SlideShare ist ein Scribd-Unternehmen logo
1 von 59
Name of Speaker : Jayvirsinh P. Solanki
Degree : M. Sc. Agri. (Agril. Microbiology)
Major Advisor : Dr. R. V. Vyas
Minor Advisor : Dr. S. N. Shah
Course No. : MICRO. 591
Reg. No. : 04-2917-2016
Date : 19/10/2017
Time : 3:30 p.m.
Microbes role for nutrient mobilization,
transformation and in fertilizer use efficiency
CONTENTS
Introduction
Mechanism and Importance
Case studies
Conclusion
Future prospects
2
REQUIREMENT
OF PLANT
NUTRIENTS
Primary
nutrient
Secondary
nutrients
Basic
nutrient
Micro
nutrients
Nitrogen
Phosphorus
Potash
Sulphur
Calcium
Magnesium
Boron
Copper
Iron
Magnesium
Molybdenum
Zinc
Chlorine
Nickel
Carbon
Hydrogen
Oxygen
3
 The increasing demand of NPK
fertilizer is by 1.5, 2.3 and 3.7 %
per annum
 Microbes as the best alternative
aid for the plant nutrient supply
 The fundamental concept of
organic farming has its base in the
role of indigenous microbial
abundance
 Microbes increase bio-availability
of nutrient
The fertility of the soil depends
upon
 Quantitative nature of the
microorganisms
 Organic matter content
 Nature of microbial products which
bind the soil particle together
 Humus content
4
Mobilization
• Basic mechanism through which microbes promote nutrients
bioavailability includes nutrient fixation, mobilization and
transformation
• Nutrient mobilization is the process of making nutrients
movable or capable of moving by the physiochemical or
biochemical ways
• Microbes play a very important role in nutrient mobilization
through the biochemical actions like release of organic
acids, proton extrusion and lowering pH
• Bacterial, fungal inocula and organic amendments can
mobilize nutrient reserves
5
Nutrients
mobilized by
microorganism
Nitrogen
Phosphorus
Potash
Iron
Zinc
Sulphur
6
Phosphorus Mobilization
• Microbes play a fundamental role in mobilizing organic, native or
inherited P that unavailable for plants
• The total P acquired by plants through bacteria and fungus (75%)
• Biochemical processes operating in the rhizosphere determine the
mobilization and acquisition of soil nutrients
• Wide variety of bacteria, fungi and endophytes solubilize insoluble P
through the production of organic acids, a feature which is genetically
controlled
• Such type of inocula are termed as P-mobilizing microbes, as these
inocula do not only solubilize P, but they also mobilize its organic form
through mineralization and facilitate the translocation of phosphate
7
P mobilization mechanism & Microorganisms
Organic P
mobilization
Direct way
Lowering pH
Hydrolyze
organic P
Indirect way
Release of
CO2
Release of
Protons
Bacillus Beijernckia Burkholderia Enterobacter Flavobacterium Microbacterium
Pseudomons
Mesorhizobium
cicero
Mesorhizobium
mediterraneum
Aspergillus Penicillium
8
• K is present in very small amount ranging from 0.04 to 3.00%
• Despite of being in limited amount, 98% of this K is bound within the
Phyllosilicates structures
• The remaining 2% exists in soil solution or on exchange sites to become
available for the plants
• Hence, soil fertility is decreased due to low availability of this nutrient
• Many microorganism in the soil are able to solubilize unavailable forms of K-
bearing minerals, such as micas, feldspar, illite and orthoclases by
excreting organic acids which either directly dissolves rock K or chelate
silicon ions to bring the K into solution
K mobilization
9
K mobilization mechanisms
10
K
mobilization
mechanism
Organic acid
synthesis
Oxidation
of
structural
Fe2+
Weathering/
Resolving
Structural
Fe2+ as
electron
donor
K mobilizers
Frateuria sp.
Acidothiobacillus
ferrooxidans
Bacillus
mucilaginosus
B. edaphicus Burkholderia sp.
Pseudomonas sp. Rhizobium sp.
Funneliformis
mosseae
Rhizoglomus
intraradices
Aspergillus
terreus
A. niger
Cupriavidus
necator
Rastonia
solanacearum
11
Fe mobilization
• Iron is the fourth most abundant element available on earth and predominantly exits in nature in
ferric (Fe3+) form
• It is sparingly soluble, therefore not readily available for plant
• Iron limitation is a problem for plants on as much as 30% worldwide
• Iron tends to form insoluble complexes in aerobic soils of neutral to basic pH
• In soil ferrous (Fe2+) is oxidized to ferric (Fe3+) thereby forming insoluble compounds and leaving
a very low amount of iron for plant assimilation
• Some strains of bacteria synthesize low molecular mass proteins known as siderophores
• Siderophores have high affinity to chelate and solubilize iron from mineral or organic compounds
• Generally siderophores have high affinity to form complexes with ferric (Fe3+) uptake of the
complexes by the cell membrane of both gram positive and negative bacteria reduces ferric (Fe3+) –
ferrous (Fe2+)
12
Siderophore producing bacteria for iron chelation
Bradyrhizobium
japonicum
Rhizobium
leguminosarum
Sinorhizobium
meliloti
Pseudomonas
Enterobacter
genera
Bacillus
rhodococcus
13
Zinc mobilization
• Zinc is required in relatively small concentration although
prevalence of Zn deficiency in crop is due to low solubility of Zn
rather than low Zn availability
• 50% of Indian soils are Zinc deficient
• Solubility of Zn decrease with
 Increase in pH
 High organic matter
 Bicarbonate content
 High magnesium to calcium ratio
 High availability of P and Fe
14
• The Zinc applied to agriculture fields as Zinc sulphate (Soluble) get converted to
different insoluble forms like:
 Zinc hydroxide [Zn(OH)2] at high soil pH,
 Zinc Carbonate [ZnCo3 ] in calcium rich alkali soils,
 Zinc phosphate [Zn3(PO4)2] in near neutral to alkali soil with large application of
P fertilizers and
 Zinc sulfide [ZnS] under reducing conditions particularly during flooding
• The soluble form of Zn fertilizers applied to the fields become readily insoluble forms
that cannot be assimilated by plants which leads to the Zn deficiency in crops
• The microbes solubilize the Zn by lowering the pH by gluconic acid and indole acetic
acid production
• Example:
Acinetobacter sp. Burkholderia sp.
15
Sulphur mobilization
• In agricultural soil, most of the Sulphur (>95%) is present as
sulphate esters or as carbon bounded Sulphur rather than inorganic
Sulphur
• The two major form of organo-S, Sulphur-esters and sulfonates are
not directly available to plants which rely upon microbes in soil and
rhizosphere for organo- S mobilization
• Different Sulphur forms are interconverted and immobilized Sulphur
is mineralized to yield plant available inorganic Sulphur
• Organic form of Sulphur is metabolized by soil microorganism to
make it available for plant in an inorganic form like mineralization,
immobilization, oxidation and reduction
16
Sulphur mobilizing microbes
Pseudomonas Klebsiella Salmonella
Enterobacter Serratia Comamonas
Lolium
perenne
17
An overview of the mechanism used by bacteria and fungi to mobilize nutrients (P, K and Fe) in the soil 18
Transformation
19
Table 1. Selected examples of microbially mediated soil transformation that influence the plant
nutrient availability
Nutrient Microbial transformation
Nitrogen
Mineralization, Immobilization, nitrification, denitrification, urea hydrolysis, N₂ fixation,
extracellular protease and chitinase activity
Phosphorus
Mineralization, immobilization, extracellular phosphatase activity, acidic dissolution of mineral
P, facilitated uptake mycorrhizal fungi
Potassium K solubilization/Mobilization
Sulfur Mineralization, immobilization, oxidation, reduction, extracellular sulfatase activity
Iron Change in oxidation state. Production of siderophores, chelation
Zinc Facilitated uptake by mycorrhizal fungi
Copper Facilitated uptake by exudates and mycorrhizal fungi
Manganese Change in oxidation state 20
Nitrogen
Transformation
21
N2
Nitrogen fixation
Ammonia (NH3)
Nitrate ion (NO3
-)
Pseudomonas
N2
Nitrite ion (NO2
-)
Nitrobacter
Nitrate ion (NO3
- )
Ammonium ion (NH4
+)
Nitrosomonas
Nitrite ion (NO2
- )
Amino acids (–NH2)
Microbial ammonification
Ammonia (NH3)
Proteins and waste products
Microbial decomposition
Amino acids
The Nitrogen Transformation
22
23
Phosphorus solubilization/ mobilization
24
Potassium solubilization/
mobilization
Sulphur mobilization 25
Proteins and waste products Amino acids
Microbial decomposition
Amino acids (–SH)
Microbial
dissimilation
H2S
H2S
Thiobacillus
SO4
2– (for energy)
SO4
2–
Microbial & plant assimilation
Amino acids
The Sulphur mobilization
26
Fertilizer use efficiency (FUE)
• Its an estimate of the productivity per unit of nutrient uptake or loss
• It depends upon the ability of efficient uptake, transport, storage,
mobilization, usage within the plant and even on the environment of
nutrient from the soil
• The FUE/NUE is an important ecological measure as it integrates a
variety of physiological processes in how nutrients taken up by plants
are generally used for the production of biomass
27
Table 2. Current status of nutrient use efficiency (NUE) of agricultural ecosystem
Nutrients Nutrient use efficiency
(NUE%)
Nitrogen (N) 30-50
Phosphorus (P) 10-20
Potassium (K) 70-80
Sulphur (S) 8-12
Zinc (Zn) 2-5
Iron (Fe) 1-2
Copper (Cu) 1-2
Manganese (Mn) 1-2
28
Why fertilizer use efficiency is important …???
• Improving FUE is an important goal to harvest better crop yield on sustained
basis
• Overall the nutrient use efficiency by crop plant is ~50% under all agro-
ecological conditions
• Hence, large part of the applied nutrients is lost in the soil-plant system
• To check the nutrient loss and their adverse effect due to excess usage and
diminish the cost in crop production
• To minimize the pollution hazard due to increasing use of chemical fertilizer
29
Integrated Nutrient Supply for FUE
ONLYSOILNUTRIENT
SOILNUTRIENTS+
ORGANICMANURES
SOILNUTRIENTS+
ORGANICMANURES+
CHEMICALFERTILISERS
SOILNUTRIENTS+
ORGANICMANURES+
CHEMICALFERTILISERS+
BIOFERTILISER
YEILD
BENEFITS :
• MAXIMUM PRODUCTIVITY
• ECONOMIC CULTIVATION
• SUSTAINED SOIL FERTILITY
30
31
SR
NO
Treatments
Growth
(cm)
Fresh wt .
of Leaf(g)
Moisture
Content(%)
Root
volume/plant(ml)
pH
EC
dsm-1
OC(%)
P2O5
(kg/acre)
K2O
(kg/acre)
1 NPK(0) 42.64 50.40 62.34 47.50 7.20 0.27 1.60 231.00 193.00
2 NPK(100%) 52.20 70.94 62.70 47.50 7.20 0.55 1.77 313.00 199.00
3 NPK(75%) 47.58 70.46 62.80 47.00 7.30 0.63 1.93 298.00 189.00
4 NPK(50%) 50.28 65.70 63.10 57.00 7.30 0.65 1.47 177.00 195.00
5 N(75%)+P K(100%) 48.86 68.72 63.50 48.50 7.20 0.61 1.50 191.00 198.00
6 N(50%)+P(100%) 48.94 70.02 65.20 60.50 7.20 0.73 1.52 233.00 185.00
7 NK (100%)+P(75%) 51.64 70.76 64.00 46.00 7.30 0.73 1.73 130.00 190.00
8 NK(100%)+P(50%) 47.80 65.00 62.40 58.00 7.20 0.64 1.69 150.00 209.00
9 NP100%)+P(75%) 50.08 66.50 64.80 57.00 7.20 0.65 1.55 149.00 198.00
10 NP(100%)+K(50%) 52.76 62.00 63.70 55.00 7.20 0.56 1.67 240.00 187.00
11 NP(100%)+K(75%)+KMB 54.04 80.68 62.20 76.00 7.10 0.78 1.90 180.00 215.00
12 NP(100%)+K(50%)+KMB 49.12 82.18 63.90 83.00 7.20 0.60 1.86 135.00 233.00
Table 3. Response of mulberry to co-inoculation with potash mobilizing, phosphate solubilizing, nitrogen fixing isolates and VAM
Continue…
Case 1: Response of Mulberry to different bio-inoculants
32
SR
NO
Treatments
Growth
(cm)
Fresh wt . of
Leaf(g)
Moisture
Content(%)
Root
volume/plant(ml)
pH
EC
dsm-1
OC(%)
P2O5
(kg/acre)
K2O
(kg/acre)
13 PK(100%)+N(75%)+NF 50.50 74.30 62.60 83.50 7.10 0.77 1.81 244.00 218.00
14 PK(100%)+N(50%)+NF 41.54 77.30 62.70 37.00 7.10 0.62 1.96 209.00 232.00
15 NK(100%)+P(75%)+KMB 43.16 73.50 63.00 41.00 7.10 0.54 1.94 208.00 282.00
16 NK(100%)+P(50%)+KMB 54.48 78.50 64.60 68.50 7.10 0.78 1.89 269.00 291.00
17 NK(100%)+P(75%)+VAM 54.02 74.30 63.50 77.50 7.10 0.68 2.05 312.00 264.00
18 NK(100%)+P(50%)+VAM 52.28 62.40 62.40 54.00 7.20 0.69 2.15 304.00 284.00
19
NPK(100%)+NFB+PSM+VAM+
KMB
49.72 83.00 63.00 65.50 7.10 0.65 2.11 352.00 288.00
20
NPK(75%)+NFB+PSM+VAM+K
MB
49.14 87.95 61.50 62.00 7.00 0.96 2.10 369.00 300.00
21
NPK(50%)+NFB+PSM+VAM+K
MB
48.58 83.10 63.70 75.50 7.10 0.90 2.11 389.00 240.00
CD @ 5% 21.08 30.80 -- 25.30 -- -- 0.77 103.10 97.20
Bangalore Padma and Sukumar, 201533
Treatment no. Treatment detail
T1 Control
T2 Azospirillum
T3 Azotobacter
T4 Pseudomonas
T5 Bacillus
T6 Azospirillum + Azotobacter
T7 Azospirillum + Bacillus
T8 Azotobacter + Bacillus
T9 Pseudomonas + Bacillus
T10 Azospirillum + Azotobacter
T11 Pseudomonas + Azotobacter
T12 Azotobacter + Psedomonas + Bacillus
Table 4. Treatment detail
Case 2: Interaction effect of combined inoculation of PGPR on growth and yield parameters of Chilli var. K1
Tamilnadu Kanchana et al. 2014
Fig. 1: Effect PGPR isolates on the increase in plant nitrogen content
Fig. 2: Effect of PGPR isolates on increase in number of fruits per plant
34
Plant dry weight (g plant -1)
Sampling period in days
Treatments no. 25th day 50th day 75th day 100th day
T1 0.56 1.76 2.3 4.01
T2 1.45 2.1 4.08 5.34
T3 1.37 2.25 3.1 5.04
T4 1.48 2.35 3.61 5.2
T5 0.98 2.05 3.24 3.26
T6 1.57 2.08 3.98 5.86
T7 0.99 2 3.01 3.48
T8 1.6 2.41 4.65 5.44
T9 1.9 2.56 4.11 6.64
T10 1.46 1.03 3.06 6.02
T11 2.03 2.62 5.02 7.03
T12 2.58 3.67 4.43 7.38
SED 0.045 0.03 0.035 0.04
CD(p=0.05) 0.09 0.06 0.07 0.08
Table 5. Effect of individual and combined inoculation of PGPR on plant dry weight of Chilli var. K-1
35
Table 6. Effect of individual and combined inoculation of PGPR on fruit yield in Chilli var. K-1
Fruit yield(g plant -1)
Treatments Pot culture study Fruit weight (g fruit -1)
T1 78 5.09
T2 89.05 6.02
T3 83.07 7.00
T4 100 6.00
T5 80 6.25
T6 106 6.51
T7 128 6.03
T8 115 8.12
T9 106 8.06
T10 136 7.63
T11 121.05 9.00
T12 160.02 9.21
SED 4.225 0.435
p=(0.05) 8.45 0.87
36
Plant phosphorus content (mg plant -1)
Sampling period in days
Treatments 25th day 50th day 75th day 100th day
T1 2.29 7.96 11.37 22.48
T2 3.16 7.26 15.82 28.3
T3 3.38 8.08 17.25 21.39
T4 3.78 5.6 13.8 17.34
T5 3.09 6.6 12.89 15.94
T6 4.26 5.85 13.32 27.98
T7 3.21 6.87 12.96 15.77
T8 4.35 5.8 13.09 26.9
T9 4.72 7.62 16.28 28.89
T10 4.1 6.5 12.97 26.73
T11 4.98 9.68 16.72 29.97
T12 5.02 8.76 18.25 30.99
SED 0.028 0.025 0.024 0.0255
CD(0.05) 0.056 0.05 0.048 0.051
Table 7. Effect of individual and combined inoculation of PGPR on plant phosphorus content in Chilli var. K-1
37
Tr. No. Treatment pH OC (%) Available p (Kg/ha) Available K (kg/ha)
1
Chemical fertilizer
(NPK)
6.33 0.79 107.75 515.25
2 Absolute control 6.80 0.66 76.75 395.75
3 AMF + NPK 6.23 0.94 118.20 548.75
4 AMF 6.48 0.74 101.50 409.00
5 KMB + NPK 6.23 0.83 110.25 565.75
6 KMB 6.45 0.68 83.75 425.50
7 KMB + AMF + NPK 5.93 0.95 118.25 588.25
8 KMB + AMF 6.57 0.72 101.50 487.00
CD at 5% 0.23 0.16 19.73 126.40
Table 8. Effect of AMF and KMB on the soil parameters after harvesting the crop
Subhashini, 2016
Case 3: Effect of NPK fertilizer and co-inoculation with Phosphate-Solubilizing
Arbuscular Mycorrhizal Fungus and Potassium-Mobilizing Bacteria on growth,
yield, nutrient acquisition and quality of tobacco
Rajahmundry 38
Treatment
no.
Treatment
Plant height
(cm)
Number of
leaves
Stem dry
weight
(g/plant)
Root dry
weight
(g/plant)
Inflorescence
dry weight
(g/plant)
Seed weight
(g/plant)
1 NPK 93.50 25 30.63 16.25 8.75 5.53
2
Absolute
control
80.50 26 10.62 4.63 3.94 3.35
3 AMF + NPK 99.62 29 35.61 15.00 8.63 7.08
4 AMF alone 84.00 29 15.65 6.88 5.00 5.13
5 KMB + NPK 90.75 27 43.13 12.50 12.25 6.67
6 KMB alone 86.25 29 16.25 6.25 4.63 4.20
7
KMB + AMF +
NPK
100.37 26 68.75 16.25 12.38 7.30
8 KMB + AMF 82.00 27 20.00 5.00 5.38 4.63
CD at 5% NS NS 7.71 2.64 1.48 NS
Table 9. Effect of AMF and KMB on the growth parameter of FCV tobacco after harvesting the crop
39
Fig. 3 Effect of AMF and KMB on cured leaf yield of tobacco (P = 0.05)
40
Treatment
No.
Treatment Nicotine(%) Reducing sugar(%)
1 NPK 1.45 20.37
2 Absolute control 0.95 6.81
3 AMF+NPK 1.52 21.46
4 AMF alone 0.93 14.51
5 KMB + NPK 1.48 21.32
6 KMB alone 1.01 18.45
7 KMB + AMF + NPK 1.72 22.90
8 KMB + AMF 1.13 17.22
CD at 5% 0.17 1.07
Table 10 . Effect of AMF and KMB on the quality parameters of FCV tobacco leaf
41
Table 11. The interactive effects of N chemical fertilizer and bio-fertilizer on the nutrient content of rice grain
Treatment
no.
Chemical N
fertilization
Microbial
inoculation
N (%) P (%) Fe (%) Zn (mg kg-1) NUE (%)
1 N1 M 1.81 c 0.68 c 23.77 b 29.26 abc 0.71
2 N1 H 1.85 bc 0.61 d 35.66 a 35.02 a 0.73
3 N1 C 1.71 d 0.39 e 14.22 c 11.22 d 0.67
4 N2 M 1.83 c 0.76 ab 21.88 c 31.48 ab 0.96
5 N2 H 2.01 a 0.81 a 17.88 c 35.38 a 1.04
6 N2 C 1.70 d 0.38 e 22.88 d 10.77 d 0.89
7 N3 M 1.80 c 0.70 bc 21.77 b 27.60 bc 1.38
8 N3 H 1.91 b 0.68 c 26.11 b 24.76 c 1.46
9 N3 C 1.40 e 0.38 e 6 d 7.66 d 1.07
Case 4: Rice nutrient management using mycorrhizal fungi and endophytic
Herbaspirilum seropedicae
Iran Hoseinzad et al., 2016
P = 0.05, M = Mycorrhizal fungi, H = Herbaspirilium seropedicae, C = control,
NUE = Nutrient use efficiency
42
Table 12. The interactive effects of P fertilizer and bio-fertilizer on soil and plant nutrient content
Treatmen
t no.
Chemical P
fertilization
Microbial
inoculation
Straw P
(%)
Straw Fe (mg
Kg-1)
Soil K (mg kg-1) Soil Fe (mg kg-1)
1 P1 M 0.52 d 21 c 228 ab 237.30 bc
2 P1 H 0.67 c 20 c 227 bc 246.38 ab
3 P1 C 0.38 e 21 c 228 ab 214.96 d
4 P2 M 0.77 b 33 a 229 ab 235.27c
5 P2 H 0.77 b 14 d 206 c 232.80 c
6 P2 C 0.42 e 9 e 230 a 215.08 d
7 P3 M 0.86 a 34 a 228 ab 253.84 a
8 P3 H 0.66 c 30 b 228 ab 229.72 c
9 P3 C 0.36 e 8 e 280 ab 213.90 d
43Values in the same column followed by different letters are significantly different at P = 0.05
Figure 4. Effect of ZnO nanoparticles on plants
phenological parameter stems height, root length,
root area, root diameter and root nodule.
Observations are also compared with bulk ZnO
nanoparticles
Figure 5. Effect of ZnO particles (bulk and
nano) on p-mobilizing enzymes (acid P, alkaline
P, phytase) and soil microbial population
indicator enzyme (dehydrogenase)
Raliya et al., 2016St. Louis, USA
Case 5: Enhancing the mobilization of native phosphorus in mung bean rhizosphere using ZnO
nanoparticles synthesized by soil fungi
44
Figure 6. Effect of ZnO nanoparticles on plant P uptake
from rhizosphere in mung bean plant
Figure 8. Accumulation of metal
ion in leaf, stem, root and seeds:
ICP-MS analyses of ZnO particles
(bulk and nano) treated plants
Figure 7. Influence of bulk and synthesized ZnO
nanoparticles on chlorophyll and protein content in the
leaves of mung bean
45
Table 13. Effect of inoculated KMB strains in available soil potash at different incubation period
Treatment
no.
Treatments
Incubation periods (Days) Mean
30 60 90 120 150
Available Potash (mg/kg of soil)
1 Control 90 90 90 91 90 90
2 TKMB 3 100 124 127 125 124 120
3 TKMB 6 101 124 128 125 125 121
4 TKMB 8 93 111 115 113 113 109
5 TKMB 11 118 122 128 127 127 124
Mean 125.58 142.50 164.92 145.17 144.92
S. Em 1.281
For comparing
two
at 5%
Strains 1.13
Time 0.90
Strain × Time 2.54
Bhattacharya et al., 2016Jorhat, India
Case 6: Isolation of potash mobilizing microorganisms in tea soil and evaluation of
their efficiency in potash nutrition in tea
46
Tr. No.
Chemical
Fertilizer
(RDF K %)
Biofertilizers
(K solubilizer)
1
75
Frateuria aurentia
2 Enterobacter sp. KMB W1
3 Enterobacter cloacae KMB M1
4 Pseudomonas gessardii KMB Ma1
5 Enterobacter cloacae KMB C1
6 Enterobacter cloacae KMB B1
7 Bacillus tequilensis VVN09
8 Pseudomonas fluorescence AAU07
9 100 ---
10 00 Control
Table 14. Treatment details
Anonymous, 2014Anand
Case: 7 Efficacy of Potash mobilizing bacteria in Potato
47
Available K (mg kg-1) ( composite sample )
Tuber treatment Soil treatment
Trt. 2010-11 2011-12 2012-13 Av. 2010-11 2011-12 2012-13 Av.
T1 129.24 130.66 128.56 129.49 129.54 128.87 127.89 129.54
T2 128.90 129.46 129.00 129.12 129.05 127.72 126.80 129.05
T3 127.60 127.46 127.00 127.35 127.73 125.40 126.30 127.73
T4 127.89 129.38 128.40 128.56 128.30 126.96 126.90 128.30
T5 125.29 126.33 124.56 125.39 124.24 125.57 125.30 124.24
T6 125.79 124.60 124.30 124.90 122.18 123.51 123.45 122.18
T7 124.86 123.33 123.40 123.86 117.85 123.85 120.60 117.85
T8 119.47 120.78 120.30 120.18 115.33 122.33 121.30 115.33
T9 116.06 115.92 114.30 115.43 111.89 121.26 115.90 111.89
T10 107.04 108.00 108.03 107.69 102.00 101.33 101.20 102.00
Table 15. : Available potassium in soil as influenced by KMB treatment
48
Plant height at harvest (cm)
Tuber treatment Soil treatment
Trt 2010-11 2011-12 2012-13 POOLED 2010-11 2011-12 2012-13 POOLED
T1 81.67a 83.63a 84.73a 83.34a 83.33a 86.43a 82.6a 83.90a
T2 80.27ab 82.43a 83.87ab 82.19ab 82.27ab 84.60a 81.0ab 82.61abc
T3 76.13bcd 78.62cd 77.77de 77.51ab 73.27c 74.60c 74.8cd 74.23de
T4 76.17bcd 78.85cd 82.63abc 79.22ab 77.60bc 79.32b 78.0bc 78.31abcd
T5 78.53abc 80.29bc 79.23cde 79.35ab 76.47c 78.48b 75.7cd 76.87abcd
T6 74.40cd 76.28ef 80.37bcd 77.24ab 76.20c 78.50b 76.3cd 76.99abcd
T7 72.07d 74.75f 75.5e 74.22bc 75.20c 77.53b 73.5d 75.42bcd
T8 75.87bcd 77.68de 78.17de 77.24ab 73.67c 75.36c 75.0cd 74.69cde
T9 80.60ab 82.11ab 84.00ab 82.34ab 82.80ab 86.47a 82.0ab 83.65ab
T10 65.80e 67.42g 67.43f 66.88c 67.47d 70.13d 64.23e 67.28e
S. Em Âą 3.01 3.09 1.38 83.34a 3.21 2.44 1.37 2.46
CV % 6.8 6.8 3.0 2.6 7.2 5.3 3.1 5.5
Y x T NS NS
Table 16. Plant height as influenced by KMB inoculation (2010-11 to 2012-13)
49
Tuber yield (t/ha)
KMB inoculation by Tuber treatment KMB inoculation by Soil treatment
Trt. 2010-11 2011-12 2012-13 POOLED 2010-11 2011-12 2012-13 POOLED
T1 26.75a 28.50a 27.26a 27.50a 24.68a 26.45a 26.96a 26.03a
T2 25.28ab 27.30b 27.26a 26.61ab 22.89abc 25.77ab 26.96a 25.21ab
T3 21.33de 23.47ef 24.30ab 23.03cd 18.93d 22.68d 23.11b 21.57bc
T4 23.95bc 26.11c 26.67a 25.57abc 22.13abcd 24.53bc 25.78ab 24.15abc
T5 22.45cd 24.33d 25.78ab 24.19abcd 18.48d 22.55d 24.59ab 21.87bc
T6 22.72cd 24.18de 26.07ab 24.32abcd 19.13cd 23.65cd 25.19ab 22.65abc
T7 20.05e 22.36g 22.22b 21.54d 18.75d 22.40d 22.81b 21.32c
T8 21.81d 23.25f 25.19ab 23.42bcd 20.61bcd 23.58cd 24.00ab 22.73abc
T9 25.71ab 27.24b 24.89ab 25.95abc 24.25ab 27.13a 24.59ab 25.33ab
T10 13.17f 14.00h 14.22c 13.80e 14.19e 16.40e 13.93c 14.84d
S. EmÂą 0.89 0.92 1.44 1.03 1.13 0.98 1.19 1.13
CV % 6.9 6.6 10.2 7.5 9.6 7.3 8.7 8.4
Y x T NS NS
Table 17. Tuber yield as influenced by KMB inoculation (2010-11 to 2012-13)
50
Table 18. Effect of Fe, Zn and Rhizobium isolates on grain yield and Fe & Zn contents (mg kg-1 ) in pigeon pea seed
Treatment
No.
Treatment
Details
seed yield
(kg ha-1)
Fe Content
(mg kg-1 of seed )
Zn Content
(mg kg-1 of seed )
BDN-2 AAU-07-08 BDN-2 AAU-07-08 BDN-2 AAU-07-08
E IE E IE E IE
T1 CONTROL 1879 1689 42.50 36.17 19.23 18.21
T2 Fe50 2033 2139 51.00 40.33 20.38 20.32
T3 Zn25 2046 1930 44.50 39.00 21.28 21.66
T4 Fe50+Zn25 2159 2034 52.00 40.33 21.08 21.66
T5 Fe50+R-16 2197 2183 46.83 45.00 20.70 20.32
T6 Zn25+R-16 2245 2021 45.00 39.17 20.90 21.01
T7 Fe50+Zn25+R-16 2327 2168 48.50 46.00 21.66 21.28
T8 Fe50+R-19 2190 2120 44.33 41.83 21.09 21.66
T9 Zn25+ R-19 2248 2065 43.17 40.00 22.91 22.62
T10 Fe50+Zn25+R-19 2426 2066 52.33 43.00 20.95 21.47
T11 R-16 2104 2002 43.67 41.50 21.66 19.74
T12 R-19 2166 1928 46.83 40.50 21.85 20.89
S.Em+ 88.46 79.71 2.61 1.55 0.58 0.75
CD@5% 259 234 NS 4.55 1.69 2.19
CV% 7.1 6.8 9.7 6.6 4.7 6.2
Anonymous, 2013Anand
Case: 8 Understanding the mechanism of variation in status of a few nutritionally important micronutrients in
some important food crops and the mechanism of micronutrient enrichment in plant parts
51Note: E = Efficient, IE = Inefficient
Table 19. Effect of different treatments on total Zn uptake of two wheat varieties
Treatment no.
Treatments
Total Zn uptake (Âľg pot -1)
WH 1021 VL 804 Mean
1 Control 312.6 168.9 240.8
2 2.5 mg Zn/kg soil 308.9 179.5 244.2
3 BC 306.5 146.7 226.6
4 AX 342.5 235.6 289.0
5 AB 302.2 204.7 253.5
6 BC+AX 297.0 190.7 243.8
7 BC+AB 327.6 211.9 233.0
8 AX+AB 459.5 195.7 327.6
9 BC+AX+AB 452.7 207.6 330.1
Mean 337.4 193.5 265.4
Effect Var. Treat. Var. × Treat.
SEmÂą 2.21 4.70 6.63
LSD (p≤0.05) 6.3 13.5 19.0
Pantnagar, India Vaid et al. 2013
Case 9: Effect of Zinc solubilizing bioinoculants on zinc nutrition of Wheat
52
Note: BC = Burkholderia sp., AB and AX strain = Acinetobacter
Treatment no. Treatment
Zn Concentration (mg kg -1)
Grain Straw
WH 1021 VL 804 Mean WH 1021 VL 804 Mean
1 Control 17.7d 12.6a
15.1 9.5g 7.2de 8.4
2
2.5 mg Zn/kg
soil
21.1i 175d 19.3 7.2de 5.1a 6.1
3 BC 20.4b 15.4c 17.9 6.5bc 5.0a 5.7
4 AX 24.0i 19.7g 21.8 7.4de 7.1cde 7.21
5 AB 18.7ef 18.1de 18.4 7.6def 7.1cde 7.3
6 BC + AX 18.7ef 15.9c 17.3 7.1cde 5.4a 6.2
7 BC + AB 18.0de 18.5ef 18.2 7.8ef 6.1b 6.9
8 AX + AB 27.3k 14.5b 20.9 7.7ef 8.3f 8.0
9 BC + AX + AB 26.8k 19.0f 22.9 10.7b 6.9cd 8.8
Mean 21.4 16.8 18.7 7.9 6.4 7.2
Effect Var. Treat Var. × treat Var. Treat Var. × Treat
SEmÂą 0.01 0.17 0.23 0.07 0.16 0.23
LSD(p≤0.05) 0.2 0.5 0.7 0.2 0.5 0.7
Table 20. Effect of treatments on Zn concentration in grain and straw of two varieties
53
Treatment no. Treatment
WH 1021 VL 804 Mean WH 1021 VL 804 Mean
Grain yield (g/pot -1) Straw yield (g/pot -1)
1 Control 9.9 gh 6.8ab 8.3 14.6e 11.6e 13.1
2 2.5 mg Zn/kg soil 9.8 g 7bc 8.4 14.1de 11.4c 12.8
3 BC 10.4 i 6.5a 8.5 14.6e 9.4a 12
4 AX 10ghi 8f 9 13.8de 11.1c 12.5
5 AB 10.3hi 7.4cd 8.8 14.4e 10.2b 12.3
6 BC + AX 10-4i 8.3f 9.4 14.4ef 11.1c
12.7
7 BC + AB 11.4i 7.9ef 9.7 15.7f 11c 13.4
8 AX + AB 12.2k 7.5de 9.8 16.4g
10.5b 13.5
9 BC + AX + AB 11.1j 7.2bcd 9.1
14.6e
10.3b 12.4
Mean 10.6 7.4 9 14.7 10.7 12.7
Effect Var. Treat Var. × Treat. Var. Treat. Var.× Treat.
S. Em Âą 0.1 0.1 0.2 0.1 0.1 0.2
LSD(p≤0.05) 0.1 0.3 0.4 0.2 0.4 0.5 54
Table 21. Effect of different treatments on grain and straw yields of two wheat varieties
Type Biofertilizer Native Strain Recommended Crop Fertilizer Saving/ha
N fixers
Azolla pinnata
(fresh)
Anand Low land rice
30- NAzolla pinnata
(dry)
-do- Wheat, potato, tobacco
BGA - Low land rice
Azotobacter chroococcum ABA 1
Pearl millet, sorghum,
paddy, Amaranthus
(Rajgara), sugarcane,
maize, potato, wheat,
pigeon pea, tobacco, rice
, onion , sesame, cotton
20- N
Azospirillum
lipoferum
ASA 1
Pearl millet, finger
millet, paddy, sorghum,
guinea grass, maize,
sesame, tobacco,
tobacco, onion
Acetobacter diazotrophicus ACG 2 Sugarcane N
Rhizobium spp.
5 ARS 21 Pigeon pea
30- N
F 75,
IC-76
Chickpea
GMBS 1 Green gram
RECOMMENDATIONS FOR FARMERS OF GUJARAT – Three Decades
55
PSM
Bacillus circulans PBA 4 Cow pea
20- P2O5
Bacillus brevis PBA 12
Sorghum (Fodder),
wheat (durum), Pearl
millet, wheat
Bacillus coagulans PBA 13 Pigeon pea, wheat
Bacillus coagulans PBA 14 Cow pea,
Bacillus coagulans PBA 16
Sorghum (Dual &
Fodder), urad bean,
sesame, pearl millet,
sesame, rice
Bacillus coagulans PBA 17 Urad bean, groundnut
Torulopsora globosa PBA 22
Pigeon pea, maize,
sorghum, groundnut
KMB Enterobacter asburiae KMBW1 Potato 25 % saving of Potash
Bio NP
Azospirillum
lipoferum +
B. coagulans
ASA 1
+
PBA-16
Chilli & Brinjal
Nursery
25 % saving of RDF
Bio NPK Azotobacter, Azospirillum, Bacillus
5 bacteria in
consortium
Groundnut,
Potato, Wheat
25 % saving of RDF
(N:P:K)
56
 The microbes play a vital role in nutrient mobilization, transformation
and fertilizer use efficiency are evident by many case studies, without
them or their activities stated for different natural biological
processes and the crop growth remains low
 Microbial inoculant’s actions in rhizosphere directly helps for the
nutrient accessibility viz. N, P, K, S, Fe, Zn etc. in soil by taking part in
nutrient dynamics and ultimately to achieve the important goal of
agriculture to harvest better crop yield and to keep soil healthy and
living for a long run in sustained manner
Conclusion
57
 Need for search of newer native microbes which have better
mobilization, transformation activity which can save
chemical fertilizer and increase fertilizer use efficiency
 Search for novel multifunctional native microbial
community
 Molecular approaches for microbial strain improvement for
greatest mobilization and transformation activity
Future prospects
58
Role of microbes in nutrient mobilization, transformation in fertilizer use effic

Weitere ähnliche Inhalte

Was ist angesagt?

Biofertilizers-importance and uses
Biofertilizers-importance and usesBiofertilizers-importance and uses
Biofertilizers-importance and usesSagar Bista
 
Sulfur Transformation
Sulfur TransformationSulfur Transformation
Sulfur TransformationIGKV
 
Mechanism of Zinc solubilization by Zinc Solubilizing bacterias
Mechanism of Zinc solubilization by Zinc Solubilizing bacteriasMechanism of Zinc solubilization by Zinc Solubilizing bacterias
Mechanism of Zinc solubilization by Zinc Solubilizing bacteriasJaison M
 
Role of biofertilizer in agriculture
Role of biofertilizer in agricultureRole of biofertilizer in agriculture
Role of biofertilizer in agricultureravi kiran
 
Types of biofertilizers
Types of biofertilizersTypes of biofertilizers
Types of biofertilizersTushar Deshmukh
 
plant growth promoting rhizobacteria
plant growth promoting rhizobacteriaplant growth promoting rhizobacteria
plant growth promoting rhizobacteriaAbhinav Vivek
 
Soil Organisms, functions and their role in Soil fertility
Soil Organisms, functions and their role in Soil fertilitySoil Organisms, functions and their role in Soil fertility
Soil Organisms, functions and their role in Soil fertilityBANARAS HINDU UNIVERSITY , GBPSSI
 
Notes on biofertilizer
Notes on biofertilizerNotes on biofertilizer
Notes on biofertilizerH Janardan Prabhu
 
Bio fertilizer and phosphorus use efficiency , by- aditya kumar singh tomar
Bio fertilizer and phosphorus use efficiency , by- aditya kumar singh tomarBio fertilizer and phosphorus use efficiency , by- aditya kumar singh tomar
Bio fertilizer and phosphorus use efficiency , by- aditya kumar singh tomarAditya Kumar Singh Tomar
 
Saif ppt phosphate solubilisation
Saif ppt phosphate solubilisationSaif ppt phosphate solubilisation
Saif ppt phosphate solubilisationsaifalikhan62
 
Rhizosphere & phyllosphere
Rhizosphere & phyllosphereRhizosphere & phyllosphere
Rhizosphere & phyllosphereRachana Choudhary
 
Soil biota
Soil biotaSoil biota
Soil biotaIGKV
 
Isolation of phosphate solubilizing bacteria (PSB) from soil Likhith K
Isolation of phosphate solubilizing bacteria (PSB) from soil Likhith KIsolation of phosphate solubilizing bacteria (PSB) from soil Likhith K
Isolation of phosphate solubilizing bacteria (PSB) from soil Likhith KLIKHITHK1
 
SOIL ENZYMES AND THEIR ACTIVITY
SOIL ENZYMES AND THEIR ACTIVITYSOIL ENZYMES AND THEIR ACTIVITY
SOIL ENZYMES AND THEIR ACTIVITYChaUhan Ar Shi
 
Biofertilizers pk mani
Biofertilizers pk maniBiofertilizers pk mani
Biofertilizers pk maniP.K. Mani
 
Potassium solublising micro organisms
Potassium  solublising micro organismsPotassium  solublising micro organisms
Potassium solublising micro organismskoushalya T.N
 

Was ist angesagt? (20)

Biofertilizers-importance and uses
Biofertilizers-importance and usesBiofertilizers-importance and uses
Biofertilizers-importance and uses
 
Sulfur Transformation
Sulfur TransformationSulfur Transformation
Sulfur Transformation
 
Mechanism of Zinc solubilization by Zinc Solubilizing bacterias
Mechanism of Zinc solubilization by Zinc Solubilizing bacteriasMechanism of Zinc solubilization by Zinc Solubilizing bacterias
Mechanism of Zinc solubilization by Zinc Solubilizing bacterias
 
Role of microorganisms in soil fertility
Role of microorganisms in soil fertilityRole of microorganisms in soil fertility
Role of microorganisms in soil fertility
 
Role of biofertilizer in agriculture
Role of biofertilizer in agricultureRole of biofertilizer in agriculture
Role of biofertilizer in agriculture
 
Types of biofertilizers
Types of biofertilizersTypes of biofertilizers
Types of biofertilizers
 
plant growth promoting rhizobacteria
plant growth promoting rhizobacteriaplant growth promoting rhizobacteria
plant growth promoting rhizobacteria
 
Rhizosphere vs phyllosphere
Rhizosphere vs phyllosphereRhizosphere vs phyllosphere
Rhizosphere vs phyllosphere
 
Soil Organisms, functions and their role in Soil fertility
Soil Organisms, functions and their role in Soil fertilitySoil Organisms, functions and their role in Soil fertility
Soil Organisms, functions and their role in Soil fertility
 
Notes on biofertilizer
Notes on biofertilizerNotes on biofertilizer
Notes on biofertilizer
 
Bio fertilizer and phosphorus use efficiency , by- aditya kumar singh tomar
Bio fertilizer and phosphorus use efficiency , by- aditya kumar singh tomarBio fertilizer and phosphorus use efficiency , by- aditya kumar singh tomar
Bio fertilizer and phosphorus use efficiency , by- aditya kumar singh tomar
 
Saif ppt phosphate solubilisation
Saif ppt phosphate solubilisationSaif ppt phosphate solubilisation
Saif ppt phosphate solubilisation
 
Rhizosphere & phyllosphere
Rhizosphere & phyllosphereRhizosphere & phyllosphere
Rhizosphere & phyllosphere
 
Soil biota
Soil biotaSoil biota
Soil biota
 
Isolation of phosphate solubilizing bacteria (PSB) from soil Likhith K
Isolation of phosphate solubilizing bacteria (PSB) from soil Likhith KIsolation of phosphate solubilizing bacteria (PSB) from soil Likhith K
Isolation of phosphate solubilizing bacteria (PSB) from soil Likhith K
 
Rhizosphere
RhizosphereRhizosphere
Rhizosphere
 
SOIL ENZYMES AND THEIR ACTIVITY
SOIL ENZYMES AND THEIR ACTIVITYSOIL ENZYMES AND THEIR ACTIVITY
SOIL ENZYMES AND THEIR ACTIVITY
 
Biofertilizers pk mani
Biofertilizers pk maniBiofertilizers pk mani
Biofertilizers pk mani
 
Bioinoculants (ss)
Bioinoculants (ss)Bioinoculants (ss)
Bioinoculants (ss)
 
Potassium solublising micro organisms
Potassium  solublising micro organismsPotassium  solublising micro organisms
Potassium solublising micro organisms
 

Ähnlich wie Role of microbes in nutrient mobilization, transformation in fertilizer use effic

Biofertilizers Likhith K
Biofertilizers Likhith KBiofertilizers Likhith K
Biofertilizers Likhith KLIKHITHK1
 
Plant need based nutrient management and fertilizer recommendation
Plant need based nutrient management and fertilizer recommendationPlant need based nutrient management and fertilizer recommendation
Plant need based nutrient management and fertilizer recommendationO.P PARIHAR
 
An introduction to professional plant nutrition | Haifa Group
An introduction to professional plant nutrition | Haifa GroupAn introduction to professional plant nutrition | Haifa Group
An introduction to professional plant nutrition | Haifa GroupHaifa Group
 
Supplement with- biofertilizr
Supplement with- biofertilizrSupplement with- biofertilizr
Supplement with- biofertilizrH Janardan Prabhu
 
Microorganisms as biofertilizer
Microorganisms as biofertilizerMicroorganisms as biofertilizer
Microorganisms as biofertilizerBhagya Silva
 
phosphatesolubilizers.pptx
phosphatesolubilizers.pptxphosphatesolubilizers.pptx
phosphatesolubilizers.pptxDiptiPriya6
 
Biofertilizers increases prodactivity_PPT.ppt
Biofertilizers increases prodactivity_PPT.pptBiofertilizers increases prodactivity_PPT.ppt
Biofertilizers increases prodactivity_PPT.pptMaqsoodKhalid3
 
Chemical and Microbial Reactions Occurring during Vermicomposting
Chemical and Microbial Reactions Occurring during VermicompostingChemical and Microbial Reactions Occurring during Vermicomposting
Chemical and Microbial Reactions Occurring during VermicompostingYogeshIJTSRD
 
Importance of microorganisms in nutrient management
Importance of microorganisms in nutrient managementImportance of microorganisms in nutrient management
Importance of microorganisms in nutrient managementsanthiya kvs
 
Secondary and micronutrients forms,availability and dynamics
Secondary and micronutrients forms,availability and dynamicsSecondary and micronutrients forms,availability and dynamics
Secondary and micronutrients forms,availability and dynamicsKarthekaThirumugam1
 
8 Biofertilizer.pptx
8 Biofertilizer.pptx8 Biofertilizer.pptx
8 Biofertilizer.pptxJuhiPatel97
 
Role of biochar to counteract degradation in acid soils
Role of biochar to counteract degradation in acid soils Role of biochar to counteract degradation in acid soils
Role of biochar to counteract degradation in acid soils ExternalEvents
 
Microbial diversity of vermicompost and vermieash
Microbial diversity of vermicompost and vermieashMicrobial diversity of vermicompost and vermieash
Microbial diversity of vermicompost and vermieashJayvir Solanki
 
Phosphate Solubilising bacteria - Mass cultivation
Phosphate Solubilising bacteria - Mass cultivationPhosphate Solubilising bacteria - Mass cultivation
Phosphate Solubilising bacteria - Mass cultivationsiva ni
 

Ähnlich wie Role of microbes in nutrient mobilization, transformation in fertilizer use effic (20)

Biofertilizers Likhith K
Biofertilizers Likhith KBiofertilizers Likhith K
Biofertilizers Likhith K
 
Plant need based nutrient management and fertilizer recommendation
Plant need based nutrient management and fertilizer recommendationPlant need based nutrient management and fertilizer recommendation
Plant need based nutrient management and fertilizer recommendation
 
Biofertilizer
BiofertilizerBiofertilizer
Biofertilizer
 
Farm innovative
Farm innovativeFarm innovative
Farm innovative
 
Biofertilizer
BiofertilizerBiofertilizer
Biofertilizer
 
Mychorriza
MychorrizaMychorriza
Mychorriza
 
An introduction to professional plant nutrition | Haifa Group
An introduction to professional plant nutrition | Haifa GroupAn introduction to professional plant nutrition | Haifa Group
An introduction to professional plant nutrition | Haifa Group
 
Supplement with- biofertilizr
Supplement with- biofertilizrSupplement with- biofertilizr
Supplement with- biofertilizr
 
Microorganisms as biofertilizer
Microorganisms as biofertilizerMicroorganisms as biofertilizer
Microorganisms as biofertilizer
 
Inm in horticulture
Inm in horticultureInm in horticulture
Inm in horticulture
 
phosphatesolubilizers.pptx
phosphatesolubilizers.pptxphosphatesolubilizers.pptx
phosphatesolubilizers.pptx
 
Biofertilizers increases prodactivity_PPT.ppt
Biofertilizers increases prodactivity_PPT.pptBiofertilizers increases prodactivity_PPT.ppt
Biofertilizers increases prodactivity_PPT.ppt
 
Chemical and Microbial Reactions Occurring during Vermicomposting
Chemical and Microbial Reactions Occurring during VermicompostingChemical and Microbial Reactions Occurring during Vermicomposting
Chemical and Microbial Reactions Occurring during Vermicomposting
 
Importance of microorganisms in nutrient management
Importance of microorganisms in nutrient managementImportance of microorganisms in nutrient management
Importance of microorganisms in nutrient management
 
Secondary and micronutrients forms,availability and dynamics
Secondary and micronutrients forms,availability and dynamicsSecondary and micronutrients forms,availability and dynamics
Secondary and micronutrients forms,availability and dynamics
 
8 Biofertilizer.pptx
8 Biofertilizer.pptx8 Biofertilizer.pptx
8 Biofertilizer.pptx
 
Role of biochar to counteract degradation in acid soils
Role of biochar to counteract degradation in acid soils Role of biochar to counteract degradation in acid soils
Role of biochar to counteract degradation in acid soils
 
Microbial diversity of vermicompost and vermieash
Microbial diversity of vermicompost and vermieashMicrobial diversity of vermicompost and vermieash
Microbial diversity of vermicompost and vermieash
 
Balanced nutrition
Balanced nutrition Balanced nutrition
Balanced nutrition
 
Phosphate Solubilising bacteria - Mass cultivation
Phosphate Solubilising bacteria - Mass cultivationPhosphate Solubilising bacteria - Mass cultivation
Phosphate Solubilising bacteria - Mass cultivation
 

KĂźrzlich hochgeladen

Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersChitralekhaTherkar
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 

KĂźrzlich hochgeladen (20)

Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
CĂłdigo Creativo y Arte de Software | Unidad 1
CĂłdigo Creativo y Arte de Software | Unidad 1CĂłdigo Creativo y Arte de Software | Unidad 1
CĂłdigo Creativo y Arte de Software | Unidad 1
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of Powders
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 

Role of microbes in nutrient mobilization, transformation in fertilizer use effic

  • 1. Name of Speaker : Jayvirsinh P. Solanki Degree : M. Sc. Agri. (Agril. Microbiology) Major Advisor : Dr. R. V. Vyas Minor Advisor : Dr. S. N. Shah Course No. : MICRO. 591 Reg. No. : 04-2917-2016 Date : 19/10/2017 Time : 3:30 p.m. Microbes role for nutrient mobilization, transformation and in fertilizer use efficiency
  • 2. CONTENTS Introduction Mechanism and Importance Case studies Conclusion Future prospects 2
  • 3. REQUIREMENT OF PLANT NUTRIENTS Primary nutrient Secondary nutrients Basic nutrient Micro nutrients Nitrogen Phosphorus Potash Sulphur Calcium Magnesium Boron Copper Iron Magnesium Molybdenum Zinc Chlorine Nickel Carbon Hydrogen Oxygen 3  The increasing demand of NPK fertilizer is by 1.5, 2.3 and 3.7 % per annum  Microbes as the best alternative aid for the plant nutrient supply  The fundamental concept of organic farming has its base in the role of indigenous microbial abundance  Microbes increase bio-availability of nutrient
  • 4. The fertility of the soil depends upon  Quantitative nature of the microorganisms  Organic matter content  Nature of microbial products which bind the soil particle together  Humus content 4
  • 5. Mobilization • Basic mechanism through which microbes promote nutrients bioavailability includes nutrient fixation, mobilization and transformation • Nutrient mobilization is the process of making nutrients movable or capable of moving by the physiochemical or biochemical ways • Microbes play a very important role in nutrient mobilization through the biochemical actions like release of organic acids, proton extrusion and lowering pH • Bacterial, fungal inocula and organic amendments can mobilize nutrient reserves 5
  • 7. Phosphorus Mobilization • Microbes play a fundamental role in mobilizing organic, native or inherited P that unavailable for plants • The total P acquired by plants through bacteria and fungus (75%) • Biochemical processes operating in the rhizosphere determine the mobilization and acquisition of soil nutrients • Wide variety of bacteria, fungi and endophytes solubilize insoluble P through the production of organic acids, a feature which is genetically controlled • Such type of inocula are termed as P-mobilizing microbes, as these inocula do not only solubilize P, but they also mobilize its organic form through mineralization and facilitate the translocation of phosphate 7
  • 8. P mobilization mechanism & Microorganisms Organic P mobilization Direct way Lowering pH Hydrolyze organic P Indirect way Release of CO2 Release of Protons Bacillus Beijernckia Burkholderia Enterobacter Flavobacterium Microbacterium Pseudomons Mesorhizobium cicero Mesorhizobium mediterraneum Aspergillus Penicillium 8
  • 9. • K is present in very small amount ranging from 0.04 to 3.00% • Despite of being in limited amount, 98% of this K is bound within the Phyllosilicates structures • The remaining 2% exists in soil solution or on exchange sites to become available for the plants • Hence, soil fertility is decreased due to low availability of this nutrient • Many microorganism in the soil are able to solubilize unavailable forms of K- bearing minerals, such as micas, feldspar, illite and orthoclases by excreting organic acids which either directly dissolves rock K or chelate silicon ions to bring the K into solution K mobilization 9
  • 10. K mobilization mechanisms 10 K mobilization mechanism Organic acid synthesis Oxidation of structural Fe2+ Weathering/ Resolving Structural Fe2+ as electron donor
  • 11. K mobilizers Frateuria sp. Acidothiobacillus ferrooxidans Bacillus mucilaginosus B. edaphicus Burkholderia sp. Pseudomonas sp. Rhizobium sp. Funneliformis mosseae Rhizoglomus intraradices Aspergillus terreus A. niger Cupriavidus necator Rastonia solanacearum 11
  • 12. Fe mobilization • Iron is the fourth most abundant element available on earth and predominantly exits in nature in ferric (Fe3+) form • It is sparingly soluble, therefore not readily available for plant • Iron limitation is a problem for plants on as much as 30% worldwide • Iron tends to form insoluble complexes in aerobic soils of neutral to basic pH • In soil ferrous (Fe2+) is oxidized to ferric (Fe3+) thereby forming insoluble compounds and leaving a very low amount of iron for plant assimilation • Some strains of bacteria synthesize low molecular mass proteins known as siderophores • Siderophores have high affinity to chelate and solubilize iron from mineral or organic compounds • Generally siderophores have high affinity to form complexes with ferric (Fe3+) uptake of the complexes by the cell membrane of both gram positive and negative bacteria reduces ferric (Fe3+) – ferrous (Fe2+) 12
  • 13. Siderophore producing bacteria for iron chelation Bradyrhizobium japonicum Rhizobium leguminosarum Sinorhizobium meliloti Pseudomonas Enterobacter genera Bacillus rhodococcus 13
  • 14. Zinc mobilization • Zinc is required in relatively small concentration although prevalence of Zn deficiency in crop is due to low solubility of Zn rather than low Zn availability • 50% of Indian soils are Zinc deficient • Solubility of Zn decrease with  Increase in pH  High organic matter  Bicarbonate content  High magnesium to calcium ratio  High availability of P and Fe 14
  • 15. • The Zinc applied to agriculture fields as Zinc sulphate (Soluble) get converted to different insoluble forms like:  Zinc hydroxide [Zn(OH)2] at high soil pH,  Zinc Carbonate [ZnCo3 ] in calcium rich alkali soils,  Zinc phosphate [Zn3(PO4)2] in near neutral to alkali soil with large application of P fertilizers and  Zinc sulfide [ZnS] under reducing conditions particularly during flooding • The soluble form of Zn fertilizers applied to the fields become readily insoluble forms that cannot be assimilated by plants which leads to the Zn deficiency in crops • The microbes solubilize the Zn by lowering the pH by gluconic acid and indole acetic acid production • Example: Acinetobacter sp. Burkholderia sp. 15
  • 16. Sulphur mobilization • In agricultural soil, most of the Sulphur (>95%) is present as sulphate esters or as carbon bounded Sulphur rather than inorganic Sulphur • The two major form of organo-S, Sulphur-esters and sulfonates are not directly available to plants which rely upon microbes in soil and rhizosphere for organo- S mobilization • Different Sulphur forms are interconverted and immobilized Sulphur is mineralized to yield plant available inorganic Sulphur • Organic form of Sulphur is metabolized by soil microorganism to make it available for plant in an inorganic form like mineralization, immobilization, oxidation and reduction 16
  • 17. Sulphur mobilizing microbes Pseudomonas Klebsiella Salmonella Enterobacter Serratia Comamonas Lolium perenne 17
  • 18. An overview of the mechanism used by bacteria and fungi to mobilize nutrients (P, K and Fe) in the soil 18
  • 20. Table 1. Selected examples of microbially mediated soil transformation that influence the plant nutrient availability Nutrient Microbial transformation Nitrogen Mineralization, Immobilization, nitrification, denitrification, urea hydrolysis, N₂ fixation, extracellular protease and chitinase activity Phosphorus Mineralization, immobilization, extracellular phosphatase activity, acidic dissolution of mineral P, facilitated uptake mycorrhizal fungi Potassium K solubilization/Mobilization Sulfur Mineralization, immobilization, oxidation, reduction, extracellular sulfatase activity Iron Change in oxidation state. Production of siderophores, chelation Zinc Facilitated uptake by mycorrhizal fungi Copper Facilitated uptake by exudates and mycorrhizal fungi Manganese Change in oxidation state 20
  • 22. N2 Nitrogen fixation Ammonia (NH3) Nitrate ion (NO3 -) Pseudomonas N2 Nitrite ion (NO2 -) Nitrobacter Nitrate ion (NO3 - ) Ammonium ion (NH4 +) Nitrosomonas Nitrite ion (NO2 - ) Amino acids (–NH2) Microbial ammonification Ammonia (NH3) Proteins and waste products Microbial decomposition Amino acids The Nitrogen Transformation 22
  • 26. Proteins and waste products Amino acids Microbial decomposition Amino acids (–SH) Microbial dissimilation H2S H2S Thiobacillus SO4 2– (for energy) SO4 2– Microbial & plant assimilation Amino acids The Sulphur mobilization 26
  • 27. Fertilizer use efficiency (FUE) • Its an estimate of the productivity per unit of nutrient uptake or loss • It depends upon the ability of efficient uptake, transport, storage, mobilization, usage within the plant and even on the environment of nutrient from the soil • The FUE/NUE is an important ecological measure as it integrates a variety of physiological processes in how nutrients taken up by plants are generally used for the production of biomass 27
  • 28. Table 2. Current status of nutrient use efficiency (NUE) of agricultural ecosystem Nutrients Nutrient use efficiency (NUE%) Nitrogen (N) 30-50 Phosphorus (P) 10-20 Potassium (K) 70-80 Sulphur (S) 8-12 Zinc (Zn) 2-5 Iron (Fe) 1-2 Copper (Cu) 1-2 Manganese (Mn) 1-2 28
  • 29. Why fertilizer use efficiency is important …??? • Improving FUE is an important goal to harvest better crop yield on sustained basis • Overall the nutrient use efficiency by crop plant is ~50% under all agro- ecological conditions • Hence, large part of the applied nutrients is lost in the soil-plant system • To check the nutrient loss and their adverse effect due to excess usage and diminish the cost in crop production • To minimize the pollution hazard due to increasing use of chemical fertilizer 29
  • 30. Integrated Nutrient Supply for FUE ONLYSOILNUTRIENT SOILNUTRIENTS+ ORGANICMANURES SOILNUTRIENTS+ ORGANICMANURES+ CHEMICALFERTILISERS SOILNUTRIENTS+ ORGANICMANURES+ CHEMICALFERTILISERS+ BIOFERTILISER YEILD BENEFITS : • MAXIMUM PRODUCTIVITY • ECONOMIC CULTIVATION • SUSTAINED SOIL FERTILITY 30
  • 31. 31
  • 32. SR NO Treatments Growth (cm) Fresh wt . of Leaf(g) Moisture Content(%) Root volume/plant(ml) pH EC dsm-1 OC(%) P2O5 (kg/acre) K2O (kg/acre) 1 NPK(0) 42.64 50.40 62.34 47.50 7.20 0.27 1.60 231.00 193.00 2 NPK(100%) 52.20 70.94 62.70 47.50 7.20 0.55 1.77 313.00 199.00 3 NPK(75%) 47.58 70.46 62.80 47.00 7.30 0.63 1.93 298.00 189.00 4 NPK(50%) 50.28 65.70 63.10 57.00 7.30 0.65 1.47 177.00 195.00 5 N(75%)+P K(100%) 48.86 68.72 63.50 48.50 7.20 0.61 1.50 191.00 198.00 6 N(50%)+P(100%) 48.94 70.02 65.20 60.50 7.20 0.73 1.52 233.00 185.00 7 NK (100%)+P(75%) 51.64 70.76 64.00 46.00 7.30 0.73 1.73 130.00 190.00 8 NK(100%)+P(50%) 47.80 65.00 62.40 58.00 7.20 0.64 1.69 150.00 209.00 9 NP100%)+P(75%) 50.08 66.50 64.80 57.00 7.20 0.65 1.55 149.00 198.00 10 NP(100%)+K(50%) 52.76 62.00 63.70 55.00 7.20 0.56 1.67 240.00 187.00 11 NP(100%)+K(75%)+KMB 54.04 80.68 62.20 76.00 7.10 0.78 1.90 180.00 215.00 12 NP(100%)+K(50%)+KMB 49.12 82.18 63.90 83.00 7.20 0.60 1.86 135.00 233.00 Table 3. Response of mulberry to co-inoculation with potash mobilizing, phosphate solubilizing, nitrogen fixing isolates and VAM Continue… Case 1: Response of Mulberry to different bio-inoculants 32
  • 33. SR NO Treatments Growth (cm) Fresh wt . of Leaf(g) Moisture Content(%) Root volume/plant(ml) pH EC dsm-1 OC(%) P2O5 (kg/acre) K2O (kg/acre) 13 PK(100%)+N(75%)+NF 50.50 74.30 62.60 83.50 7.10 0.77 1.81 244.00 218.00 14 PK(100%)+N(50%)+NF 41.54 77.30 62.70 37.00 7.10 0.62 1.96 209.00 232.00 15 NK(100%)+P(75%)+KMB 43.16 73.50 63.00 41.00 7.10 0.54 1.94 208.00 282.00 16 NK(100%)+P(50%)+KMB 54.48 78.50 64.60 68.50 7.10 0.78 1.89 269.00 291.00 17 NK(100%)+P(75%)+VAM 54.02 74.30 63.50 77.50 7.10 0.68 2.05 312.00 264.00 18 NK(100%)+P(50%)+VAM 52.28 62.40 62.40 54.00 7.20 0.69 2.15 304.00 284.00 19 NPK(100%)+NFB+PSM+VAM+ KMB 49.72 83.00 63.00 65.50 7.10 0.65 2.11 352.00 288.00 20 NPK(75%)+NFB+PSM+VAM+K MB 49.14 87.95 61.50 62.00 7.00 0.96 2.10 369.00 300.00 21 NPK(50%)+NFB+PSM+VAM+K MB 48.58 83.10 63.70 75.50 7.10 0.90 2.11 389.00 240.00 CD @ 5% 21.08 30.80 -- 25.30 -- -- 0.77 103.10 97.20 Bangalore Padma and Sukumar, 201533
  • 34. Treatment no. Treatment detail T1 Control T2 Azospirillum T3 Azotobacter T4 Pseudomonas T5 Bacillus T6 Azospirillum + Azotobacter T7 Azospirillum + Bacillus T8 Azotobacter + Bacillus T9 Pseudomonas + Bacillus T10 Azospirillum + Azotobacter T11 Pseudomonas + Azotobacter T12 Azotobacter + Psedomonas + Bacillus Table 4. Treatment detail Case 2: Interaction effect of combined inoculation of PGPR on growth and yield parameters of Chilli var. K1 Tamilnadu Kanchana et al. 2014 Fig. 1: Effect PGPR isolates on the increase in plant nitrogen content Fig. 2: Effect of PGPR isolates on increase in number of fruits per plant 34
  • 35. Plant dry weight (g plant -1) Sampling period in days Treatments no. 25th day 50th day 75th day 100th day T1 0.56 1.76 2.3 4.01 T2 1.45 2.1 4.08 5.34 T3 1.37 2.25 3.1 5.04 T4 1.48 2.35 3.61 5.2 T5 0.98 2.05 3.24 3.26 T6 1.57 2.08 3.98 5.86 T7 0.99 2 3.01 3.48 T8 1.6 2.41 4.65 5.44 T9 1.9 2.56 4.11 6.64 T10 1.46 1.03 3.06 6.02 T11 2.03 2.62 5.02 7.03 T12 2.58 3.67 4.43 7.38 SED 0.045 0.03 0.035 0.04 CD(p=0.05) 0.09 0.06 0.07 0.08 Table 5. Effect of individual and combined inoculation of PGPR on plant dry weight of Chilli var. K-1 35
  • 36. Table 6. Effect of individual and combined inoculation of PGPR on fruit yield in Chilli var. K-1 Fruit yield(g plant -1) Treatments Pot culture study Fruit weight (g fruit -1) T1 78 5.09 T2 89.05 6.02 T3 83.07 7.00 T4 100 6.00 T5 80 6.25 T6 106 6.51 T7 128 6.03 T8 115 8.12 T9 106 8.06 T10 136 7.63 T11 121.05 9.00 T12 160.02 9.21 SED 4.225 0.435 p=(0.05) 8.45 0.87 36
  • 37. Plant phosphorus content (mg plant -1) Sampling period in days Treatments 25th day 50th day 75th day 100th day T1 2.29 7.96 11.37 22.48 T2 3.16 7.26 15.82 28.3 T3 3.38 8.08 17.25 21.39 T4 3.78 5.6 13.8 17.34 T5 3.09 6.6 12.89 15.94 T6 4.26 5.85 13.32 27.98 T7 3.21 6.87 12.96 15.77 T8 4.35 5.8 13.09 26.9 T9 4.72 7.62 16.28 28.89 T10 4.1 6.5 12.97 26.73 T11 4.98 9.68 16.72 29.97 T12 5.02 8.76 18.25 30.99 SED 0.028 0.025 0.024 0.0255 CD(0.05) 0.056 0.05 0.048 0.051 Table 7. Effect of individual and combined inoculation of PGPR on plant phosphorus content in Chilli var. K-1 37
  • 38. Tr. No. Treatment pH OC (%) Available p (Kg/ha) Available K (kg/ha) 1 Chemical fertilizer (NPK) 6.33 0.79 107.75 515.25 2 Absolute control 6.80 0.66 76.75 395.75 3 AMF + NPK 6.23 0.94 118.20 548.75 4 AMF 6.48 0.74 101.50 409.00 5 KMB + NPK 6.23 0.83 110.25 565.75 6 KMB 6.45 0.68 83.75 425.50 7 KMB + AMF + NPK 5.93 0.95 118.25 588.25 8 KMB + AMF 6.57 0.72 101.50 487.00 CD at 5% 0.23 0.16 19.73 126.40 Table 8. Effect of AMF and KMB on the soil parameters after harvesting the crop Subhashini, 2016 Case 3: Effect of NPK fertilizer and co-inoculation with Phosphate-Solubilizing Arbuscular Mycorrhizal Fungus and Potassium-Mobilizing Bacteria on growth, yield, nutrient acquisition and quality of tobacco Rajahmundry 38
  • 39. Treatment no. Treatment Plant height (cm) Number of leaves Stem dry weight (g/plant) Root dry weight (g/plant) Inflorescence dry weight (g/plant) Seed weight (g/plant) 1 NPK 93.50 25 30.63 16.25 8.75 5.53 2 Absolute control 80.50 26 10.62 4.63 3.94 3.35 3 AMF + NPK 99.62 29 35.61 15.00 8.63 7.08 4 AMF alone 84.00 29 15.65 6.88 5.00 5.13 5 KMB + NPK 90.75 27 43.13 12.50 12.25 6.67 6 KMB alone 86.25 29 16.25 6.25 4.63 4.20 7 KMB + AMF + NPK 100.37 26 68.75 16.25 12.38 7.30 8 KMB + AMF 82.00 27 20.00 5.00 5.38 4.63 CD at 5% NS NS 7.71 2.64 1.48 NS Table 9. Effect of AMF and KMB on the growth parameter of FCV tobacco after harvesting the crop 39
  • 40. Fig. 3 Effect of AMF and KMB on cured leaf yield of tobacco (P = 0.05) 40
  • 41. Treatment No. Treatment Nicotine(%) Reducing sugar(%) 1 NPK 1.45 20.37 2 Absolute control 0.95 6.81 3 AMF+NPK 1.52 21.46 4 AMF alone 0.93 14.51 5 KMB + NPK 1.48 21.32 6 KMB alone 1.01 18.45 7 KMB + AMF + NPK 1.72 22.90 8 KMB + AMF 1.13 17.22 CD at 5% 0.17 1.07 Table 10 . Effect of AMF and KMB on the quality parameters of FCV tobacco leaf 41
  • 42. Table 11. The interactive effects of N chemical fertilizer and bio-fertilizer on the nutrient content of rice grain Treatment no. Chemical N fertilization Microbial inoculation N (%) P (%) Fe (%) Zn (mg kg-1) NUE (%) 1 N1 M 1.81 c 0.68 c 23.77 b 29.26 abc 0.71 2 N1 H 1.85 bc 0.61 d 35.66 a 35.02 a 0.73 3 N1 C 1.71 d 0.39 e 14.22 c 11.22 d 0.67 4 N2 M 1.83 c 0.76 ab 21.88 c 31.48 ab 0.96 5 N2 H 2.01 a 0.81 a 17.88 c 35.38 a 1.04 6 N2 C 1.70 d 0.38 e 22.88 d 10.77 d 0.89 7 N3 M 1.80 c 0.70 bc 21.77 b 27.60 bc 1.38 8 N3 H 1.91 b 0.68 c 26.11 b 24.76 c 1.46 9 N3 C 1.40 e 0.38 e 6 d 7.66 d 1.07 Case 4: Rice nutrient management using mycorrhizal fungi and endophytic Herbaspirilum seropedicae Iran Hoseinzad et al., 2016 P = 0.05, M = Mycorrhizal fungi, H = Herbaspirilium seropedicae, C = control, NUE = Nutrient use efficiency 42
  • 43. Table 12. The interactive effects of P fertilizer and bio-fertilizer on soil and plant nutrient content Treatmen t no. Chemical P fertilization Microbial inoculation Straw P (%) Straw Fe (mg Kg-1) Soil K (mg kg-1) Soil Fe (mg kg-1) 1 P1 M 0.52 d 21 c 228 ab 237.30 bc 2 P1 H 0.67 c 20 c 227 bc 246.38 ab 3 P1 C 0.38 e 21 c 228 ab 214.96 d 4 P2 M 0.77 b 33 a 229 ab 235.27c 5 P2 H 0.77 b 14 d 206 c 232.80 c 6 P2 C 0.42 e 9 e 230 a 215.08 d 7 P3 M 0.86 a 34 a 228 ab 253.84 a 8 P3 H 0.66 c 30 b 228 ab 229.72 c 9 P3 C 0.36 e 8 e 280 ab 213.90 d 43Values in the same column followed by different letters are significantly different at P = 0.05
  • 44. Figure 4. Effect of ZnO nanoparticles on plants phenological parameter stems height, root length, root area, root diameter and root nodule. Observations are also compared with bulk ZnO nanoparticles Figure 5. Effect of ZnO particles (bulk and nano) on p-mobilizing enzymes (acid P, alkaline P, phytase) and soil microbial population indicator enzyme (dehydrogenase) Raliya et al., 2016St. Louis, USA Case 5: Enhancing the mobilization of native phosphorus in mung bean rhizosphere using ZnO nanoparticles synthesized by soil fungi 44
  • 45. Figure 6. Effect of ZnO nanoparticles on plant P uptake from rhizosphere in mung bean plant Figure 8. Accumulation of metal ion in leaf, stem, root and seeds: ICP-MS analyses of ZnO particles (bulk and nano) treated plants Figure 7. Influence of bulk and synthesized ZnO nanoparticles on chlorophyll and protein content in the leaves of mung bean 45
  • 46. Table 13. Effect of inoculated KMB strains in available soil potash at different incubation period Treatment no. Treatments Incubation periods (Days) Mean 30 60 90 120 150 Available Potash (mg/kg of soil) 1 Control 90 90 90 91 90 90 2 TKMB 3 100 124 127 125 124 120 3 TKMB 6 101 124 128 125 125 121 4 TKMB 8 93 111 115 113 113 109 5 TKMB 11 118 122 128 127 127 124 Mean 125.58 142.50 164.92 145.17 144.92 S. Em 1.281 For comparing two at 5% Strains 1.13 Time 0.90 Strain × Time 2.54 Bhattacharya et al., 2016Jorhat, India Case 6: Isolation of potash mobilizing microorganisms in tea soil and evaluation of their efficiency in potash nutrition in tea 46
  • 47. Tr. No. Chemical Fertilizer (RDF K %) Biofertilizers (K solubilizer) 1 75 Frateuria aurentia 2 Enterobacter sp. KMB W1 3 Enterobacter cloacae KMB M1 4 Pseudomonas gessardii KMB Ma1 5 Enterobacter cloacae KMB C1 6 Enterobacter cloacae KMB B1 7 Bacillus tequilensis VVN09 8 Pseudomonas fluorescence AAU07 9 100 --- 10 00 Control Table 14. Treatment details Anonymous, 2014Anand Case: 7 Efficacy of Potash mobilizing bacteria in Potato 47
  • 48. Available K (mg kg-1) ( composite sample ) Tuber treatment Soil treatment Trt. 2010-11 2011-12 2012-13 Av. 2010-11 2011-12 2012-13 Av. T1 129.24 130.66 128.56 129.49 129.54 128.87 127.89 129.54 T2 128.90 129.46 129.00 129.12 129.05 127.72 126.80 129.05 T3 127.60 127.46 127.00 127.35 127.73 125.40 126.30 127.73 T4 127.89 129.38 128.40 128.56 128.30 126.96 126.90 128.30 T5 125.29 126.33 124.56 125.39 124.24 125.57 125.30 124.24 T6 125.79 124.60 124.30 124.90 122.18 123.51 123.45 122.18 T7 124.86 123.33 123.40 123.86 117.85 123.85 120.60 117.85 T8 119.47 120.78 120.30 120.18 115.33 122.33 121.30 115.33 T9 116.06 115.92 114.30 115.43 111.89 121.26 115.90 111.89 T10 107.04 108.00 108.03 107.69 102.00 101.33 101.20 102.00 Table 15. : Available potassium in soil as influenced by KMB treatment 48
  • 49. Plant height at harvest (cm) Tuber treatment Soil treatment Trt 2010-11 2011-12 2012-13 POOLED 2010-11 2011-12 2012-13 POOLED T1 81.67a 83.63a 84.73a 83.34a 83.33a 86.43a 82.6a 83.90a T2 80.27ab 82.43a 83.87ab 82.19ab 82.27ab 84.60a 81.0ab 82.61abc T3 76.13bcd 78.62cd 77.77de 77.51ab 73.27c 74.60c 74.8cd 74.23de T4 76.17bcd 78.85cd 82.63abc 79.22ab 77.60bc 79.32b 78.0bc 78.31abcd T5 78.53abc 80.29bc 79.23cde 79.35ab 76.47c 78.48b 75.7cd 76.87abcd T6 74.40cd 76.28ef 80.37bcd 77.24ab 76.20c 78.50b 76.3cd 76.99abcd T7 72.07d 74.75f 75.5e 74.22bc 75.20c 77.53b 73.5d 75.42bcd T8 75.87bcd 77.68de 78.17de 77.24ab 73.67c 75.36c 75.0cd 74.69cde T9 80.60ab 82.11ab 84.00ab 82.34ab 82.80ab 86.47a 82.0ab 83.65ab T10 65.80e 67.42g 67.43f 66.88c 67.47d 70.13d 64.23e 67.28e S. Em Âą 3.01 3.09 1.38 83.34a 3.21 2.44 1.37 2.46 CV % 6.8 6.8 3.0 2.6 7.2 5.3 3.1 5.5 Y x T NS NS Table 16. Plant height as influenced by KMB inoculation (2010-11 to 2012-13) 49
  • 50. Tuber yield (t/ha) KMB inoculation by Tuber treatment KMB inoculation by Soil treatment Trt. 2010-11 2011-12 2012-13 POOLED 2010-11 2011-12 2012-13 POOLED T1 26.75a 28.50a 27.26a 27.50a 24.68a 26.45a 26.96a 26.03a T2 25.28ab 27.30b 27.26a 26.61ab 22.89abc 25.77ab 26.96a 25.21ab T3 21.33de 23.47ef 24.30ab 23.03cd 18.93d 22.68d 23.11b 21.57bc T4 23.95bc 26.11c 26.67a 25.57abc 22.13abcd 24.53bc 25.78ab 24.15abc T5 22.45cd 24.33d 25.78ab 24.19abcd 18.48d 22.55d 24.59ab 21.87bc T6 22.72cd 24.18de 26.07ab 24.32abcd 19.13cd 23.65cd 25.19ab 22.65abc T7 20.05e 22.36g 22.22b 21.54d 18.75d 22.40d 22.81b 21.32c T8 21.81d 23.25f 25.19ab 23.42bcd 20.61bcd 23.58cd 24.00ab 22.73abc T9 25.71ab 27.24b 24.89ab 25.95abc 24.25ab 27.13a 24.59ab 25.33ab T10 13.17f 14.00h 14.22c 13.80e 14.19e 16.40e 13.93c 14.84d S. EmÂą 0.89 0.92 1.44 1.03 1.13 0.98 1.19 1.13 CV % 6.9 6.6 10.2 7.5 9.6 7.3 8.7 8.4 Y x T NS NS Table 17. Tuber yield as influenced by KMB inoculation (2010-11 to 2012-13) 50
  • 51. Table 18. Effect of Fe, Zn and Rhizobium isolates on grain yield and Fe & Zn contents (mg kg-1 ) in pigeon pea seed Treatment No. Treatment Details seed yield (kg ha-1) Fe Content (mg kg-1 of seed ) Zn Content (mg kg-1 of seed ) BDN-2 AAU-07-08 BDN-2 AAU-07-08 BDN-2 AAU-07-08 E IE E IE E IE T1 CONTROL 1879 1689 42.50 36.17 19.23 18.21 T2 Fe50 2033 2139 51.00 40.33 20.38 20.32 T3 Zn25 2046 1930 44.50 39.00 21.28 21.66 T4 Fe50+Zn25 2159 2034 52.00 40.33 21.08 21.66 T5 Fe50+R-16 2197 2183 46.83 45.00 20.70 20.32 T6 Zn25+R-16 2245 2021 45.00 39.17 20.90 21.01 T7 Fe50+Zn25+R-16 2327 2168 48.50 46.00 21.66 21.28 T8 Fe50+R-19 2190 2120 44.33 41.83 21.09 21.66 T9 Zn25+ R-19 2248 2065 43.17 40.00 22.91 22.62 T10 Fe50+Zn25+R-19 2426 2066 52.33 43.00 20.95 21.47 T11 R-16 2104 2002 43.67 41.50 21.66 19.74 T12 R-19 2166 1928 46.83 40.50 21.85 20.89 S.Em+ 88.46 79.71 2.61 1.55 0.58 0.75 CD@5% 259 234 NS 4.55 1.69 2.19 CV% 7.1 6.8 9.7 6.6 4.7 6.2 Anonymous, 2013Anand Case: 8 Understanding the mechanism of variation in status of a few nutritionally important micronutrients in some important food crops and the mechanism of micronutrient enrichment in plant parts 51Note: E = Efficient, IE = Inefficient
  • 52. Table 19. Effect of different treatments on total Zn uptake of two wheat varieties Treatment no. Treatments Total Zn uptake (Âľg pot -1) WH 1021 VL 804 Mean 1 Control 312.6 168.9 240.8 2 2.5 mg Zn/kg soil 308.9 179.5 244.2 3 BC 306.5 146.7 226.6 4 AX 342.5 235.6 289.0 5 AB 302.2 204.7 253.5 6 BC+AX 297.0 190.7 243.8 7 BC+AB 327.6 211.9 233.0 8 AX+AB 459.5 195.7 327.6 9 BC+AX+AB 452.7 207.6 330.1 Mean 337.4 193.5 265.4 Effect Var. Treat. Var. × Treat. SEmÂą 2.21 4.70 6.63 LSD (p≤0.05) 6.3 13.5 19.0 Pantnagar, India Vaid et al. 2013 Case 9: Effect of Zinc solubilizing bioinoculants on zinc nutrition of Wheat 52 Note: BC = Burkholderia sp., AB and AX strain = Acinetobacter
  • 53. Treatment no. Treatment Zn Concentration (mg kg -1) Grain Straw WH 1021 VL 804 Mean WH 1021 VL 804 Mean 1 Control 17.7d 12.6a 15.1 9.5g 7.2de 8.4 2 2.5 mg Zn/kg soil 21.1i 175d 19.3 7.2de 5.1a 6.1 3 BC 20.4b 15.4c 17.9 6.5bc 5.0a 5.7 4 AX 24.0i 19.7g 21.8 7.4de 7.1cde 7.21 5 AB 18.7ef 18.1de 18.4 7.6def 7.1cde 7.3 6 BC + AX 18.7ef 15.9c 17.3 7.1cde 5.4a 6.2 7 BC + AB 18.0de 18.5ef 18.2 7.8ef 6.1b 6.9 8 AX + AB 27.3k 14.5b 20.9 7.7ef 8.3f 8.0 9 BC + AX + AB 26.8k 19.0f 22.9 10.7b 6.9cd 8.8 Mean 21.4 16.8 18.7 7.9 6.4 7.2 Effect Var. Treat Var. × treat Var. Treat Var. × Treat SEmÂą 0.01 0.17 0.23 0.07 0.16 0.23 LSD(p≤0.05) 0.2 0.5 0.7 0.2 0.5 0.7 Table 20. Effect of treatments on Zn concentration in grain and straw of two varieties 53
  • 54. Treatment no. Treatment WH 1021 VL 804 Mean WH 1021 VL 804 Mean Grain yield (g/pot -1) Straw yield (g/pot -1) 1 Control 9.9 gh 6.8ab 8.3 14.6e 11.6e 13.1 2 2.5 mg Zn/kg soil 9.8 g 7bc 8.4 14.1de 11.4c 12.8 3 BC 10.4 i 6.5a 8.5 14.6e 9.4a 12 4 AX 10ghi 8f 9 13.8de 11.1c 12.5 5 AB 10.3hi 7.4cd 8.8 14.4e 10.2b 12.3 6 BC + AX 10-4i 8.3f 9.4 14.4ef 11.1c 12.7 7 BC + AB 11.4i 7.9ef 9.7 15.7f 11c 13.4 8 AX + AB 12.2k 7.5de 9.8 16.4g 10.5b 13.5 9 BC + AX + AB 11.1j 7.2bcd 9.1 14.6e 10.3b 12.4 Mean 10.6 7.4 9 14.7 10.7 12.7 Effect Var. Treat Var. × Treat. Var. Treat. Var.× Treat. S. Em Âą 0.1 0.1 0.2 0.1 0.1 0.2 LSD(p≤0.05) 0.1 0.3 0.4 0.2 0.4 0.5 54 Table 21. Effect of different treatments on grain and straw yields of two wheat varieties
  • 55. Type Biofertilizer Native Strain Recommended Crop Fertilizer Saving/ha N fixers Azolla pinnata (fresh) Anand Low land rice 30- NAzolla pinnata (dry) -do- Wheat, potato, tobacco BGA - Low land rice Azotobacter chroococcum ABA 1 Pearl millet, sorghum, paddy, Amaranthus (Rajgara), sugarcane, maize, potato, wheat, pigeon pea, tobacco, rice , onion , sesame, cotton 20- N Azospirillum lipoferum ASA 1 Pearl millet, finger millet, paddy, sorghum, guinea grass, maize, sesame, tobacco, tobacco, onion Acetobacter diazotrophicus ACG 2 Sugarcane N Rhizobium spp. 5 ARS 21 Pigeon pea 30- N F 75, IC-76 Chickpea GMBS 1 Green gram RECOMMENDATIONS FOR FARMERS OF GUJARAT – Three Decades 55
  • 56. PSM Bacillus circulans PBA 4 Cow pea 20- P2O5 Bacillus brevis PBA 12 Sorghum (Fodder), wheat (durum), Pearl millet, wheat Bacillus coagulans PBA 13 Pigeon pea, wheat Bacillus coagulans PBA 14 Cow pea, Bacillus coagulans PBA 16 Sorghum (Dual & Fodder), urad bean, sesame, pearl millet, sesame, rice Bacillus coagulans PBA 17 Urad bean, groundnut Torulopsora globosa PBA 22 Pigeon pea, maize, sorghum, groundnut KMB Enterobacter asburiae KMBW1 Potato 25 % saving of Potash Bio NP Azospirillum lipoferum + B. coagulans ASA 1 + PBA-16 Chilli & Brinjal Nursery 25 % saving of RDF Bio NPK Azotobacter, Azospirillum, Bacillus 5 bacteria in consortium Groundnut, Potato, Wheat 25 % saving of RDF (N:P:K) 56
  • 57.  The microbes play a vital role in nutrient mobilization, transformation and fertilizer use efficiency are evident by many case studies, without them or their activities stated for different natural biological processes and the crop growth remains low  Microbial inoculant’s actions in rhizosphere directly helps for the nutrient accessibility viz. N, P, K, S, Fe, Zn etc. in soil by taking part in nutrient dynamics and ultimately to achieve the important goal of agriculture to harvest better crop yield and to keep soil healthy and living for a long run in sustained manner Conclusion 57
  • 58.  Need for search of newer native microbes which have better mobilization, transformation activity which can save chemical fertilizer and increase fertilizer use efficiency  Search for novel multifunctional native microbial community  Molecular approaches for microbial strain improvement for greatest mobilization and transformation activity Future prospects 58