SlideShare ist ein Scribd-Unternehmen logo
1 von 14
Downloaden Sie, um offline zu lesen
Running	
  head:	
  	
  FERMENTATION	
  PROCESSES	
  OF	
  FOOD	
  PRODUCTS	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Fermentation	
  Processes	
  of	
  Food	
  Products:	
  	
  Cheese,	
  Alcohol,	
  and	
  Bread	
  
	
  
Kyle	
  Lenane	
  
John	
  Schnettler	
  
FTEC	
  447	
  -­‐	
  Food	
  Chemistry	
  
Colorado	
  State	
  University	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
FERMENTATION	
  OF	
  FOOD	
  PRODUCTS	
  
The	
  production	
  of	
  cheese,	
  alcohol,	
  and	
  bread	
  by	
  the	
  process	
  of	
  fermentation	
  has	
  
occurred	
  for	
  centuries,	
  far	
  before	
  there	
  was	
  any	
  knowledge	
  of	
  the	
  existence	
  of	
  
microorganisms,	
  metabolic	
  pathways,	
  or	
  the	
  relatively	
  complex	
  biochemical	
  properties	
  of	
  
foods	
  and	
  beverages.	
  	
  However,	
  tremendous	
  advances	
  in	
  food	
  science,	
  chemistry,	
  and	
  
microbiology	
  have	
  led	
  to	
  a	
  deeper	
  understanding	
  of	
  what	
  fermentation	
  is,	
  how	
  it	
  functions,	
  
and	
  how	
  it	
  affects	
  food	
  quality	
  in	
  terms	
  of	
  sensory	
  analysis	
  and	
  shelf	
  life.	
  	
  While	
  the	
  
fermentation	
  of	
  cheese,	
  alcohol,	
  and	
  bread	
  share	
  many	
  similarities,	
  they	
  also	
  possess	
  a	
  
variety	
  of	
  qualities	
  that	
  differentiate	
  themselves	
  from	
  one	
  another.	
  	
  Therefore,	
  the	
  purpose	
  
of	
  this	
  paper	
  is	
  not	
  only	
  to	
  describe	
  the	
  fermentation	
  processes	
  of	
  cheese,	
  alcohol,	
  and	
  
bread,	
  but	
  also	
  to	
  highlight	
  the	
  similarities	
  and	
  differences	
  that	
  exist	
  between	
  each	
  of	
  these	
  
food	
  products.	
  	
  But	
  before	
  putting	
  forth	
  this	
  description	
  and	
  analysis	
  of	
  each	
  food	
  product,	
  
it	
  is	
  worthwhile	
  to	
  first	
  understand	
  what	
  fermentation	
  is,	
  why	
  it	
  occurs,	
  and	
  its	
  various	
  
components.	
  	
  	
  
	
   Fermentation	
  is	
  defined	
  as	
  a	
  group	
  of	
  chemical	
  reactions	
  prompted	
  by	
  
microorganisms	
  that	
  degrade	
  complex	
  carbohydrates	
  into	
  simpler	
  substances	
  such	
  as	
  
gases,	
  acids,	
  and/or	
  alcohol	
  (Weir	
  2015).	
  	
  Therefore,	
  fermentation	
  is	
  a	
  metabolic	
  process	
  
that	
  occurs	
  when	
  respiration,	
  a	
  far	
  more	
  favorable	
  metabolic	
  pathway,	
  is	
  impeded	
  and	
  
ultimately	
  unable	
  to	
  occur.	
  	
  Respiration	
  is	
  a	
  metabolic	
  pathway	
  that	
  uses	
  glycolysis	
  
(substrate	
  level	
  phosphorylation),	
  the	
  TCA	
  cycle,	
  and	
  electron	
  transport	
  chain	
  to	
  generate	
  a	
  
net	
  total	
  36	
  ATP	
  (2015).	
  	
  This	
  process	
  can	
  occur	
  either	
  aerobically	
  or	
  anaerobically	
  
depending	
  on	
  what	
  the	
  final	
  acceptor	
  is	
  in	
  the	
  electron	
  transport	
  chain	
  (oxygen	
  is	
  aerobic,	
  
any	
  acceptor	
  other	
  than	
  oxygen	
  is	
  anaerobic).	
  	
  When	
  oxygen	
  isn’t	
  available	
  to	
  facultative	
  
anaerobic	
  microorganisms,	
  they	
  revert	
  to	
  the	
  substrate-­‐level	
  phosphorylation	
  
FERMENTATION	
  OF	
  FOOD	
  PRODUCTS	
  
fermentation	
  pathway	
  in	
  order	
  to	
  produce	
  energy	
  from	
  glycolysis,	
  more	
  NAD+	
  for	
  
glycolysis,	
  and/or	
  as	
  a	
  survival	
  mechanism	
  to	
  outcompete	
  other	
  organisms	
  in	
  the	
  presence	
  
of	
  high	
  glucose	
  concentrations	
  (2015).	
  	
  The	
  two	
  primary	
  classifications	
  of	
  fermentation	
  
include	
  the	
  homofermentative	
  and	
  heterofermentative	
  pathways.	
  	
  The	
  homofermentative,	
  
Embden-­‐Meyerhof	
  pathway	
  functions	
  by	
  the	
  use	
  of	
  the	
  enzyme	
  aldolase,	
  which	
  utilizes	
  
fructose,	
  glucose,	
  and	
  galactose	
  to	
  produce	
  solely	
  lactic	
  acid	
  (2015).	
  	
  	
  On	
  the	
  other	
  hand,	
  the	
  
heterofermentative,	
  Phosphotekalose	
  pathway	
  functions	
  through	
  the	
  use	
  of	
  the	
  enzyme	
  
phosphoketalase,	
  which	
  utilizes	
  simple	
  carbohydrates	
  to	
  produce	
  not	
  only	
  lactic	
  acid,	
  but	
  
also	
  ethanol,	
  carbon	
  dioxide,	
  and	
  acetic	
  acid	
  	
  (2015).	
  	
  With	
  this	
  basic	
  understanding	
  of	
  the	
  
fermentation	
  metabolic	
  pathway	
  and	
  its	
  mechanisms,	
  cheese,	
  alcohol,	
  and	
  bread	
  
fermentation	
  are	
  more	
  easily	
  comprehensible.	
  
The	
  first	
  major	
  food	
  product	
  fermentation	
  to	
  be	
  discussed	
  is	
  the	
  fermentation	
  of	
  
cheese.	
  	
  Cheese	
  fermentation	
  is	
  practiced	
  all	
  around	
  the	
  world	
  but	
  varies	
  from	
  culture	
  to	
  
culture	
  in	
  terms	
  of	
  the	
  substrates	
  that	
  are	
  used	
  and	
  the	
  cultures	
  fermenting	
  them.	
  The	
  
primary	
  substrate	
  that	
  we	
  as	
  Americans	
  associate	
  with	
  cheese	
  fermentation	
  is	
  milk,	
  and	
  for	
  
this	
  paper	
  milk	
  cheese	
  will	
  be	
  the	
  topic.	
  	
  Cheeses	
  are	
  generally	
  described	
  as	
  hard	
  of	
  soft	
  
depending	
  on	
  their	
  consistency.	
  Hard	
  cheeses	
  are	
  often	
  associated	
  with	
  bacterial	
  
fermentations	
  and	
  include	
  bacterial	
  species	
  such	
  as,	
  Lactobacillus	
  helveticus,	
  Lactobacillus	
  
Delbruckeii,	
  Streptococcus	
  thermophilus,	
  as	
  well	
  as	
  other	
  lactic	
  acid	
  bacteria	
  (Weir	
  2015).	
  
Soft	
  cheeses	
  are	
  associated	
  more	
  with	
  fungi	
  as	
  the	
  primary	
  fermentors	
  including,	
  
Penicillium	
  camemberti,	
  Penicillium	
  roqueforti,	
  Debramyces	
  hansenii,	
  as	
  well	
  as	
  others	
  
(2015).	
  
	
  
FERMENTATION	
  OF	
  FOOD	
  PRODUCTS	
  
	
   Milk	
  consists	
  of	
  water,	
  minerals,	
  proteins,	
  lipids	
  and	
  carbohydrates	
  (Milk	
  Facts	
  
2015).	
  The	
  most	
  important	
  mineral	
  to	
  consider	
  in	
  cheese	
  fermentation	
  is	
  calcium	
  because	
  
of	
  its	
  role	
  in	
  protein	
  coagulation,	
  a	
  topic	
  that	
  will	
  be	
  covered	
  in	
  more	
  detain	
  later.	
  	
  Bovine	
  
milk	
  contains	
  approximately	
  400	
  different	
  fatty	
  acids	
  but	
  the	
  vast	
  majority	
  of	
  them	
  (65%)	
  
are	
  saturated,	
  leaving	
  30%	
  monounsaturated,	
  and	
  5%	
  polyunsaturated.	
  	
  According	
  to	
  
research	
  conducted	
  by	
  Helena	
  Lindmark	
  Månsson	
  pertaining	
  to	
  fatty	
  acids	
  in	
  bovine	
  milk	
  
fat,	
  “The	
  milk	
  fatty	
  acids	
  are	
  derived	
  almost	
  equally	
  from	
  two	
  sources,	
  the	
  feed	
  and	
  the	
  
microbial	
  activity	
  in	
  the	
  rumen	
  of	
  the	
  cow	
  and	
  the	
  lipids	
  in	
  bovine	
  milk	
  are	
  mainly	
  present	
  
in	
  globules	
  as	
  an	
  oil-­‐in-­‐water	
  emulsion”	
  (Månsson	
  15).	
  In	
  cheese	
  fermentation	
  a	
  process	
  
called	
  lipolysis	
  occurs.	
  Lipolysis	
  is	
  the	
  process	
  of	
  fatty	
  acid	
  degradation	
  when	
  the	
  enzyme	
  
lipase	
  separates	
  the	
  fatty	
  acids	
  from	
  the	
  glycerol	
  backbone	
  (Weir	
  2015).	
  The	
  lipase	
  enzyme	
  
can	
  be	
  present	
  in	
  the	
  substrate	
  or	
  it	
  can	
  come	
  from	
  an	
  outside	
  source	
  like	
  an	
  added	
  culture	
  
or	
  the	
  surrounding	
  environment	
  (2015).	
  This	
  process	
  can	
  contribute	
  to	
  the	
  sensory	
  
properties	
  of	
  the	
  product,	
  most	
  specifically	
  flavor	
  and	
  aroma.	
  
	
   The	
  two	
  major	
  proteins	
  found	
  in	
  bovine	
  milk	
  are	
  casein	
  making	
  up	
  80%	
  of	
  the	
  total	
  
protein	
  and	
  whey	
  comprising	
  the	
  remaining	
  20%	
  (Weir	
  2015).	
  	
  Casein	
  is	
  especially	
  
important	
  because	
  it	
  is	
  responsible	
  for	
  the	
  curd	
  formation	
  during	
  the	
  cheese	
  making	
  
process;	
  casein	
  sub	
  micelles	
  consist	
  of	
  alpha,	
  beta	
  and	
  kappa	
  regions.	
  Calcium	
  phosphate	
  
bonds	
  form	
  between	
  the	
  alpha	
  and	
  beta	
  regions	
  of	
  different	
  sub	
  micelles	
  holding	
  them	
  
together	
  and	
  creating	
  a	
  larger	
  micelle.	
  As	
  micelles	
  form,	
  the	
  kappa	
  region	
  which	
  has	
  large	
  
triglycerides	
  attached	
  to	
  them,	
  are	
  arranged	
  on	
  the	
  outside	
  of	
  the	
  casein	
  micelle	
  
(Stone,2015).	
  	
  Much	
  like	
  lipolysis	
  of	
  fats	
  proteins	
  also	
  experience	
  a	
  similar	
  phenomenon	
  
called	
  proteolysis.	
  Proteolysis	
  refers	
  to,	
  “the	
  process	
  in	
  which	
  a	
  protein	
  is	
  broken	
  down	
  
FERMENTATION	
  OF	
  FOOD	
  PRODUCTS	
  
partially,	
  into	
  peptides,	
  or	
  completely,	
  into	
  amino	
  acids,	
  by	
  proteolytic	
  enzymes,	
  present	
  in	
  
bacteria	
  and	
  in	
  plants	
  but	
  most	
  abundant	
  in	
  animals”	
  (Fox	
  2015).	
  	
  This	
  process	
  is	
  incredibly	
  
important	
  in	
  texture,	
  flavor	
  and	
  aroma	
  development	
  in	
  cheese,	
  and	
  in	
  the	
  coagulation	
  of	
  the	
  
protein	
  as	
  well.	
  	
  	
  
	
   The	
  final	
  compound	
  present	
  in	
  bovine	
  milk	
  is	
  carbohydrates.	
  The	
  primary	
  substrate	
  
in	
  cheese	
  fermentation	
  is	
  lactose	
  which	
  is	
  a	
  disaccharide	
  consisting	
  of	
  the	
  
monosaccharide’s	
  glucose	
  and	
  galactose	
  (Weir,	
  2015).	
  	
  Cheese	
  fermentation	
  produces	
  only	
  
lactate	
  making	
  it	
  a	
  homofermentative	
  lactic	
  acid	
  fermentation.	
  Lactic	
  acid	
  fermentation	
  
starts	
  with	
  glycolysis	
  where	
  the	
  lactose	
  (glucose	
  and	
  galactose)	
  is	
  broken	
  down	
  into	
  
pyruvate	
  in	
  order	
  to	
  produce	
  2	
  ATP.	
  After	
  the	
  glycolysis	
  step	
  the	
  pyruvate	
  is	
  then	
  broken	
  
down	
  into	
  lactate	
  the	
  terminal	
  product	
  of	
  lactic	
  acid	
  fermentation.	
  During	
  this	
  final	
  step	
  of	
  
lactic	
  acid	
  fermentation	
  NAD+	
  is	
  produced	
  which	
  is	
  then	
  recycled	
  again	
  for	
  glycolysis.	
  
Glycolysis	
  is	
  the	
  only	
  step	
  of	
  the	
  fermentation	
  process	
  that	
  produces	
  ATP,	
  and	
  although	
  it	
  is	
  
not	
  as	
  efficient	
  as	
  respiration,	
  it	
  provides	
  the	
  organisms	
  capable	
  of	
  fermentation	
  a	
  huge	
  
evolutionary	
  advantage	
  over	
  others.	
  (Todar,	
  2015)	
  
	
   Before	
  humanity	
  had	
  discovered	
  microorganisms,	
  fermentation	
  of	
  foods	
  was	
  carried	
  
out	
  to	
  increase	
  the	
  microbiological	
  stability	
  of	
  food	
  allowing	
  it	
  to	
  last	
  longer	
  than	
  the	
  raw	
  
substrate.	
  Cheeses	
  ability	
  to	
  store	
  for	
  long	
  periods	
  varies	
  on	
  the	
  type	
  of	
  cheese,	
  generally	
  
the	
  harder	
  cheeses	
  are	
  much	
  more	
  shelf	
  stable	
  (Musseti	
  2015).	
  During	
  the	
  lactic	
  acid	
  
fermentation	
  the	
  pH	
  of	
  cheese	
  drops	
  significantly	
  making	
  it	
  very	
  hard	
  for	
  certain	
  organisms	
  
to	
  grow	
  especially	
  human	
  pathogens.	
  Another	
  byproduct	
  of	
  cheese	
  fermentation	
  is	
  
bacteriocins,	
  or	
  antimicrobial	
  products	
  produced	
  by	
  the	
  fermenting	
  organism	
  designed	
  to	
  
retard	
  the	
  growth	
  of	
  competing	
  microorganisms	
  (Weir	
  2015).	
  Some	
  of	
  the	
  hard	
  cheeses	
  are	
  
FERMENTATION	
  OF	
  FOOD	
  PRODUCTS	
  
aged	
  for	
  a	
  number	
  of	
  years,	
  a	
  process	
  that	
  lowers	
  the	
  water	
  activity	
  down	
  to	
  levels	
  that	
  
make	
  it	
  very	
  hard	
  for	
  most	
  microorganisms	
  to	
  grow	
  (Musseti	
  2015).	
  Finally,	
  other	
  
measures	
  can	
  be	
  taken	
  in	
  order	
  to	
  increase	
  the	
  shelf	
  life	
  of	
  cheese	
  like	
  storage	
  at	
  
refrigerator	
  temperatures	
  or	
  the	
  use	
  of	
  modified	
  atmosphere	
  packaging	
  and,	
  like	
  other	
  
ferments,	
  exposure	
  to	
  temperature,	
  humidity,	
  light,	
  and	
  oxygen.	
  	
  	
  	
  
	
   Unlike	
  cheese	
  fermentation,	
  the	
  fermentation	
  of	
  ethanol	
  is	
  heterofermentative	
  and	
  a	
  
vital	
  step	
  in	
  the	
  production	
  of	
  alcoholic	
  beverages	
  such	
  as	
  wine	
  and	
  beer.	
  	
  In	
  ethanol	
  
fermentation,	
  a	
  single	
  glucose	
  molecule	
  is	
  first	
  broken	
  down	
  into	
  two	
  pyruvate	
  molecules	
  
during	
  glycolysis,	
  which	
  is	
  broken	
  down	
  into	
  two	
  acetaldehyde	
  intermediates	
  and	
  two	
  
carbon	
  dioxide	
  molecules	
  (Weir	
  2015).	
  	
  Finally,	
  two	
  ethanol	
  molecules	
  are	
  produced	
  after	
  
nicotinamide	
  adenine	
  dinucleotide	
  (NADH)	
  is	
  reduced	
  to	
  NAD+	
  to	
  be	
  used	
  in	
  substrate-­‐
level	
  phosphorylation	
  (2015).	
  	
  	
  Therefore,	
  as	
  mentioned	
  earlier,	
  facultative	
  anaerobic	
  
microorganisms	
  will	
  choose	
  this	
  pathway	
  as	
  a	
  means	
  of	
  energy	
  production	
  (2	
  ATP)	
  via	
  
glycolysis	
  when	
  oxygen	
  isn’t	
  available	
  to	
  them.	
  	
  Despite	
  their	
  many	
  differences,	
  wine	
  and	
  
beer	
  are	
  similar	
  in	
  that	
  both	
  are	
  generally	
  fermented	
  by	
  the	
  facultative	
  anaerobic	
  yeast	
  
culture,	
  Saccharomyces	
  cerevisiae.	
  	
  However,	
  exceptions	
  to	
  this	
  generalization	
  exist	
  in	
  both	
  
wine	
  and	
  beer.	
  	
  For	
  example,	
  Saccharomyces	
  bayanus	
  is	
  a	
  yeast	
  culture	
  that	
  can	
  tolerate	
  
higher	
  alcohol	
  levels	
  (alcohol	
  is	
  toxic	
  to	
  microorganisms)	
  and	
  therefore	
  is	
  used	
  in	
  highly	
  
alcoholic	
  fortified	
  wines	
  (Pambianchi	
  2000).	
  	
  In	
  addition,	
  lactic	
  acid	
  bacteria	
  are	
  used	
  in	
  
wine	
  to	
  facilitate	
  malolactic	
  fermentation,	
  an	
  important	
  wine	
  production	
  process	
  that	
  will	
  
be	
  discussed	
  further	
  in	
  depth	
  soon.	
  	
  On	
  the	
  other	
  hand,	
  lactic	
  acid	
  bacteria	
  (Lactobacillus	
  
and	
  Pediococcus	
  species)	
  and	
  Brettanomyces	
  species	
  commonly	
  considered	
  spoilage	
  
organisms	
  are	
  intentionally	
  utilized	
  in	
  ethanol	
  fermentation	
  to	
  produce	
  wild,	
  sour	
  ales.	
  	
  
FERMENTATION	
  OF	
  FOOD	
  PRODUCTS	
  
Despite	
  some	
  of	
  wine	
  and	
  beer’s	
  similarities	
  pertaining	
  to	
  their	
  general	
  fermentation	
  
mechanism	
  and	
  to	
  the	
  microorganism	
  used	
  in	
  their	
  fermentations,	
  they	
  also	
  possess	
  many	
  
differences	
  in	
  terms	
  of	
  fermentation	
  and	
  production.	
  
	
   Wine	
  incorporates	
  the	
  fermentation	
  of	
  simple	
  sugars	
  derived	
  from	
  grapes	
  in	
  order	
  
to	
  produce	
  an	
  alcoholic	
  beverage.	
  	
  Due	
  to	
  the	
  fact	
  that	
  simple	
  sugars	
  including	
  the	
  
monosaccharides	
  glucose	
  and	
  fructose	
  are	
  naturally	
  present	
  within	
  the	
  fruit	
  and	
  readily	
  
available,	
  there	
  is	
  no	
  need	
  for	
  a	
  saccharification	
  step	
  (Weir	
  2015).	
  	
  Wine	
  is	
  typically	
  
categorized	
  most	
  broadly	
  as	
  either	
  red	
  or	
  white.	
  	
  Red	
  wines	
  include	
  the	
  fermentation	
  of	
  the	
  
grape	
  where	
  the	
  skin	
  isn’t	
  separated	
  from	
  the	
  pulp	
  whereas	
  the	
  white	
  wine	
  fermentation	
  
process	
  does	
  not	
  occur	
  with	
  the	
  skins	
  present	
  (West	
  2015).	
  	
  When	
  the	
  skins	
  are	
  fermented	
  
with	
  the	
  pulp,	
  anthocyanin	
  pigments	
  within	
  the	
  skin	
  turn	
  the	
  juice	
  red	
  and	
  other	
  
polyphenolic	
  tannins	
  are	
  produced	
  contributing	
  desirable	
  sensory	
  components	
  such	
  as	
  
astringency	
  as	
  well	
  as	
  aid	
  in	
  the	
  aging	
  process	
  of	
  wine	
  (2015).	
  	
  The	
  must	
  that	
  is	
  formed	
  by	
  
the	
  pressing	
  of	
  juice	
  contains	
  approximately	
  70-­‐85%	
  water,	
  10%	
  fructose,	
  10%	
  glucose,	
  
and	
  a	
  variety	
  of	
  other	
  organic	
  compounds	
  such	
  as	
  fatty	
  acids,	
  aldehydes,	
  and	
  amino	
  acids	
  
(which	
  contribute	
  free	
  amino	
  nitrogen	
  influencing	
  healthier	
  yeast)	
  (Weir	
  2015).	
  	
  After	
  the	
  
primary	
  ethanol	
  fermentation	
  has	
  occurred,	
  malolactic	
  fermentation	
  is	
  facilitated	
  through	
  
the	
  use	
  of	
  lactic	
  acid	
  bacteria	
  converting	
  harsher	
  malic	
  acid	
  into	
  a	
  smoother,	
  more	
  palatable	
  
lactic	
  acid	
  (2015).	
  	
  Diacetyel	
  is	
  also	
  produced	
  which	
  can	
  function	
  as	
  either	
  an	
  off	
  flavor	
  or	
  a	
  
desirable	
  flavor	
  (such	
  as	
  in	
  chardonnays)	
  depending	
  on	
  the	
  wine	
  style	
  and	
  flavor	
  intent	
  
(2015).	
  	
  Overall,	
  wine	
  and	
  its	
  fermentation	
  has	
  a	
  complex	
  biochemistry	
  that	
  goes	
  far	
  
beyond	
  the	
  scope	
  of	
  this	
  paper.	
   	
  	
  
FERMENTATION	
  OF	
  FOOD	
  PRODUCTS	
  
	
   Unlike	
  wine,	
  beer	
  incorporates	
  the	
  fermentation	
  of	
  malted	
  barley	
  and	
  adjuncts,	
  
which	
  are	
  made	
  up	
  of	
  starch	
  granules	
  containing	
  amylose	
  (linear	
  α-­‐(1,4)	
  glycosidic	
  bonds)	
  
and	
  amylopectin	
  (branched	
  α-­‐(1,4),	
  α-­‐(1,6)	
  glycosidic	
  bonds)	
  	
  (Briggs	
  et	
  al.	
  2004).	
  	
  These	
  
complex	
  polysaccharides	
  are	
  gelatinized	
  and	
  saccharified	
  into	
  sucrose,	
  fructose,	
  glucose,	
  
maltose,	
  and	
  maltotriose	
  for	
  fermentation	
  (2004).	
  	
  Gelatinization	
  is	
  the	
  process	
  of	
  heat	
  and	
  
water	
  disrupting	
  intermolecular	
  bonds	
  freeing	
  starch	
  granule	
  bonding	
  sites	
  causing	
  
hydration,	
  swelling	
  and	
  eventual	
  bursting	
  of	
  starch	
  granules	
  (2004).	
  This	
  process	
  makes	
  
starch	
  granules	
  more	
  readily	
  available	
  for	
  saccharification.	
  	
  Saccharification	
  is	
  the	
  process	
  
of	
  polysaccharide	
  hydrolysis	
  into	
  simpler	
  carbohydrates	
  (2004).	
  	
  In	
  brewing,	
  this	
  is	
  
achieved	
  by	
  mashing	
  grains	
  at	
  optimal	
  pH	
  and	
  temperature	
  encouraging	
  amylase	
  enzyme	
  
activity.	
  	
  Again,	
  like	
  wine,	
  beer	
  fermentation	
  and	
  production	
  also	
  has	
  an	
  extensive	
  amount	
  
of	
  biochemical	
  properties	
  and	
  processes.	
  
	
   Ethanol	
  fermentation	
  as	
  well	
  as	
  other	
  processes	
  in	
  the	
  production	
  of	
  wine	
  and	
  beer	
  
work	
  together	
  to	
  make	
  these	
  alcoholic	
  beverages	
  relatively	
  shelf-­‐stable	
  and	
  enhance	
  
sensory	
  components	
  (appearance,	
  aroma,	
  flavor,	
  texture,	
  etc.)	
  as	
  well.	
  	
  As	
  mentioned	
  
earlier,	
  ethanol	
  is	
  toxic	
  to	
  microorganisms	
  and	
  therefore	
  wine	
  and	
  beer	
  are	
  
microbiologically	
  stable	
  based	
  on	
  their	
  inhibition	
  of	
  spoilers.	
  	
  Fermentation	
  also	
  acidifies	
  
these	
  beverages	
  thus	
  creating	
  an	
  inhospitable	
  environment	
  for	
  microorganisms	
  to	
  survive.	
  	
  	
  
In	
  addition,	
  both	
  wine	
  and	
  beer	
  can	
  be	
  produced	
  for	
  either	
  relatively	
  short-­‐term	
  
consumption	
  or	
  long-­‐term	
  aging	
  based	
  on	
  the	
  style	
  and	
  production	
  method.	
  	
  Antioxidants	
  
in	
  wine	
  donate	
  electrons	
  to	
  free	
  radicals	
  preventing	
  harmful	
  oxidation	
  of	
  wine	
  during	
  the	
  
aging	
  process	
  (West	
  2015).	
  	
  Hops	
  in	
  beer	
  are	
  also	
  known	
  to	
  have	
  antimicrobial	
  properties	
  
thus	
  extending	
  its	
  shelf	
  life.	
  	
  Finally,	
  ethanol	
  fermentation	
  not	
  only	
  gives	
  wine	
  and	
  beer	
  an	
  
FERMENTATION	
  OF	
  FOOD	
  PRODUCTS	
  
alcoholic	
  content,	
  but	
  the	
  reaction	
  also	
  produces	
  a	
  number	
  of	
  desirable	
  and	
  undesirable	
  
flavor	
  characteristics	
  such	
  as	
  acetaldehyde,	
  diacetyel,	
  esters,	
  and	
  phenols.	
  
	
   Bread	
  is	
  another	
  staple	
  food	
  not	
  only	
  in	
  the	
  United	
  States	
  but	
  around	
  the	
  whole	
  
world.	
  Bread	
  fermentation	
  is	
  a	
  heterofermentative	
  process	
  although	
  sourdough	
  breads	
  
may	
  also	
  contain	
  homofermentative	
  microorganisms.	
  During	
  bread	
  fermentation	
  glucose	
  
or	
  other	
  simple	
  carbohydrates	
  are	
  broken	
  down	
  into	
  pyruvate	
  via	
  glycolysis	
  in	
  order	
  to	
  
produce	
  2	
  ATP.	
  Next	
  the	
  pyruvate	
  is	
  then	
  converted	
  into	
  acetylaldehyde,	
  this	
  is	
  the	
  step	
  of	
  
fermentation	
  responsible	
  for	
  carbon	
  dioxide	
  production	
  in	
  bread.	
  Carbon	
  dioxide	
  is	
  
retained	
  in	
  the	
  breads	
  protein	
  structure	
  leavening	
  it,	
  the	
  primary	
  reason	
  for	
  bread	
  
fermentation	
  (Katz	
  2012).	
  The	
  final	
  step	
  of	
  the	
  bread	
  fermentation	
  process	
  is	
  the	
  
conversion	
  of	
  acetylaldehyde	
  into	
  ethanol,	
  an	
  end	
  product	
  of	
  heterofermentation.	
  Much	
  like	
  
the	
  fermentations	
  of	
  cheese	
  and	
  alcohol,	
  bread	
  fermentation	
  produces	
  NAD+	
  and	
  essential	
  
input	
  for	
  glycolysis	
  and	
  therefore	
  ATP	
  production	
  (Weir	
  2015).	
  	
  	
  	
  	
  
	
   	
  Bread	
  is	
  often	
  categorized	
  in	
  sour	
  and	
  non-­‐sour	
  dough	
  varieties.	
  Sour	
  dough	
  bread	
  
contains	
  lactic	
  acid	
  bacteria	
  that	
  are	
  homofermentative	
  and	
  produce	
  lactate	
  as	
  the	
  terminal	
  
product	
  of	
  fermentation,	
  which	
  we	
  perceive	
  as	
  sour.	
  Some	
  of	
  the	
  genera	
  of	
  bacteria	
  in	
  
bread	
  fermentation	
  include	
  Lactobacillus,	
  Pediococcus,	
  Lueconostoc,	
  and	
  Weisella	
  (Wink	
  
2015).	
  It	
  is	
  also	
  important	
  to	
  note	
  that	
  there	
  are	
  wild	
  yeasts	
  present	
  in	
  sourdough	
  
production	
  that	
  are	
  heterofermentative	
  and	
  capable	
  of	
  producing	
  carbon	
  dioxide	
  that	
  
causes	
  the	
  bread	
  to	
  rise	
  during	
  fermentation	
  (Katz,	
  2012).	
  Aside	
  from	
  carbon	
  dioxide	
  
leavening	
  the	
  bread	
  sourdough	
  fermentation	
  is	
  incredibly	
  important	
  in	
  flavor	
  development.	
  
The	
  ethanol	
  produced	
  in	
  the	
  heterofermentative	
  fermentation	
  pathway	
  is	
  volatized	
  off	
  
during	
  the	
  baking	
  process.	
  	
  	
  
FERMENTATION	
  OF	
  FOOD	
  PRODUCTS	
  
	
   Unlike	
  sourdough	
  bread	
  that	
  can	
  contain	
  a	
  plethora	
  of	
  different	
  organisms,	
  non-­‐sour	
  
varietals	
  generally	
  only	
  contain	
  a	
  single	
  culture,	
  typically	
  Saccharomyces	
  cerevisiae.	
  
Saccharomyces	
  is	
  a	
  heterofermentative	
  organism	
  that	
  produces	
  ethanol,	
  carbon	
  dioxide	
  as	
  
the	
  main	
  products	
  of	
  fermentation,	
  but	
  can	
  also	
  produce	
  other	
  compounds	
  like	
  hydrogen	
  
peroxide	
  and	
  diacetyl	
  (Corsetti,	
  2007).	
  Because	
  the	
  lactic	
  acid	
  bacteria	
  responsible	
  for	
  
sourdough	
  bread	
  production	
  occur	
  naturally	
  on	
  the	
  grains	
  used	
  for	
  non-­‐sour	
  breads	
  the	
  
flour	
  is	
  often	
  irradiated	
  in	
  order	
  to	
  kill	
  the	
  bacterial	
  species.	
  During	
  the	
  fermentation	
  
process	
  of	
  bread	
  the	
  protein	
  structure	
  is	
  changed	
  leading	
  to	
  flavor	
  development	
  in	
  the	
  
product.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
   The	
  major	
  compounds	
  in	
  bread	
  include	
  proteins	
  and	
  carbohydrates.	
  There	
  are	
  both	
  
complex	
  and	
  simple	
  carbohydrates	
  within	
  the	
  flour	
  used	
  in	
  bread.	
  Bread	
  fermentation	
  
consists	
  of	
  a	
  saccharification	
  step	
  where	
  the	
  complex	
  carbohydrates	
  are	
  broken	
  down	
  into	
  
simple	
  sugars	
  by	
  the	
  action	
  of	
  the	
  enzyme	
  amylase.	
  The	
  complex	
  carbohydrates	
  within	
  
bread	
  include	
  amylose,	
  amylopectin,	
  and	
  maltodextrin	
  (Carbohydrates	
  2015).	
  When	
  these	
  
large	
  complexes	
  are	
  broken	
  down	
  they	
  monosaccharides	
  like	
  glucose	
  and	
  fructose,	
  and	
  
disaccharides	
  like	
  maltose	
  and	
  sucrose	
  (2015).	
  	
  	
  
	
   The	
  two	
  main	
  proteins	
  in	
  bread	
  production	
  are	
  gliadin	
  and	
  glutenin.	
  	
  According	
  to	
  
CookingScienceGuy.com,	
  “The	
  process	
  of	
  wetting	
  the	
  proteins	
  is	
  called	
  hydration.	
  As	
  water	
  
and	
  flour	
  are	
  mixed	
  the	
  hydrated	
  proteins	
  are	
  brought	
  together	
  and	
  begin	
  to	
  interact.	
  They	
  
literally	
  begin	
  to	
  stick	
  to	
  each	
  other	
  through	
  the	
  formation	
  of	
  chemical	
  bonds”(Explaining	
  
Gluten	
  2015).	
  When	
  these	
  two	
  proteins	
  interact	
  in	
  this	
  manor	
  they	
  create	
  a	
  protein	
  
complex	
  that	
  traps	
  the	
  carbon	
  dioxide	
  produced	
  in	
  the	
  fermentation	
  process	
  allowing	
  the	
  
bread	
  to	
  rise	
  and	
  develop	
  the	
  thin	
  light	
  and	
  airy	
  texture	
  desired	
  in	
  the	
  product.	
  
FERMENTATION	
  OF	
  FOOD	
  PRODUCTS	
  
	
   Similar	
  to	
  the	
  boiling	
  of	
  wort	
  step	
  in	
  the	
  production	
  of	
  beer,	
  baking	
  incorporate	
  the	
  
non-­‐enzymatic	
  browning	
  processes	
  of	
  Malliard	
  reactions	
  and	
  caramelization.	
  	
  Malliard	
  
reactions	
  involve	
  the	
  reaction	
  of	
  amine	
  groups	
  and	
  reducing	
  sugars	
  in	
  the	
  presence	
  of	
  
water	
  and	
  high	
  temperatures	
  yielding	
  savory	
  (umami),	
  meaty,	
  onion,	
  chocolate,	
  and	
  malty	
  
flavors	
  (Weir	
  2015).	
  	
  On	
  the	
  other	
  hand,	
  once	
  baking	
  reaches	
  even	
  higher	
  temperatures	
  
(roughly	
  337°F),	
  caramelization	
  occurs	
  without	
  the	
  reaction	
  of	
  amines	
  and	
  reducing	
  sugars	
  
(2015).	
  	
  Caramelization	
  involves	
  pyrolysis,	
  which	
  is	
  the	
  breakdown	
  and	
  of	
  sugars	
  (from	
  
sucrose	
  to	
  glucose	
  and	
  fructose)	
  at	
  high	
  temperatures	
  yielding	
  caramel,	
  nutty,	
  and	
  toasty	
  
flavors	
  as	
  well	
  as	
  subsequent	
  browning	
  (2015).	
  	
  Overall,	
  these	
  non-­‐enzymatic	
  processes	
  
are	
  vital	
  in	
  producing	
  the	
  flavors	
  and	
  aromas	
  characteristic	
  of	
  bread.	
  
	
   Of	
  all	
  the	
  fermented	
  foods	
  and	
  beverages	
  discussed,	
  bread	
  likely	
  has	
  the	
  lowest	
  shelf	
  
stability.	
  	
  Although	
  fermentation	
  slightly	
  extends	
  shelf	
  life	
  by	
  lowering	
  the	
  pH	
  based	
  on	
  acid	
  
production,	
  the	
  modification	
  of	
  gluten,	
  and	
  the	
  saccharification	
  of	
  flour	
  with	
  amylase	
  
enzymes,	
  ethanol	
  becomes	
  volatilized	
  during	
  the	
  baking	
  process	
  and	
  live	
  and	
  active	
  
cultures	
  die	
  off	
  at	
  such	
  high	
  temperatures.	
  	
  Therefore,	
  neither	
  of	
  these	
  components	
  play	
  a	
  
role	
  in	
  microbiological	
  stability	
  as	
  they	
  do	
  in	
  other	
  ferments.	
  	
  In	
  addition,	
  water	
  activity	
  in	
  
bread	
  is	
  very	
  high	
  at	
  .95aw	
  compared	
  to	
  pure	
  waters	
  1.0aw	
  (Corsetti	
  2007).	
  This	
  available	
  
water	
  is	
  an	
  incredibly	
  hospitable	
  environment	
  to	
  harmful	
  spoilage	
  microorganisms.	
  	
  In	
  
addition,	
  similar	
  to	
  cheese	
  fermentation,	
  Lactobacillus	
  found	
  in	
  sourdough	
  fermentation	
  
often	
  contain	
  bacteriocins	
  that	
  help	
  retard	
  the	
  growth	
  of	
  competing	
  microbes	
  (Weir	
  2015).	
  	
  
Overall,	
  fermented	
  bread	
  isn’t	
  particularly	
  shelf	
  stable	
  compared	
  to	
  cheese	
  and	
  alcohol,	
  
however,	
  shelf	
  life	
  can	
  also	
  be	
  extended	
  through	
  the	
  control	
  of	
  temperature,	
  humidity,	
  and	
  
light	
  and	
  oxygen	
  exposure.	
  
FERMENTATION	
  OF	
  FOOD	
  PRODUCTS	
  
The	
  ability	
  for	
  microorganisms	
  to	
  undergo	
  the	
  fermentation	
  pathway	
  provides	
  a	
  
major	
  evolutionary	
  advantage	
  over	
  other	
  organisms	
  that	
  cannot,	
  and	
  learning	
  how	
  to	
  
control	
  fermentation	
  has	
  provided	
  humans	
  major	
  advantages	
  in	
  food	
  storage	
  and	
  safety.	
  
The	
  fermentation	
  processes	
  are	
  similar	
  between	
  the	
  three	
  products	
  but	
  contain	
  key	
  
differences.	
  Both	
  alcohol	
  and	
  bread	
  undergo	
  heterofermentative	
  fermentations	
  producing	
  
multiple	
  end	
  products	
  that	
  benefit	
  their	
  product’s	
  sensory	
  attributes	
  and	
  physical,	
  
biochemical	
  properties.	
  The	
  heterofermentative	
  process	
  utilizes	
  the	
  Phosphoketalose	
  
Pathway	
  in	
  order	
  to	
  breakdown	
  their	
  substrates	
  with	
  the	
  action	
  of	
  the	
  enzyme	
  
phosphoketalase.	
  In	
  cheeses	
  homofermentation	
  process	
  the	
  Embden-­‐Meyerhof	
  Pathway	
  
breaks	
  down	
  the	
  diasaccharide	
  lactose	
  using	
  the	
  aldolase	
  enzyme.	
  In	
  terms	
  of	
  product	
  
stability	
  bread	
  is	
  far	
  less	
  shelf	
  stable	
  than	
  alcohol	
  and	
  cheese	
  as	
  mentioned	
  previously.	
  This	
  
can	
  be	
  attributed	
  to	
  the	
  lack	
  of	
  ethanol	
  and	
  live	
  active	
  cultures	
  that	
  are	
  volatized	
  and	
  killed	
  
off,	
  respectively,	
  during	
  the	
  baking	
  process,	
  and	
  the	
  fact	
  that	
  bread	
  has	
  a	
  high	
  water	
  activity	
  
making	
  it	
  easy	
  for	
  a	
  broad	
  range	
  of	
  microorganisms	
  to	
  grow.	
  The	
  ethanol	
  content	
  and	
  low	
  
pH	
  of	
  alcoholic	
  beverages	
  prevents	
  the	
  majority	
  of	
  spoilage	
  organisms	
  from	
  growing.	
  In	
  
cheese	
  a	
  low	
  pH	
  and	
  production	
  of	
  bacteriocins	
  create	
  a	
  barrier	
  to	
  spoilage	
  organism	
  
growth.	
  Differences	
  in	
  substrates	
  provide	
  different	
  metabolic	
  needs	
  for	
  their	
  respective	
  
organisms	
  and	
  therefore	
  create	
  different	
  and	
  unique	
  products,	
  and	
  although	
  these	
  products	
  
seem	
  vastly	
  different	
  from	
  culture	
  to	
  culture	
  and	
  product	
  to	
  product,	
  the	
  general	
  
fermentation	
  mechanism	
  is	
  universal.	
  	
  
	
  	
  	
  
	
  
	
  
FERMENTATION	
  OF	
  FOOD	
  PRODUCTS	
  
	
  
	
   	
  
Works	
  Cited	
  
Briggs	
  E.	
  Dennis,	
  Boulton	
  A.	
  Chris,	
  Brookes	
  A.	
  Peter,	
  Stevens	
  Roger.	
  (2004).	
  “Brewing,	
  
Science	
  and	
  Practice.”	
  Woodhead	
  Publishing	
  in	
  Food	
  Science	
  and	
  Technology.	
  	
  Text.	
  
Corsetti,	
  Aldo.	
  	
  (2007).	
  	
  Lactobacilli	
  in	
  sourdough	
  fermentation.	
  	
  Food	
  Research	
  
International,	
  40(5).	
  	
  Retrieved	
  from	
  
<http://www.sciencedirect.com/science/article/pii/S0963996906001979>	
  
Explaining	
  Gluten.	
  	
  (2015).	
  	
  Cooking	
  Science	
  Guy.	
  	
  Web.	
  
Fox,	
  P.f.	
  "Proteolysis	
  During	
  Cheese	
  Manufacture	
  and	
  Ripening."	
  Journal	
  of	
  Dairy	
  Science.	
  
Katz,	
  Sandor	
  Ellix,	
  and	
  Michael	
  Pollan.	
  The	
  Art	
  of	
  Fermentation:	
  An	
  In-­‐depth	
  Exploration	
  of	
  
Essential	
  Concepts	
  and	
  Processes	
  from	
  around	
  the	
  World.	
  N.p.:	
  n.p.,	
  n.d.	
  Print.	
  
Månsson,	
  Helena	
  Lindmark.	
  “Fatty	
  Acids	
  in	
  Bovine	
  Milk	
  Fat.”	
  Food	
  &	
  Nutrition	
  Research	
  52	
  
(2008)	
  
Musetti,	
  James.	
  	
  “Microbiology	
  of	
  Cheese	
  Fermentation.”	
  	
  Colorado	
  State	
  University.	
  	
  Gifford	
  
Building,	
  Fort	
  Collins,	
  CO.	
  	
  24	
  Feb.	
  2015.	
  	
  Guest	
  Lecture.	
  
Pambianchi,	
  Daniel.	
  	
  (2000).	
  	
  “The	
  Strain	
  Game.”	
  	
  Wine	
  Maker.	
  	
  	
  
Phillips,	
  Sarrah.	
  "Yeast	
  Fermentation	
  |	
  CraftyBaking	
  |	
  Formerly	
  Baking911."	
  CraftyBaking.	
  
N.p.,	
  n.d.	
  Web.	
  08	
  Apr.	
  2015.	
  
Todar,	
  Kenneth.	
  "Lactic	
  Acid	
  Bacteria."	
  Lactic	
  Acid	
  Bacteria.	
  N.p.,	
  n.d.	
  Web.	
  08	
  Apr.	
  2015.	
  
Weir,	
  Tiffany.	
  	
  “Alcohol	
  Fermentation.”	
  	
  Colorado	
  State	
  University.	
  	
  Gifford	
  Building,	
  Fort	
  
Collins,	
  CO.	
  	
  29	
  Jan	
  2015.	
  	
  Lecture.	
  
FERMENTATION	
  OF	
  FOOD	
  PRODUCTS	
  
Weir,	
  Tiffany.	
  	
  “Fermented	
  Foods	
  of	
  the	
  Orient”	
  	
  Colorado	
  State	
  University.	
  	
  Gifford	
  Building,	
  
Fort	
  Collins,	
  CO.	
  	
  12	
  Mar	
  2015.	
  	
  Lecture.	
  
West,	
  Ron.	
  	
  “Yeasts	
  in	
  Flavor	
  Chemistry	
  of	
  Wine	
  Fermentation.”	
  	
  Varaison	
  Vineyards,	
  
Colorado	
  State	
  University.	
  	
  Gifford	
  Building,	
  Fort	
  Collins,	
  CO.	
  	
  5	
  Feb	
  2015.	
  	
  Guest	
  
Lecture.	
  
Wink,	
  Debra.	
  "Lactic	
  Acid	
  Fermentation	
  in	
  Sourdough."	
  The	
  Fresh	
  Loaf.	
  N.p.,	
  n.d.	
  Web.	
  07	
  
Apr.	
  2015.	
  
	
  
	
  
	
  
	
   	
  
	
  
	
   	
  
	
  
	
  
	
   	
  
	
  
	
  
	
  

Weitere ähnliche Inhalte

Was ist angesagt?

5. introduction to_the_nutrients__c,_f,_p_
5. introduction to_the_nutrients__c,_f,_p_5. introduction to_the_nutrients__c,_f,_p_
5. introduction to_the_nutrients__c,_f,_p_
Jihan Cha
 
Lipid Metabolism in Ruminants
Lipid Metabolism in RuminantsLipid Metabolism in Ruminants
Lipid Metabolism in Ruminants
Osama Zahid
 

Was ist angesagt? (20)

5. introduction to_the_nutrients__c,_f,_p_
5. introduction to_the_nutrients__c,_f,_p_5. introduction to_the_nutrients__c,_f,_p_
5. introduction to_the_nutrients__c,_f,_p_
 
Lipids, classification, digestion and absorption
Lipids, classification, digestion and absorptionLipids, classification, digestion and absorption
Lipids, classification, digestion and absorption
 
Lectuer 1 protin milk
Lectuer 1 protin milkLectuer 1 protin milk
Lectuer 1 protin milk
 
lipids
 lipids lipids
lipids
 
Bio chemical faculty of nursing tanta university
Bio chemical faculty of nursing tanta university Bio chemical faculty of nursing tanta university
Bio chemical faculty of nursing tanta university
 
Introduction To Lipid & It’s Intermediary Metabolism
Introduction To Lipid & It’s Intermediary Metabolism Introduction To Lipid & It’s Intermediary Metabolism
Introduction To Lipid & It’s Intermediary Metabolism
 
Lipid Metabolism in Ruminants
Lipid Metabolism in RuminantsLipid Metabolism in Ruminants
Lipid Metabolism in Ruminants
 
Lipids chemistry reference
Lipids chemistry referenceLipids chemistry reference
Lipids chemistry reference
 
MELLSS yr1 biochemistry lipid
MELLSS yr1 biochemistry lipid MELLSS yr1 biochemistry lipid
MELLSS yr1 biochemistry lipid
 
Fat digestion and metabolism in ruminants
Fat digestion and metabolism in ruminantsFat digestion and metabolism in ruminants
Fat digestion and metabolism in ruminants
 
Lipid metabolism
Lipid  metabolismLipid  metabolism
Lipid metabolism
 
Lipids Digestion and absorption
Lipids Digestion and absorptionLipids Digestion and absorption
Lipids Digestion and absorption
 
Lipids chemistry
Lipids chemistryLipids chemistry
Lipids chemistry
 
NUTRITIONAL IMPORTANCE OF LIPIDS
NUTRITIONAL IMPORTANCE OF LIPIDSNUTRITIONAL IMPORTANCE OF LIPIDS
NUTRITIONAL IMPORTANCE OF LIPIDS
 
Designer Milk Fat Production
Designer Milk Fat ProductionDesigner Milk Fat Production
Designer Milk Fat Production
 
Fats
FatsFats
Fats
 
Tag biosynthesis, storage and functions
Tag biosynthesis, storage and functionsTag biosynthesis, storage and functions
Tag biosynthesis, storage and functions
 
Compound lipids
Compound lipidsCompound lipids
Compound lipids
 
The lipids
The lipidsThe lipids
The lipids
 
Milk
MilkMilk
Milk
 

Andere mochten auch

Industrial production of chemical acids glutamic acid
Industrial production of chemical acids glutamic acidIndustrial production of chemical acids glutamic acid
Industrial production of chemical acids glutamic acid
Esam Yahya
 
23395987 penicillin-fermentation (1)
23395987 penicillin-fermentation (1)23395987 penicillin-fermentation (1)
23395987 penicillin-fermentation (1)
Manish Singh
 

Andere mochten auch (14)

Industrial production of chemical acids glutamic acid
Industrial production of chemical acids glutamic acidIndustrial production of chemical acids glutamic acid
Industrial production of chemical acids glutamic acid
 
Riboflavin–vitamin b2 fermentation process
Riboflavin–vitamin b2 fermentation processRiboflavin–vitamin b2 fermentation process
Riboflavin–vitamin b2 fermentation process
 
Acetic acid production
Acetic acid productionAcetic acid production
Acetic acid production
 
23395987 penicillin-fermentation (1)
23395987 penicillin-fermentation (1)23395987 penicillin-fermentation (1)
23395987 penicillin-fermentation (1)
 
Ethanol fermentation
Ethanol fermentationEthanol fermentation
Ethanol fermentation
 
Alcohol fermentation presentation
Alcohol fermentation presentationAlcohol fermentation presentation
Alcohol fermentation presentation
 
Acetic acid
Acetic acidAcetic acid
Acetic acid
 
Penicillin : Dr Rahul Kunkulol's Power point Presentations
Penicillin : Dr Rahul Kunkulol's Power point PresentationsPenicillin : Dr Rahul Kunkulol's Power point Presentations
Penicillin : Dr Rahul Kunkulol's Power point Presentations
 
penicillin
penicillinpenicillin
penicillin
 
Production of lactic acid and acidic acid
Production of lactic acid and acidic acidProduction of lactic acid and acidic acid
Production of lactic acid and acidic acid
 
Alcohol fermentation
Alcohol fermentationAlcohol fermentation
Alcohol fermentation
 
Penicillin
PenicillinPenicillin
Penicillin
 
penicillins - power point - History,mechanism of action,classification,chemis...
penicillins - power point - History,mechanism of action,classification,chemis...penicillins - power point - History,mechanism of action,classification,chemis...
penicillins - power point - History,mechanism of action,classification,chemis...
 
Penicillin Production
Penicillin ProductionPenicillin Production
Penicillin Production
 

Ähnlich wie Food Chemistry Final Paper

Capstone Paper
Capstone PaperCapstone Paper
Capstone Paper
Kelly Jay
 

Ähnlich wie Food Chemistry Final Paper (20)

Capstone Paper
Capstone PaperCapstone Paper
Capstone Paper
 
Bio
BioBio
Bio
 
Yogurt
YogurtYogurt
Yogurt
 
Production and DSP of Bakers Yeast
Production and DSP of Bakers YeastProduction and DSP of Bakers Yeast
Production and DSP of Bakers Yeast
 
10.3934 microbiol.2018.4.665
10.3934 microbiol.2018.4.66510.3934 microbiol.2018.4.665
10.3934 microbiol.2018.4.665
 
Composition of milk
Composition of milkComposition of milk
Composition of milk
 
fermentation.pdf
fermentation.pdffermentation.pdf
fermentation.pdf
 
Fermentation
Fermentation Fermentation
Fermentation
 
Fermentation Report
Fermentation ReportFermentation Report
Fermentation Report
 
Chesse%20Ripening.%204913.pptx
Chesse%20Ripening.%204913.pptxChesse%20Ripening.%204913.pptx
Chesse%20Ripening.%204913.pptx
 
FDE100_L1.pptx
FDE100_L1.pptxFDE100_L1.pptx
FDE100_L1.pptx
 
Biodeterioration2
Biodeterioration2Biodeterioration2
Biodeterioration2
 
Unit 1 - HISTORY AND BASIS FOR THE DEVELOPMENT.pptx
Unit 1 - HISTORY AND BASIS FOR THE DEVELOPMENT.pptxUnit 1 - HISTORY AND BASIS FOR THE DEVELOPMENT.pptx
Unit 1 - HISTORY AND BASIS FOR THE DEVELOPMENT.pptx
 
Lactic acid bacteria in food industry
Lactic acid bacteria in food industryLactic acid bacteria in food industry
Lactic acid bacteria in food industry
 
Safety and spoilage of fermented foods1
Safety and spoilage of fermented foods1Safety and spoilage of fermented foods1
Safety and spoilage of fermented foods1
 
Biotechnology_of_Lactic_Acid_Bacteria_Novel_Applic..._----_(Chapter_1_Updates...
Biotechnology_of_Lactic_Acid_Bacteria_Novel_Applic..._----_(Chapter_1_Updates...Biotechnology_of_Lactic_Acid_Bacteria_Novel_Applic..._----_(Chapter_1_Updates...
Biotechnology_of_Lactic_Acid_Bacteria_Novel_Applic..._----_(Chapter_1_Updates...
 
Milk chemistry and composition - Basics for Dairy processing
Milk chemistry and composition - Basics for Dairy processingMilk chemistry and composition - Basics for Dairy processing
Milk chemistry and composition - Basics for Dairy processing
 
fermentation process &its contribution in pharmacy.
fermentation process &its contribution in pharmacy.fermentation process &its contribution in pharmacy.
fermentation process &its contribution in pharmacy.
 
Term paper on microbial ecology of fermented foods and beverages
Term paper on microbial ecology of fermented foods and beveragesTerm paper on microbial ecology of fermented foods and beverages
Term paper on microbial ecology of fermented foods and beverages
 
Milk secretion - Its compostion - Nutritional properties and Microbiological.
Milk secretion - Its compostion - Nutritional properties and Microbiological.Milk secretion - Its compostion - Nutritional properties and Microbiological.
Milk secretion - Its compostion - Nutritional properties and Microbiological.
 

Mehr von John Schnettler

Mehr von John Schnettler (8)

Brew Lab #1
Brew Lab #1Brew Lab #1
Brew Lab #1
 
Brew Lab #2
Brew Lab #2Brew Lab #2
Brew Lab #2
 
Brew Lab #3
Brew Lab #3Brew Lab #3
Brew Lab #3
 
FTEC 422 Lab Report 1
FTEC 422 Lab Report 1FTEC 422 Lab Report 1
FTEC 422 Lab Report 1
 
FTEC 422 Lab Report 2
FTEC 422 Lab Report 2FTEC 422 Lab Report 2
FTEC 422 Lab Report 2
 
Senior Seminar Final Project
Senior Seminar Final ProjectSenior Seminar Final Project
Senior Seminar Final Project
 
Odd 13 Benchmarking Report
Odd 13 Benchmarking ReportOdd 13 Benchmarking Report
Odd 13 Benchmarking Report
 
Assignment 1 SOP (1)
Assignment 1 SOP (1)Assignment 1 SOP (1)
Assignment 1 SOP (1)
 

Food Chemistry Final Paper

  • 1. Running  head:    FERMENTATION  PROCESSES  OF  FOOD  PRODUCTS                                 Fermentation  Processes  of  Food  Products:    Cheese,  Alcohol,  and  Bread     Kyle  Lenane   John  Schnettler   FTEC  447  -­‐  Food  Chemistry   Colorado  State  University                        
  • 2. FERMENTATION  OF  FOOD  PRODUCTS   The  production  of  cheese,  alcohol,  and  bread  by  the  process  of  fermentation  has   occurred  for  centuries,  far  before  there  was  any  knowledge  of  the  existence  of   microorganisms,  metabolic  pathways,  or  the  relatively  complex  biochemical  properties  of   foods  and  beverages.    However,  tremendous  advances  in  food  science,  chemistry,  and   microbiology  have  led  to  a  deeper  understanding  of  what  fermentation  is,  how  it  functions,   and  how  it  affects  food  quality  in  terms  of  sensory  analysis  and  shelf  life.    While  the   fermentation  of  cheese,  alcohol,  and  bread  share  many  similarities,  they  also  possess  a   variety  of  qualities  that  differentiate  themselves  from  one  another.    Therefore,  the  purpose   of  this  paper  is  not  only  to  describe  the  fermentation  processes  of  cheese,  alcohol,  and   bread,  but  also  to  highlight  the  similarities  and  differences  that  exist  between  each  of  these   food  products.    But  before  putting  forth  this  description  and  analysis  of  each  food  product,   it  is  worthwhile  to  first  understand  what  fermentation  is,  why  it  occurs,  and  its  various   components.         Fermentation  is  defined  as  a  group  of  chemical  reactions  prompted  by   microorganisms  that  degrade  complex  carbohydrates  into  simpler  substances  such  as   gases,  acids,  and/or  alcohol  (Weir  2015).    Therefore,  fermentation  is  a  metabolic  process   that  occurs  when  respiration,  a  far  more  favorable  metabolic  pathway,  is  impeded  and   ultimately  unable  to  occur.    Respiration  is  a  metabolic  pathway  that  uses  glycolysis   (substrate  level  phosphorylation),  the  TCA  cycle,  and  electron  transport  chain  to  generate  a   net  total  36  ATP  (2015).    This  process  can  occur  either  aerobically  or  anaerobically   depending  on  what  the  final  acceptor  is  in  the  electron  transport  chain  (oxygen  is  aerobic,   any  acceptor  other  than  oxygen  is  anaerobic).    When  oxygen  isn’t  available  to  facultative   anaerobic  microorganisms,  they  revert  to  the  substrate-­‐level  phosphorylation  
  • 3. FERMENTATION  OF  FOOD  PRODUCTS   fermentation  pathway  in  order  to  produce  energy  from  glycolysis,  more  NAD+  for   glycolysis,  and/or  as  a  survival  mechanism  to  outcompete  other  organisms  in  the  presence   of  high  glucose  concentrations  (2015).    The  two  primary  classifications  of  fermentation   include  the  homofermentative  and  heterofermentative  pathways.    The  homofermentative,   Embden-­‐Meyerhof  pathway  functions  by  the  use  of  the  enzyme  aldolase,  which  utilizes   fructose,  glucose,  and  galactose  to  produce  solely  lactic  acid  (2015).      On  the  other  hand,  the   heterofermentative,  Phosphotekalose  pathway  functions  through  the  use  of  the  enzyme   phosphoketalase,  which  utilizes  simple  carbohydrates  to  produce  not  only  lactic  acid,  but   also  ethanol,  carbon  dioxide,  and  acetic  acid    (2015).    With  this  basic  understanding  of  the   fermentation  metabolic  pathway  and  its  mechanisms,  cheese,  alcohol,  and  bread   fermentation  are  more  easily  comprehensible.   The  first  major  food  product  fermentation  to  be  discussed  is  the  fermentation  of   cheese.    Cheese  fermentation  is  practiced  all  around  the  world  but  varies  from  culture  to   culture  in  terms  of  the  substrates  that  are  used  and  the  cultures  fermenting  them.  The   primary  substrate  that  we  as  Americans  associate  with  cheese  fermentation  is  milk,  and  for   this  paper  milk  cheese  will  be  the  topic.    Cheeses  are  generally  described  as  hard  of  soft   depending  on  their  consistency.  Hard  cheeses  are  often  associated  with  bacterial   fermentations  and  include  bacterial  species  such  as,  Lactobacillus  helveticus,  Lactobacillus   Delbruckeii,  Streptococcus  thermophilus,  as  well  as  other  lactic  acid  bacteria  (Weir  2015).   Soft  cheeses  are  associated  more  with  fungi  as  the  primary  fermentors  including,   Penicillium  camemberti,  Penicillium  roqueforti,  Debramyces  hansenii,  as  well  as  others   (2015).    
  • 4. FERMENTATION  OF  FOOD  PRODUCTS     Milk  consists  of  water,  minerals,  proteins,  lipids  and  carbohydrates  (Milk  Facts   2015).  The  most  important  mineral  to  consider  in  cheese  fermentation  is  calcium  because   of  its  role  in  protein  coagulation,  a  topic  that  will  be  covered  in  more  detain  later.    Bovine   milk  contains  approximately  400  different  fatty  acids  but  the  vast  majority  of  them  (65%)   are  saturated,  leaving  30%  monounsaturated,  and  5%  polyunsaturated.    According  to   research  conducted  by  Helena  Lindmark  Månsson  pertaining  to  fatty  acids  in  bovine  milk   fat,  “The  milk  fatty  acids  are  derived  almost  equally  from  two  sources,  the  feed  and  the   microbial  activity  in  the  rumen  of  the  cow  and  the  lipids  in  bovine  milk  are  mainly  present   in  globules  as  an  oil-­‐in-­‐water  emulsion”  (Månsson  15).  In  cheese  fermentation  a  process   called  lipolysis  occurs.  Lipolysis  is  the  process  of  fatty  acid  degradation  when  the  enzyme   lipase  separates  the  fatty  acids  from  the  glycerol  backbone  (Weir  2015).  The  lipase  enzyme   can  be  present  in  the  substrate  or  it  can  come  from  an  outside  source  like  an  added  culture   or  the  surrounding  environment  (2015).  This  process  can  contribute  to  the  sensory   properties  of  the  product,  most  specifically  flavor  and  aroma.     The  two  major  proteins  found  in  bovine  milk  are  casein  making  up  80%  of  the  total   protein  and  whey  comprising  the  remaining  20%  (Weir  2015).    Casein  is  especially   important  because  it  is  responsible  for  the  curd  formation  during  the  cheese  making   process;  casein  sub  micelles  consist  of  alpha,  beta  and  kappa  regions.  Calcium  phosphate   bonds  form  between  the  alpha  and  beta  regions  of  different  sub  micelles  holding  them   together  and  creating  a  larger  micelle.  As  micelles  form,  the  kappa  region  which  has  large   triglycerides  attached  to  them,  are  arranged  on  the  outside  of  the  casein  micelle   (Stone,2015).    Much  like  lipolysis  of  fats  proteins  also  experience  a  similar  phenomenon   called  proteolysis.  Proteolysis  refers  to,  “the  process  in  which  a  protein  is  broken  down  
  • 5. FERMENTATION  OF  FOOD  PRODUCTS   partially,  into  peptides,  or  completely,  into  amino  acids,  by  proteolytic  enzymes,  present  in   bacteria  and  in  plants  but  most  abundant  in  animals”  (Fox  2015).    This  process  is  incredibly   important  in  texture,  flavor  and  aroma  development  in  cheese,  and  in  the  coagulation  of  the   protein  as  well.         The  final  compound  present  in  bovine  milk  is  carbohydrates.  The  primary  substrate   in  cheese  fermentation  is  lactose  which  is  a  disaccharide  consisting  of  the   monosaccharide’s  glucose  and  galactose  (Weir,  2015).    Cheese  fermentation  produces  only   lactate  making  it  a  homofermentative  lactic  acid  fermentation.  Lactic  acid  fermentation   starts  with  glycolysis  where  the  lactose  (glucose  and  galactose)  is  broken  down  into   pyruvate  in  order  to  produce  2  ATP.  After  the  glycolysis  step  the  pyruvate  is  then  broken   down  into  lactate  the  terminal  product  of  lactic  acid  fermentation.  During  this  final  step  of   lactic  acid  fermentation  NAD+  is  produced  which  is  then  recycled  again  for  glycolysis.   Glycolysis  is  the  only  step  of  the  fermentation  process  that  produces  ATP,  and  although  it  is   not  as  efficient  as  respiration,  it  provides  the  organisms  capable  of  fermentation  a  huge   evolutionary  advantage  over  others.  (Todar,  2015)     Before  humanity  had  discovered  microorganisms,  fermentation  of  foods  was  carried   out  to  increase  the  microbiological  stability  of  food  allowing  it  to  last  longer  than  the  raw   substrate.  Cheeses  ability  to  store  for  long  periods  varies  on  the  type  of  cheese,  generally   the  harder  cheeses  are  much  more  shelf  stable  (Musseti  2015).  During  the  lactic  acid   fermentation  the  pH  of  cheese  drops  significantly  making  it  very  hard  for  certain  organisms   to  grow  especially  human  pathogens.  Another  byproduct  of  cheese  fermentation  is   bacteriocins,  or  antimicrobial  products  produced  by  the  fermenting  organism  designed  to   retard  the  growth  of  competing  microorganisms  (Weir  2015).  Some  of  the  hard  cheeses  are  
  • 6. FERMENTATION  OF  FOOD  PRODUCTS   aged  for  a  number  of  years,  a  process  that  lowers  the  water  activity  down  to  levels  that   make  it  very  hard  for  most  microorganisms  to  grow  (Musseti  2015).  Finally,  other   measures  can  be  taken  in  order  to  increase  the  shelf  life  of  cheese  like  storage  at   refrigerator  temperatures  or  the  use  of  modified  atmosphere  packaging  and,  like  other   ferments,  exposure  to  temperature,  humidity,  light,  and  oxygen.           Unlike  cheese  fermentation,  the  fermentation  of  ethanol  is  heterofermentative  and  a   vital  step  in  the  production  of  alcoholic  beverages  such  as  wine  and  beer.    In  ethanol   fermentation,  a  single  glucose  molecule  is  first  broken  down  into  two  pyruvate  molecules   during  glycolysis,  which  is  broken  down  into  two  acetaldehyde  intermediates  and  two   carbon  dioxide  molecules  (Weir  2015).    Finally,  two  ethanol  molecules  are  produced  after   nicotinamide  adenine  dinucleotide  (NADH)  is  reduced  to  NAD+  to  be  used  in  substrate-­‐ level  phosphorylation  (2015).      Therefore,  as  mentioned  earlier,  facultative  anaerobic   microorganisms  will  choose  this  pathway  as  a  means  of  energy  production  (2  ATP)  via   glycolysis  when  oxygen  isn’t  available  to  them.    Despite  their  many  differences,  wine  and   beer  are  similar  in  that  both  are  generally  fermented  by  the  facultative  anaerobic  yeast   culture,  Saccharomyces  cerevisiae.    However,  exceptions  to  this  generalization  exist  in  both   wine  and  beer.    For  example,  Saccharomyces  bayanus  is  a  yeast  culture  that  can  tolerate   higher  alcohol  levels  (alcohol  is  toxic  to  microorganisms)  and  therefore  is  used  in  highly   alcoholic  fortified  wines  (Pambianchi  2000).    In  addition,  lactic  acid  bacteria  are  used  in   wine  to  facilitate  malolactic  fermentation,  an  important  wine  production  process  that  will   be  discussed  further  in  depth  soon.    On  the  other  hand,  lactic  acid  bacteria  (Lactobacillus   and  Pediococcus  species)  and  Brettanomyces  species  commonly  considered  spoilage   organisms  are  intentionally  utilized  in  ethanol  fermentation  to  produce  wild,  sour  ales.    
  • 7. FERMENTATION  OF  FOOD  PRODUCTS   Despite  some  of  wine  and  beer’s  similarities  pertaining  to  their  general  fermentation   mechanism  and  to  the  microorganism  used  in  their  fermentations,  they  also  possess  many   differences  in  terms  of  fermentation  and  production.     Wine  incorporates  the  fermentation  of  simple  sugars  derived  from  grapes  in  order   to  produce  an  alcoholic  beverage.    Due  to  the  fact  that  simple  sugars  including  the   monosaccharides  glucose  and  fructose  are  naturally  present  within  the  fruit  and  readily   available,  there  is  no  need  for  a  saccharification  step  (Weir  2015).    Wine  is  typically   categorized  most  broadly  as  either  red  or  white.    Red  wines  include  the  fermentation  of  the   grape  where  the  skin  isn’t  separated  from  the  pulp  whereas  the  white  wine  fermentation   process  does  not  occur  with  the  skins  present  (West  2015).    When  the  skins  are  fermented   with  the  pulp,  anthocyanin  pigments  within  the  skin  turn  the  juice  red  and  other   polyphenolic  tannins  are  produced  contributing  desirable  sensory  components  such  as   astringency  as  well  as  aid  in  the  aging  process  of  wine  (2015).    The  must  that  is  formed  by   the  pressing  of  juice  contains  approximately  70-­‐85%  water,  10%  fructose,  10%  glucose,   and  a  variety  of  other  organic  compounds  such  as  fatty  acids,  aldehydes,  and  amino  acids   (which  contribute  free  amino  nitrogen  influencing  healthier  yeast)  (Weir  2015).    After  the   primary  ethanol  fermentation  has  occurred,  malolactic  fermentation  is  facilitated  through   the  use  of  lactic  acid  bacteria  converting  harsher  malic  acid  into  a  smoother,  more  palatable   lactic  acid  (2015).    Diacetyel  is  also  produced  which  can  function  as  either  an  off  flavor  or  a   desirable  flavor  (such  as  in  chardonnays)  depending  on  the  wine  style  and  flavor  intent   (2015).    Overall,  wine  and  its  fermentation  has  a  complex  biochemistry  that  goes  far   beyond  the  scope  of  this  paper.      
  • 8. FERMENTATION  OF  FOOD  PRODUCTS     Unlike  wine,  beer  incorporates  the  fermentation  of  malted  barley  and  adjuncts,   which  are  made  up  of  starch  granules  containing  amylose  (linear  α-­‐(1,4)  glycosidic  bonds)   and  amylopectin  (branched  α-­‐(1,4),  α-­‐(1,6)  glycosidic  bonds)    (Briggs  et  al.  2004).    These   complex  polysaccharides  are  gelatinized  and  saccharified  into  sucrose,  fructose,  glucose,   maltose,  and  maltotriose  for  fermentation  (2004).    Gelatinization  is  the  process  of  heat  and   water  disrupting  intermolecular  bonds  freeing  starch  granule  bonding  sites  causing   hydration,  swelling  and  eventual  bursting  of  starch  granules  (2004).  This  process  makes   starch  granules  more  readily  available  for  saccharification.    Saccharification  is  the  process   of  polysaccharide  hydrolysis  into  simpler  carbohydrates  (2004).    In  brewing,  this  is   achieved  by  mashing  grains  at  optimal  pH  and  temperature  encouraging  amylase  enzyme   activity.    Again,  like  wine,  beer  fermentation  and  production  also  has  an  extensive  amount   of  biochemical  properties  and  processes.     Ethanol  fermentation  as  well  as  other  processes  in  the  production  of  wine  and  beer   work  together  to  make  these  alcoholic  beverages  relatively  shelf-­‐stable  and  enhance   sensory  components  (appearance,  aroma,  flavor,  texture,  etc.)  as  well.    As  mentioned   earlier,  ethanol  is  toxic  to  microorganisms  and  therefore  wine  and  beer  are   microbiologically  stable  based  on  their  inhibition  of  spoilers.    Fermentation  also  acidifies   these  beverages  thus  creating  an  inhospitable  environment  for  microorganisms  to  survive.       In  addition,  both  wine  and  beer  can  be  produced  for  either  relatively  short-­‐term   consumption  or  long-­‐term  aging  based  on  the  style  and  production  method.    Antioxidants   in  wine  donate  electrons  to  free  radicals  preventing  harmful  oxidation  of  wine  during  the   aging  process  (West  2015).    Hops  in  beer  are  also  known  to  have  antimicrobial  properties   thus  extending  its  shelf  life.    Finally,  ethanol  fermentation  not  only  gives  wine  and  beer  an  
  • 9. FERMENTATION  OF  FOOD  PRODUCTS   alcoholic  content,  but  the  reaction  also  produces  a  number  of  desirable  and  undesirable   flavor  characteristics  such  as  acetaldehyde,  diacetyel,  esters,  and  phenols.     Bread  is  another  staple  food  not  only  in  the  United  States  but  around  the  whole   world.  Bread  fermentation  is  a  heterofermentative  process  although  sourdough  breads   may  also  contain  homofermentative  microorganisms.  During  bread  fermentation  glucose   or  other  simple  carbohydrates  are  broken  down  into  pyruvate  via  glycolysis  in  order  to   produce  2  ATP.  Next  the  pyruvate  is  then  converted  into  acetylaldehyde,  this  is  the  step  of   fermentation  responsible  for  carbon  dioxide  production  in  bread.  Carbon  dioxide  is   retained  in  the  breads  protein  structure  leavening  it,  the  primary  reason  for  bread   fermentation  (Katz  2012).  The  final  step  of  the  bread  fermentation  process  is  the   conversion  of  acetylaldehyde  into  ethanol,  an  end  product  of  heterofermentation.  Much  like   the  fermentations  of  cheese  and  alcohol,  bread  fermentation  produces  NAD+  and  essential   input  for  glycolysis  and  therefore  ATP  production  (Weir  2015).              Bread  is  often  categorized  in  sour  and  non-­‐sour  dough  varieties.  Sour  dough  bread   contains  lactic  acid  bacteria  that  are  homofermentative  and  produce  lactate  as  the  terminal   product  of  fermentation,  which  we  perceive  as  sour.  Some  of  the  genera  of  bacteria  in   bread  fermentation  include  Lactobacillus,  Pediococcus,  Lueconostoc,  and  Weisella  (Wink   2015).  It  is  also  important  to  note  that  there  are  wild  yeasts  present  in  sourdough   production  that  are  heterofermentative  and  capable  of  producing  carbon  dioxide  that   causes  the  bread  to  rise  during  fermentation  (Katz,  2012).  Aside  from  carbon  dioxide   leavening  the  bread  sourdough  fermentation  is  incredibly  important  in  flavor  development.   The  ethanol  produced  in  the  heterofermentative  fermentation  pathway  is  volatized  off   during  the  baking  process.      
  • 10. FERMENTATION  OF  FOOD  PRODUCTS     Unlike  sourdough  bread  that  can  contain  a  plethora  of  different  organisms,  non-­‐sour   varietals  generally  only  contain  a  single  culture,  typically  Saccharomyces  cerevisiae.   Saccharomyces  is  a  heterofermentative  organism  that  produces  ethanol,  carbon  dioxide  as   the  main  products  of  fermentation,  but  can  also  produce  other  compounds  like  hydrogen   peroxide  and  diacetyl  (Corsetti,  2007).  Because  the  lactic  acid  bacteria  responsible  for   sourdough  bread  production  occur  naturally  on  the  grains  used  for  non-­‐sour  breads  the   flour  is  often  irradiated  in  order  to  kill  the  bacterial  species.  During  the  fermentation   process  of  bread  the  protein  structure  is  changed  leading  to  flavor  development  in  the   product.                                 The  major  compounds  in  bread  include  proteins  and  carbohydrates.  There  are  both   complex  and  simple  carbohydrates  within  the  flour  used  in  bread.  Bread  fermentation   consists  of  a  saccharification  step  where  the  complex  carbohydrates  are  broken  down  into   simple  sugars  by  the  action  of  the  enzyme  amylase.  The  complex  carbohydrates  within   bread  include  amylose,  amylopectin,  and  maltodextrin  (Carbohydrates  2015).  When  these   large  complexes  are  broken  down  they  monosaccharides  like  glucose  and  fructose,  and   disaccharides  like  maltose  and  sucrose  (2015).         The  two  main  proteins  in  bread  production  are  gliadin  and  glutenin.    According  to   CookingScienceGuy.com,  “The  process  of  wetting  the  proteins  is  called  hydration.  As  water   and  flour  are  mixed  the  hydrated  proteins  are  brought  together  and  begin  to  interact.  They   literally  begin  to  stick  to  each  other  through  the  formation  of  chemical  bonds”(Explaining   Gluten  2015).  When  these  two  proteins  interact  in  this  manor  they  create  a  protein   complex  that  traps  the  carbon  dioxide  produced  in  the  fermentation  process  allowing  the   bread  to  rise  and  develop  the  thin  light  and  airy  texture  desired  in  the  product.  
  • 11. FERMENTATION  OF  FOOD  PRODUCTS     Similar  to  the  boiling  of  wort  step  in  the  production  of  beer,  baking  incorporate  the   non-­‐enzymatic  browning  processes  of  Malliard  reactions  and  caramelization.    Malliard   reactions  involve  the  reaction  of  amine  groups  and  reducing  sugars  in  the  presence  of   water  and  high  temperatures  yielding  savory  (umami),  meaty,  onion,  chocolate,  and  malty   flavors  (Weir  2015).    On  the  other  hand,  once  baking  reaches  even  higher  temperatures   (roughly  337°F),  caramelization  occurs  without  the  reaction  of  amines  and  reducing  sugars   (2015).    Caramelization  involves  pyrolysis,  which  is  the  breakdown  and  of  sugars  (from   sucrose  to  glucose  and  fructose)  at  high  temperatures  yielding  caramel,  nutty,  and  toasty   flavors  as  well  as  subsequent  browning  (2015).    Overall,  these  non-­‐enzymatic  processes   are  vital  in  producing  the  flavors  and  aromas  characteristic  of  bread.     Of  all  the  fermented  foods  and  beverages  discussed,  bread  likely  has  the  lowest  shelf   stability.    Although  fermentation  slightly  extends  shelf  life  by  lowering  the  pH  based  on  acid   production,  the  modification  of  gluten,  and  the  saccharification  of  flour  with  amylase   enzymes,  ethanol  becomes  volatilized  during  the  baking  process  and  live  and  active   cultures  die  off  at  such  high  temperatures.    Therefore,  neither  of  these  components  play  a   role  in  microbiological  stability  as  they  do  in  other  ferments.    In  addition,  water  activity  in   bread  is  very  high  at  .95aw  compared  to  pure  waters  1.0aw  (Corsetti  2007).  This  available   water  is  an  incredibly  hospitable  environment  to  harmful  spoilage  microorganisms.    In   addition,  similar  to  cheese  fermentation,  Lactobacillus  found  in  sourdough  fermentation   often  contain  bacteriocins  that  help  retard  the  growth  of  competing  microbes  (Weir  2015).     Overall,  fermented  bread  isn’t  particularly  shelf  stable  compared  to  cheese  and  alcohol,   however,  shelf  life  can  also  be  extended  through  the  control  of  temperature,  humidity,  and   light  and  oxygen  exposure.  
  • 12. FERMENTATION  OF  FOOD  PRODUCTS   The  ability  for  microorganisms  to  undergo  the  fermentation  pathway  provides  a   major  evolutionary  advantage  over  other  organisms  that  cannot,  and  learning  how  to   control  fermentation  has  provided  humans  major  advantages  in  food  storage  and  safety.   The  fermentation  processes  are  similar  between  the  three  products  but  contain  key   differences.  Both  alcohol  and  bread  undergo  heterofermentative  fermentations  producing   multiple  end  products  that  benefit  their  product’s  sensory  attributes  and  physical,   biochemical  properties.  The  heterofermentative  process  utilizes  the  Phosphoketalose   Pathway  in  order  to  breakdown  their  substrates  with  the  action  of  the  enzyme   phosphoketalase.  In  cheeses  homofermentation  process  the  Embden-­‐Meyerhof  Pathway   breaks  down  the  diasaccharide  lactose  using  the  aldolase  enzyme.  In  terms  of  product   stability  bread  is  far  less  shelf  stable  than  alcohol  and  cheese  as  mentioned  previously.  This   can  be  attributed  to  the  lack  of  ethanol  and  live  active  cultures  that  are  volatized  and  killed   off,  respectively,  during  the  baking  process,  and  the  fact  that  bread  has  a  high  water  activity   making  it  easy  for  a  broad  range  of  microorganisms  to  grow.  The  ethanol  content  and  low   pH  of  alcoholic  beverages  prevents  the  majority  of  spoilage  organisms  from  growing.  In   cheese  a  low  pH  and  production  of  bacteriocins  create  a  barrier  to  spoilage  organism   growth.  Differences  in  substrates  provide  different  metabolic  needs  for  their  respective   organisms  and  therefore  create  different  and  unique  products,  and  although  these  products   seem  vastly  different  from  culture  to  culture  and  product  to  product,  the  general   fermentation  mechanism  is  universal.              
  • 13. FERMENTATION  OF  FOOD  PRODUCTS         Works  Cited   Briggs  E.  Dennis,  Boulton  A.  Chris,  Brookes  A.  Peter,  Stevens  Roger.  (2004).  “Brewing,   Science  and  Practice.”  Woodhead  Publishing  in  Food  Science  and  Technology.    Text.   Corsetti,  Aldo.    (2007).    Lactobacilli  in  sourdough  fermentation.    Food  Research   International,  40(5).    Retrieved  from   <http://www.sciencedirect.com/science/article/pii/S0963996906001979>   Explaining  Gluten.    (2015).    Cooking  Science  Guy.    Web.   Fox,  P.f.  "Proteolysis  During  Cheese  Manufacture  and  Ripening."  Journal  of  Dairy  Science.   Katz,  Sandor  Ellix,  and  Michael  Pollan.  The  Art  of  Fermentation:  An  In-­‐depth  Exploration  of   Essential  Concepts  and  Processes  from  around  the  World.  N.p.:  n.p.,  n.d.  Print.   Månsson,  Helena  Lindmark.  “Fatty  Acids  in  Bovine  Milk  Fat.”  Food  &  Nutrition  Research  52   (2008)   Musetti,  James.    “Microbiology  of  Cheese  Fermentation.”    Colorado  State  University.    Gifford   Building,  Fort  Collins,  CO.    24  Feb.  2015.    Guest  Lecture.   Pambianchi,  Daniel.    (2000).    “The  Strain  Game.”    Wine  Maker.       Phillips,  Sarrah.  "Yeast  Fermentation  |  CraftyBaking  |  Formerly  Baking911."  CraftyBaking.   N.p.,  n.d.  Web.  08  Apr.  2015.   Todar,  Kenneth.  "Lactic  Acid  Bacteria."  Lactic  Acid  Bacteria.  N.p.,  n.d.  Web.  08  Apr.  2015.   Weir,  Tiffany.    “Alcohol  Fermentation.”    Colorado  State  University.    Gifford  Building,  Fort   Collins,  CO.    29  Jan  2015.    Lecture.  
  • 14. FERMENTATION  OF  FOOD  PRODUCTS   Weir,  Tiffany.    “Fermented  Foods  of  the  Orient”    Colorado  State  University.    Gifford  Building,   Fort  Collins,  CO.    12  Mar  2015.    Lecture.   West,  Ron.    “Yeasts  in  Flavor  Chemistry  of  Wine  Fermentation.”    Varaison  Vineyards,   Colorado  State  University.    Gifford  Building,  Fort  Collins,  CO.    5  Feb  2015.    Guest   Lecture.   Wink,  Debra.  "Lactic  Acid  Fermentation  in  Sourdough."  The  Fresh  Loaf.  N.p.,  n.d.  Web.  07   Apr.  2015.