SlideShare ist ein Scribd-Unternehmen logo
1 von 20
Downloaden Sie, um offline zu lesen
Proceeding	
  of	
  Fuel	
  Cells	
  Final	
  Project	
  	
  
MAE	
  528	
  
Fall	
  2014,	
  Miami,	
  Florida,	
  USA	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
The	
  Mechanics	
  of	
  Metal	
  Hydride	
  Hydrogen	
  
Storage	
  Systems	
  for	
  Portable	
  Applications	
  
	
  
	
  
	
  
	
  
	
  
	
  
Jordan	
  Suls	
  
Department	
  of	
  Mechanical	
  Engineering	
  
University	
  of	
  Miami	
  
	
  
	
  
	
  
	
  
	
  
	
  
 
Introduction	
  
	
  
	
   With	
  the	
  escalating	
  needs	
  for	
  sustainable	
  energy	
  in	
  today’s	
  society,	
  many	
  
researchers	
  turn	
  to	
  hydrogen	
  as	
  the	
  hope	
  for	
  a	
  clean,	
  renewable	
  energy	
  source.	
  The	
  
main	
  problems	
  being	
  faced	
  with	
  this	
  energy	
  source	
  is	
  the	
  need	
  for	
  efficient	
  and	
  cost-­‐
effective	
  methods	
  for	
  production,	
  storage	
  and	
  utilization	
  of	
  this	
  gas.	
  
	
   The	
  development	
  of	
  safe	
  and	
  reliable	
  hydrogen	
  storage	
  technologies	
  is	
  one	
  
major	
  barrier	
  that	
  must	
  be	
  overcome	
  to	
  achieve	
  the	
  implementation	
  of	
  hydrogen-­‐
based	
  fuel	
  systems	
  into	
  today’s	
  society.	
  One	
  of	
  the	
  main	
  priorities	
  is	
  finding	
  a	
  way	
  to	
  
supply	
  hydrogen	
  in	
  portable	
  applications	
  ranging	
  from	
  cars	
  to	
  mobile	
  phones.	
  
Therefore,	
  the	
  focus	
  of	
  this	
  research	
  will	
  be	
  on	
  finding	
  practical	
  hydrogen	
  storage	
  
techniques	
  that	
  can	
  be	
  utilized	
  with	
  a	
  PEM	
  fuel	
  cell	
  to	
  provide	
  the	
  necessary	
  energy	
  
for	
  a	
  wide	
  range	
  of	
  mobile	
  applications.	
  Currently,	
  there	
  are	
  three	
  main	
  methods	
  
being	
  employed	
  for	
  hydrogen	
  storage,	
  each	
  having	
  its	
  own	
  limitations.	
  	
  
	
   Hydrogen	
  can	
  be	
  stored	
  as	
  a	
  high	
  pressure	
  compressed	
  gas,	
  which	
  involves	
  
the	
  use	
  of	
  large,	
  heavy	
  tanks.	
  The	
  size	
  and	
  weight	
  involved	
  in	
  storing	
  compressed	
  
hydrogen	
  gas	
  make	
  this	
  method	
  undesirable	
  for	
  mobile	
  applications.	
  Cryogenic	
  
liquid	
  hydrogen	
  storage	
  has	
  a	
  greater	
  volumetric	
  storage	
  density	
  than	
  compressed	
  
hydrogen	
  gas	
  but	
  further	
  complicates	
  the	
  system	
  needed	
  for	
  storage.	
  The	
  process	
  of	
  
liquefying	
  the	
  hydrogen	
  gas	
  and	
  insulating	
  the	
  tank	
  requires	
  energy	
  and	
  a	
  greater	
  
cost.	
  The	
  operating	
  conditions	
  needed	
  for	
  this	
  method	
  only	
  make	
  it	
  another	
  
impractical	
  application	
  for	
  mobile	
  uses.	
  Finally,	
  there	
  are	
  hydrogen	
  storage	
  
materials,	
  such	
  as	
  high	
  surface	
  area	
  carbon-­‐based	
  materials	
  and	
  metal	
  hydride	
  
alloys.	
  Hydrogen	
  gas	
  can	
  be	
  stored	
  in	
  materials	
  either	
  by	
  adsorption	
  or	
  absorption.	
  
Adsorption	
  is	
  the	
  process	
  of	
  hydrogen	
  attaching	
  to	
  the	
  surface	
  of	
  a	
  material	
  as	
  a	
  gas	
  
(H2)	
  or	
  as	
  atoms	
  (H).	
  In	
  absorption,	
  the	
  hydrogen	
  gas	
  dissociates	
  into	
  hydrogen	
  
atoms	
  that	
  are	
  then	
  incorporated	
  into	
  the	
  solid	
  lattice	
  framework	
  of	
  the	
  material.	
  
The	
  process	
  of	
  absorption	
  with	
  the	
  use	
  of	
  metal	
  hydrides	
  is	
  particularly	
  interesting	
  
because	
  it	
  offers	
  the	
  ability	
  to	
  store	
  large	
  amounts	
  of	
  hydrogen	
  at	
  low	
  pressure	
  and	
  
temperature.	
  Figure	
  1	
  gives	
  an	
  approximate	
  operational	
  temperature	
  for	
  several	
  
different	
  hydrogen	
  storage	
  methods	
  (some	
  of	
  which	
  are	
  outside	
  the	
  scope	
  of	
  this	
  
research)	
  [1].	
  
	
  
Figure	
  1:	
  Temperature	
  Requirements	
  for	
  Different	
  Hydrogen	
  Storage	
  Methods	
  [1]	
  
	
   The	
  potential	
  presented	
  by	
  metal	
  hydrides	
  in	
  their	
  gravimetric	
  and	
  
volumetric	
  storage	
  capability	
  makes	
  this	
  method	
  the	
  most	
  appealing	
  for	
  the	
  ability	
  
to	
  be	
  used	
  in	
  mobile	
  applications.	
  Similarly,	
  the	
  required	
  operating	
  conditions	
  are	
  
easy	
  to	
  manage	
  and	
  maintain.	
  	
  
Metal	
  Hydrides	
  Overview	
  
A	
  metal	
  hydride	
  consists	
  of	
  finely	
  ground	
  powders	
  that	
  absorb	
  large	
  
quantities	
  of	
  hydrogen	
  gas	
  by	
  dissociating	
  the	
  gas	
  into	
  hydrogen	
  ions.	
  Metal	
  
hydrides	
  use	
  hydrogenation	
  to	
  absorb	
  hydrogen	
  gas	
  into	
  the	
  lattice	
  of	
  the	
  metal	
  
hydride.	
  Similarly,	
  they	
  use	
  dehydrogenation	
  to	
  release	
  the	
  stored	
  hydrogen	
  ions	
  
from	
  the	
  surface	
  to	
  produce	
  hydrogen	
  gas	
  again	
  [2].	
  	
  
Metal	
  hydrides	
  typically	
  use	
  iron,	
  titanium,	
  manganese,	
  nickel	
  and	
  chromium	
  
alloys	
  but	
  new	
  research	
  is	
  exploring	
  new	
  complex	
  materials	
  such	
  as	
  alanates,	
  
amides	
  and	
  borohydrides	
  [2].	
  	
  
The	
  focus	
  for	
  metal	
  hydrides	
  is	
  the	
  thermodynamic	
  and	
  kinetic	
  properties	
  of	
  
the	
  materials	
  used.	
  The	
  kinetics	
  of	
  the	
  reaction	
  between	
  the	
  metal	
  hydride	
  and	
  the	
  
hydrogen	
  gas	
  can	
  influence	
  the	
  rate	
  at	
  which	
  hydrogen	
  gas	
  is	
  absorbed	
  and	
  
desorbed.	
  Faster	
  reactions	
  translate	
  to	
  shorter	
  refuel	
  times	
  of	
  the	
  metal	
  hydride,	
  
which	
  is	
  beneficial	
  in	
  mobile	
  applications	
  [3].	
  	
  
Similarly,	
  the	
  thermodynamics	
  of	
  the	
  reactions	
  can	
  determine	
  which	
  metal	
  
hydride	
  materials	
  can	
  be	
  used	
  in	
  a	
  PEM	
  fuel	
  cell	
  system.	
  The	
  enthalpy	
  and	
  entropy	
  
can	
  change	
  the	
  temperature	
  at	
  which	
  dehydrogenation	
  occurs.	
  The	
  implementation	
  
of	
  additives	
  and	
  catalysts	
  are	
  used	
  to	
  ensure	
  that	
  the	
  necessary	
  temperature	
  and	
  
pressure	
  for	
  the	
  hydrogenation/dehydrogenation	
  reactions	
  are	
  within	
  reasonable	
  
ranges	
  for	
  the	
  PEM	
  fuel	
  cell.	
  These	
  processes	
  will	
  be	
  further	
  discussed	
  in	
  following	
  
sections	
  [3].	
  	
  
Process	
  of	
  Hydrogen	
  Absorption	
  
	
   The	
  process	
  involved	
  with	
  hydrogen	
  absorption	
  into	
  the	
  metal	
  lattice	
  of	
  the	
  
hydrides	
  consists	
  of	
  four	
  steps.	
  First,	
  the	
  hydrogen	
  molecules	
  are	
  attracted	
  to	
  the	
  
metal	
  surface	
  by	
  Van	
  Der	
  Waal	
  forces	
  and	
  form	
  a	
  physisorbed	
  state.	
  Next,	
  before	
  the	
  
hydrogen	
  can	
  diffuse	
  through	
  the	
  metal,	
  the	
  hydrogen	
  gas	
  must	
  dissociate	
  into	
  two	
  
hydrogen	
  atoms.	
  A	
  chemisorbed	
  state	
  is	
  formed	
  as	
  the	
  hydrogen	
  atoms	
  form	
  new	
  
bonds	
  at	
  the	
  metal’s	
  surface.	
  Finally,	
  the	
  chemisorbed	
  hydrogen	
  atoms	
  can	
  jump	
  to	
  
subsurface	
  layers	
  and	
  diffuse	
  at	
  the	
  interstitial	
  sites.	
  These	
  four	
  steps	
  are	
  shown	
  
below	
  in	
  Figure	
  2	
  [4].	
  
	
  
Figure	
  2:	
  Dissociation	
  and	
  Diffusion	
  Processes	
  of	
  Hydrogen	
  in	
  Metal	
  Hydrides	
  [4]	
  
For	
  diffusion,	
  hydrogen	
  atoms	
  form	
  a	
  metal-­‐hydrogen	
  (M-­‐H)	
  solid	
  solution,	
  which	
  is	
  
the	
  referred	
  to	
  as	
  the	
  α-­‐phase.	
  The	
  formation	
  of	
  this	
  α-­‐phase	
  leads	
  to	
  an	
  expansion	
  
of	
  the	
  metal	
  lattice.	
  As	
  the	
  pressure	
  increases	
  as	
  diffusion	
  progresses,	
  the	
  nucleation	
  
of	
  a	
  hydrideβ-­‐	
  phase	
  occurs.	
  The	
  process	
  of	
  hydrogen	
  diffusion	
  is	
  demonstrated	
  in	
  
Figure	
  3	
  [4].	
  
	
  
Figure	
  3:	
  Formation	
  of	
  a	
  Hydride	
  Phase	
  as	
  Hydrogen	
  Diffuses	
  [4]	
  
Metal	
  Hydride	
  Compositions	
  
There	
  are	
  three	
  main	
  types	
  of	
  metal	
  hydride	
  materials:	
  light,	
  intermetallic,	
  
and	
  complex	
  metal	
  hydrides.	
  Light	
  metal	
  hydrides	
  usually	
  consist	
  of	
  Li,	
  Be,	
  Na,	
  Mg,	
  B	
  
or	
  Al.	
  The	
  advantage	
  of	
  this	
  type	
  is	
  the	
  light	
  weight	
  of	
  the	
  materials,	
  which	
  allows	
  for	
  
better	
  gravimetric	
  storage	
  density	
  [3].	
  
	
  	
   The	
  three	
  most	
  common	
  forms	
  of	
  intermetallic	
  metal	
  hydride	
  compounds	
  are	
  
AB2,	
  AB5	
  and	
  Ti-­‐based	
  body	
  centered	
  cubic	
  (BCC)	
  alloys.	
  Typically,	
  AB2	
  type	
  metal	
  
hydrides	
  are	
  composed	
  of	
  Ti-­‐Zr-­‐Mn-­‐V	
  or	
  Ti-­‐Zr-­‐Cr-­‐Fe	
  alloys	
  and	
  are	
  derived	
  from	
  
Laves	
  phase	
  crystal	
  structures.	
  The	
  hydrogen	
  storage	
  capacity	
  for	
  this	
  type	
  of	
  metal	
  
hydrides	
  is	
  generally	
  in	
  the	
  1.5	
  to	
  1.9	
  wt.%	
  range.	
  The	
  advantages	
  of	
  this	
  type	
  of	
  
intermetallic	
  metal	
  hydrides	
  are	
  low	
  cost,	
  relatively	
  fast	
  kinetics	
  and	
  long	
  lifespans.	
  
AB5	
  are	
  mostly	
  metal	
  alloys	
  of	
  Mischmetal	
  (Mm)	
  and	
  nickel.	
  The	
  hydrogen	
  storage	
  
capacity	
  is	
  lower	
  than	
  that	
  of	
  AB2	
  metal	
  hydrides,	
  usually	
  maxing	
  out	
  at	
  1.5	
  wt.%.	
  
The	
  advantage	
  of	
  AB5	
  metal	
  hydrides	
  is	
  their	
  better	
  volumetric	
  energy	
  storage	
  and	
  
cyclic	
  durability.	
  These	
  factors	
  allow	
  for	
  AB5	
  metal	
  hydrides	
  to	
  generally	
  be	
  more	
  
suitable	
  as	
  a	
  reversible	
  hydrogen	
  storage	
  material	
  for	
  small-­‐scale	
  mobile	
  
applications,	
  such	
  as	
  a	
  mobile	
  phone	
  fuel	
  cell	
  system	
  that	
  would	
  replace	
  common	
  
Lithium	
  Ion	
  batteries.	
  	
  The	
  Ti-­‐based	
  BCC	
  alloys	
  exhibit	
  the	
  best	
  hydrogen	
  storage	
  
capacity	
  of	
  the	
  3	
  types,	
  although	
  they	
  have	
  limited	
  practical	
  applications	
  due	
  to	
  the	
  
high	
  cost	
  of	
  this	
  material.	
  The	
  vanadium	
  in	
  the	
  Ti-­‐based	
  alloys	
  is	
  what	
  increases	
  the	
  
cost	
  but	
  is	
  essential	
  in	
  enhancing	
  the	
  hydrogen	
  absorption	
  capacity	
  [3].	
  	
  
	
   New	
  research	
  is	
  exploring	
  the	
  more	
  complex	
  metal	
  hydrides,	
  along	
  with	
  the	
  
inclusion	
  of	
  catalysts	
  to	
  accelerate	
  the	
  kinetics	
  of	
  the	
  reactions	
  between	
  the	
  hydride	
  
materials	
  and	
  hydrogen.	
  Ahluwalia	
  et	
  al.	
  focus	
  on	
  the	
  development	
  of	
  new	
  class	
  of	
  
hydrides	
  such	
  as	
  destabilized	
  hydrides	
  (especially	
  borohydrides	
  and	
  lithium	
  
hydrides),	
  amide/imide	
  materials,	
  off-­‐board	
  regenerable	
  materials	
  (i.e.	
  AlH3	
  and	
  
LiAlH4)	
  and	
  alanates	
  [3].	
  The	
  scope	
  of	
  this	
  research	
  is	
  limited	
  to	
  on-­‐board	
  reversible	
  
metal	
  hydrides	
  that	
  offer	
  the	
  potential	
  to	
  achieve	
  the	
  guidelines	
  set	
  by	
  the	
  U.S.	
  
Department	
  of	
  Energy,	
  which	
  is	
  discussed	
  later	
  on.	
  Because	
  of	
  this,	
  the	
  materials	
  
considered	
  in	
  this	
  research	
  will	
  be	
  a	
  more	
  commonly	
  researched	
  sodium	
  alanate	
  
(NaAlH4),	
  an	
  Mg-­‐based	
  metal	
  hydrides	
  (MgH2),	
  a	
  borohydrides	
  (LiBH4),	
  and	
  a	
  high-­‐
pressure	
  metal	
  hydride	
  (Ti1.1CrMn).	
  
Metal	
  Hydride	
  Parameters	
  of	
  Performance	
  
	
   There	
  are	
  certain	
  factors	
  that	
  determine	
  the	
  effectiveness	
  of	
  the	
  metal	
  
hydride	
  as	
  a	
  hydrogen	
  storage	
  system.	
  Volumetric	
  and	
  gravimetric	
  storage	
  densities	
  
are	
  crucial	
  because	
  they	
  quantify	
  the	
  amount	
  of	
  hydrogen	
  that	
  can	
  be	
  stored	
  as	
  a	
  
function	
  of	
  volume	
  and	
  weight,	
  respectively.	
  A	
  large	
  gravimetric	
  storage	
  density	
  is	
  
harder	
  to	
  achieve	
  due	
  to	
  the	
  large	
  weight	
  associated	
  with	
  the	
  metal	
  hydride	
  
materials	
  [5].	
  In	
  the	
  consideration	
  of	
  a	
  metal	
  hydride	
  storage	
  system	
  for	
  a	
  car,	
  a	
  
higher	
  volumetric	
  and	
  gravimetric	
  storage	
  density	
  allows	
  for	
  the	
  driver	
  to	
  travel	
  
farther	
  distances	
  without	
  refueling.	
  	
  
	
   Another	
  key	
  parameter	
  is	
  the	
  rate	
  of	
  hydrogenation/dehydrogenation.	
  The	
  
rate	
  of	
  hydrogen	
  absorption	
  into	
  the	
  metal	
  hydride	
  determines	
  the	
  time	
  it	
  would	
  
take	
  to	
  refuel	
  the	
  metal	
  hydride.	
  Dehydrogenation	
  involves	
  the	
  desorption	
  of	
  
hydrogen	
  from	
  the	
  metal	
  hydride	
  and	
  plays	
  a	
  crucial	
  role	
  in	
  providing	
  the	
  fuel	
  cell	
  
with	
  sufficient	
  amounts	
  of	
  fuel	
  [5].	
  	
  
  The	
  optimum	
  hydrogen	
  storage	
  should	
  also	
  contain	
  the	
  following	
  properties;	
  
high	
  reversibility,	
  limited	
  energy	
  loss	
  during	
  charging	
  and	
  discharging,	
  high	
  stability	
  
against	
  oxygen	
  gas	
  and	
  moisture	
  to	
  ensure	
  long	
  life	
  cycles,	
  and	
  high	
  safety.	
  [3]	
  	
  	
  
	
   Table	
  1	
  gives	
  the	
  U.S.	
  Department	
  of	
  Energy	
  guidelines	
  for	
  metal	
  hydride	
  
storage	
  in	
  fuel	
  cell	
  cars.	
  The	
  target	
  values	
  are	
  rough	
  estimates	
  of	
  the	
  required	
  metal	
  
hydride	
  performance	
  to	
  be	
  able	
  to	
  compete	
  with	
  the	
  current	
  automobile	
  standards.	
  
Current	
  metal	
  hydride	
  materials	
  are	
  unable	
  to	
  reach	
  these	
  standards	
  but	
  further	
  
research	
  is	
  being	
  performed	
  to	
  attempt	
  to	
  meet	
  the	
  guidelines	
  by	
  improving	
  the	
  
interaction	
  between	
  the	
  metal	
  hydrides	
  and	
  hydrogen	
  by	
  including	
  additives	
  and	
  
catalysts.	
  	
  
Table	
  1:	
  U.S.	
  Department	
  of	
  Energy	
  Guidelines	
  [6]	
  
	
  
Thermodynamics	
  and	
  Kinetics	
  
It	
  is	
  important	
  that	
  the	
  metal	
  hydride	
  storage	
  system	
  is	
  compatible	
  with	
  the	
  
PEM	
  fuel	
  cell	
  being	
  used.	
  The	
  main	
  consideration	
  is	
  the	
  operating	
  temperature	
  and	
  
pressure	
  of	
  the	
  fuel	
  cell.	
  Rate	
  and	
  amount	
  of	
  hydrogen	
  absorption/desorption	
  are	
  
dependent	
  on	
  the	
  temperature	
  of	
  the	
  system.	
  PEM	
  fuel	
  cells	
  generally	
  operate	
  at	
  50	
  
to	
  100°C	
  and	
  near	
  ambient	
  pressures.	
  Increasing	
  the	
  operating	
  temperature	
  of	
  the	
  
fuel	
  cell	
  can	
  generate	
  significant	
  problems	
  and	
  efficiency	
  losses.	
  Therefore,	
  it	
  is	
  
necessary	
  to	
  find	
  materials	
  that	
  react	
  with	
  gaseous	
  hydrogen	
  at	
  lower	
  temperatures.	
  
This	
  can	
  be	
  calculated	
  by	
  finding	
  the	
  enthalpy	
  and	
  entropy	
  of	
  the	
  reactions.	
  
Equation	
  (1)	
  demonstrates	
  the	
  dependence	
  of	
  temperature	
  on	
  enthalpy	
  and	
  entropy	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Δ 𝐻 = 𝑇Δ𝑆	
  	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  (1)	
  
Züttel	
  et	
  al.	
  [7]	
  approximated	
  that	
  the	
  entropy	
  of	
  most	
  metal	
  hydride-­‐hydrogen	
  
reactions	
  is	
  130	
  J	
  K-­‐1	
  mol-­‐1.	
  If	
  the	
  entropy	
  can	
  be	
  estimated	
  and	
  the	
  desired	
  
temperature	
  is	
  known,	
  the	
  necessary	
  enthalpy	
  can	
  be	
  found	
  [8].	
  An	
  example	
  of	
  this	
  
process	
  is	
  discussed	
  by	
  Alapatti	
  et	
  al	
  [8].	
  for	
  the	
  reaction	
  of	
  a	
  LiBH4	
  metal	
  hydride.	
  
The	
  reaction,	
  which	
  demonstrates	
  the	
  desorption	
  of	
  hydrogen,	
  is	
  shown	
  in	
  equation	
  
(2).	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   𝐿 𝑖𝐵𝐻!   → 𝐿𝑖𝐻 + 𝐵 +  
!
!
𝐻!	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (2)	
  
Here,	
  the	
  entropy	
  is	
  estimated	
  to	
  be	
  95 ≤ ∆𝑆   ≤ 140  𝐽  𝐾!!
  𝑚𝑜𝑙!!
.	
  If	
  the	
  desired	
  
temperature	
  is	
  between	
  50	
  and	
  150°C,	
  then	
  the	
  enthalpy	
  must	
  be	
  between	
  30	
  and	
  
60	
  kJ/mol.	
  If	
  the	
  enthalpy	
  is	
  above	
  60	
  kJ/mol,	
  then	
  the	
  amount	
  of	
  hydrogen	
  
delivered	
  to	
  the	
  fuel	
  cell	
  will	
  be	
  small	
  unless	
  the	
  temperature	
  is	
  increased.	
  If	
  the	
  
enthalpy	
  is	
  less	
  than	
  the	
  30	
  kJ/mol,	
  the	
  reaction	
  will	
  not	
  be	
  easily	
  reversible	
  [8].	
  
Therefore,	
  the	
  metal	
  hydride	
  will	
  not	
  be	
  able	
  to	
  easily	
  absorb	
  hydrogen	
  gas.	
  	
  
	
   To	
  change	
  the	
  enthalpy	
  of	
  the	
  reaction	
  between	
  metal	
  hydride	
  materials	
  and	
  
hydrogen	
  gas,	
  the	
  concept	
  of	
  destabilization	
  is	
  explored	
  by	
  new	
  research.	
  
Destabilization	
  involves	
  the	
  inclusion	
  of	
  additives	
  that	
  form	
  compounds	
  or	
  alloys	
  in	
  
the	
  dehydrogenated	
  state.	
  These	
  compounds	
  help	
  stabilize	
  the	
  dehydrogenated	
  
state	
  and	
  therefore	
  destabilize	
  the	
  hydrogenated	
  state.	
  The	
  effect	
  of	
  these	
  additives	
  
can	
  be	
  demonstrated.	
  Consider	
  the	
  reaction	
  shown	
  in	
  equation	
  (2).	
  In	
  the	
  
estimations	
  of	
  Alapatti	
  et	
  al.,	
  by	
  adding	
  MgH2	
  to	
  LiBH4,	
  the	
  total	
  reaction	
  becomes:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   𝐿 𝑖𝐵𝐻! +  
!
!
𝑀𝑔𝐻! → 𝐿𝑖𝐻 +
!
!
𝑀𝑔𝐵! +   2𝐻!	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (3)	
  
The	
  formation	
  of	
  MgB2	
  stabilizes	
  the	
  right	
  side	
  of	
  the	
  equation	
  (the	
  dehydrogenated	
  
state),	
  which	
  decreases	
  the	
  enthalpy	
  of	
  the	
  reaction	
  from	
  69	
  kJ/mol	
  to	
  44	
  kJ/mol	
  [9].	
  
This	
  allows	
  the	
  reaction	
  to	
  take	
  place	
  at	
  significantly	
  lower	
  temperatures	
  (around	
  
250°C	
  less).	
  The	
  downside	
  of	
  using	
  additives	
  is	
  that	
  the	
  hydrogen	
  storage	
  capacity	
  of	
  
the	
  metal	
  hydride	
  is	
  marginally	
  decreased	
  [9].	
  	
  
	
   Research	
  for	
  metal	
  hydrides	
  is	
  focused	
  on	
  finding	
  new	
  additives	
  that	
  can	
  
reduce	
  the	
  enthalpy	
  of	
  the	
  reaction	
  while	
  maintaining	
  the	
  desirable	
  volumetric	
  and	
  
gravimetric	
  energy	
  density.	
  	
  
Improving	
  Metal	
  Hydride	
  Kinetics	
  
	
   By	
  introducing	
  catalysts	
  or	
  dopants,	
  the	
  kinetics	
  involved	
  with	
  the	
  
hydrogenation/dehydrogenation	
  rates	
  can	
  be	
  theoretically	
  improved	
  in	
  hopes	
  to	
  
achieve	
  the	
  standards	
  set	
  by	
  the	
  DOE.	
  	
  
	
   Consider	
  one	
  of	
  the	
  more	
  promising	
  potential	
  metal	
  hydrides,	
  sodium	
  alanate	
  
(NaAlH4).	
  	
  The	
  Van’t	
  Hoff	
  plot	
  shown	
  in	
  Figure	
  2	
  shows	
  that	
  at	
  a	
  dissociation	
  
pressure	
  of	
  0.1	
  MPa,	
  sodium	
  alanate	
  is	
  one	
  of	
  the	
  few	
  metal	
  hydride	
  materials	
  that	
  
do	
  not	
  require	
  a	
  high	
  temperature	
  for	
  hydrogen	
  desorption	
  [6].	
  
 
Figure	
  4:	
  Van’t	
  Hoff	
  plot	
  for	
  various	
  metal	
  hydride	
  materials	
  [6]	
  
In	
  the	
  1990’s,	
  it	
  was	
  hypothesized	
  that	
  sodium	
  alanate	
  could	
  not	
  be	
  a	
  practical	
  
hydrogen	
  storage	
  material	
  due	
  to	
  the	
  slow	
  kinetics	
  and	
  high	
  temperature	
  
requirements.	
  This	
  changed	
  when	
  Bogdanovic	
  and	
  Schwickardi	
  doped	
  the	
  sodium	
  
alanate	
  with	
  small	
  amounts	
  of	
  a	
  titanium	
  catalyst	
  [8].	
  The	
  new,	
  doped	
  sodium	
  
alanate	
  was	
  able	
  to	
  achieve	
  rehydrogenation	
  under	
  much	
  milder	
  conditions	
  (just	
  
above	
  100°C).	
  The	
  experiments	
  run	
  showed	
  that	
  a	
  highly	
  dispersed	
  Ti	
  in	
  the	
  Al	
  
surface	
  improved	
  the	
  hydrogen	
  uptake	
  and	
  release	
  processes	
  [10].	
  TiAl3	
  is	
  most	
  
likely	
  to	
  form	
  during	
  the	
  dehydrogenation	
  process.	
  It	
  was	
  concluded	
  that	
  Ti	
  doping	
  
can	
  effectively	
  lower	
  the	
  dissociation	
  pressure	
  for	
  hydrogen	
  absorption	
  [8].	
  
A	
  similar	
  experiment	
  was	
  performed	
  by	
  Schuth	
  et	
  al.	
  [6]	
  to	
  study	
  the	
  affects	
  
of	
  ball-­‐milling	
  on	
  NaAlH4	
  with	
  catalyst	
  TiCl3	
  under	
  various	
  conditions.	
  In	
  Figure	
  3,	
  it	
  
is	
  apparent	
  that	
  the	
  volume	
  capable	
  of	
  being	
  desorbed	
  from	
  the	
  metal	
  hydride	
  
increased	
  with	
  both	
  the	
  amount	
  of	
  the	
  catalyst	
  used	
  and	
  the	
  size	
  ball	
  used	
  in	
  the	
  
ball-­‐milling	
  process.	
  
	
  
Figure	
  5:	
  Volume	
  of	
  hydrogen	
  desorbed	
  from	
  a	
  ball-­‐milled	
  NaAlH4	
  with	
  a	
  TiCl3	
  
catalyst	
  under	
  various	
  conditions	
  [6]	
  
	
  
	
   Most	
  catalyst	
  materials	
  being	
  explored	
  in	
  current	
  research	
  are	
  titanium,	
  iron	
  
and	
  zirconium.	
  One	
  major	
  downside	
  of	
  the	
  inclusion	
  of	
  dopants	
  is	
  the	
  reduction	
  in	
  
the	
  reversible	
  hydrogen	
  storage	
  capacity.	
  The	
  reason	
  for	
  this	
  is	
  that	
  the	
  dopant	
  adds	
  
weight	
  to	
  the	
  metal	
  hydride	
  system.	
  Doping	
  levels	
  are	
  usually	
  around	
  2	
  to	
  4	
  mol%.	
  
The	
  dopants	
  add	
  weight	
  that	
  is	
  not	
  being	
  used	
  to	
  store	
  hydrogen	
  so	
  the	
  overall	
  
storage	
  capacity	
  is	
  reduced	
  [8].	
  	
  
Metal	
  Hydride	
  Surface	
  Structures	
  
	
   A	
  metal	
  hydrides	
  ability	
  to	
  dissociate	
  hydrogen	
  gas	
  is	
  dependent	
  on	
  the	
  
materials	
  surface	
  structure.	
  	
  When	
  considering	
  Mg-­‐based	
  metal	
  hydrides,	
  improving	
  
the	
  surface	
  properties,	
  with	
  the	
  use	
  of	
  ball-­‐milling,	
  is	
  essential	
  in	
  improving	
  the	
  rate	
  
of	
  hydrogen	
  diffusion	
  through	
  the	
  metal	
  hydride	
  layers	
  [3].	
  	
  
  As	
  the	
  reaction	
  of	
  hydrogenation	
  progresses,	
  hydrogen	
  diffusion	
  occurs	
  and	
  
the	
  hydride	
  layer	
  grows.	
  This	
  creates	
  an	
  almost	
  impermeable	
  layer,	
  which	
  limits	
  the	
  
rate	
  of	
  hydride	
  formation.	
  	
  Along	
  with	
  forming	
  a	
  compact	
  hydride	
  layer,	
  exposure	
  to	
  
oxygen	
  can	
  form	
  highly	
  stable	
  oxide	
  layers	
  on	
  the	
  hydride,	
  which	
  severely	
  lower	
  the	
  
hydrogen	
  absorption	
  rate	
  [3].	
  	
  
	
   To	
  avoid	
  these	
  issues,	
  ball-­‐milling	
  is	
  used	
  to	
  increase	
  the	
  surface	
  area,	
  and	
  
create	
  defects	
  on	
  the	
  surface	
  and	
  interior	
  of	
  the	
  hydride.	
  The	
  lattice	
  defects	
  created	
  
are	
  areas	
  of	
  low	
  activation	
  energy	
  of	
  diffusion,	
  which	
  aids	
  the	
  hydrogen	
  absorption	
  
[11].	
  The	
  greater	
  surface	
  area	
  allows	
  for	
  larger	
  surface	
  contact	
  with	
  catalysts,	
  which	
  
leads	
  to	
  faster	
  kinetics	
  [11].	
  The	
  process	
  of	
  ball-­‐milling	
  can	
  be	
  controlled	
  to	
  alter	
  
grain	
  size,	
  microstructure	
  or	
  surface	
  properties	
  of	
  the	
  material	
  in	
  the	
  hopes	
  of	
  
achieving	
  faster	
  absorption/desorption	
  times.	
  Figure	
  4	
  shows	
  the	
  variation	
  of	
  
desorption	
  time	
  for	
  unmilled	
  and	
  ball-­‐milled	
  MgH2.	
  As	
  one	
  can	
  see,	
  the	
  ball-­‐milled	
  
MgH2	
  (white	
  symbols)	
  had	
  a	
  much	
  faster	
  desorption	
  rate	
  than	
  the	
  unmilled	
  MgH2	
  at	
  
the	
  same	
  hydrogen	
  content	
  [3].	
  
 
Figure	
  6:	
  Hydrogen	
  desorption	
  for	
  unmilled	
  (black	
  symbols)	
  and	
  ball-­‐milled	
  (white	
  
symbols)	
  MgH2	
  at	
  a	
  pressure	
  of	
  0.15	
  bar	
  [3]	
  
	
  	
  
Heat	
  Management	
  for	
  Metal	
  Hydride	
  Systems	
  
	
   A	
  study	
  performed	
  by	
  Sandrock	
  et	
  al.	
  [12]	
  on	
  a	
  one	
  hundred	
  gram	
  bed	
  of	
  
sodium	
  alanate	
  found	
  that	
  during	
  the	
  rehydrogenation	
  process,	
  large	
  amounts	
  of	
  
heat	
  were	
  produced	
  during	
  this	
  exothermic	
  reaction.	
  Within	
  one	
  minute,	
  the	
  heat	
  of	
  
the	
  system	
  increased	
  from	
  155°C	
  to	
  234°C,	
  which	
  caused	
  several	
  problems	
  such	
  as	
  
sintering	
  and	
  decreased	
  performance.	
  The	
  need	
  for	
  a	
  heat	
  exchanger	
  can	
  further	
  
complicate	
  the	
  system	
  but	
  severely	
  increase	
  the	
  durability	
  and	
  efficiency	
  of	
  the	
  
metal	
  hydride	
  under	
  cyclic	
  operating	
  [13].	
  	
  
Similarly,	
  since	
  the	
  desorption	
  of	
  hydrogen	
  gas	
  is	
  an	
  endothermic	
  reaction,	
  
the	
  metal	
  hydrides	
  temperature	
  will	
  decrease	
  as	
  hydrogen	
  is	
  released.	
  This	
  will	
  lead	
  
to	
  a	
  continuous	
  reduction	
  in	
  the	
  hydrogen	
  release	
  rate	
  as	
  the	
  temperature	
  drops	
  
[10].	
  Therefore	
  the	
  required	
  operating	
  temperature	
  needs	
  to	
  be	
  maintained	
  through	
  
the	
  use	
  of	
  a	
  heat	
  exchanger.	
  In	
  an	
  ideal	
  setup,	
  the	
  heat	
  produced	
  by	
  the	
  operations	
  of	
  
the	
  PEM	
  fuel	
  cell	
  can	
  be	
  enough	
  to	
  cause	
  the	
  metal	
  hydride	
  to	
  continually	
  release	
  
hydrogen	
  gas	
  until	
  all	
  the	
  hydrogen	
  is	
  consumed	
  [13].	
  	
  
Certain	
  heat	
  exchanger	
  systems	
  have	
  been	
  explored	
  for	
  metal	
  hydride	
  
heating/cooling.	
  Pasini	
  et	
  al.	
  [1]	
  describe	
  the	
  use	
  of	
  a	
  shell-­‐and-­‐tube	
  heat	
  exchanger	
  
with	
  the	
  metal	
  hydride	
  packed	
  in	
  the	
  shell	
  and	
  coolant	
  flowing	
  through	
  the	
  tubes.	
  
The	
  schematic	
  of	
  such	
  a	
  system	
  is	
  shown	
  in	
  detail	
  in	
  Figure	
  5.	
  
	
  
Figure	
  7:	
  Fuel	
  Cell	
  System	
  with	
  Sodium	
  Alanate	
  Metal	
  Hydride	
  [1]	
  
Pasini	
  et	
  al.	
  [1]	
  also	
  explored	
  a	
  Ti1.1CrMn	
  metal	
  hydride	
  system	
  as	
  a	
  means	
  of	
  
comparison	
  with	
  the	
  more	
  popular	
  Sodium	
  Alanate.	
  The	
  benefit	
  of	
  using	
  Ti1.1CrMn	
  is	
  
that	
  the	
  desorption	
  reaction	
  only	
  requires	
  a	
  temperature	
  of	
  85°C.	
  The	
  waste	
  heat	
  
produced	
  by	
  a	
  PEM	
  fuel	
  cell	
  is	
  enough	
  to	
  satisfy	
  this	
  condition.	
  Radiator	
  fluid	
  can	
  be	
  
heated	
  with	
  the	
  waste	
  heat	
  of	
  the	
  fuel	
  cell	
  and	
  used	
  to	
  keep	
  the	
  Ti1.1CrMn	
  system	
  at	
  
the	
  desired	
  temperature.	
  And	
  for	
  cooling,	
  the	
  same	
  shell-­‐and-­‐tube	
  heat	
  exchanger	
  
can	
  be	
  used	
  during	
  hydrogen	
  absorption.	
  The	
  new	
  system	
  design	
  is	
  shown	
  in	
  Figure	
  
6.	
  	
  
	
  
Figure	
  8:	
  Fuel	
  Cell	
  System	
  with	
  Ti1.1CrMn	
  Metal	
  Hydride	
  [1]	
  
For	
  a	
  sodium	
  alanate	
  system,	
  on-­‐board	
  hydrogen	
  combustion	
  is	
  required	
  to	
  
heat	
  the	
  metal	
  hydride	
  to	
  the	
  necessary	
  temperature	
  for	
  desorption	
  (130°C).	
  The	
  
disadvantage	
  of	
  the	
  Ti1.1CrMn	
  system	
  is	
  a	
  large	
  decrease	
  in	
  the	
  theoretical	
  hydrogen	
  
storage	
  capacity	
  (1.9-­‐2.0	
  wt.%)	
  when	
  compared	
  to	
  sodium	
  alanate	
  (5.5	
  wt%)	
  [1].	
  	
  
Conclusions	
  
	
  
	
   With	
  the	
  consideration	
  of	
  the	
  effectiveness	
  of	
  metal	
  hydrides	
  as	
  a	
  hydrogen	
  
storage	
  method	
  in	
  portable	
  applications,	
  there	
  are	
  currently	
  no	
  available	
  materials	
  
that	
  meet	
  the	
  guidelines	
  set	
  in	
  place	
  by	
  the	
  DOE	
  for	
  on-­‐board	
  hydrogen	
  storage.	
  
Although	
  that	
  conclusion	
  can	
  definitively	
  be	
  made,	
  the	
  field	
  of	
  metal	
  hydrides	
  is	
  one	
  
in	
  need	
  of	
  further	
  research.	
  Metal	
  hydrides	
  offer	
  the	
  potential	
  to	
  surpass	
  other	
  
hydrogen	
  storage	
  methods	
  but	
  are	
  greatly	
  understudied.	
  There	
  are	
  several	
  nascent	
  
areas	
  of	
  research	
  that	
  are	
  still	
  relatively	
  untouched	
  such	
  as:	
  complex	
  metal	
  hydrides,	
  
catalyst	
  and	
  methods	
  of	
  doping,	
  thermodynamic	
  and	
  kinetic	
  properties	
  of	
  metal	
  
hydrides	
  and	
  heat	
  exchanger	
  systems	
  for	
  metal	
  hydrides.	
  
	
   What	
  can	
  be	
  determined	
  from	
  this	
  study	
  is	
  that	
  certain	
  metal	
  hydride	
  types	
  
are	
  simply	
  not	
  feasible	
  for	
  the	
  mobile	
  applications.	
  The	
  biggest	
  deterrent	
  for	
  
researchers	
  is	
  a	
  lower	
  hydrogen	
  storage	
  capacity,	
  because	
  this	
  obstacle	
  is	
  hard	
  to	
  
overcome.	
  Due	
  to	
  this,	
  intermetallic	
  hydrides	
  can	
  be	
  considered	
  undesirable	
  
because	
  they	
  possess	
  a	
  minimal	
  hydrogen	
  storage	
  capacity	
  and	
  a	
  high	
  cost.	
  	
  
As	
  for	
  light	
  and	
  complex	
  hydrides,	
  the	
  most	
  common	
  problem	
  faced	
  is	
  the	
  
high	
  desorption	
  temperature.	
  For	
  example,	
  Mg-­‐based	
  metal	
  hydrides	
  have	
  a	
  
hydrogen	
  storage	
  capacity	
  around	
  7.6	
  wt.%	
  but	
  need	
  a	
  temperature	
  of	
  around	
  
300°C	
  to	
  efficiently	
  desorb	
  hydrogen.	
  The	
  solution	
  for	
  this	
  problem	
  can	
  found	
  in	
  
three	
  different	
  areas	
  of	
  study.	
  One	
  is	
  improving	
  the	
  thermodynamics	
  of	
  the	
  metal	
  
hydride-­‐hydrogen	
  reaction	
  with	
  the	
  use	
  of	
  catalysts.	
  The	
  second	
  is	
  the	
  integration	
  of	
  
a	
  heat	
  exchanger	
  system	
  with	
  on-­‐board	
  hydrogen	
  combustion	
  to	
  raise	
  the	
  
temperature	
  of	
  the	
  metal	
  hydride	
  system.	
  The	
  third	
  is	
  the	
  development	
  of	
  a	
  PEM	
  
fuel	
  cell	
  with	
  a	
  higher	
  operating	
  temperature	
  and	
  comparable	
  efficiency,	
  such	
  that	
  
there	
  is	
  more	
  waste	
  heat	
  present	
  to	
  provide	
  the	
  metal	
  hydride.	
  
In	
  light	
  of	
  the	
  advancements	
  and	
  achievements	
  in	
  metal	
  hydride	
  studies	
  thus	
  
far,	
  there	
  is	
  a	
  clear	
  potential	
  for	
  the	
  development	
  of	
  hydride	
  materials	
  that	
  exhibit	
  
high	
  reversible	
  hydrogen	
  storage	
  capacity	
  at	
  reasonable	
  temperatures.	
  Similarly,	
  as	
  
the	
  improvement	
  in	
  vehicle	
  design,	
  PEM	
  fuel	
  cells	
  and	
  manufacturability	
  of	
  hydride	
  
materials	
  continue,	
  the	
  field	
  of	
  metal	
  hydrides	
  will	
  continue	
  to	
  progress.	
  As	
  metal	
  
hydride	
  technology	
  advances,	
  so	
  does	
  the	
  ability	
  to	
  safely	
  and	
  efficiently	
  implement	
  
hydrogen-­‐based	
  electrical	
  systems	
  into	
  society.	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
References	
  
[1] Pasini, J. M., Corgnale, C., van Hassel, B. A., Motyka, T., Kumar, S., & Simmons, K.
L. (2013). Metal hydride material requirements for automotive hydrogen storage
systems. International Journal of Hydrogen Energy, 38(23), 9755-9765.
[2] Ryan O'Hayre, Suk-Won Cha, Whitney Colella. (2009). Fuel cell fundamentals (2nd
ed.) Wiley.
[3] Sakintuna, B., Lamari-Darkrim, F., & Hirscher, M. (2007). Metal hydride materials
for solid hydrogen storage: A review. International Journal of Hydrogen
Energy, 32(9), 1121-1140.
[4] Martin	
  Dornheim.	
  (2011).	
  Thermodynamics	
  of	
  metal	
  hydrides:	
  Tailoring	
  reaction	
  	
  
	
  	
  	
  	
  	
  	
  enthalpies	
  of	
  hydrogen	
  storage	
  materials.	
  In	
  Juan	
  Carlos	
  Moreno-­‐Pirajan	
  	
  
	
  	
  	
  	
  	
  (Ed.),	
  Thermodynamics-­‐	
  interaction	
  studies-­‐	
  solids,	
  liquids,	
  and	
  gases	
  (pp.	
  Chapter	
  	
  
	
  	
  	
  	
  	
  	
  33)
[5] Ahluwalia, R. K., Peng, J. -., & Hua, T. Q. (2014). Bounding material properties for
automotive storage of hydrogen in metal hydrides for low-temperature fuel
cells. International Journal of Hydrogen Energy,39(27), 14874-14886.
[6] F. Schuth, B. Bogdanovic and M. Felderhoff. (2004).
Light metal hydrides and complex hydrides for hydrogen storage Chemical
Communications, , 2249–2258.
	
  
[7]	
  Züttel,	
  A.;	
  Wenger,	
  P.;	
  Rentsch,	
  S.;	
  Sudan,	
  P.;	
  Mauron,	
  P.;Emmenegger,	
  C.	
  J.	
  Power	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  Sources	
  2003,	
  118,	
  1.	
  
[8] Sudhakar V. Alapati, J. Karl Johnson, and David S. Sholl. (2006). Identification of
destabilized metal hydrides for hydrogen storage using first principles
calculations. The Journal of Physical Chemistry, 110(17), 8769–8776.
[9] Yang, H., Adeola Ibikunle, & Goudy, A. J. (2010). Effects of ti-based additives on the
hydrogen storage properties of a LiBH4 /CaH2 destabilized system. Advances in
Materials Science and Engineering, , n/a.
[10] Satya Sekhar, B., Suresh, P., & Muthukumar, P. (2013). Performance tests on metal
hydride based hydrogen storage devices. International Journal of Hydrogen
Energy, 38(22), 9570-9577.
[11] Ley, M. B., Jepsen, L. H., Lee, Y., Cho, Y. W., Bellosta von Colbe, J. M.,
Dornheim, M., et al. (2014). Complex hydrides for hydrogen storage – new
perspectives. Materials Today, 17(3), 122-128.
[12] Sandrock G, Bowman Jr RC. Gas-based hydride applications: recent progress and
future needs. J Alloy Compd 2003;356e357:794e9. http://dx.doi.org/10.1016/S0925-
8388(03) 00090-2.
[13] Raju, M., & Kumar, S. (2012). Optimization of heat exchanger designs in metal
hydride based hydrogen storage systems. International Journal of Hydrogen
Energy, 37(3), 2767-2778.
	
  

Weitere ähnliche Inhalte

Was ist angesagt?

Hydrogen fuel cells
Hydrogen fuel cellsHydrogen fuel cells
Hydrogen fuel cells
guest0c2139
 
HyEnergy- Research in Hydrogen
HyEnergy- Research in HydrogenHyEnergy- Research in Hydrogen
HyEnergy- Research in Hydrogen
nraulji
 
Water splitting on semiconductor catalysts under visible light irradiation
Water splitting on semiconductor catalysts under visible light irradiationWater splitting on semiconductor catalysts under visible light irradiation
Water splitting on semiconductor catalysts under visible light irradiation
Muhammad Mudassir
 

Was ist angesagt? (20)

hydrogen energy fuel for the future
hydrogen energy fuel for the futurehydrogen energy fuel for the future
hydrogen energy fuel for the future
 
Hydrogen as fuel
Hydrogen as fuel Hydrogen as fuel
Hydrogen as fuel
 
Term paper Hydrogen Fuel Cell
Term paper Hydrogen Fuel CellTerm paper Hydrogen Fuel Cell
Term paper Hydrogen Fuel Cell
 
GREEN HYDROGEN AS FUEL.pptx
GREEN HYDROGEN AS FUEL.pptxGREEN HYDROGEN AS FUEL.pptx
GREEN HYDROGEN AS FUEL.pptx
 
a presentation Hydrogen energy by MUKESH RAM
a presentation Hydrogen energy by MUKESH RAMa presentation Hydrogen energy by MUKESH RAM
a presentation Hydrogen energy by MUKESH RAM
 
Hydrogen as future fuel
Hydrogen as future fuelHydrogen as future fuel
Hydrogen as future fuel
 
Hydrogen fuel cells
Hydrogen fuel cellsHydrogen fuel cells
Hydrogen fuel cells
 
Future towards renewable hydrogen storage and powered applications
Future towards renewable hydrogen storage and powered applicationsFuture towards renewable hydrogen storage and powered applications
Future towards renewable hydrogen storage and powered applications
 
HyEnergy- Research in Hydrogen
HyEnergy- Research in HydrogenHyEnergy- Research in Hydrogen
HyEnergy- Research in Hydrogen
 
Hydrogen Transportation and application
Hydrogen Transportation and applicationHydrogen Transportation and application
Hydrogen Transportation and application
 
Water splitting on semiconductor catalysts under visible light irradiation
Water splitting on semiconductor catalysts under visible light irradiationWater splitting on semiconductor catalysts under visible light irradiation
Water splitting on semiconductor catalysts under visible light irradiation
 
Introduction to Photoelectrochemical (PEC) Water Splitting
Introduction to Photoelectrochemical (PEC) Water SplittingIntroduction to Photoelectrochemical (PEC) Water Splitting
Introduction to Photoelectrochemical (PEC) Water Splitting
 
Presentation: DOE Stetsoon Hydrogen Storage technologies
Presentation: DOE Stetsoon Hydrogen Storage technologiesPresentation: DOE Stetsoon Hydrogen Storage technologies
Presentation: DOE Stetsoon Hydrogen Storage technologies
 
Hydrogen & Fuel Cells
Hydrogen & Fuel CellsHydrogen & Fuel Cells
Hydrogen & Fuel Cells
 
electrolyte for next generation batteries
electrolyte for next generation batterieselectrolyte for next generation batteries
electrolyte for next generation batteries
 
Applied Hydrogen Slide Presentation 3.12.08
Applied Hydrogen Slide Presentation  3.12.08Applied Hydrogen Slide Presentation  3.12.08
Applied Hydrogen Slide Presentation 3.12.08
 
Ppt on hydrogen fuel cell
Ppt on hydrogen fuel cellPpt on hydrogen fuel cell
Ppt on hydrogen fuel cell
 
Pemfc ppt
Pemfc pptPemfc ppt
Pemfc ppt
 
MODULE - I : BATTERY TECHNOLOGY
MODULE - I : BATTERY TECHNOLOGYMODULE - I : BATTERY TECHNOLOGY
MODULE - I : BATTERY TECHNOLOGY
 
proton exchange membrane fuel cell
proton exchange membrane fuel cellproton exchange membrane fuel cell
proton exchange membrane fuel cell
 

Ähnlich wie Mechanics of metal hydrides for hydrogen storage

Metal Hydride Fuel Cell Market Growth and Status Explored in a New Research R...
Metal Hydride Fuel Cell Market Growth and Status Explored in a New Research R...Metal Hydride Fuel Cell Market Growth and Status Explored in a New Research R...
Metal Hydride Fuel Cell Market Growth and Status Explored in a New Research R...
stringentdatalytics
 

Ähnlich wie Mechanics of metal hydrides for hydrogen storage (20)

METAL HYDRIDE BASED COOLING SYSTEMS
  METAL HYDRIDE BASED COOLING SYSTEMS  METAL HYDRIDE BASED COOLING SYSTEMS
METAL HYDRIDE BASED COOLING SYSTEMS
 
Metal Oxides as Catalyst/Supporter for CO2 Capture and Conversion
 Metal Oxides as Catalyst/Supporter for CO2 Capture and Conversion Metal Oxides as Catalyst/Supporter for CO2 Capture and Conversion
Metal Oxides as Catalyst/Supporter for CO2 Capture and Conversion
 
Hydrogen Technologies .pdf
Hydrogen Technologies .pdfHydrogen Technologies .pdf
Hydrogen Technologies .pdf
 
Hydrogen Technologies .pdf
Hydrogen Technologies .pdfHydrogen Technologies .pdf
Hydrogen Technologies .pdf
 
IRJET- Hydrogen Fuel Cell
IRJET- Hydrogen Fuel CellIRJET- Hydrogen Fuel Cell
IRJET- Hydrogen Fuel Cell
 
F012234450
F012234450F012234450
F012234450
 
Seminar Report on Heat transfer in metallic hydride
Seminar Report on Heat transfer in metallic hydrideSeminar Report on Heat transfer in metallic hydride
Seminar Report on Heat transfer in metallic hydride
 
Hydrogen Technologies.pptx
Hydrogen Technologies.pptxHydrogen Technologies.pptx
Hydrogen Technologies.pptx
 
Catalysts for Hydrogen Storage.pdf
Catalysts for Hydrogen Storage.pdfCatalysts for Hydrogen Storage.pdf
Catalysts for Hydrogen Storage.pdf
 
SRNL Acceptability Envelope metal hydrides
SRNL Acceptability Envelope metal hydridesSRNL Acceptability Envelope metal hydrides
SRNL Acceptability Envelope metal hydrides
 
IRJET-Performance Simulation of Hydrogen Sorption in Metal Hydride based stor...
IRJET-Performance Simulation of Hydrogen Sorption in Metal Hydride based stor...IRJET-Performance Simulation of Hydrogen Sorption in Metal Hydride based stor...
IRJET-Performance Simulation of Hydrogen Sorption in Metal Hydride based stor...
 
Hydrogen fuel cell
Hydrogen fuel cellHydrogen fuel cell
Hydrogen fuel cell
 
Chapter 6a -_hydrotreating
Chapter 6a -_hydrotreatingChapter 6a -_hydrotreating
Chapter 6a -_hydrotreating
 
Metal Hydride Fuel Cell Market Growth and Status Explored in a New Research R...
Metal Hydride Fuel Cell Market Growth and Status Explored in a New Research R...Metal Hydride Fuel Cell Market Growth and Status Explored in a New Research R...
Metal Hydride Fuel Cell Market Growth and Status Explored in a New Research R...
 
Green Hydrogen Production pdf.pdf
Green Hydrogen Production  pdf.pdfGreen Hydrogen Production  pdf.pdf
Green Hydrogen Production pdf.pdf
 
Report on cryogenic heat treatment
Report on cryogenic heat treatmentReport on cryogenic heat treatment
Report on cryogenic heat treatment
 
Hydrogen Technologies.pdf
Hydrogen Technologies.pdfHydrogen Technologies.pdf
Hydrogen Technologies.pdf
 
Bioinspired multimetal electrocatalyst for selective methane oxidation
Bioinspired multimetal electrocatalyst for selective methane oxidationBioinspired multimetal electrocatalyst for selective methane oxidation
Bioinspired multimetal electrocatalyst for selective methane oxidation
 
Need of co2 capture new
Need of co2  capture newNeed of co2  capture new
Need of co2 capture new
 
Co labats newsletter_02
Co labats newsletter_02Co labats newsletter_02
Co labats newsletter_02
 

Mechanics of metal hydrides for hydrogen storage

  • 1. Proceeding  of  Fuel  Cells  Final  Project     MAE  528   Fall  2014,  Miami,  Florida,  USA                           The  Mechanics  of  Metal  Hydride  Hydrogen   Storage  Systems  for  Portable  Applications               Jordan  Suls   Department  of  Mechanical  Engineering   University  of  Miami              
  • 2.   Introduction       With  the  escalating  needs  for  sustainable  energy  in  today’s  society,  many   researchers  turn  to  hydrogen  as  the  hope  for  a  clean,  renewable  energy  source.  The   main  problems  being  faced  with  this  energy  source  is  the  need  for  efficient  and  cost-­‐ effective  methods  for  production,  storage  and  utilization  of  this  gas.     The  development  of  safe  and  reliable  hydrogen  storage  technologies  is  one   major  barrier  that  must  be  overcome  to  achieve  the  implementation  of  hydrogen-­‐ based  fuel  systems  into  today’s  society.  One  of  the  main  priorities  is  finding  a  way  to   supply  hydrogen  in  portable  applications  ranging  from  cars  to  mobile  phones.   Therefore,  the  focus  of  this  research  will  be  on  finding  practical  hydrogen  storage   techniques  that  can  be  utilized  with  a  PEM  fuel  cell  to  provide  the  necessary  energy   for  a  wide  range  of  mobile  applications.  Currently,  there  are  three  main  methods   being  employed  for  hydrogen  storage,  each  having  its  own  limitations.       Hydrogen  can  be  stored  as  a  high  pressure  compressed  gas,  which  involves   the  use  of  large,  heavy  tanks.  The  size  and  weight  involved  in  storing  compressed   hydrogen  gas  make  this  method  undesirable  for  mobile  applications.  Cryogenic   liquid  hydrogen  storage  has  a  greater  volumetric  storage  density  than  compressed   hydrogen  gas  but  further  complicates  the  system  needed  for  storage.  The  process  of   liquefying  the  hydrogen  gas  and  insulating  the  tank  requires  energy  and  a  greater   cost.  The  operating  conditions  needed  for  this  method  only  make  it  another   impractical  application  for  mobile  uses.  Finally,  there  are  hydrogen  storage   materials,  such  as  high  surface  area  carbon-­‐based  materials  and  metal  hydride  
  • 3. alloys.  Hydrogen  gas  can  be  stored  in  materials  either  by  adsorption  or  absorption.   Adsorption  is  the  process  of  hydrogen  attaching  to  the  surface  of  a  material  as  a  gas   (H2)  or  as  atoms  (H).  In  absorption,  the  hydrogen  gas  dissociates  into  hydrogen   atoms  that  are  then  incorporated  into  the  solid  lattice  framework  of  the  material.   The  process  of  absorption  with  the  use  of  metal  hydrides  is  particularly  interesting   because  it  offers  the  ability  to  store  large  amounts  of  hydrogen  at  low  pressure  and   temperature.  Figure  1  gives  an  approximate  operational  temperature  for  several   different  hydrogen  storage  methods  (some  of  which  are  outside  the  scope  of  this   research)  [1].     Figure  1:  Temperature  Requirements  for  Different  Hydrogen  Storage  Methods  [1]     The  potential  presented  by  metal  hydrides  in  their  gravimetric  and   volumetric  storage  capability  makes  this  method  the  most  appealing  for  the  ability   to  be  used  in  mobile  applications.  Similarly,  the  required  operating  conditions  are   easy  to  manage  and  maintain.     Metal  Hydrides  Overview   A  metal  hydride  consists  of  finely  ground  powders  that  absorb  large   quantities  of  hydrogen  gas  by  dissociating  the  gas  into  hydrogen  ions.  Metal   hydrides  use  hydrogenation  to  absorb  hydrogen  gas  into  the  lattice  of  the  metal   hydride.  Similarly,  they  use  dehydrogenation  to  release  the  stored  hydrogen  ions   from  the  surface  to  produce  hydrogen  gas  again  [2].    
  • 4. Metal  hydrides  typically  use  iron,  titanium,  manganese,  nickel  and  chromium   alloys  but  new  research  is  exploring  new  complex  materials  such  as  alanates,   amides  and  borohydrides  [2].     The  focus  for  metal  hydrides  is  the  thermodynamic  and  kinetic  properties  of   the  materials  used.  The  kinetics  of  the  reaction  between  the  metal  hydride  and  the   hydrogen  gas  can  influence  the  rate  at  which  hydrogen  gas  is  absorbed  and   desorbed.  Faster  reactions  translate  to  shorter  refuel  times  of  the  metal  hydride,   which  is  beneficial  in  mobile  applications  [3].     Similarly,  the  thermodynamics  of  the  reactions  can  determine  which  metal   hydride  materials  can  be  used  in  a  PEM  fuel  cell  system.  The  enthalpy  and  entropy   can  change  the  temperature  at  which  dehydrogenation  occurs.  The  implementation   of  additives  and  catalysts  are  used  to  ensure  that  the  necessary  temperature  and   pressure  for  the  hydrogenation/dehydrogenation  reactions  are  within  reasonable   ranges  for  the  PEM  fuel  cell.  These  processes  will  be  further  discussed  in  following   sections  [3].     Process  of  Hydrogen  Absorption     The  process  involved  with  hydrogen  absorption  into  the  metal  lattice  of  the   hydrides  consists  of  four  steps.  First,  the  hydrogen  molecules  are  attracted  to  the   metal  surface  by  Van  Der  Waal  forces  and  form  a  physisorbed  state.  Next,  before  the   hydrogen  can  diffuse  through  the  metal,  the  hydrogen  gas  must  dissociate  into  two   hydrogen  atoms.  A  chemisorbed  state  is  formed  as  the  hydrogen  atoms  form  new   bonds  at  the  metal’s  surface.  Finally,  the  chemisorbed  hydrogen  atoms  can  jump  to  
  • 5. subsurface  layers  and  diffuse  at  the  interstitial  sites.  These  four  steps  are  shown   below  in  Figure  2  [4].     Figure  2:  Dissociation  and  Diffusion  Processes  of  Hydrogen  in  Metal  Hydrides  [4]   For  diffusion,  hydrogen  atoms  form  a  metal-­‐hydrogen  (M-­‐H)  solid  solution,  which  is   the  referred  to  as  the  α-­‐phase.  The  formation  of  this  α-­‐phase  leads  to  an  expansion   of  the  metal  lattice.  As  the  pressure  increases  as  diffusion  progresses,  the  nucleation   of  a  hydrideβ-­‐  phase  occurs.  The  process  of  hydrogen  diffusion  is  demonstrated  in   Figure  3  [4].     Figure  3:  Formation  of  a  Hydride  Phase  as  Hydrogen  Diffuses  [4]   Metal  Hydride  Compositions  
  • 6. There  are  three  main  types  of  metal  hydride  materials:  light,  intermetallic,   and  complex  metal  hydrides.  Light  metal  hydrides  usually  consist  of  Li,  Be,  Na,  Mg,  B   or  Al.  The  advantage  of  this  type  is  the  light  weight  of  the  materials,  which  allows  for   better  gravimetric  storage  density  [3].       The  three  most  common  forms  of  intermetallic  metal  hydride  compounds  are   AB2,  AB5  and  Ti-­‐based  body  centered  cubic  (BCC)  alloys.  Typically,  AB2  type  metal   hydrides  are  composed  of  Ti-­‐Zr-­‐Mn-­‐V  or  Ti-­‐Zr-­‐Cr-­‐Fe  alloys  and  are  derived  from   Laves  phase  crystal  structures.  The  hydrogen  storage  capacity  for  this  type  of  metal   hydrides  is  generally  in  the  1.5  to  1.9  wt.%  range.  The  advantages  of  this  type  of   intermetallic  metal  hydrides  are  low  cost,  relatively  fast  kinetics  and  long  lifespans.   AB5  are  mostly  metal  alloys  of  Mischmetal  (Mm)  and  nickel.  The  hydrogen  storage   capacity  is  lower  than  that  of  AB2  metal  hydrides,  usually  maxing  out  at  1.5  wt.%.   The  advantage  of  AB5  metal  hydrides  is  their  better  volumetric  energy  storage  and   cyclic  durability.  These  factors  allow  for  AB5  metal  hydrides  to  generally  be  more   suitable  as  a  reversible  hydrogen  storage  material  for  small-­‐scale  mobile   applications,  such  as  a  mobile  phone  fuel  cell  system  that  would  replace  common   Lithium  Ion  batteries.    The  Ti-­‐based  BCC  alloys  exhibit  the  best  hydrogen  storage   capacity  of  the  3  types,  although  they  have  limited  practical  applications  due  to  the   high  cost  of  this  material.  The  vanadium  in  the  Ti-­‐based  alloys  is  what  increases  the   cost  but  is  essential  in  enhancing  the  hydrogen  absorption  capacity  [3].       New  research  is  exploring  the  more  complex  metal  hydrides,  along  with  the   inclusion  of  catalysts  to  accelerate  the  kinetics  of  the  reactions  between  the  hydride   materials  and  hydrogen.  Ahluwalia  et  al.  focus  on  the  development  of  new  class  of  
  • 7. hydrides  such  as  destabilized  hydrides  (especially  borohydrides  and  lithium   hydrides),  amide/imide  materials,  off-­‐board  regenerable  materials  (i.e.  AlH3  and   LiAlH4)  and  alanates  [3].  The  scope  of  this  research  is  limited  to  on-­‐board  reversible   metal  hydrides  that  offer  the  potential  to  achieve  the  guidelines  set  by  the  U.S.   Department  of  Energy,  which  is  discussed  later  on.  Because  of  this,  the  materials   considered  in  this  research  will  be  a  more  commonly  researched  sodium  alanate   (NaAlH4),  an  Mg-­‐based  metal  hydrides  (MgH2),  a  borohydrides  (LiBH4),  and  a  high-­‐ pressure  metal  hydride  (Ti1.1CrMn).   Metal  Hydride  Parameters  of  Performance     There  are  certain  factors  that  determine  the  effectiveness  of  the  metal   hydride  as  a  hydrogen  storage  system.  Volumetric  and  gravimetric  storage  densities   are  crucial  because  they  quantify  the  amount  of  hydrogen  that  can  be  stored  as  a   function  of  volume  and  weight,  respectively.  A  large  gravimetric  storage  density  is   harder  to  achieve  due  to  the  large  weight  associated  with  the  metal  hydride   materials  [5].  In  the  consideration  of  a  metal  hydride  storage  system  for  a  car,  a   higher  volumetric  and  gravimetric  storage  density  allows  for  the  driver  to  travel   farther  distances  without  refueling.       Another  key  parameter  is  the  rate  of  hydrogenation/dehydrogenation.  The   rate  of  hydrogen  absorption  into  the  metal  hydride  determines  the  time  it  would   take  to  refuel  the  metal  hydride.  Dehydrogenation  involves  the  desorption  of   hydrogen  from  the  metal  hydride  and  plays  a  crucial  role  in  providing  the  fuel  cell   with  sufficient  amounts  of  fuel  [5].    
  • 8.   The  optimum  hydrogen  storage  should  also  contain  the  following  properties;   high  reversibility,  limited  energy  loss  during  charging  and  discharging,  high  stability   against  oxygen  gas  and  moisture  to  ensure  long  life  cycles,  and  high  safety.  [3]         Table  1  gives  the  U.S.  Department  of  Energy  guidelines  for  metal  hydride   storage  in  fuel  cell  cars.  The  target  values  are  rough  estimates  of  the  required  metal   hydride  performance  to  be  able  to  compete  with  the  current  automobile  standards.   Current  metal  hydride  materials  are  unable  to  reach  these  standards  but  further   research  is  being  performed  to  attempt  to  meet  the  guidelines  by  improving  the   interaction  between  the  metal  hydrides  and  hydrogen  by  including  additives  and   catalysts.     Table  1:  U.S.  Department  of  Energy  Guidelines  [6]     Thermodynamics  and  Kinetics   It  is  important  that  the  metal  hydride  storage  system  is  compatible  with  the   PEM  fuel  cell  being  used.  The  main  consideration  is  the  operating  temperature  and  
  • 9. pressure  of  the  fuel  cell.  Rate  and  amount  of  hydrogen  absorption/desorption  are   dependent  on  the  temperature  of  the  system.  PEM  fuel  cells  generally  operate  at  50   to  100°C  and  near  ambient  pressures.  Increasing  the  operating  temperature  of  the   fuel  cell  can  generate  significant  problems  and  efficiency  losses.  Therefore,  it  is   necessary  to  find  materials  that  react  with  gaseous  hydrogen  at  lower  temperatures.   This  can  be  calculated  by  finding  the  enthalpy  and  entropy  of  the  reactions.   Equation  (1)  demonstrates  the  dependence  of  temperature  on  enthalpy  and  entropy                                                                                                                                                        Δ 𝐻 = 𝑇Δ𝑆                        (1)   Züttel  et  al.  [7]  approximated  that  the  entropy  of  most  metal  hydride-­‐hydrogen   reactions  is  130  J  K-­‐1  mol-­‐1.  If  the  entropy  can  be  estimated  and  the  desired   temperature  is  known,  the  necessary  enthalpy  can  be  found  [8].  An  example  of  this   process  is  discussed  by  Alapatti  et  al  [8].  for  the  reaction  of  a  LiBH4  metal  hydride.   The  reaction,  which  demonstrates  the  desorption  of  hydrogen,  is  shown  in  equation   (2).                                                                                                                               𝐿 𝑖𝐵𝐻!  → 𝐿𝑖𝐻 + 𝐵 +   ! ! 𝐻!                                                                                            (2)   Here,  the  entropy  is  estimated  to  be  95 ≤ ∆𝑆   ≤ 140  𝐽  𝐾!!  𝑚𝑜𝑙!! .  If  the  desired   temperature  is  between  50  and  150°C,  then  the  enthalpy  must  be  between  30  and   60  kJ/mol.  If  the  enthalpy  is  above  60  kJ/mol,  then  the  amount  of  hydrogen   delivered  to  the  fuel  cell  will  be  small  unless  the  temperature  is  increased.  If  the   enthalpy  is  less  than  the  30  kJ/mol,  the  reaction  will  not  be  easily  reversible  [8].   Therefore,  the  metal  hydride  will  not  be  able  to  easily  absorb  hydrogen  gas.       To  change  the  enthalpy  of  the  reaction  between  metal  hydride  materials  and   hydrogen  gas,  the  concept  of  destabilization  is  explored  by  new  research.  
  • 10. Destabilization  involves  the  inclusion  of  additives  that  form  compounds  or  alloys  in   the  dehydrogenated  state.  These  compounds  help  stabilize  the  dehydrogenated   state  and  therefore  destabilize  the  hydrogenated  state.  The  effect  of  these  additives   can  be  demonstrated.  Consider  the  reaction  shown  in  equation  (2).  In  the   estimations  of  Alapatti  et  al.,  by  adding  MgH2  to  LiBH4,  the  total  reaction  becomes:                                                                                           𝐿 𝑖𝐵𝐻! +   ! ! 𝑀𝑔𝐻! → 𝐿𝑖𝐻 + ! ! 𝑀𝑔𝐵! +  2𝐻!                                                                  (3)   The  formation  of  MgB2  stabilizes  the  right  side  of  the  equation  (the  dehydrogenated   state),  which  decreases  the  enthalpy  of  the  reaction  from  69  kJ/mol  to  44  kJ/mol  [9].   This  allows  the  reaction  to  take  place  at  significantly  lower  temperatures  (around   250°C  less).  The  downside  of  using  additives  is  that  the  hydrogen  storage  capacity  of   the  metal  hydride  is  marginally  decreased  [9].       Research  for  metal  hydrides  is  focused  on  finding  new  additives  that  can   reduce  the  enthalpy  of  the  reaction  while  maintaining  the  desirable  volumetric  and   gravimetric  energy  density.     Improving  Metal  Hydride  Kinetics     By  introducing  catalysts  or  dopants,  the  kinetics  involved  with  the   hydrogenation/dehydrogenation  rates  can  be  theoretically  improved  in  hopes  to   achieve  the  standards  set  by  the  DOE.       Consider  one  of  the  more  promising  potential  metal  hydrides,  sodium  alanate   (NaAlH4).    The  Van’t  Hoff  plot  shown  in  Figure  2  shows  that  at  a  dissociation   pressure  of  0.1  MPa,  sodium  alanate  is  one  of  the  few  metal  hydride  materials  that   do  not  require  a  high  temperature  for  hydrogen  desorption  [6].  
  • 11.   Figure  4:  Van’t  Hoff  plot  for  various  metal  hydride  materials  [6]   In  the  1990’s,  it  was  hypothesized  that  sodium  alanate  could  not  be  a  practical   hydrogen  storage  material  due  to  the  slow  kinetics  and  high  temperature   requirements.  This  changed  when  Bogdanovic  and  Schwickardi  doped  the  sodium   alanate  with  small  amounts  of  a  titanium  catalyst  [8].  The  new,  doped  sodium   alanate  was  able  to  achieve  rehydrogenation  under  much  milder  conditions  (just   above  100°C).  The  experiments  run  showed  that  a  highly  dispersed  Ti  in  the  Al   surface  improved  the  hydrogen  uptake  and  release  processes  [10].  TiAl3  is  most   likely  to  form  during  the  dehydrogenation  process.  It  was  concluded  that  Ti  doping   can  effectively  lower  the  dissociation  pressure  for  hydrogen  absorption  [8].   A  similar  experiment  was  performed  by  Schuth  et  al.  [6]  to  study  the  affects   of  ball-­‐milling  on  NaAlH4  with  catalyst  TiCl3  under  various  conditions.  In  Figure  3,  it   is  apparent  that  the  volume  capable  of  being  desorbed  from  the  metal  hydride  
  • 12. increased  with  both  the  amount  of  the  catalyst  used  and  the  size  ball  used  in  the   ball-­‐milling  process.     Figure  5:  Volume  of  hydrogen  desorbed  from  a  ball-­‐milled  NaAlH4  with  a  TiCl3   catalyst  under  various  conditions  [6]       Most  catalyst  materials  being  explored  in  current  research  are  titanium,  iron   and  zirconium.  One  major  downside  of  the  inclusion  of  dopants  is  the  reduction  in   the  reversible  hydrogen  storage  capacity.  The  reason  for  this  is  that  the  dopant  adds   weight  to  the  metal  hydride  system.  Doping  levels  are  usually  around  2  to  4  mol%.   The  dopants  add  weight  that  is  not  being  used  to  store  hydrogen  so  the  overall   storage  capacity  is  reduced  [8].     Metal  Hydride  Surface  Structures     A  metal  hydrides  ability  to  dissociate  hydrogen  gas  is  dependent  on  the   materials  surface  structure.    When  considering  Mg-­‐based  metal  hydrides,  improving   the  surface  properties,  with  the  use  of  ball-­‐milling,  is  essential  in  improving  the  rate   of  hydrogen  diffusion  through  the  metal  hydride  layers  [3].    
  • 13.   As  the  reaction  of  hydrogenation  progresses,  hydrogen  diffusion  occurs  and   the  hydride  layer  grows.  This  creates  an  almost  impermeable  layer,  which  limits  the   rate  of  hydride  formation.    Along  with  forming  a  compact  hydride  layer,  exposure  to   oxygen  can  form  highly  stable  oxide  layers  on  the  hydride,  which  severely  lower  the   hydrogen  absorption  rate  [3].       To  avoid  these  issues,  ball-­‐milling  is  used  to  increase  the  surface  area,  and   create  defects  on  the  surface  and  interior  of  the  hydride.  The  lattice  defects  created   are  areas  of  low  activation  energy  of  diffusion,  which  aids  the  hydrogen  absorption   [11].  The  greater  surface  area  allows  for  larger  surface  contact  with  catalysts,  which   leads  to  faster  kinetics  [11].  The  process  of  ball-­‐milling  can  be  controlled  to  alter   grain  size,  microstructure  or  surface  properties  of  the  material  in  the  hopes  of   achieving  faster  absorption/desorption  times.  Figure  4  shows  the  variation  of   desorption  time  for  unmilled  and  ball-­‐milled  MgH2.  As  one  can  see,  the  ball-­‐milled   MgH2  (white  symbols)  had  a  much  faster  desorption  rate  than  the  unmilled  MgH2  at   the  same  hydrogen  content  [3].  
  • 14.   Figure  6:  Hydrogen  desorption  for  unmilled  (black  symbols)  and  ball-­‐milled  (white   symbols)  MgH2  at  a  pressure  of  0.15  bar  [3]       Heat  Management  for  Metal  Hydride  Systems     A  study  performed  by  Sandrock  et  al.  [12]  on  a  one  hundred  gram  bed  of   sodium  alanate  found  that  during  the  rehydrogenation  process,  large  amounts  of   heat  were  produced  during  this  exothermic  reaction.  Within  one  minute,  the  heat  of   the  system  increased  from  155°C  to  234°C,  which  caused  several  problems  such  as   sintering  and  decreased  performance.  The  need  for  a  heat  exchanger  can  further   complicate  the  system  but  severely  increase  the  durability  and  efficiency  of  the   metal  hydride  under  cyclic  operating  [13].    
  • 15. Similarly,  since  the  desorption  of  hydrogen  gas  is  an  endothermic  reaction,   the  metal  hydrides  temperature  will  decrease  as  hydrogen  is  released.  This  will  lead   to  a  continuous  reduction  in  the  hydrogen  release  rate  as  the  temperature  drops   [10].  Therefore  the  required  operating  temperature  needs  to  be  maintained  through   the  use  of  a  heat  exchanger.  In  an  ideal  setup,  the  heat  produced  by  the  operations  of   the  PEM  fuel  cell  can  be  enough  to  cause  the  metal  hydride  to  continually  release   hydrogen  gas  until  all  the  hydrogen  is  consumed  [13].     Certain  heat  exchanger  systems  have  been  explored  for  metal  hydride   heating/cooling.  Pasini  et  al.  [1]  describe  the  use  of  a  shell-­‐and-­‐tube  heat  exchanger   with  the  metal  hydride  packed  in  the  shell  and  coolant  flowing  through  the  tubes.   The  schematic  of  such  a  system  is  shown  in  detail  in  Figure  5.     Figure  7:  Fuel  Cell  System  with  Sodium  Alanate  Metal  Hydride  [1]   Pasini  et  al.  [1]  also  explored  a  Ti1.1CrMn  metal  hydride  system  as  a  means  of   comparison  with  the  more  popular  Sodium  Alanate.  The  benefit  of  using  Ti1.1CrMn  is   that  the  desorption  reaction  only  requires  a  temperature  of  85°C.  The  waste  heat   produced  by  a  PEM  fuel  cell  is  enough  to  satisfy  this  condition.  Radiator  fluid  can  be  
  • 16. heated  with  the  waste  heat  of  the  fuel  cell  and  used  to  keep  the  Ti1.1CrMn  system  at   the  desired  temperature.  And  for  cooling,  the  same  shell-­‐and-­‐tube  heat  exchanger   can  be  used  during  hydrogen  absorption.  The  new  system  design  is  shown  in  Figure   6.       Figure  8:  Fuel  Cell  System  with  Ti1.1CrMn  Metal  Hydride  [1]   For  a  sodium  alanate  system,  on-­‐board  hydrogen  combustion  is  required  to   heat  the  metal  hydride  to  the  necessary  temperature  for  desorption  (130°C).  The   disadvantage  of  the  Ti1.1CrMn  system  is  a  large  decrease  in  the  theoretical  hydrogen   storage  capacity  (1.9-­‐2.0  wt.%)  when  compared  to  sodium  alanate  (5.5  wt%)  [1].     Conclusions       With  the  consideration  of  the  effectiveness  of  metal  hydrides  as  a  hydrogen   storage  method  in  portable  applications,  there  are  currently  no  available  materials   that  meet  the  guidelines  set  in  place  by  the  DOE  for  on-­‐board  hydrogen  storage.   Although  that  conclusion  can  definitively  be  made,  the  field  of  metal  hydrides  is  one   in  need  of  further  research.  Metal  hydrides  offer  the  potential  to  surpass  other   hydrogen  storage  methods  but  are  greatly  understudied.  There  are  several  nascent  
  • 17. areas  of  research  that  are  still  relatively  untouched  such  as:  complex  metal  hydrides,   catalyst  and  methods  of  doping,  thermodynamic  and  kinetic  properties  of  metal   hydrides  and  heat  exchanger  systems  for  metal  hydrides.     What  can  be  determined  from  this  study  is  that  certain  metal  hydride  types   are  simply  not  feasible  for  the  mobile  applications.  The  biggest  deterrent  for   researchers  is  a  lower  hydrogen  storage  capacity,  because  this  obstacle  is  hard  to   overcome.  Due  to  this,  intermetallic  hydrides  can  be  considered  undesirable   because  they  possess  a  minimal  hydrogen  storage  capacity  and  a  high  cost.     As  for  light  and  complex  hydrides,  the  most  common  problem  faced  is  the   high  desorption  temperature.  For  example,  Mg-­‐based  metal  hydrides  have  a   hydrogen  storage  capacity  around  7.6  wt.%  but  need  a  temperature  of  around   300°C  to  efficiently  desorb  hydrogen.  The  solution  for  this  problem  can  found  in   three  different  areas  of  study.  One  is  improving  the  thermodynamics  of  the  metal   hydride-­‐hydrogen  reaction  with  the  use  of  catalysts.  The  second  is  the  integration  of   a  heat  exchanger  system  with  on-­‐board  hydrogen  combustion  to  raise  the   temperature  of  the  metal  hydride  system.  The  third  is  the  development  of  a  PEM   fuel  cell  with  a  higher  operating  temperature  and  comparable  efficiency,  such  that   there  is  more  waste  heat  present  to  provide  the  metal  hydride.   In  light  of  the  advancements  and  achievements  in  metal  hydride  studies  thus   far,  there  is  a  clear  potential  for  the  development  of  hydride  materials  that  exhibit   high  reversible  hydrogen  storage  capacity  at  reasonable  temperatures.  Similarly,  as   the  improvement  in  vehicle  design,  PEM  fuel  cells  and  manufacturability  of  hydride   materials  continue,  the  field  of  metal  hydrides  will  continue  to  progress.  As  metal  
  • 18. hydride  technology  advances,  so  does  the  ability  to  safely  and  efficiently  implement   hydrogen-­‐based  electrical  systems  into  society.                                                                                        
  • 19. References   [1] Pasini, J. M., Corgnale, C., van Hassel, B. A., Motyka, T., Kumar, S., & Simmons, K. L. (2013). Metal hydride material requirements for automotive hydrogen storage systems. International Journal of Hydrogen Energy, 38(23), 9755-9765. [2] Ryan O'Hayre, Suk-Won Cha, Whitney Colella. (2009). Fuel cell fundamentals (2nd ed.) Wiley. [3] Sakintuna, B., Lamari-Darkrim, F., & Hirscher, M. (2007). Metal hydride materials for solid hydrogen storage: A review. International Journal of Hydrogen Energy, 32(9), 1121-1140. [4] Martin  Dornheim.  (2011).  Thermodynamics  of  metal  hydrides:  Tailoring  reaction                enthalpies  of  hydrogen  storage  materials.  In  Juan  Carlos  Moreno-­‐Pirajan              (Ed.),  Thermodynamics-­‐  interaction  studies-­‐  solids,  liquids,  and  gases  (pp.  Chapter                33) [5] Ahluwalia, R. K., Peng, J. -., & Hua, T. Q. (2014). Bounding material properties for automotive storage of hydrogen in metal hydrides for low-temperature fuel cells. International Journal of Hydrogen Energy,39(27), 14874-14886. [6] F. Schuth, B. Bogdanovic and M. Felderhoff. (2004). Light metal hydrides and complex hydrides for hydrogen storage Chemical Communications, , 2249–2258.   [7]  Züttel,  A.;  Wenger,  P.;  Rentsch,  S.;  Sudan,  P.;  Mauron,  P.;Emmenegger,  C.  J.  Power                            Sources  2003,  118,  1.   [8] Sudhakar V. Alapati, J. Karl Johnson, and David S. Sholl. (2006). Identification of destabilized metal hydrides for hydrogen storage using first principles calculations. The Journal of Physical Chemistry, 110(17), 8769–8776. [9] Yang, H., Adeola Ibikunle, & Goudy, A. J. (2010). Effects of ti-based additives on the hydrogen storage properties of a LiBH4 /CaH2 destabilized system. Advances in Materials Science and Engineering, , n/a. [10] Satya Sekhar, B., Suresh, P., & Muthukumar, P. (2013). Performance tests on metal hydride based hydrogen storage devices. International Journal of Hydrogen Energy, 38(22), 9570-9577. [11] Ley, M. B., Jepsen, L. H., Lee, Y., Cho, Y. W., Bellosta von Colbe, J. M., Dornheim, M., et al. (2014). Complex hydrides for hydrogen storage – new perspectives. Materials Today, 17(3), 122-128.
  • 20. [12] Sandrock G, Bowman Jr RC. Gas-based hydride applications: recent progress and future needs. J Alloy Compd 2003;356e357:794e9. http://dx.doi.org/10.1016/S0925- 8388(03) 00090-2. [13] Raju, M., & Kumar, S. (2012). Optimization of heat exchanger designs in metal hydride based hydrogen storage systems. International Journal of Hydrogen Energy, 37(3), 2767-2778.