SlideShare ist ein Scribd-Unternehmen logo
1 von 24
AAE556
Lectures 34,35
The p-k method, a modern
alternative to V-g
Purdue Aeroelasticity 1
Genealogy of the V-g or “k”
method
 Equations of motion for harmonic response (next
slide)
– Forcing frequency and airspeed are known parameters
– Reduced frequency k is determined from w and V
– Equations are correct at all values of w and V.
 Take away the harmonic applied forcing function
– Equations are only true at the flutter point
– We have an eigenvalue problem
– Frequency and airspeed are unknowns, but we still need k to
define the numbers to compute the elements of the
eigenvalue problem
– We invented V-g artificial damping to create an iterative
approach to finding the flutter point
Purdue Aeroelasticity 2
Equation #2, moment equilibrium
2
2 2 2 2 2
0
h
M M
h h
x r r
b b
     
w
w w  w  

   
     
   
   
 
2
1 1
2 2
h h
M M a L M a L
  
   
     
   
   
1 1
2 2
h h
M a L

 
  
 
 
3
Purdue Aeroelasticity
Divide by w2
2 2
2
2
1
0
h
h h
x r r M M
b b
    


  

w
w
   
     
   
   
Include structural damping
 
2 2
2
2
1
0
1 h
ig
h h
x r r M M
b b
    


w
 
w

   
     
   
  


The eigenvalue problem
Purdue Aeroelasticity
4
2
2
2
2
2
0 1
0
1
0
1
2
0
h
h h
h
h h
x
b b
x r
r
h
L L a L
b
M M


 


 
w
w
 
 
 
     
 
     
 

   
   
 
 
   
     
 
 
 
   
   
 
 
 
 
 
     
 
 
 
 

 
 
 
2
2
2
2
2 1
1 1
0
1
0
2
h
h
h h
h h
L L a L
x
b b
x r
M M
r


 





w
w
 
 
 
 

 
 
 
 
 
 
 
 
 


   
 
 
 
   
 
 
 
   
   
 
 
 
 
 
   
 
   
 
 
 


Return to the EOM’s before we
assumed harmonic motion
Purdue Aeroelasticity
Here is what we would like to have
The first step in solving the general stability problem
     
 
 
   
   
1
2
2 3
2
0
ij j ij j ij j
ij j ij j
p M K A
p A p A
  
 
 
   
 
     
   
  
   
     
   
   
   
1 2 3
0
ij j ij j ij j ij j ij j
M K A A A
    
     
   
    
         
    pt
j j e
 
 p j
 w
 
25-5
The p-k method casts the flutter
problem in the following form
       
2 2
1
0
2
ij ij ij ij
p M p B K V A
   
 
       
   
       
 
 
 
    pt pt
h
b
t e e
 

 
 
   
 
 
Purdue Aeroelasticity
…but first, some preliminaries
p j
 w
 
6
Setting up an alternative solution
scheme
h
x K
h h P
b b m b mb


  
2 2 2
a
x I K M
h
b b mb mb mb
  
 
  
2
2 2
1 0
0
h
a
K P
h
h
mb
m
b
b
I
K M
mb
m
x
b
x
mb






 
 
 
     
 
     
   
 
     
   
     
 
       
   
7
Purdue Aeroelasticity
The expanded equations
 
2
2 2
2
2
4 2
2
1 0
0
1 0
0
1
2
1
2
h
a
h
h h
K P
x h
h
mb
m
b
b
I
K
x M
mb
mb mb
K
x h
h
m
b
b
I
K
x
mb
mb
L L a L
b
mb













 w
 
 
 
     
 
     
   
 
     
   
     
 
       
   
 
 
   
 
   
    
   
   
   
 
     
 
 
 
 
 
 
 
 
 2
1 1 1 1
2 2 2 2
h h
a L a
h
b
M L L a
 

 
 
 
 
 
 
      
 
      
 
      
   
 
     
 
 
 


  





8
Purdue Aeroelasticity
Break into real and imaginary
parts
 
 
3 2
2
3 2
1
2
1 1 1 1 1
2 2 2 2 2
1
2
Real
1 1 1 1 1
2 2 2 2 2
h h
h h
h h
h h
L L a L
b
mb
a L M L a L a
L L a L
b
mb
a L M L a L a

 

 
 w
 w
 
 
 
 
 
 
 
 
 
 
 
 
 
      
 
      
 
      
   
 
      
   
 
 
 
 
 
 
 
 

 
    
      
    
 
    
 
 
2
3 2
2
1
2
Imag
1 1 1 1 1
2 2 2 2 2
h h
h h
L L a L
b
j
mb
a L M L a L a

 
 w
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
  
   
 
 
      
   
 
      
 
      
 
 
 
 
      
   
 
 
9
Purdue Aeroelasticity
Recognize the mass ratio
 
 
2
2
2
1
2
Real
1 1 1 1 1
2 2 2 2 2
1
2
Imag
1 1 1 1
2 2 2
h h
h h
h h
h
L L a L
a L M L a L a
L L a L
j
a L M L

 

 
w

w

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
      
 
 
      
 
      
 
 
 
 
      
   
 
 
 
 
 
 
 
 
 
 
 
 
   
 
   
   
 
   
 
2
1
2 2
h
a L a
 
 
 
 
 
 
 
 
 
   
 
 
  
 
   
 
 
 
   
 
 
 
10
Purdue Aeroelasticity
Multiply and divide real part by dynamic
pressure
Multiply imaginary part by p/jw
 
 
2
2
2
2
2
1
2
1 2
Real
2 1 1 1 1 1
2 2 2 2 2
1
2
Imag
1 1
2 2
h h
h h
h h
L L a L
k
V
b
a L M L a L a
L L a L
p
j
j

 



w
 w
 
 
 
 
 
 
 
 
 
 
 
   
   
  
 
   
 
   
      
   
 
      
 
      
 
 
 
 
      
   
 
 
 
 
 
 
 
 
 
  
   
 
 
 
2
1 1 1
2 2 2
h h
a L M L a L a
 
 
 
 
 
 
 
 
 
 
 
      
 
 
    
 
      
 
 
 
 
      
   
 
 
11
Purdue Aeroelasticity
Multiply and divide imaginary
part by Vb/Vb
 
 
2
2
2
2
1
2
1 2
Real
2 1 1 1 1 1
2 2 2 2 2
1
2
Imag
1 1
2 2
h h
h h
h h
L L a L
k
V
b
a L M L a L a
L L a L
V k
p
b
a

 




 
 
 
 
 
 
 
 
 
 
 
   
   
  
 
   
 
   
      
   
 
      
 
      
 
 
 
 
      
   
 
 
 
 
 
 
 
 
 
 
 
   
   
 
2
1 1 1
2 2 2
h h
L M L a L a
 
 
 
 
 
 
 
 
 
 
 
     
 
 
    
 
      
 
 
 
 
      
   
 
 
Define Aij and Bij matrices
 
 
2 2
2
2
1
2
Real
1 1 1 1 1
2 2 2 2 2
1
2
Imag
h h
ij
h h
h h
ij
L L a L
V k
A
b
a L M L a L a
L L a L
V k
B
b

 



 
 
 
 
 
 
 
 
 
 
 
    
 
    
  
   
 
 
      
    
 
      
 
      
 
 
 
 
      
   
 
 
 
 
 
 
 
 
 
 
 
     
 
  
2
1 1 1 1 1
2 2 2 2 2
h h
a L M L a L a
 
 
 
 
 
 
 
 
 
 
 
      
 
 
      
 
      
 
 
 
 
      
   
 
 
Place aero parts into EOM’s
Note the minus signs
 
 
2 2
2
1
2
Real
1 1 1 1 1
2 2 2 2 2
1
2
Imag
h h
ij
h h
h
ij
L L a L
V k
A
b
a L M L a L a
L L a L
V k
B
b

 



 
 
 
 
 
 
 
 
 
 
   
   
   
      
 
 
   
   
   
      
   
   
      
 
      
 
 
 
 
      
   
 
 
 
 
 
 
 
 
     
 
  
2
1 1 1 1 1
2 2 2 2 2
h
h h
a L M L a L a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      
 
 
      
 
      
 
 
 
 
      
   
 
 
2 0
0
ij ij ij ij
h
b
p M p B K A

   
 
 
     
   
   
     
 
 
 
 
What are the features of the new
EOM’s?
We still need k defined before we can
evaluate the matrices
Airspeed, V, appears.
The EOM is no longer complex
We can calculate the eigenvalue, p, to
determine stability
2 0
0
ij ij ij ij
h
b
p M p B K A

   
 
 
     
   
   
     
 
 
 
 
The p-k problem solution
 Choose k=wb/V arbitrarily
 Choose altitude (, and airspeed (V)
 Mach number is now known (when appropriate)
 Compute AIC’s from Theodorsen formulas or others
 Compute aero matrices-Bij and Aij matrices are real
 Convert “p-k” equation to first-order state vector form
2
2
0
0
0
0
ij
ij ij ij ij
ij ij K
h
b
p M p B K A
h
b
p M p B


   
 
 
     
   
   
     
 
 
 
 
   
 
 
   
  
   
   
  
 
 
 
 
A state vector contains
displacement and velocity “states”
   
j j
velocity vector v x
 
{ } j
j
j
x
z
v
ì ü
ï ï
ï ï
= í ý
ï ï
ï ï
î þ
State vector =
 
j
displacement vector x

Purdue Aeroelasticity
Relationship between state
vector elements
{ } { }
j j
x v
=
{ } { } { } { }
0
ij j ij j ij j
M v B v K x
é ù é ù é ù
- + =
ê ú ê ú ê ú
ë û ë û ë û
{ } { } { }
{ }
1 1
1 1
j ij ij j ij ij j
j
j ij i ij i
j j
j
v M K x M B v
x
v M K M B
v
- -
-
-
é ù é ù é ù é ù
= - +
ê ú ê ú ê ú ê ú
ë û ë û ë û ë û
ì ü
ï ï
é ù
é é ù
é ù é ù
ê ú
ê ú ê ú
ë û ë û
ë û
ù ï ï
é ù é ù
= - í ý
ê ú
ê ú
ê ú ê ú
ë û ë û ï ï
ë û
ë û
ï ï
î þ
An equation of motion with
damping becomes
Purdue Aeroelasticity
Use an identify relationship
for the other equations
Purdue Aeroelasticity
19
{ } [ ][ ]{ }
0 0 1 0
0
0 0 0 1
j j
j i
j j
x x
z I z
v v
ì ü ì ü
é ù
ï ï ï ï
ï ï ï ï é ù
ê ú
= = =
í ý í ý ë û
ê ú
ï ï ï ï
ë û
ï ï ï ï
î þ î þ
State vector eigenvalue
equation
{ }
[ ] [ ]
{ }
1 1
0
j j
j ij j
j j
I
x x
z Q z
v v
M K M B
- -
é ù
ì ü ì ü
ï ï ï ï
ê ú
ï ï ï ï é ù
= = =
í ý í ý ê ú
ê ú ë û
é ù
ï ï ï ï
-
ê ú
ï ï ï ï
ê ú
î þ î þ
ë û
ë û
z(t)
   z
 est
Assume a solution
Result
Solve for eigenvalues (p) of the [Q] matrix (the plant)
Plot results as a function of airspeed
{ } { } { }
j j ij j
z p z Q z
é ù
= = ê ú
ë û
Purdue Aeroelasticity
1st order problem
 Mass matrix is
diagonal if we
use modal
approach – so
too is structural
stiffness matrix
 Compute p roots
– Roots are
either real
(positive or
negative)
– Complex
conjugate
pairs
1 1
0
ij
ij ij ij
I
Q
M K M B
K K A
 
 
    
  
 
 
     
 
     
 
{ } { } { }
j j ij j
z p z Q z
é ù
= = ê ú
ë û
Purdue Aeroelasticity
Eigenvalue roots
 wg is the estimated system damping
 There are “m” computed values of w at the
airspeed V
 You chose a value of k=wb/V, was it correct?
– “line up” the frequencies to make sure k, w and V
are consistent
 
real imaginary
p p jp
p j
w g
 
 
Purdue Aeroelasticity
Procedure
Input k and V
Compute
eigenvalues
 
i i i
p j
w g
 
i
i
b
k
V
w

?
i input
k k 
 
yes real i i
imaginary i
p
p
w g
w


Repeat
process for
each w
No, change k
Purdue Aeroelasticity
P-k advantages
Lining up frequencies eliminates need
for matching flutter speed to Mach
number and altitude
p-k approach generates an
approximation to the actual system
aerodynamic damping near flutter
p-k approach finds flutter speeds of
configurations with rigid body modes
Purdue Aeroelasticity

Weitere ähnliche Inhalte

Ähnlich wie AAE556-Lectures_p-k-method (1).pptx

Ähnlich wie AAE556-Lectures_p-k-method (1).pptx (17)

Chapter 6
Chapter 6Chapter 6
Chapter 6
 
Reduced Order Observer (DGO) based State Variable Design of Two Loop Lateral ...
Reduced Order Observer (DGO) based State Variable Design of Two Loop Lateral ...Reduced Order Observer (DGO) based State Variable Design of Two Loop Lateral ...
Reduced Order Observer (DGO) based State Variable Design of Two Loop Lateral ...
 
Reduced Order Observer (DGO) based State Variable Design of Two Loop Lateral ...
Reduced Order Observer (DGO) based State Variable Design of Two Loop Lateral ...Reduced Order Observer (DGO) based State Variable Design of Two Loop Lateral ...
Reduced Order Observer (DGO) based State Variable Design of Two Loop Lateral ...
 
Lecture 23 loop transfer function
Lecture 23 loop transfer functionLecture 23 loop transfer function
Lecture 23 loop transfer function
 
M.sheela complex ppt
M.sheela complex pptM.sheela complex ppt
M.sheela complex ppt
 
E024033041
E024033041E024033041
E024033041
 
Second-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like MassesSecond-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like Masses
 
FEMSlide 1.pdf
FEMSlide 1.pdfFEMSlide 1.pdf
FEMSlide 1.pdf
 
On Some Integrals of Products of H -Functions
On Some Integrals of Products of  H -FunctionsOn Some Integrals of Products of  H -Functions
On Some Integrals of Products of H -Functions
 
Indefinite Integral 3
Indefinite Integral 3Indefinite Integral 3
Indefinite Integral 3
 
17330361.ppt
17330361.ppt17330361.ppt
17330361.ppt
 
Trig cheat sheet
Trig cheat sheetTrig cheat sheet
Trig cheat sheet
 
Trig cheat sheet
Trig cheat sheetTrig cheat sheet
Trig cheat sheet
 
Smoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdfSmoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdf
 
B02404014
B02404014B02404014
B02404014
 
+2 maths pta question bank come book english medium
+2 maths  pta question bank come book  english medium+2 maths  pta question bank come book  english medium
+2 maths pta question bank come book english medium
 
Geohydrology ii (3)
Geohydrology ii (3)Geohydrology ii (3)
Geohydrology ii (3)
 

Kürzlich hochgeladen

Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
Sérgio Sacani
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
PirithiRaju
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Sérgio Sacani
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
gindu3009
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
PirithiRaju
 

Kürzlich hochgeladen (20)

COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
 
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLKochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdf
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptx
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 

AAE556-Lectures_p-k-method (1).pptx

  • 1. AAE556 Lectures 34,35 The p-k method, a modern alternative to V-g Purdue Aeroelasticity 1
  • 2. Genealogy of the V-g or “k” method  Equations of motion for harmonic response (next slide) – Forcing frequency and airspeed are known parameters – Reduced frequency k is determined from w and V – Equations are correct at all values of w and V.  Take away the harmonic applied forcing function – Equations are only true at the flutter point – We have an eigenvalue problem – Frequency and airspeed are unknowns, but we still need k to define the numbers to compute the elements of the eigenvalue problem – We invented V-g artificial damping to create an iterative approach to finding the flutter point Purdue Aeroelasticity 2
  • 3. Equation #2, moment equilibrium 2 2 2 2 2 2 0 h M M h h x r r b b       w w w  w                        2 1 1 2 2 h h M M a L M a L                      1 1 2 2 h h M a L           3 Purdue Aeroelasticity Divide by w2 2 2 2 2 1 0 h h h x r r M M b b            w w                   Include structural damping   2 2 2 2 1 0 1 h ig h h x r r M M b b        w   w                    
  • 4. The eigenvalue problem Purdue Aeroelasticity 4 2 2 2 2 2 0 1 0 1 0 1 2 0 h h h h h h x b b x r r h L L a L b M M         w w                                                                                           2 2 2 2 2 1 1 1 0 1 0 2 h h h h h h L L a L x b b x r M M r          w w                                                                                     
  • 5. Return to the EOM’s before we assumed harmonic motion Purdue Aeroelasticity Here is what we would like to have The first step in solving the general stability problem                   1 2 2 3 2 0 ij j ij j ij j ij j ij j p M K A p A p A                                                 1 2 3 0 ij j ij j ij j ij j ij j M K A A A                                   pt j j e    p j  w   25-5
  • 6. The p-k method casts the flutter problem in the following form         2 2 1 0 2 ij ij ij ij p M p B K V A                                     pt pt h b t e e                Purdue Aeroelasticity …but first, some preliminaries p j  w   6
  • 7. Setting up an alternative solution scheme h x K h h P b b m b mb      2 2 2 a x I K M h b b mb mb mb         2 2 2 1 0 0 h a K P h h mb m b b I K M mb m x b x mb                                                               7 Purdue Aeroelasticity
  • 8. The expanded equations   2 2 2 2 2 4 2 2 1 0 0 1 0 0 1 2 1 2 h a h h h K P x h h mb m b b I K x M mb mb mb K x h h m b b I K x mb mb L L a L b mb               w                                                                                                                 2 1 1 1 1 2 2 2 2 h h a L a h b M L L a                                                                     8 Purdue Aeroelasticity
  • 9. Break into real and imaginary parts     3 2 2 3 2 1 2 1 1 1 1 1 2 2 2 2 2 1 2 Real 1 1 1 1 1 2 2 2 2 2 h h h h h h h h L L a L b mb a L M L a L a L L a L b mb a L M L a L a        w  w                                                                                                                    2 3 2 2 1 2 Imag 1 1 1 1 1 2 2 2 2 2 h h h h L L a L b j mb a L M L a L a     w                                                                                                                                      9 Purdue Aeroelasticity
  • 10. Recognize the mass ratio     2 2 2 1 2 Real 1 1 1 1 1 2 2 2 2 2 1 2 Imag 1 1 1 1 2 2 2 h h h h h h h L L a L a L M L a L a L L a L j a L M L       w  w                                                                                                                                 2 1 2 2 h a L a                                                    10 Purdue Aeroelasticity
  • 11. Multiply and divide real part by dynamic pressure Multiply imaginary part by p/jw     2 2 2 2 2 1 2 1 2 Real 2 1 1 1 1 1 2 2 2 2 2 1 2 Imag 1 1 2 2 h h h h h h L L a L k V b a L M L a L a L L a L p j j       w  w                                                                                                                             2 1 1 1 2 2 2 h h a L M L a L a                                                                       11 Purdue Aeroelasticity
  • 12. Multiply and divide imaginary part by Vb/Vb     2 2 2 2 1 2 1 2 Real 2 1 1 1 1 1 2 2 2 2 2 1 2 Imag 1 1 2 2 h h h h h h L L a L k V b a L M L a L a L L a L V k p b a                                                                                                                                     2 1 1 1 2 2 2 h h L M L a L a                                                                     
  • 13. Define Aij and Bij matrices     2 2 2 2 1 2 Real 1 1 1 1 1 2 2 2 2 2 1 2 Imag h h ij h h h h ij L L a L V k A b a L M L a L a L L a L V k B b                                                                                                                                      2 1 1 1 1 1 2 2 2 2 2 h h a L M L a L a                                                                        
  • 14. Place aero parts into EOM’s Note the minus signs     2 2 2 1 2 Real 1 1 1 1 1 2 2 2 2 2 1 2 Imag h h ij h h h ij L L a L V k A b a L M L a L a L L a L V k B b                                                                                                                                           2 1 1 1 1 1 2 2 2 2 2 h h h a L M L a L a                                                                               2 0 0 ij ij ij ij h b p M p B K A                                     
  • 15. What are the features of the new EOM’s? We still need k defined before we can evaluate the matrices Airspeed, V, appears. The EOM is no longer complex We can calculate the eigenvalue, p, to determine stability 2 0 0 ij ij ij ij h b p M p B K A                                     
  • 16. The p-k problem solution  Choose k=wb/V arbitrarily  Choose altitude (, and airspeed (V)  Mach number is now known (when appropriate)  Compute AIC’s from Theodorsen formulas or others  Compute aero matrices-Bij and Aij matrices are real  Convert “p-k” equation to first-order state vector form 2 2 0 0 0 0 ij ij ij ij ij ij ij K h b p M p B K A h b p M p B                                                                        
  • 17. A state vector contains displacement and velocity “states”     j j velocity vector v x   { } j j j x z v ì ü ï ï ï ï = í ý ï ï ï ï î þ State vector =   j displacement vector x  Purdue Aeroelasticity
  • 18. Relationship between state vector elements { } { } j j x v = { } { } { } { } 0 ij j ij j ij j M v B v K x é ù é ù é ù - + = ê ú ê ú ê ú ë û ë û ë û { } { } { } { } 1 1 1 1 j ij ij j ij ij j j j ij i ij i j j j v M K x M B v x v M K M B v - - - - é ù é ù é ù é ù = - + ê ú ê ú ê ú ê ú ë û ë û ë û ë û ì ü ï ï é ù é é ù é ù é ù ê ú ê ú ê ú ë û ë û ë û ù ï ï é ù é ù = - í ý ê ú ê ú ê ú ê ú ë û ë û ï ï ë û ë û ï ï î þ An equation of motion with damping becomes Purdue Aeroelasticity
  • 19. Use an identify relationship for the other equations Purdue Aeroelasticity 19 { } [ ][ ]{ } 0 0 1 0 0 0 0 0 1 j j j i j j x x z I z v v ì ü ì ü é ù ï ï ï ï ï ï ï ï é ù ê ú = = = í ý í ý ë û ê ú ï ï ï ï ë û ï ï ï ï î þ î þ
  • 20. State vector eigenvalue equation { } [ ] [ ] { } 1 1 0 j j j ij j j j I x x z Q z v v M K M B - - é ù ì ü ì ü ï ï ï ï ê ú ï ï ï ï é ù = = = í ý í ý ê ú ê ú ë û é ù ï ï ï ï - ê ú ï ï ï ï ê ú î þ î þ ë û ë û z(t)    z  est Assume a solution Result Solve for eigenvalues (p) of the [Q] matrix (the plant) Plot results as a function of airspeed { } { } { } j j ij j z p z Q z é ù = = ê ú ë û Purdue Aeroelasticity
  • 21. 1st order problem  Mass matrix is diagonal if we use modal approach – so too is structural stiffness matrix  Compute p roots – Roots are either real (positive or negative) – Complex conjugate pairs 1 1 0 ij ij ij ij I Q M K M B K K A                                 { } { } { } j j ij j z p z Q z é ù = = ê ú ë û Purdue Aeroelasticity
  • 22. Eigenvalue roots  wg is the estimated system damping  There are “m” computed values of w at the airspeed V  You chose a value of k=wb/V, was it correct? – “line up” the frequencies to make sure k, w and V are consistent   real imaginary p p jp p j w g     Purdue Aeroelasticity
  • 23. Procedure Input k and V Compute eigenvalues   i i i p j w g   i i b k V w  ? i input k k    yes real i i imaginary i p p w g w   Repeat process for each w No, change k Purdue Aeroelasticity
  • 24. P-k advantages Lining up frequencies eliminates need for matching flutter speed to Mach number and altitude p-k approach generates an approximation to the actual system aerodynamic damping near flutter p-k approach finds flutter speeds of configurations with rigid body modes Purdue Aeroelasticity