciprocatingCompressor4 0.44 kg/s ReciprocatingCompressor3 0.44 kg/s ReciprocatingCompressor2 0.44 kg/s Transmitter 13 17542.85
  • 24. Modelling and Identification – H2 header integration dynamic simulation Real Plant Virtual Plant
  • 25. Modelling and Identification – H2 header with Spillback control dynamic simulation 20 19.5 19 18.5 18 17.5 17 700 600 500 400 300 200 100 0 HGU-I H2 Production (kg/h) Spillback pressure Time (minutes) H2 Header Pressure (kgf/cm²) control HGU-I H2 production Header Pressure with Spillback Header Pressure without Spillback
  • 26. Modelling and Identification – APC model Matrix (ARX) - First-Order Plus Dead-Time models; - Time Sample = 1 minute, Settling Time Tr = 120 minutes
  • 27. Summary 1. Process description 2. Advanced Process Control 3. Modelling and Identification 4. Results 5. Conclusion
  • 28. Results  The following results show the application of the APC strategy in the real plant;  The data set is collected from the historian software for a period of time of 150 days after the APC start-up and comissioning and compared to the units operation before the APC project;  All sampled data (before / after APC) was treated to match regular steady-state operational conditions only, in order to correctly evaluate the control strategy performance. The data that did not satisfy the analysis conditions were discarded.
  • 29. Results - APC in Real Plant Operation Time Sample Ts = 1min; Prediction Horizon nr = 120min, Control Horizon nl = 8min: 87.00 86.50 86.00 85.50 85.00 84.50 84.00 83.50 83.00 82.50 82.00 85.00 80.00 75.00 70.00 65.00 60.00 55.00 50.00 CV (% of span) HGU LNG feed (APC Manipulated Variable) HDT-GOK H2 consumption Time (minutes) MV / DV (% of span) H2 header pressure (APC Controlled variable) HDT-GOK LCO Feed (APC Disturbance variable)
  • 30. Results – APC in Real Plant Operation 87.00 85.00 83.00 81.00 79.00 77.00 75.00 95.00 85.00 75.00 65.00 55.00 45.00 CV (% of span) H2 header pressure (APC Controlled variable) HDT-GOK Spillback Presure Control Time (minutes) MV / DV (% of span) HGU LNG feed (APC Manipulated Variable) HGU-I H2 production to header (APC disturbance variable CV control limits
  • 31. Results - Economic Assessment 50 45 40 35 30 25 20 15 10 5 0 900 800 700 600 500 400 300 200 100 0 Daily Avg Venting (%) Daily Avg Flow rate (kg/h) Avg before / after APC 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 Vent Opening (%) H2 flow to flare (kg/h) Time (days) APC Start-up
  • 32. Results - Economic Assessment 4 3.5 3 2.5 2 1.5 1 0.5 0 0 20 40 60 80 100 120 140 160 180 Daily Avg Flow rate (kg/h) Avg before / after APC 200 220 240 260 280 300 320 Excess Natural Gas Flow (t/h) Time (days) APC Start-up
  • 33. Results - Economic Assessment Averages APC off APC On D H2 Venting (%) 5.64 0.78 -4,86 H2 Loss to Flare (kg/h) 415.99 57.74 -358.25 Excess LNG Flow (t/h) 1.71 0.25 -1.46 Economic Loss (USD/month) 920k 130k -790k 퐸푐표푛표푚푖푐 푆푎푣푖푛푔푠 = 퐶퐿 푁퐺 ∗ 1 + 푄퐹퐺 푄퐻퐺푈 ∗ Δ푄푁퐺 DQLNG = Excess Natural Gas Flow variation in t/month QFG = Natural gas to reformer nominal flow; QHGU = HGU natural gas nominal flow; 퐶퐿 푁퐺 = 퐴푣푒푟푎푔푒 퐿푁퐺 퐶표푠푡 = 750$/푡
  • 34. Results - Economic Assessment $1,200.00 $1,000.00 $800.00 $600.00 $400.00 $200.00 $- Time On Savings nov-13 dez-13 jan-14 fev-14 mar-14 100.00% 80.00% 60.00% 40.00% 20.00% 0.00% Savings ( x1000 ) Time On (%) nov-13 dez-13 jan-14 fev-14 mar-14 Time On 55.07% 53.40% 88.01% 59.81% 90.76% Savings $385,51 $373,81 $616,08 $424,80 $635,31
  • 35. Summary 1. Process description 2. Advanced Process Control 3. Modelling and Identification 4. Results 5. Conclusion
  • 36. Conclusion  The APC improved the operational reliability by anticipating the hydrogen consumption variation of the hydrotreating units;  The APC have shown to be a more suitable solution than regulatory-based leadlag control due to the high number of disturbance variables;  The economic befenits achieved by the APC control are expressive when compared to the low cost of implementation;  Dynamic simulation is a powerfull tool for modelling and identification and improved the control system reliability.
  • 37. Conclusion – Additional optimization variables  Hydrogen production optimization is not limited to vent minimization. Other optimization variables include:  O2 excess control (increase the reformer’s thermal efficiency);  Steam / Carbon ratio (minimize steam consumption);  Reformer’s outlet temperature control (Catalyst savings);  Shift reactor inlet temperature (maximize H2 recovery in the PSA system);  PSA’s operational factor (optimize header CO / CO2 content)
  • 38. Optimization of H2 Production in a Hydrogen Generation Unit Márcio R. S. Garcia1, Renato N. Pitta2, Gilvan A. G. Fischer2, André S. R. Kuramoto2 1Radix Engenharia e Desenvolvimento de Software Ltda, Rio de Janeiro, RJ, Brazil (e-mail: marcio.garcia@radixeng.com.br) 2Refinaria Henrique Lage, São José dos Campos, SP, Brazil (e-mail: renato.pitta@petrobras.com.br , gilvan@petrobras.com.br , kuramoto@petrobras.com.br )

Hinweis der Redaktion

  1. - Some parts of the process were omitted since there’s no significant information for the process understanding (Pre-treatment section and Heat Boiler)