SlideShare ist ein Scribd-Unternehmen logo
1 von 20
Downloaden Sie, um offline zu lesen
Lebanese University - Faculty of Sciences
Section ¶
Chapter 1: Simple Integration
Solved Problems
Dr. Kamel ATTAR
attar.kamel@gmail.com
F Wednesday 24/Mars/2021 F
2Ú20
Exercises
Solutions
1 Exercises
2 Solutions
Dr. Kamel ATTAR | Chapter 1: Simple Integration | Solved Problems
3Ú20
Exercises
Solutions
. Exercise 1. Calculate the following integrals:
a)
Z
sin2
(x) dx b)
Z
cosh2
(x) dx c)
Z
tan2
(x) dx .
Go to Solution
. Exercise 2. Evaluate by using change of variable the following integrals :
a)
Z
(x3
+ x)5
(3x2
+ 1) dx b)
Z p
2x + 1 dx c)
Z
2x dx
3
p
x2 + 1
d)
Z
arccos(x) − x
p
1 − x2
dx e)
Z
sin(2x)esin2
x
dx .
Go to Solution
. Exercise 3. Evaluate I(x) =
Z
x
2 − x2 + 2x
dx then deduce J(x) =
Z
dx
1 + x + 2
√
1 − x
Go to Solution
. Exercise 4. Calculate using the integration by parts the following integrals:
a)
Z
x sin 2xdx b)
Z
x ln x dx c)
Z
x2
ln(x)dx d)
Z
(x2
+ 7x − 5) cos(2x)dx
e)
Z
x2
e3x
dx f)
Z
x arcsin x
p
1 − x2
dx g)
Z
arcsin2 x
2
p
4 − x2
dx h)
Z
x ln

1 + x
1 − x

dx .
Go to Solution
Dr. Kamel ATTAR | Chapter 1: Simple Integration | Solved Problems
4Ú20
Exercises
Solutions
. Exercise 5. Using twice integration by parts, evaluate:
Z
e−x
cos(x)dx .
Go to Solution
. Exercise 6. Calculate: a)
Z
2x2
x4 − 1
dx b)
Z
dx
x2(x − 1)3
c)
Z
1
(x2 + 1)2
dx
Go to Solution
. Exercise 7. Calculate: a)
Z
dx
x(x2 + 2x + 5)
b)
Z
dx
x(x2 + 1)2
c)
Z
dx
x(x5 + 1)2
.
Go to Solution
Dr. Kamel ATTAR | Chapter 1: Simple Integration | Solved Problems
5Ú20
Exercises
Solutions
Solution 1.
a) We have that the power of sin is even, then we can write the integral as follows:
Z
sin2
(x) dx =
Z 
1 − cos(2x)
2

dx =
x
2
−
sin(2x)
4
+ C.
b) Same for the hyperbolic function
Z
cosh2
(x) dx =
Z 
1 + cosh(2x)
2

dx =
x
2
+
sinh(2x)
4
+ C.
c) We have
tan2
(x) =

sin x
cos x
2
=
1 − cos2 x
cos2 x
=
1
cos2 x
− 1 .
Then Z
tan2
(x) dx =
Z
1
cos2 x
dx −
Z
dx = tan x − x + C.
Go Back 
Dr. Kamel ATTAR | Chapter 1: Simple Integration | Solved Problems
6Ú20
Exercises
Solutions
Solution 2.
a) We set u = x3
+ x. Then du = (3x2
+ 1)dx , so that by substitution we have
Z
(x3
+ x)5
(3x2
+ 1) dx =
Z
u5
du =
u6
6
+ C =
(x3 + x)6
6
+ C.
b) We set u = 2x + 1. Then du = 2dx , so that by substitution we have
Z p
2x + 1 dx =
Z p
2x + 1 dx =
1
2
Z
u
1
2 u0
=
1
3
u3/2
+ C =
1
3
(2x + 1)3/2
+ C .
c) Substitute u = x2
+ 1 then u0
= 2x and so
Z
2x dx
3
p
x2 + 1
=
Z
u0
u1/3
=
Z
u−1/3
u0
=
u2/3
2/3
+ C =
3
2
u2/3
+ C =
3
2
(x2
+ 1)2/3
+ C.
d) Z
arccos(x) − x
p
1 − x2
dx =
Z
arccos(x)
p
1 − x2
dx +
Z
−x
p
1 − x2
dx
We set u = arccos x and v = 1 − x2
then du = −
1
p
1 − x2
dx and dv = −2xdx. Thus
Z
arccos(x) − x
p
1 − x2
dx = −
Z
u du +
Z
dv
2
√
v
= −
arccos2 x
2
+
p
1 − x2 + C .

Dr. Kamel ATTAR | Chapter 1: Simple Integration | Solved Problems
7Ú20
Exercises
Solutions
e) We havesin(2x) = 2 cos(x) sin(x), we obtain
Z
sin(2x)esin2
x
dx =
Z
2 cos x sin x esin2
x
dx
Using change of variable t = sin2
x, we get dt = 2 cos x sin x dx. Thus
Z
sin(2x)esin2
x
dx =
Z
et
dt = et
+ C = esin2
x
+ C
Go Back
Dr. Kamel ATTAR | Chapter 1: Simple Integration | Solved Problems
8Ú20
Exercises
Solutions
Solution 3.
a)
I(x) =
Z
xdx
−x2 + 2x + 2
= −
1
2
Z
−2xdx
−x2 + 2x + 2
u = −x2
+ 2x + 2
= −
1
2
Z
−2x + 2
−x2 + 2x + 2
dx +
Z
1
−x2 + 2x + 2
dx
= −
1
2
Z
u0
u
+
Z
1
√
3
2
− (x − 1)2
dx u = x − 1 u0
= 1 , a =
√
3
= −
1
2
ln |u| +
Z
u0
√
3
2
− u2
= −
1
2
ln | − x2
+ 2x + 2| +
1
√
3
arg sh
x − 1
√
3
+ C .
b) We set t =
p
1 − x then x + 1 = 2 − t2
and dx = −2tdt. Hence
J(x) =
Z
−2t dt
2 − t2 + 2t
= −2I(t) = ln | − t2
+ 2t + 2| −
2
√
3
arg sh
t − 1
√
3
+ C
 Go Back
Dr. Kamel ATTAR | Chapter 1: Simple Integration | Solved Problems
9Ú20
Exercises
Solutions
Solution 4.
a) We need to choose u. In this question we don’t have any of the functions suggested in the priorities
list above. We could let u = x or u = sin 2x, but usually only one of them will work. In general, we
choose the one that allows to be of a simpler form than u. So, we choose u = x and so v0
will be the
rest of the integral, v0
= sin 2x. We have
u = x 
×
v0
= sin 2x
u0
= 1 ←
−
−
R v = −
1
2
cos 2x
Substituting these 4 expressions into the integration by parts formula, we get
Z
x sin 2xdx = x ×

−
1
2
cos 2x

−
Z 
−
1
2
cos 2x

× 1dx
= −
1
2
x cos 2x +
1
2
Z
cos 2x dx = −
1
2
x cos 2x +
1
4
sin 2x .
b)
u = ln x 
×
v0
= x
u0
=
1
x
←
−
−
R v =
x2
2
Then, applying the formula
Z
x ln x dx =
x2
2
ln x −
Z
x2
2
·
1
x
dx =
x2
2
ln x −
x2
4
+ C
Go Back 
Dr. Kamel ATTAR | Chapter 1: Simple Integration | Solved Problems
10Ú20
Exercises
Solutions
c)
u = ln x 
×
v0
= x2
u0
=
1
x
←
−
−
R v =
x3
3
Then
Z
x2
ln x dx =
x3
3
ln x −
1
3
Z
x2
dx =
x3
3
ln x −
x3
9
+ C.
d)
u x2
+ 7x − 5 cos(2x) v0
+

u0
2x + 7
1
2
sin(2x) v
−

u00
2 −
1
4
cos(2x)
Z
v
+

u000
0 −
1
8
sin(2x)
Z Z
v
Z
(x2
+ 7x − 5) cos(2x) = (x2
+ 7x − 5)

1
2
sin(2x)

− (2x + 7)

−
1
4
cos(2x)

+ (2)
=
1
2

x2
+ 7x −
11
2

sin(2x) +
1
2

x +
7
2

cos(2x) + C
Dr. Kamel ATTAR | Chapter 1: Simple Integration | Solved Problems
11Ú20
Exercises
Solutions
e) We have to make a choice and let one of the functions in the product equal u and one equal
to v0
. As a general rule we let u be the function which will become simpler when we
differentiate it. In this case it makes sense to let
u = x2

×
v0
= e3x
u0
= 2x ←
−
−
R v =
1
3
e3x
Then, using the formula for integration by parts,
Z
x2
e3x
dx =
1
3
e3x
· x2
−
Z
1
3
e3x
· 2x dx =
1
3
x2
e3x
−
2
3
Z
xe3x
dx .
The resulting integral is still a product. It is a product of the functions
2
3
x and e3x
. We can
use the formula again. This time we choose
u =
2
3
x 
×
v0
= e3x
u0
=
2
3
←
−
−
R v =
1
3
e3x
So
Z
x2
e3x
dx =
1
3
x2
e3x
−
2
3
Z
xe3x
dx =
1
3
x2
e3x
−

2
3
x ·
1
3
e3x
−
Z
1
3
e3x
·
2
3
dx

=
1
3
x2
e3x
−
2
9
xe3x
+
2
27
e3x
+ C.
Go Back
Dr. Kamel ATTAR | Chapter 1: Simple Integration | Solved Problems
12Ú20
Exercises
Solutions
f)
u = arcsin(x) 
×
v0
=
x
p
1 − x2
u0
=
1
p
1 − x2
←
−
−
R v = −
p
1 − x2
Then Z
x arcsin x
p
1 − x2
dx = −
p
1 − x2 arcsin x + x + C
g) Let I(x) =
Z
arcsin2 x
2
p
4 − x2
dx. Using integration by parts
u = arcsin
x
2

×
v0
= arcsin
x
2
1
2
q
1 − x
2
2
u0
=
1
2
q
1 − x
2
2
←
−
−
R v =
1
2
arcsin2 x
2
Thus
I(x) =
1
2
arcsin3 x
2
−
1
4
I(x) =
⇒ I(x) =
2
5
arcsin3 x
2
+ C .
Go Back
Dr. Kamel ATTAR | Chapter 1: Simple Integration | Solved Problems
13Ú20
Exercises
Solutions
h) We set
u = ln

1 + x
1 − x


×
v0
= x
u0
=
2
1 − x2
←
−
−
R v =
x2
2
We obtain
Z
x ln

1 + x
1 − x

dx =
x2
2
ln

1 + x
1 − x

+
Z
x2
1 − x2
dx
=
x2
2
ln

1 + x
1 − x

−
Z
1 − 1 − x2
1 − x2
dx
=
x2
2
ln

1 + x
1 − x

− x +
Z
1
1 − x2
dx
=
x2
2
ln

1 + x
1 − x

− x +
1
2
ln
1 + x
1 − x

Weitere ähnliche Inhalte

Was ist angesagt?

Chapter 9 differentiation
Chapter 9  differentiationChapter 9  differentiation
Chapter 9 differentiation
atiqah ayie
 
Maths assignment
Maths assignmentMaths assignment
Maths assignment
Ntshima
 

Was ist angesagt? (17)

Mathematics and History of Complex Variables
Mathematics and History of Complex VariablesMathematics and History of Complex Variables
Mathematics and History of Complex Variables
 
14257017 metode-frobenius (1)
14257017 metode-frobenius (1)14257017 metode-frobenius (1)
14257017 metode-frobenius (1)
 
Grade 12 math differentiation-parametric functions
Grade 12 math  differentiation-parametric functionsGrade 12 math  differentiation-parametric functions
Grade 12 math differentiation-parametric functions
 
Consolidated.m2-satyabama university
Consolidated.m2-satyabama universityConsolidated.m2-satyabama university
Consolidated.m2-satyabama university
 
Chapter 9 differentiation
Chapter 9  differentiationChapter 9  differentiation
Chapter 9 differentiation
 
mathematics formulas
mathematics formulasmathematics formulas
mathematics formulas
 
C3 Transformations
C3 TransformationsC3 Transformations
C3 Transformations
 
Chapter 9- Differentiation Add Maths Form 4 SPM
Chapter 9- Differentiation Add Maths Form 4 SPMChapter 9- Differentiation Add Maths Form 4 SPM
Chapter 9- Differentiation Add Maths Form 4 SPM
 
Lap lace
Lap laceLap lace
Lap lace
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - Notes
 
IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's Classes
IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's ClassesIIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's Classes
IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's Classes
 
exponen dan logaritma
exponen dan logaritmaexponen dan logaritma
exponen dan logaritma
 
Another possibility
Another possibilityAnother possibility
Another possibility
 
Mech MA6351 tpde_notes
Mech MA6351 tpde_notes Mech MA6351 tpde_notes
Mech MA6351 tpde_notes
 
Maths assignment
Maths assignmentMaths assignment
Maths assignment
 
Complex analysis notes
Complex analysis notesComplex analysis notes
Complex analysis notes
 
Sistem pertidaksamaan kuadrat 2 variabel
Sistem pertidaksamaan kuadrat 2 variabelSistem pertidaksamaan kuadrat 2 variabel
Sistem pertidaksamaan kuadrat 2 variabel
 

Ähnlich wie Solved exercises simple integration

Integration techniques
Integration techniquesIntegration techniques
Integration techniques
Krishna Gali
 
Calculus 08 techniques_of_integration
Calculus 08 techniques_of_integrationCalculus 08 techniques_of_integration
Calculus 08 techniques_of_integration
tutulk
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integrales
joseluisroyo
 
Engr 213 midterm 2a sol 2009
Engr 213 midterm 2a sol 2009Engr 213 midterm 2a sol 2009
Engr 213 midterm 2a sol 2009
akabaka12
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
cideni
 
Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010
akabaka12
 
Emat 213 midterm 2 fall 2005
Emat 213 midterm 2 fall 2005Emat 213 midterm 2 fall 2005
Emat 213 midterm 2 fall 2005
akabaka12
 

Ähnlich wie Solved exercises simple integration (20)

Solved exercises line integral
Solved exercises line integralSolved exercises line integral
Solved exercises line integral
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
 
Solved exercises double integration
Solved exercises double integrationSolved exercises double integration
Solved exercises double integration
 
Integration - Mathematics - UoZ
Integration - Mathematics - UoZ Integration - Mathematics - UoZ
Integration - Mathematics - UoZ
 
11365.integral 2
11365.integral 211365.integral 2
11365.integral 2
 
Calculus 08 techniques_of_integration
Calculus 08 techniques_of_integrationCalculus 08 techniques_of_integration
Calculus 08 techniques_of_integration
 
Advanced Engineering Mathematics Solutions Manual.pdf
Advanced Engineering Mathematics Solutions Manual.pdfAdvanced Engineering Mathematics Solutions Manual.pdf
Advanced Engineering Mathematics Solutions Manual.pdf
 
17 integrals of rational functions x
17 integrals of rational functions x17 integrals of rational functions x
17 integrals of rational functions x
 
Linear Differential Equations1
Linear Differential Equations1Linear Differential Equations1
Linear Differential Equations1
 
INTEGRATION
INTEGRATIONINTEGRATION
INTEGRATION
 
Leidy rivadeneira deber_1
Leidy rivadeneira deber_1Leidy rivadeneira deber_1
Leidy rivadeneira deber_1
 
Sample question paper 2 with solution
Sample question paper 2 with solutionSample question paper 2 with solution
Sample question paper 2 with solution
 
3. DERIVATIVE BY INCREMENT IN CALULUS 01
3. DERIVATIVE BY INCREMENT IN CALULUS 013. DERIVATIVE BY INCREMENT IN CALULUS 01
3. DERIVATIVE BY INCREMENT IN CALULUS 01
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integrales
 
Engr 213 midterm 2a sol 2009
Engr 213 midterm 2a sol 2009Engr 213 midterm 2a sol 2009
Engr 213 midterm 2a sol 2009
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
 
Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010
 
Integration
IntegrationIntegration
Integration
 
Emat 213 midterm 2 fall 2005
Emat 213 midterm 2 fall 2005Emat 213 midterm 2 fall 2005
Emat 213 midterm 2 fall 2005
 
2014 st josephs geelong spec maths
2014 st josephs geelong spec maths2014 st josephs geelong spec maths
2014 st josephs geelong spec maths
 

Mehr von Kamel Attar

Mehr von Kamel Attar (10)

Network analysis
Network analysisNetwork analysis
Network analysis
 
Simplex method (minimization)
Simplex method (minimization)Simplex method (minimization)
Simplex method (minimization)
 
Simplex method (maximization)
Simplex method (maximization)Simplex method (maximization)
Simplex method (maximization)
 
Linear Programming (graphical method)
Linear Programming (graphical method)Linear Programming (graphical method)
Linear Programming (graphical method)
 
Introduction to operations research
Introduction to operations researchIntroduction to operations research
Introduction to operations research
 
Function of several variables
Function of several variablesFunction of several variables
Function of several variables
 
Simple integral
Simple integralSimple integral
Simple integral
 
Operation research-Network analysis (Critical Path Method)
Operation research-Network analysis (Critical Path Method)Operation research-Network analysis (Critical Path Method)
Operation research-Network analysis (Critical Path Method)
 
Transportation problem
Transportation problemTransportation problem
Transportation problem
 
Operations research(Sensitivity analysis)
Operations research(Sensitivity analysis)Operations research(Sensitivity analysis)
Operations research(Sensitivity analysis)
 

Kürzlich hochgeladen

Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
PirithiRaju
 
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
Lokesh Kothari
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
Areesha Ahmad
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Sérgio Sacani
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Sérgio Sacani
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
PirithiRaju
 
Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptx
AlMamun560346
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
RizalinePalanog2
 

Kürzlich hochgeladen (20)

FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdf
 
American Type Culture Collection (ATCC).pptx
American Type Culture Collection (ATCC).pptxAmerican Type Culture Collection (ATCC).pptx
American Type Culture Collection (ATCC).pptx
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptx
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 

Solved exercises simple integration

  • 1. Lebanese University - Faculty of Sciences Section ¶ Chapter 1: Simple Integration Solved Problems Dr. Kamel ATTAR attar.kamel@gmail.com F Wednesday 24/Mars/2021 F
  • 2. 2Ú20 Exercises Solutions 1 Exercises 2 Solutions Dr. Kamel ATTAR | Chapter 1: Simple Integration | Solved Problems
  • 3. 3Ú20 Exercises Solutions . Exercise 1. Calculate the following integrals: a) Z sin2 (x) dx b) Z cosh2 (x) dx c) Z tan2 (x) dx . Go to Solution . Exercise 2. Evaluate by using change of variable the following integrals : a) Z (x3 + x)5 (3x2 + 1) dx b) Z p 2x + 1 dx c) Z 2x dx 3 p x2 + 1 d) Z arccos(x) − x p 1 − x2 dx e) Z sin(2x)esin2 x dx . Go to Solution . Exercise 3. Evaluate I(x) = Z x 2 − x2 + 2x dx then deduce J(x) = Z dx 1 + x + 2 √ 1 − x Go to Solution . Exercise 4. Calculate using the integration by parts the following integrals: a) Z x sin 2xdx b) Z x ln x dx c) Z x2 ln(x)dx d) Z (x2 + 7x − 5) cos(2x)dx e) Z x2 e3x dx f) Z x arcsin x p 1 − x2 dx g) Z arcsin2 x 2 p 4 − x2 dx h) Z x ln 1 + x 1 − x dx . Go to Solution Dr. Kamel ATTAR | Chapter 1: Simple Integration | Solved Problems
  • 4. 4Ú20 Exercises Solutions . Exercise 5. Using twice integration by parts, evaluate: Z e−x cos(x)dx . Go to Solution . Exercise 6. Calculate: a) Z 2x2 x4 − 1 dx b) Z dx x2(x − 1)3 c) Z 1 (x2 + 1)2 dx Go to Solution . Exercise 7. Calculate: a) Z dx x(x2 + 2x + 5) b) Z dx x(x2 + 1)2 c) Z dx x(x5 + 1)2 . Go to Solution Dr. Kamel ATTAR | Chapter 1: Simple Integration | Solved Problems
  • 5. 5Ú20 Exercises Solutions Solution 1. a) We have that the power of sin is even, then we can write the integral as follows: Z sin2 (x) dx = Z 1 − cos(2x) 2 dx = x 2 − sin(2x) 4 + C. b) Same for the hyperbolic function Z cosh2 (x) dx = Z 1 + cosh(2x) 2 dx = x 2 + sinh(2x) 4 + C. c) We have tan2 (x) = sin x cos x 2 = 1 − cos2 x cos2 x = 1 cos2 x − 1 . Then Z tan2 (x) dx = Z 1 cos2 x dx − Z dx = tan x − x + C. Go Back Dr. Kamel ATTAR | Chapter 1: Simple Integration | Solved Problems
  • 6. 6Ú20 Exercises Solutions Solution 2. a) We set u = x3 + x. Then du = (3x2 + 1)dx , so that by substitution we have Z (x3 + x)5 (3x2 + 1) dx = Z u5 du = u6 6 + C = (x3 + x)6 6 + C. b) We set u = 2x + 1. Then du = 2dx , so that by substitution we have Z p 2x + 1 dx = Z p 2x + 1 dx = 1 2 Z u 1 2 u0 = 1 3 u3/2 + C = 1 3 (2x + 1)3/2 + C . c) Substitute u = x2 + 1 then u0 = 2x and so Z 2x dx 3 p x2 + 1 = Z u0 u1/3 = Z u−1/3 u0 = u2/3 2/3 + C = 3 2 u2/3 + C = 3 2 (x2 + 1)2/3 + C. d) Z arccos(x) − x p 1 − x2 dx = Z arccos(x) p 1 − x2 dx + Z −x p 1 − x2 dx We set u = arccos x and v = 1 − x2 then du = − 1 p 1 − x2 dx and dv = −2xdx. Thus Z arccos(x) − x p 1 − x2 dx = − Z u du + Z dv 2 √ v = − arccos2 x 2 + p 1 − x2 + C . Dr. Kamel ATTAR | Chapter 1: Simple Integration | Solved Problems
  • 7. 7Ú20 Exercises Solutions e) We havesin(2x) = 2 cos(x) sin(x), we obtain Z sin(2x)esin2 x dx = Z 2 cos x sin x esin2 x dx Using change of variable t = sin2 x, we get dt = 2 cos x sin x dx. Thus Z sin(2x)esin2 x dx = Z et dt = et + C = esin2 x + C Go Back Dr. Kamel ATTAR | Chapter 1: Simple Integration | Solved Problems
  • 8. 8Ú20 Exercises Solutions Solution 3. a) I(x) = Z xdx −x2 + 2x + 2 = − 1 2 Z −2xdx −x2 + 2x + 2 u = −x2 + 2x + 2 = − 1 2 Z −2x + 2 −x2 + 2x + 2 dx + Z 1 −x2 + 2x + 2 dx = − 1 2 Z u0 u + Z 1 √ 3 2 − (x − 1)2 dx u = x − 1 u0 = 1 , a = √ 3 = − 1 2 ln |u| + Z u0 √ 3 2 − u2 = − 1 2 ln | − x2 + 2x + 2| + 1 √ 3 arg sh x − 1 √ 3 + C . b) We set t = p 1 − x then x + 1 = 2 − t2 and dx = −2tdt. Hence J(x) = Z −2t dt 2 − t2 + 2t = −2I(t) = ln | − t2 + 2t + 2| − 2 √ 3 arg sh t − 1 √ 3 + C Go Back Dr. Kamel ATTAR | Chapter 1: Simple Integration | Solved Problems
  • 9. 9Ú20 Exercises Solutions Solution 4. a) We need to choose u. In this question we don’t have any of the functions suggested in the priorities list above. We could let u = x or u = sin 2x, but usually only one of them will work. In general, we choose the one that allows to be of a simpler form than u. So, we choose u = x and so v0 will be the rest of the integral, v0 = sin 2x. We have u = x × v0 = sin 2x u0 = 1 ← − − R v = − 1 2 cos 2x Substituting these 4 expressions into the integration by parts formula, we get Z x sin 2xdx = x × − 1 2 cos 2x − Z − 1 2 cos 2x × 1dx = − 1 2 x cos 2x + 1 2 Z cos 2x dx = − 1 2 x cos 2x + 1 4 sin 2x . b) u = ln x × v0 = x u0 = 1 x ← − − R v = x2 2 Then, applying the formula Z x ln x dx = x2 2 ln x − Z x2 2 · 1 x dx = x2 2 ln x − x2 4 + C Go Back Dr. Kamel ATTAR | Chapter 1: Simple Integration | Solved Problems
  • 10. 10Ú20 Exercises Solutions c) u = ln x × v0 = x2 u0 = 1 x ← − − R v = x3 3 Then Z x2 ln x dx = x3 3 ln x − 1 3 Z x2 dx = x3 3 ln x − x3 9 + C. d) u x2 + 7x − 5 cos(2x) v0 + u0 2x + 7 1 2 sin(2x) v − u00 2 − 1 4 cos(2x) Z v + u000 0 − 1 8 sin(2x) Z Z v Z (x2 + 7x − 5) cos(2x) = (x2 + 7x − 5) 1 2 sin(2x) − (2x + 7) − 1 4 cos(2x) + (2) = 1 2 x2 + 7x − 11 2 sin(2x) + 1 2 x + 7 2 cos(2x) + C Dr. Kamel ATTAR | Chapter 1: Simple Integration | Solved Problems
  • 11. 11Ú20 Exercises Solutions e) We have to make a choice and let one of the functions in the product equal u and one equal to v0 . As a general rule we let u be the function which will become simpler when we differentiate it. In this case it makes sense to let u = x2 × v0 = e3x u0 = 2x ← − − R v = 1 3 e3x Then, using the formula for integration by parts, Z x2 e3x dx = 1 3 e3x · x2 − Z 1 3 e3x · 2x dx = 1 3 x2 e3x − 2 3 Z xe3x dx . The resulting integral is still a product. It is a product of the functions 2 3 x and e3x . We can use the formula again. This time we choose u = 2 3 x × v0 = e3x u0 = 2 3 ← − − R v = 1 3 e3x So Z x2 e3x dx = 1 3 x2 e3x − 2 3 Z xe3x dx = 1 3 x2 e3x − 2 3 x · 1 3 e3x − Z 1 3 e3x · 2 3 dx = 1 3 x2 e3x − 2 9 xe3x + 2 27 e3x + C. Go Back Dr. Kamel ATTAR | Chapter 1: Simple Integration | Solved Problems
  • 12. 12Ú20 Exercises Solutions f) u = arcsin(x) × v0 = x p 1 − x2 u0 = 1 p 1 − x2 ← − − R v = − p 1 − x2 Then Z x arcsin x p 1 − x2 dx = − p 1 − x2 arcsin x + x + C g) Let I(x) = Z arcsin2 x 2 p 4 − x2 dx. Using integration by parts u = arcsin x 2 × v0 = arcsin x 2 1 2 q 1 − x 2 2 u0 = 1 2 q 1 − x 2 2 ← − − R v = 1 2 arcsin2 x 2 Thus I(x) = 1 2 arcsin3 x 2 − 1 4 I(x) = ⇒ I(x) = 2 5 arcsin3 x 2 + C . Go Back Dr. Kamel ATTAR | Chapter 1: Simple Integration | Solved Problems
  • 13. 13Ú20 Exercises Solutions h) We set u = ln 1 + x 1 − x × v0 = x u0 = 2 1 − x2 ← − − R v = x2 2 We obtain Z x ln 1 + x 1 − x dx = x2 2 ln 1 + x 1 − x + Z x2 1 − x2 dx = x2 2 ln 1 + x 1 − x − Z 1 − 1 − x2 1 − x2 dx = x2 2 ln 1 + x 1 − x − x + Z 1 1 − x2 dx = x2 2 ln 1 + x 1 − x − x + 1 2 ln
  • 14.
  • 15.
  • 16.
  • 17. 1 + x 1 − x
  • 18.
  • 19.
  • 20.
  • 21. + C Go Back Dr. Kamel ATTAR | Chapter 1: Simple Integration | Solved Problems
  • 22. 14Ú20 Exercises Solutions Solution 5. I(x) = Z e−x cos(x) dx. We set u = e−x × v0 = cos(x) u0 = −e−x ← − − R v = sin(x) Then I(x) = e−x sin(x) + Z e−x sin(x) dx . Same for Z e−x sin(x) dx we set u = e−x × v0 = sin(x) u0 = −e−x ← − − R v = − cos(x) we obtain Z e−x sin(x) dx = −e−x cos(x) − Z e−x cos(x) = −e−x cos(x) − I(x) Thus I(x) = e−x sin(x) − e−x cos(x) − I(x) + C Finally I(x) = 1 2 sin(x) − cos(x) e−x + C Go Back Dr. Kamel ATTAR | Chapter 1: Simple Integration | Solved Problems
  • 23. 15Ú20 Exercises Solutions Solution 6. a) The partial fraction decomposition has the form 2x2 x4 − 1 = 2x2 (x − 1)(x + 1)(x2 + 1) = A x − 1 + D x + 1 + Bx + C x2 + 1 . We clear fractions and get 2x2 = A(x + 1)(x2 + 1) + D(x − 1)(x2 + 1) + (Bx + C)(x − 1)(x + 1) . For x = 1 we obtain, A = 1 2 and for x = −1 we obtain, D = − 1 2 . Then, 2x2 (x − 1)(x + 1)(x2 + 1) = 1/2 x − 1 + −1/2 x + 1 + Bx + C x2 + 1 . For x = 0 and x = 2, we have C = 1 and B = 0. Thus 2x2 (x − 1)(x + 1)(x2 + 1) = 1/2 x − 1 + −1/2 x + 1 + 1 x2 + 1 . Finally, Z 2x2 x4 − 1 dx = Z 1/2 x − 1 dx + Z −1/2 x + 1 dx + Z 1 x2 + 1 dx = 1 2 ln |x − 1| − 1 2 ln |x + 1| + arctan(x) + C . Go Back Dr. Kamel ATTAR | Chapter 1: Simple Integration | Solved Problems
  • 24. 16Ú20 Exercises Solutions b) Let g(x) = 1 x2(x − 1)3 . The partial fraction decomposition has the form g(x) = A x2 + B x + C (x − 1)3 + D (x − 1)2 + E x − 1 A = lim x→0 x2 g(x) = lim x→0 1 (x − 1)3 = −1 B = lim x→0 h x2 g(x) i0 = lim x→0 − 3 (x − 1)4 = −3 C = lim x→1 (x − 1)3 g(x) = lim x→1 1 x2 = 1 D = lim x→1 h (x − 1)3 g(x) i0 = lim x→1 − 2 x3 = −2 E = lim x→1 1 2 h (x − 1)3 g(x) i00 = 1 2 lim x→1 6 2x4 = 3 Thus 1 x2(x − 1)3 = − 1 x2 − 3 x + 1 (x − 1)3 − 2 (x − 1)2 + 3 x − 1 . Finally Z 1 x2(x − 1)3 dx = 1 x − 3 ln |x| − 1 2 1 (x − 1)2 + 2 x − 1 − 3 ln |x − 1| + C . Go Back Dr. Kamel ATTAR | Chapter 1: Simple Integration | Solved Problems
  • 25. 17Ú20 Exercises Solutions c) We have Z 1 (1 + x2)2 dx = Z 1 1 + x2 dx 1 + x2 = Z 1 1 + x2 (arctan x)0 Set t = arctan x then dt = dx 1 + x2 and so Z 1 (1 + x2)2 dx = Z dt 1 + tan2(t) = Z cos2 (t) dt = t 2 + sin(2t) 4 + C = t 2 + tan t 2 1 + tan2(t) + C = arctan x 2 + x 2(1 + x2) + C Go Back Dr. Kamel ATTAR | Chapter 1: Simple Integration | Solved Problems
  • 26. 18Ú20 Exercises Solutions Solution 7. a) The partial fraction decomposition has the form 1 x(x2 + 2x + 5) = A x + Bx + C x2 + 2x + 5 . We clear fractions and get 1 = A(x2 + 2x + 5) + (Bx + C)x . For x = 0, we obtain A = 1 5 and for x = 1 and x = −1 we get B = − 1 5 and C = − 2 5 . Then 1 x(x2 + 2x + 5) = 1 5x − x + 1 5(x2 + 2x + 5) = 1 5x − 2x + 2 10(x2 + 2x + 5) − 1 5 (x + 1)2 + 4 . Thus Z dx x(x2 + 2x + 5) = 1 5 ln |x| − 1 10 ln(x2 + 2x + 5) − 1 10 arctan x + 1 2 + C . b) Set t = 1 + x2 , then dt = 2xdx and x2 = t − 1 we obtain Z dx x(x2 + 1)2 = Z xdx x2(x2 + 1)2 = Z dt (t − 1)t2 = − 1 2 Z 1 t2 + 1 t + 1 1 − t dt = 1 2t − l Go Back Dr. Kamel ATTAR | Chapter 1: Simple Integration | Solved Problems
  • 27. 19Ú20 Exercises Solutions c) Let t = x5 + 1, we have Z 1 x(x5 + 1)2 dx = 1 5 Z dt (t − 1)t2 = A t − 1 + B t + C t2 By comparison, we find A = 1 5 , C = − 1 5 and B = 1 5 Hence 1 5 Z dt (t − 1)t2 = Z 1/5 t − 1 dt + Z 1/5 t dt − Z 1/5 t2 dt and so 1 5 Z dt (t − 1)t2 = 1 5 ln |t − 1| + 1 5 ln |t| + 1 5t + C . Go Back Dr. Kamel ATTAR | Chapter 1: Simple Integration | Solved Problems