SlideShare ist ein Scribd-Unternehmen logo
1 von 38
Downloaden Sie, um offline zu lesen
1
Content
2
Aims
State of the art
Pt and Cu clusters in nanosized BEA zeolite: γ-irradiation and thermal
reduction
Pt clusters in BEA zeolite: plasma treatment
Preparation of Cu doped nanosized LTA zeolite – in situ incorporation
Conclusions
3
Aims
I. Synthesis of nanosized porous materials
- BEA & LTA types zeolite frameworks - crystal size - 10-500 nm
II. Preparation of metal (Me) contain molecular sieves
- Via two step approach: ion exchange follow by
= γ-irradiation
= plasma treatment
= thermal reduction
- Via one step approach using metal contains template
III. Preparation of metal doped thin porous films
IV. Me clusters in porous host for sensor application
4
State of the art: molecular sieves
Molecular sieves are porous solids contain channels system
run through the entire particle, interconnecting the cavities and
terminating at the particle surface.
Zeolite membrane for gas separation
5
State of the art: zeolites
Zeolites are crystalline microporous aluminosilicates with a three-dimensional
framework structure that forms regular channel system with molecular
dimensions running throughout the zeolite crystals.
The zeolite framework is consisting from corner sharing SiO4 and
AlO4 tetrahedra
Extraframework counter cations which are under-coordinated by
the framework
Zeolite A type LTA structure Zeolite Beta type BEA structure
6
State of the art: approaches for metal doping
Building nanomaterials
1. Top-Down
Για να καταλάβουμε τα πολλά και τα μεγάλα πρέπει να κατανοήσουμε πρώτα τα μικρά
To understand the very large, we must understand the very small
Δημόκριτος-Democritus
2. Bottom-Up
The glass appears green in daylight (reflected light), but red when
light is transmitted from the inside of the vessel.
7
Cluster size and location in porous frameworks
Small clusters containing below 4 nuclearity located in the small cage or side
pockets of the zeolites
Low nuclearity metal cluster ( < 40 nuclearity) – situated in the zeolite cages
or in the intersection spaces
Metal clusters with more than 40 nuclearity, located in the channels or on the
particle surface
Examples: Pt and Ir in
sodalite cage in Faujasites
Super-cage in Faujasites
BEA zeolites
Pt clusters in LTL
8
Approaches for preparation of Me doped …
Reducing agents
chemical reduction / γ-irradiation
Impregnation of zeolite frameworks
Adsorption and decomposition of zerovalent metal compounds
9
Approaches for preparation of Me doped …
Reducing agents
chemical reduction / γ-irradiation
Preparation of metal clusters in ion-exchanged zeolites
In-situ incorporation of metals in zeolite matrixes
(CH3)4N+ & [Cu(EDTA)]2-
into LTA framework
Initial colloidal suspension
Hydrothermal
synthesis
10
11
Pt clusters in Beta zeolite: BEA zeolite framework…
BEA type zeolite structure
Aperture of the straight channels 6.6 x 7.1 Å – directions [100] and [010]
Tortuous channel with aperture of 5.6 x 5.6 Å –in direction [001]
12
Synthesis of nanosized BEA type crystals
Initial precursor suspension: 7.5 (TEA)2O*: 1 Al2O3
**: 25S iO2
***: 375 H2O
Aged and hydrothermally treated: 3 days at RT followed by 72 h at 373 K
Purified and ion-exchanged: BEA zeolite crystals have Si/Al= 14 and 0.75 wt.% Pt2+
(TEA)2O* - tetraethyammonium hydroxide, Al2O3
**- aluminum tri- sec-butoxide and SiO2**- fumed silica
10 20 30 40 50
BEA-Pt[(NH3
)4
]
2+
BEA-pure
BEA-C-ICSD-416768
BEA-B-ICSD-160441
BEA-B-ICSD-153254
Intensity[a.u.]
2[deg], CuK
BEA-A-ICSD-153253
10 20 30 40 50
BEA-pure-100 nm
BEA-pure-10 nm
Intensity[a.u.]
2 [deg], CuK
Sample FWHM[21.45°2θ, (013)], [rad] L, [nm] FWHM[22.47°2θ, (031)], [rad] L, [nm]
BEA-pure-10 0.01375 10.7 0.01186 12.5
BEA-pure-100 0.01476 10 0.00623 23.6
Powder X-Ray Diffraction Pattern recorded in Debye-Scherrer Geometry
I. Yordanov, R. Knoerr, V. De Waele, P. Bazin, S. Thomas, M. Rivallan, L. Lakiss, T. Metzger; S. Mintova, Elucidation on Pt Clusters in the Micropores of ZeoliteNanoparticles Assembledin ThinFilms, J. Phys. Chem. C 2010, 114, (49), 20974-20982,
13
PSD and stability of BEA colloidal suspensions
10 100 1000
BEA-Pt-1000
BEA-Pt-300
Colloidal suspension of BEA-Pt
2+
Washed BEA crystal stabilized in water
ScatteringIntensity[a.u.]
Particle size d, [nm]
As prepared suspension of BEA
Dynamic Light Scattering
Particle size distribution
-150 -100 -50 0 50 100 150
BEA-Pt-1000
BEA-Pt-300
Colloidal suspension of BEA-Pt
2+
Washed BEA crystals stabilized in water
Intensity[a.u.]
-potential [mV]
As prepared suspension of BEA
Stability of zeolite suspensions
ζ – potentiel values
Hydrodynamic diameter: 25 – 50 nm ζ - potential value: from -50 to -35 mV
No change of the PSD and ζ-potentiels during post–synthesis treatments
I. Yordanov, R. Knoerr, V. De Waele, P. Bazin, S. Thomas, M. Rivallan, L. Lakiss, T. Metzger; S. Mintova, Elucidation on Pt Clusters in the Micropores of ZeoliteNanoparticles Assembledin ThinFilms, J. Phys. Chem. C 2010, 114, (49), 20974-20982,
14
Preparation of Pt clusters via γ-radiolysis
Pt plasmon band at 240-
260 nm due to formed Ptn
0
clusters
UV-vis spectra of Pt-clusters
n
mm
aq
aq
aq
h
MMnM
MMe
MMM
MMe
OHOHHOHeOH




 




2
0
)1(
2
0
0
22
**
32

I. Yordanov, R. Knoerr, V. De Waele, P. Bazin, S. Thomas, M. Rivallan, L. Lakiss, T. Metzger; S. Mintova, Elucidation on Pt Clusters in the Micropores of ZeoliteNanoparticles Assembledin ThinFilms, J. Phys. Chem. C 2010, 114, (49), 20974-20982,
200 300 400 500 600 700 800
0.0
0.5
1.0
1.5
2.0
300 400 500
0
1
0 5 10
gfedc
b
Dose [kGy]Wavelength [nm]
Absorbence[/cm]
Wavelength [nm]
a
d
c
b
260
249
Absorbence[/cm]
15
Pt clusters in BEA zeolite: HRTEM study
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
20
40
60
80
100
120
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
20
40
60
80
100
120
Al
Si
Cu
Pt
Pt Pt
Intensity[Counts]
Energy [keV]
BEA-Pt-300
Al
Si
Cu
Pt
Pt
Intensity[Counts]
Energy [keV]
Pt
BEA-Pt-1000
Scale bar = 10 nm
Average diameter of BEA zeolite crystals: 10 nm
No Pt cluster outside of the BEA crystals
Pt clusters are situated in the BEA channels
Size of Pt clusters: 1-2 nm
dPt(220) =0.23 nm
dBEA(100) =1.26 nm
I. Yordanov, R. Knoerr, V. De Waele, P. Bazin, S. Thomas, M. Rivallan, L. Lakiss, T. Metzger, S. Mintova, Elucidation on Pt Clusters in the Micropores of ZeoliteNanoparticles Assembledin ThinFilms, J. Phys. Chem. C 2010, 114, (49), 20974-20982,
16
1717
1. Coating suspension:
-1 wt. % zeolite suspension
-co-solvant: ethanol
-binder: 0.7 wt.% methyl cellulose
2. Spin coating deposition:
3. Conditions of spin coating:
1st layer 60 s at 4000 rpm
2nd – 4th layers 30 s at 1600 rpm and
5th – 6th layers 60 s at 3600 rpm
All films contain 6 layers
500 nm
500 nm
500 nm
Preparation of zeolite films
18
Grazing-Incidence X-Ray Diffraction
0.0 0.1 0.2 0.3 0.4 0.5 0.6
1
10
100
1000
Incident angle 
, [deg]
Penetrationdepth,[Angstrom]
Principal scheme: GI-XRD geometry
Characterization of films at different penetration depths Λ = f (Q)
500 nm
'
i
''
i
'
f
''
f
  1
Im

 ZQ
I. Yordanov, R. Knoerr, V. De Waele, P. Bazin, S. Thomas, M. Rivallan, L. Lakiss, T. Metzger, S. Mintova, Elucidation on Pt Clusters in the Micropores of ZeoliteNanoparticles Assembledin ThinFilms, J. Phys. Chem. C 2010, 114, (49), 20974-20982,
19
Pt-clusters in BEA films: GI-XRD patterns
BEA-Pt film: 1000 Gy
27 37 47 57 67 77
i
=0.1°
i
=0.05°
Intensity[a.u.]
2 [deg]
Pt(111)
Pt(200) Pt(220)
5 6 7 8 9
Intensity[a.u.]
2 [deg]
27 37 47 57 67 77
Pt(220)Pt(200)
Pt(111)
i
=0.1°
i
=0.05°
Intensity[a.u.]
2 [deg]
Pt-BEA films: 300 Gy
Small clusters Big clusters
Scherrer’s equation:


cos.
.
FWHM
K
L
Average cluster size: 1-2 nm
I. Yordanov, R. Knoerr, V. De Waele, P. Bazin, S. Thomas, M. Rivallan, L. Lakiss, T. Metzger, S. Mintova, Elucidation on Pt Clusters in the Micropores of ZeoliteNanoparticles Assembledin ThinFilms, J. Phys. Chem. C 2010, 114, (49), 20974-20982,
20
Ellipsometry investigations
200 300 400 500 600 700 800 900
1.2
1.3
1.4
1.5
1.6
1.7
1.8
Indexofrefraction
Wavelength [nm]
Principal scheme: Ellipsometry
Film thickness: 200 - 500 nm
Increase of the density of the materials leads to
higher values of index refractive index
200 300 400 500 600 700 800 900
0
10
20
30
40
50
60
70
80
90
75°
,[deg]
Wavelength , [nm]
65°
Cauchy modelling
Optical properties
Beta
Pt-Beta-300
Pt-Beta-1000
21
Preparation of Pt clusters in BEA zeolite by cold plasma3750
3500
3250
3000
2750
2500
, [cm
-1
]
t,[sec]
25
0
A
BEA-Pt-2+ in O2
Before plasma treatment
After plasma treatment
3750
3500
3250
3000
2750
2500
AHC
25
t,[sec]
0
A
, [cm
-1
]
In Situ FTIR study of TEA decomposition from BEA zeolite
M. Rivallan, I. Yordanov, S. Thomas, S. Mintova, F. Thibault-Starzyk, Plasma Synthesis of highlydispersed metal clusters confained in nanosized zeolites. ChemCatChem 2010, 2, (9), 1074-1078
BEA-Pt-2+ in N2
The CH3- stretching modes at 3100 - 2800 cm-1
originating from the TEA+ -ion vanishes due to
plasma decomposition of TEA+ -ion.
22
Pt clusters in BEA zeolite for CO sensing
10 20 30 40 50
BEA pure
BEA-Pt
2+
Intensity[a.u.]
2deg], CuK
BEA-Pt
Pt
Stability of Pt clusters and Beta host
2150 2125 2100 2075 2050 2025
, [cm
-1
]
0,02 a.u.
A
CO chemisorbed on Pt-BEA BEA-Pt sample treated in
O2 plasma
The band at 2086 cm-1 of Pt-CO increases with
the concentration of CO
Global process: from template removal to formation of Pt0
M. Rivallan, I. Yordanov, S. Thomas, S. Mintova, F. Thibault-Starzyk, Plasma Synthesis of highlydispersed metal clusters confained in nanosized zeolites. ChemCatChem 2010, 2, (9), 1074-1078,
Bragg’s reflections at 39.8° and 46.3 ° 2θ from
Pt0 with hkl – values (111) and (002)
23
Copper clusters in BEA zeolite
10 20 30 40 50
Intensity[a.u.]
2 [deg], Cu K
BEA pure
BEA-Cu
2+
Crystallinity of the sample
10 100 1000
ScateringIntensity[a.u.]
Particle size d, [nm]
BEA pure
BEA-Cu
2+
Particle size distribution
(TEA)2O* - tetraethyammonium hydroxide, Al2O3 ** -aluminum tri- sec-butoxide and SiO2 **- fumed silica
BEA-Cu2+ BEA-Cu-species
Thermal treatment at 723 K for 6 h
Initial precursor suspension: 7(TEA)2O*:1.9Al2O3
**:100SiO2
***: 1000H2O
Aged and hydrothermally treated: 27 h at RT followed by 72 h at 373 K
Purified and ion-exchanged: BEA zeolite crystals have Si/Al= 14 and 1.74 wt.% Cu2+
24
i r
21002125
2150
2175
2200
Ar
Ar
Ar + CO
Tim
e
Wavenumber [cm
-1
]
0.2 a.u.
C
u
+-C
O
-2157
cm
-1
C
u+
-(C
O
)
2-2177
cm-1
500 nm
CO chemisorbed on Cu species
Cu-doped zeolite Beta
nanoparticles have good sensing
response to CO.
The solid films Cu-BEA/QCM can
be used for sensing applications.
Thin film on QCM
Spin coating deposition
Coating suspension
Thin film on QCM from
zeolite Beta nanocrystals
doped with Cu species
Operando DRIFTS study
Gas composition:
Lean flow: Ar
Rich flow: 4000 ppm CO
Total flow = 10 ml.min-1
Gas vector: Ar
IR bands:
2157 cm-1 - Cu+ - CO
2177 cm-1 - Cu+(CO)2
Cu doped zeolite film on QCM for gas sensing
25
26
Structure of zeolite Linde A
β – cage
(sodalite cage) - [4866]
α – cage - [4126886]
The cages of zeolite A can host different cations such as Na+, K+,
Ca+, Cs+, NH4
+ etc.
LTA zeolite framework has 3D pore structure with pores running
perpendicular each other in x, y and z planes
4.2 ÅD4R
O
Na+
Na+
O
27
Synthesis of zeolite A crystals
Sample name Molar ratio Template T,°C t,h dH,nm
tf-Na-LTA 2.5Na2O*:1.5Al2O3
***:2SiO2
***:110H2O template free 60 24 410
Na-TMA-LTA 13.5(TMA)2O:1.8Al2O3
**:11.3SiO2
**:0.29Na2O*:763H2O [(CH3)4N]+ 70 24 170
Cu-EDTA-TMA-LTA 13.4(TMA)2O:1.7Al2O3:11.2SiO2:0.25[Cu(EDTA)2]2-:5NH3:650H2O [(CH3)4N]+
2[Cu(EDTA)]2- 70 72 280
Chemical composition of the initial systems and conditions of synthesis
LTA zeolite crystals have been separated from the mother liquid by double centrifugation at 13 000 rpm for 15
mins. After each cycle the zeolite crystals were re-dispersed in Milli-Q water using the ultrasonic bath for 1h in ice.
Na2O* - NaOH, (TMA)2O - tetramethylammonium hydroxide, Al2O3
**- Al(O-i-Pr)3, Al2O3
*** - sodium aluminate, SiO2
** - LUDOX SM-30 SiO2
*** - sodium silicate
[(CH3)4N]+-ion
~6.4 Å
[Cu(EDTA)]2—complex
~7.8 Å
β – cage
(sodalite cage)
Cage inner space ~6.5 Å
α – cage
Cage inner space ~11.4 Å
28
PXRD data
Powder X-Ray Diffraction Pattern recorded in Bragg-Brentano Geometry
Experimental XRD patterns contain all typical for LTA framework Bragg’s reflections at:
2θ = 7.2 ° => (200); 2θ = 10.2 ° => (220); 2θ = 12.5 ° => (222); 2θ = 24.2 ° => (622)
Cu2O Bragg’s reflections at:
2θ = 36.5 ° => (111) and 2θ = 42.4 ° => (002) - have not been observed
5 10 15 20 25 30 35 40 45 50
29.152
Intensity/a.u.
2deg, Cu K
Simulated PXRD pattern
tf-Na-LTA
Na-TMA-LTA
Cu-EDTA-TMA-LTA
17.202
200
220
222
622
I. Yordanov, I. Karatchevtseva, H. Chevreau, M. Avdeev, R. Holmes, G. Thorogood, T. Hanley, One-step approach for synthesisof nanosized Cu-doped zeoliteA crystalsusing the Cu-EDTA-complex. Micropor. Mesopor. Mat. 2014, 199, pp 18–28
29
In situ PXRD & TG-DTA data sets
10 20 30 40 50 60 70 80
29.152
Temperature/°C
Intensity/a.u.
2deg, Cu K
17.202
35
100
125
150
175
200
250
300
450
35
15 20 25 30 35
Temperature/°C
Intensity/a.u. 2deg, Cu K
35
100
125
150
175
200
250
300
450
35
25
20
15
10
5
0500
400
300
200
100
0
24.46
24.48
24.50
24.52
24.54
24.56
24.58
24.60
450
250175
Temperature / °C
CellParametera/‫إ‬
Time / hours
24.47649
35
24.60318
125
24.60032
24.60420
24.53904
24.53703
35
cooleddown
Temperature-dependent in situ XRD data sets
I. Yordanov, I. Karatchevtseva, H. Chevreau, M. Avdeev, R. Holmes, G. Thorogood, T. Hanley, One-step approach for synthesisof nanosized Cu-doped zeoliteA crystalsusing the Cu-EDTA-complex. Micropor. Mesopor. Mat. 2014, 199, pp 18–28
Cell parameter a estimated from X-ray data
sets, as a function of temperature
Zeolite cell parameter a :
- in the range 35 -125 °C increases due to a thermal
expansion of both zeolite framework and occluded
organic template
- in the range 125 -250 °C is nearly constant
- at 175 ° C contracts due to a release of H2O from the
framework.
- in the range 250- 450 °C decreases due to removal of
H2O and thermal decomposition of various organic
species.
- at 35 ° C (cooled down) is higher in comparison to the
initial value due to trapped carbonaceous char.
Low-intensity and very
broad Bragg reflections
were observed between
17.20 ° and 29.15 ° 2θ.
The intensity of the
additional reflections in all
patterns between 35 ° C
and 175 ° C decreases with
increasing the temperature.
3030
TG-DTA data
I. Yordanov, I. Karatchevtseva, H. Chevreau, M. Avdeev, R. Holmes, G. Thorogood, T. Hanley, One-step approach for synthesisof nanosized Cu-doped zeoliteA crystalsusing the Cu-EDTA-complex. Micropor. Mesopor. Mat. 2014, 199, pp 18–28
Cell parameter a estimated from X-ray data
sets, as a function of temperature
100 200 300 400 500 600 700 800 900 1000
60
70
80
90
100
Weightchange/%
Tempareture / °C
-20
0
20
40
60
80
100
DTA/V
-2.0
-1.5
-1.0
-0.5
0.0
DerivativeWeight/%.(°C)
-1
Endo
Exo
C)
TG-DTA data
< 100 °C - releasing of unbound or free H2O
175 - enlarged pore apertures allow H2O molecules to
escape from the cages.
100 - 200 °C - releasing of chemically bound H2O
250 - 420 °C - the thermal decomposition of
[Cu(EDTA)]2- -ion
450 -500 °C - thermal decomposition of TMA+ -ion.
>500 ° C - slow ongoing mass-loss.
35 - 250 ° C - thermal expansion of both
zeolite framework and template
175 ° C - contraction of the a due to a
release of H2O from framework
250- 450 °C - a decreases due to removal of
H2O and thermal decomposition of various
organic species.
25
20
15
10
5
0500
400
300
200
100
0
24.46
24.48
24.50
24.52
24.54
24.56
24.58
24.60
450
250175
Temperature / °C
CellParametera/‫إ‬
Time / hours
24.47649
35
24.60318
125
24.60032
24.60420
24.53904
24.53703
35
cooleddown
31
SEM - EDX data
200 nm
0 2 4 6 8 10
0
1000
2000
3000
4000
5000
6000
7000
8000
Na K
Cu, K
C K
O K
Na K
Cu, K
Intensity/Counts
Energy / keV
Si K
Al K
Cu, K
Si K
Al K
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0
1000
2000
3000
4000
5000
6000
7000
8000
Intensity/Counts
Energy / keV
Energy-dispersive X-ray spectrum
Energy-dispersive X-ray analysis
confirmed the presence of Cu2+-ion in the
Cu-EDTA-TMA-LTA zeolite nano-crystals
with the Cu peaks evident at 8.1 keV (Kα1)
and 0.93 keV (Kβ1)
SEM secondary micrograph
Cu-EDTA-TMA-LTA zeolite nano-crystals are
predominantly spherical in shape with the
crystal size in the region 170-280 nm.
I. Yordanov, I. Karatchevtseva, H. Chevreau, M. Avdeev, R. Holmes, G. Thorogood, T. Hanley, One-step approach for synthesisof nanosized Cu-doped zeoliteA crystalsusing the Cu-EDTA-complex. Micropor. Mesopor. Mat. 2014, 199, pp 18–28
32
ESR spectrum
The asymmetric ESR spectrum suggests that the ligands (the O-atoms from COO--groups)
along the z axis are much more screened from the Cu2+ ion than are the four radial
ligands (2 N- and 2 O-atoms from chelate ring) along the x and y axes.
2500 3000 3500 4000
500 Gauss
X-band magnetic field strength / Gauss
T
g = 2.08
gII
= 2.30
AII
= 150
Cu2+ ion - (d9 – t6
2ge1
g)
O
N
Cu[EDTA]2- -complex LTA zeolite framework
I. Yordanov, I. Karatchevtseva, H. Chevreau, M. Avdeev, R. Holmes, G. Thorogood, T. Hanley, One-step approach for synthesisof nanosized Cu-doped zeoliteA crystalsusing the Cu-EDTA-complex. Micropor. Mesopor. Mat. 2014, 199, pp 18–28
33
FTIR spectra
The IR spectroscopy clearly shows the presence of bands due to bonding of copper to nitrogen and oxygen atoms
from the EDTA4--ion, which is an indication of existence of a [Cu(EDTA)]2--complex in the LTA zeolite framework.
I. Yordanov, I. Karatchevtseva, H. Chevreau, M. Avdeev, R. Holmes, G. Thorogood, T. Hanley, One-step approach for synthesisof nanosized Cu-doped zeoliteA crystalsusing the Cu-EDTA-complex. Micropor. Mesopor. Mat. 2014, 199, pp 18–28
Cu2+ ion
O
N
Cu[EDTA]2- -complex
IR bands:
1635 cm-1 – COO- ··· Cu2+
1618 cm-1 – COO- ··· Cu2+
1109 cm-1 – C–N··· Cu2+
1800 1700 1600 1500 1400 1300 1200 1100 1000 900 800 700
3500 3000 2500
1109
1295
1340
1415
1485
690
838
1350
1385
1618
Wavenumber / cm-1
tf-Na-LTA
Na-TMA-LTA
Cu-EDTA-TMA-LTA
1635
Wavenumber / cm-1
νas-COO-···Cu2+
-νas–CH3
-νs–CH3
(CH3)4N+
-νs-COO-
-ν–C–O
-scis.vib.-COO-
-wag.vib.-COO-
-wag.vib.–CH2
-twist.–CH2
-stretch.–C–N···Cu2+
CH2
34
Raman spectra
I. Yordanov, I. Karatchevtseva, H. Chevreau, M. Avdeev, R. Holmes, G. Thorogood, T. Hanley, One-step approach for synthesisof nanosized Cu-doped zeoliteA crystalsusing the Cu-EDTA-complex. Micropor. Mesopor. Mat. 2014, 199, pp 18–28
1600 1400 1200 1000 800 600 400 200
630
670
1050
1270
1465
1453
1675
1415
490
458
Na-TMA-LTA
Raman shift / cm
-1
tf-Na-LTA
Cu-EDTA-TMA-LTA
1018
Cu2+ ion
O
N
Cu[EDTA]2- -complex
Raman bands:
1018 cm-1 – C – C
458 cm-1 – Cu – N
630 cm-1 – Cu – O
-stretch.–C–C
-C–N–deform.+Cu–N–s.stretch
-νas-COO-
-νas–CH3
-scis.vib.–CH2
-twist.–CH2
-νas–C–N
-νs–C–N
-stretch.–Cu–O
-D4R
I458/I490>1
I458/I490<1
The Raman spectroscopy data is in a good agreement with the IR results confirming the inclusion of the
[Cu(EDTA)]2- -complex in the zeolite framework.
35
20 40 60 80 100 120 140 20 40 60 80 100 120 140
20 40 60 80 100 120 140 0 100 200 300 400 500
24.46
24.48
24.50
24.52
24.54
24.56
24.58
24.60
24.62
Intensity
2 / (°)
1000 a.u. 200C 500C
Intensity
2 / (°)
1000 a.u.
after cooling to 27C
Intensity
2 / (°)
1000 a.u.
X-ray data set
CellParametera/Å
Temperature / °C
Neutrons data set
I. Yordanov, I. Karatchevtseva, H. Chevreau, M. Avdeev, R. Holmes, G. Thorogood, T. Hanley, One-step approach for synthesisof nanosized Cu-doped zeoliteA crystalsusing the Cu-EDTA-complex. Micropor. Mesopor. Mat. 2014, 199, pp 18–28
Non-ambient Neutron Powder Diffraction study
LeBail analysis on neutron data sets recorded in Debye-Scherrer Geometry
Both the in situ XRD and NPD techniques show good agreement demonstrating the expansion
of the zeolite cell during thermal treatment followed by subsequent contraction with the
decomposition of the organic template.
ECHIDNA
High-Resolution Powder
Diffractometer
36
Conclusions
Nanosized zeolite crystals (with BEA type framework  10 nm & LTA framework
< 300 nm) have been synthesized by hydrothermal treatment using
conventional heating.
Formation of metal clusters (Pt & Cu) can be achieved by different reducing
approaches : i) γ-radiation, ii) plasma treatment, iii) thermal treatment.
The selective detection of CO on Pt- and Cu- containing porous films is
demonstrated.
Cu doped nanocrystals of zeolite A have been prepared by one step approach
of incorporation of Cu-EDTA complex into LTA framework during the zeolite
synthesis
The metal containing nanomaterials assembled in thin films are of great
importance for gas chemical sensing application mainly for selective detection
of CO, CO2 and hydrocarbons.





37
Dr Svetlana Mintova – thesis supervisor
Dr Till Metzger – beam scientist ID01 at ESRF
Dr Gèrald Chaplais – MOF synthesis
Dr Vincent de WAELE -– γ-irradaition
Dr Mickaël Rivallan – FTIR spectroscopy
Dr Sébastien Thomas – mathematical modeling
Dr Inna Karatchevtseva – Raman spectroscopy
Dr Hubert Chevreau – LeBail on X-ray data sets
Dr Maxim Avdeev - beam scientist ECHIDNA beamline at ANSTO
3838

Weitere ähnliche Inhalte

Was ist angesagt?

characteristics exploration of n ii cuzn nano-composite coated permanent magnets
characteristics exploration of n ii cuzn nano-composite coated permanent magnetscharacteristics exploration of n ii cuzn nano-composite coated permanent magnets
characteristics exploration of n ii cuzn nano-composite coated permanent magnetsIJEAB
 
A Simple Thermal Treatment Synthesis and Characterization of Ni-Zn Ferrite (N...
A Simple Thermal Treatment Synthesis and Characterization of Ni-Zn Ferrite (N...A Simple Thermal Treatment Synthesis and Characterization of Ni-Zn Ferrite (N...
A Simple Thermal Treatment Synthesis and Characterization of Ni-Zn Ferrite (N...IOSR Journals
 
Fabrication, Structural and Optical Properties of Ni and Cr Doped ZnO Nanocom...
Fabrication, Structural and Optical Properties of Ni and Cr Doped ZnO Nanocom...Fabrication, Structural and Optical Properties of Ni and Cr Doped ZnO Nanocom...
Fabrication, Structural and Optical Properties of Ni and Cr Doped ZnO Nanocom...IRJET Journal
 
G03504047053
G03504047053G03504047053
G03504047053theijes
 
Microstructural and Magnetic Properties of Cobalt Ferrite Nanoparticles Synth...
Microstructural and Magnetic Properties of Cobalt Ferrite Nanoparticles Synth...Microstructural and Magnetic Properties of Cobalt Ferrite Nanoparticles Synth...
Microstructural and Magnetic Properties of Cobalt Ferrite Nanoparticles Synth...ijtsrd
 
Synthesis and Characterization of Au-Zn Implants in Sapphire
Synthesis and Characterization of Au-Zn Implants in SapphireSynthesis and Characterization of Au-Zn Implants in Sapphire
Synthesis and Characterization of Au-Zn Implants in SapphireDaniel Scott
 
Influence of concentration on the structural, optical and electrical properti...
Influence of concentration on the structural, optical and electrical properti...Influence of concentration on the structural, optical and electrical properti...
Influence of concentration on the structural, optical and electrical properti...iosrjce
 
Photo Physical Investigation on Mg / Sn Doped ZnO Nanoparticles for Gas Sensi...
Photo Physical Investigation on Mg / Sn Doped ZnO Nanoparticles for Gas Sensi...Photo Physical Investigation on Mg / Sn Doped ZnO Nanoparticles for Gas Sensi...
Photo Physical Investigation on Mg / Sn Doped ZnO Nanoparticles for Gas Sensi...IRJET Journal
 
Preparation and study of optical properties of (polymer nickel nitrate) compo...
Preparation and study of optical properties of (polymer nickel nitrate) compo...Preparation and study of optical properties of (polymer nickel nitrate) compo...
Preparation and study of optical properties of (polymer nickel nitrate) compo...Alexander Decker
 
University of Toronto Chemistry Librarians Workshop June 2012
University of Toronto Chemistry Librarians Workshop June 2012University of Toronto Chemistry Librarians Workshop June 2012
University of Toronto Chemistry Librarians Workshop June 2012Brock University
 
Molecular Beam Epitaxial Growth and Dielectric Characterization of Ba0.6Sr0.4...
Molecular Beam Epitaxial Growth and Dielectric Characterization of Ba0.6Sr0.4...Molecular Beam Epitaxial Growth and Dielectric Characterization of Ba0.6Sr0.4...
Molecular Beam Epitaxial Growth and Dielectric Characterization of Ba0.6Sr0.4...Oleg Maksimov
 
Improvement Structural and Optical Properties of ZnO/ PVA Nanocomposites
Improvement Structural and Optical Properties of ZnO/ PVA NanocompositesImprovement Structural and Optical Properties of ZnO/ PVA Nanocomposites
Improvement Structural and Optical Properties of ZnO/ PVA Nanocompositesiosrjce
 
Macromolecules 2008,41,7805 7811
Macromolecules 2008,41,7805 7811Macromolecules 2008,41,7805 7811
Macromolecules 2008,41,7805 7811niba50
 
ZnO-Nanostructures_Presentation
ZnO-Nanostructures_PresentationZnO-Nanostructures_Presentation
ZnO-Nanostructures_Presentationjeanpierrecf6
 
Optical studies of nano structured la-doped zn o prepared by combustion method
Optical studies of nano structured la-doped zn o prepared by combustion methodOptical studies of nano structured la-doped zn o prepared by combustion method
Optical studies of nano structured la-doped zn o prepared by combustion methodsuresh800
 
Zinc Oxide Nanowires Prepared by Hot Tube Thermal Evaporation
Zinc Oxide Nanowires Prepared by Hot Tube Thermal EvaporationZinc Oxide Nanowires Prepared by Hot Tube Thermal Evaporation
Zinc Oxide Nanowires Prepared by Hot Tube Thermal EvaporationSyahida Suhaimi
 
Synthesis and characterisation of k doped zno 1
Synthesis and characterisation of k doped zno 1Synthesis and characterisation of k doped zno 1
Synthesis and characterisation of k doped zno 1Jeslin Mattam
 

Was ist angesagt? (20)

characteristics exploration of n ii cuzn nano-composite coated permanent magnets
characteristics exploration of n ii cuzn nano-composite coated permanent magnetscharacteristics exploration of n ii cuzn nano-composite coated permanent magnets
characteristics exploration of n ii cuzn nano-composite coated permanent magnets
 
Aem Lect19
Aem Lect19Aem Lect19
Aem Lect19
 
Aem Lect1
Aem Lect1Aem Lect1
Aem Lect1
 
A Simple Thermal Treatment Synthesis and Characterization of Ni-Zn Ferrite (N...
A Simple Thermal Treatment Synthesis and Characterization of Ni-Zn Ferrite (N...A Simple Thermal Treatment Synthesis and Characterization of Ni-Zn Ferrite (N...
A Simple Thermal Treatment Synthesis and Characterization of Ni-Zn Ferrite (N...
 
Fabrication, Structural and Optical Properties of Ni and Cr Doped ZnO Nanocom...
Fabrication, Structural and Optical Properties of Ni and Cr Doped ZnO Nanocom...Fabrication, Structural and Optical Properties of Ni and Cr Doped ZnO Nanocom...
Fabrication, Structural and Optical Properties of Ni and Cr Doped ZnO Nanocom...
 
G03504047053
G03504047053G03504047053
G03504047053
 
Microstructural and Magnetic Properties of Cobalt Ferrite Nanoparticles Synth...
Microstructural and Magnetic Properties of Cobalt Ferrite Nanoparticles Synth...Microstructural and Magnetic Properties of Cobalt Ferrite Nanoparticles Synth...
Microstructural and Magnetic Properties of Cobalt Ferrite Nanoparticles Synth...
 
Synthesis and Characterization of Au-Zn Implants in Sapphire
Synthesis and Characterization of Au-Zn Implants in SapphireSynthesis and Characterization of Au-Zn Implants in Sapphire
Synthesis and Characterization of Au-Zn Implants in Sapphire
 
Influence of concentration on the structural, optical and electrical properti...
Influence of concentration on the structural, optical and electrical properti...Influence of concentration on the structural, optical and electrical properti...
Influence of concentration on the structural, optical and electrical properti...
 
Photo Physical Investigation on Mg / Sn Doped ZnO Nanoparticles for Gas Sensi...
Photo Physical Investigation on Mg / Sn Doped ZnO Nanoparticles for Gas Sensi...Photo Physical Investigation on Mg / Sn Doped ZnO Nanoparticles for Gas Sensi...
Photo Physical Investigation on Mg / Sn Doped ZnO Nanoparticles for Gas Sensi...
 
Preparation and study of optical properties of (polymer nickel nitrate) compo...
Preparation and study of optical properties of (polymer nickel nitrate) compo...Preparation and study of optical properties of (polymer nickel nitrate) compo...
Preparation and study of optical properties of (polymer nickel nitrate) compo...
 
University of Toronto Chemistry Librarians Workshop June 2012
University of Toronto Chemistry Librarians Workshop June 2012University of Toronto Chemistry Librarians Workshop June 2012
University of Toronto Chemistry Librarians Workshop June 2012
 
Molecular Beam Epitaxial Growth and Dielectric Characterization of Ba0.6Sr0.4...
Molecular Beam Epitaxial Growth and Dielectric Characterization of Ba0.6Sr0.4...Molecular Beam Epitaxial Growth and Dielectric Characterization of Ba0.6Sr0.4...
Molecular Beam Epitaxial Growth and Dielectric Characterization of Ba0.6Sr0.4...
 
Improvement Structural and Optical Properties of ZnO/ PVA Nanocomposites
Improvement Structural and Optical Properties of ZnO/ PVA NanocompositesImprovement Structural and Optical Properties of ZnO/ PVA Nanocomposites
Improvement Structural and Optical Properties of ZnO/ PVA Nanocomposites
 
Aem Lect5
Aem Lect5Aem Lect5
Aem Lect5
 
Macromolecules 2008,41,7805 7811
Macromolecules 2008,41,7805 7811Macromolecules 2008,41,7805 7811
Macromolecules 2008,41,7805 7811
 
ZnO-Nanostructures_Presentation
ZnO-Nanostructures_PresentationZnO-Nanostructures_Presentation
ZnO-Nanostructures_Presentation
 
Optical studies of nano structured la-doped zn o prepared by combustion method
Optical studies of nano structured la-doped zn o prepared by combustion methodOptical studies of nano structured la-doped zn o prepared by combustion method
Optical studies of nano structured la-doped zn o prepared by combustion method
 
Zinc Oxide Nanowires Prepared by Hot Tube Thermal Evaporation
Zinc Oxide Nanowires Prepared by Hot Tube Thermal EvaporationZinc Oxide Nanowires Prepared by Hot Tube Thermal Evaporation
Zinc Oxide Nanowires Prepared by Hot Tube Thermal Evaporation
 
Synthesis and characterisation of k doped zno 1
Synthesis and characterisation of k doped zno 1Synthesis and characterisation of k doped zno 1
Synthesis and characterisation of k doped zno 1
 

Andere mochten auch

Lani Wong Portfolio
Lani Wong PortfolioLani Wong Portfolio
Lani Wong PortfolioLani Wong
 
Lixin quartz engineered stone
Lixin quartz engineered stoneLixin quartz engineered stone
Lixin quartz engineered stoneLEADSTONE QUARTZ
 
Özlem ÖZDİLEK (ÖZKILIÇ) Zeolite Master's Thesis
Özlem ÖZDİLEK (ÖZKILIÇ) Zeolite Master's ThesisÖzlem ÖZDİLEK (ÖZKILIÇ) Zeolite Master's Thesis
Özlem ÖZDİLEK (ÖZKILIÇ) Zeolite Master's ThesisÖzlem ÖZKILIÇ
 
Understanding ‘Expert’ Scientists: Implications for Management and Organizati...
Understanding ‘Expert’ Scientists: Implications for Management and Organizati...Understanding ‘Expert’ Scientists: Implications for Management and Organizati...
Understanding ‘Expert’ Scientists: Implications for Management and Organizati...Viktor Dörfler
 
Contratos informáticos &amp; contratos electrónicos
Contratos informáticos &amp; contratos electrónicosContratos informáticos &amp; contratos electrónicos
Contratos informáticos &amp; contratos electrónicosMaria Alejandra Pineda López
 
Conclusión general sobre los delitos informáticos
Conclusión general sobre los delitos informáticosConclusión general sobre los delitos informáticos
Conclusión general sobre los delitos informáticoscruzterrobang
 
Tema 5.Las grandes potencias europeas
Tema 5.Las  grandes  potencias  europeasTema 5.Las  grandes  potencias  europeas
Tema 5.Las grandes potencias europeassocialestolosa
 
Las partes del cuerpo humano
Las partes del cuerpo humanoLas partes del cuerpo humano
Las partes del cuerpo humanoManuel Benet Keil
 
Tema 2 La Revolución Francesa
Tema 2 La Revolución FrancesaTema 2 La Revolución Francesa
Tema 2 La Revolución Francesapeterpanahoy
 
L A S R E V O L U C I O N E S R U S A S
L A S  R E V O L U C I O N E S  R U S A SL A S  R E V O L U C I O N E S  R U S A S
L A S R E V O L U C I O N E S R U S A SFernando Gómez
 

Andere mochten auch (14)

Lani Wong Portfolio
Lani Wong PortfolioLani Wong Portfolio
Lani Wong Portfolio
 
6ARachelMatthews
6ARachelMatthews6ARachelMatthews
6ARachelMatthews
 
Lixin quartz engineered stone
Lixin quartz engineered stoneLixin quartz engineered stone
Lixin quartz engineered stone
 
Özlem ÖZDİLEK (ÖZKILIÇ) Zeolite Master's Thesis
Özlem ÖZDİLEK (ÖZKILIÇ) Zeolite Master's ThesisÖzlem ÖZDİLEK (ÖZKILIÇ) Zeolite Master's Thesis
Özlem ÖZDİLEK (ÖZKILIÇ) Zeolite Master's Thesis
 
Rafa viides
Rafa viidesRafa viides
Rafa viides
 
Understanding ‘Expert’ Scientists: Implications for Management and Organizati...
Understanding ‘Expert’ Scientists: Implications for Management and Organizati...Understanding ‘Expert’ Scientists: Implications for Management and Organizati...
Understanding ‘Expert’ Scientists: Implications for Management and Organizati...
 
Contratos informáticos &amp; contratos electrónicos
Contratos informáticos &amp; contratos electrónicosContratos informáticos &amp; contratos electrónicos
Contratos informáticos &amp; contratos electrónicos
 
Conclusión general sobre los delitos informáticos
Conclusión general sobre los delitos informáticosConclusión general sobre los delitos informáticos
Conclusión general sobre los delitos informáticos
 
LA GUERRA FRIA
LA GUERRA FRIALA GUERRA FRIA
LA GUERRA FRIA
 
Revolucion rusa
Revolucion  rusaRevolucion  rusa
Revolucion rusa
 
Tema 5.Las grandes potencias europeas
Tema 5.Las  grandes  potencias  europeasTema 5.Las  grandes  potencias  europeas
Tema 5.Las grandes potencias europeas
 
Las partes del cuerpo humano
Las partes del cuerpo humanoLas partes del cuerpo humano
Las partes del cuerpo humano
 
Tema 2 La Revolución Francesa
Tema 2 La Revolución FrancesaTema 2 La Revolución Francesa
Tema 2 La Revolución Francesa
 
L A S R E V O L U C I O N E S R U S A S
L A S  R E V O L U C I O N E S  R U S A SL A S  R E V O L U C I O N E S  R U S A S
L A S R E V O L U C I O N E S R U S A S
 

Ähnlich wie Ivan Yordanov highlights

Presentation__ferroelectric_materials.ppt
Presentation__ferroelectric_materials.pptPresentation__ferroelectric_materials.ppt
Presentation__ferroelectric_materials.pptRezaMohammadi90
 
Characterization of different dopants in TiO2 Structure by Pulsed Laser Dep...
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Dep...Characterization of different dopants in TiO2 Structure by   Pulsed Laser Dep...
Characterization of different dopants in TiO2 Structure by Pulsed Laser Dep...sarmad
 
Electro oxidation of methanol on ti o2 nanotube supported platinum electrodes
Electro oxidation of methanol on ti o2 nanotube supported platinum electrodesElectro oxidation of methanol on ti o2 nanotube supported platinum electrodes
Electro oxidation of methanol on ti o2 nanotube supported platinum electrodestshankar20134
 
Electro oxidation of methanol on ti o2 nanotube supported platinum electrodes
Electro oxidation of methanol on ti o2 nanotube supported platinum electrodesElectro oxidation of methanol on ti o2 nanotube supported platinum electrodes
Electro oxidation of methanol on ti o2 nanotube supported platinum electrodesmadlovescience
 
Plasmon Enhanced Solar Cells, Jan-Henrik Smått
Plasmon Enhanced Solar Cells, Jan-Henrik SmåttPlasmon Enhanced Solar Cells, Jan-Henrik Smått
Plasmon Enhanced Solar Cells, Jan-Henrik SmåttBusiness Turku
 
Synthesis, characterization and electrocatalytic activity of silver nanorods ...
Synthesis, characterization and electrocatalytic activity of silver nanorods ...Synthesis, characterization and electrocatalytic activity of silver nanorods ...
Synthesis, characterization and electrocatalytic activity of silver nanorods ...tshankar20134
 
Synthesis, characterization and electrocatalytic activity of silver nanorods ...
Synthesis, characterization and electrocatalytic activity of silver nanorods ...Synthesis, characterization and electrocatalytic activity of silver nanorods ...
Synthesis, characterization and electrocatalytic activity of silver nanorods ...madlovescience
 
Presentation ZnO (Final).pptx
Presentation ZnO (Final).pptxPresentation ZnO (Final).pptx
Presentation ZnO (Final).pptxAhsanAwan53
 
Sonia Katdare Research Presentation 2008
Sonia Katdare Research Presentation 2008Sonia Katdare Research Presentation 2008
Sonia Katdare Research Presentation 2008soniakatdare
 
Poster_SAS2012_final
Poster_SAS2012_finalPoster_SAS2012_final
Poster_SAS2012_finalIvan Yordanov
 
Synthesis and Characterization Studies of Solvothermally Synthesized Undoped ...
Synthesis and Characterization Studies of Solvothermally Synthesized Undoped ...Synthesis and Characterization Studies of Solvothermally Synthesized Undoped ...
Synthesis and Characterization Studies of Solvothermally Synthesized Undoped ...IJERA Editor
 
Precipitation and Hetero-nucleation Effect of V( C
Precipitation and Hetero-nucleation Effect of V( CPrecipitation and Hetero-nucleation Effect of V( C
Precipitation and Hetero-nucleation Effect of V( CNigel Wang
 
RSC Adv., 2015, 5, 51828–51833
RSC Adv., 2015, 5, 51828–51833RSC Adv., 2015, 5, 51828–51833
RSC Adv., 2015, 5, 51828–51833Sedigheh Abedi
 
CapItalIs Fuel Cell Challenge V Presentation
CapItalIs Fuel Cell Challenge V PresentationCapItalIs Fuel Cell Challenge V Presentation
CapItalIs Fuel Cell Challenge V PresentationEngenuitySC
 
Structural characterization of TiO2 films grown on LaAlO3 and SrTiO3 substrat...
Structural characterization of TiO2 films grown on LaAlO3 and SrTiO3 substrat...Structural characterization of TiO2 films grown on LaAlO3 and SrTiO3 substrat...
Structural characterization of TiO2 films grown on LaAlO3 and SrTiO3 substrat...Oleg Maksimov
 

Ähnlich wie Ivan Yordanov highlights (20)

Presentation__ferroelectric_materials.ppt
Presentation__ferroelectric_materials.pptPresentation__ferroelectric_materials.ppt
Presentation__ferroelectric_materials.ppt
 
Characterization of different dopants in TiO2 Structure by Pulsed Laser Dep...
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Dep...Characterization of different dopants in TiO2 Structure by   Pulsed Laser Dep...
Characterization of different dopants in TiO2 Structure by Pulsed Laser Dep...
 
Electro oxidation of methanol on ti o2 nanotube supported platinum electrodes
Electro oxidation of methanol on ti o2 nanotube supported platinum electrodesElectro oxidation of methanol on ti o2 nanotube supported platinum electrodes
Electro oxidation of methanol on ti o2 nanotube supported platinum electrodes
 
Electro oxidation of methanol on ti o2 nanotube supported platinum electrodes
Electro oxidation of methanol on ti o2 nanotube supported platinum electrodesElectro oxidation of methanol on ti o2 nanotube supported platinum electrodes
Electro oxidation of methanol on ti o2 nanotube supported platinum electrodes
 
Plasmon Enhanced Solar Cells, Jan-Henrik Smått
Plasmon Enhanced Solar Cells, Jan-Henrik SmåttPlasmon Enhanced Solar Cells, Jan-Henrik Smått
Plasmon Enhanced Solar Cells, Jan-Henrik Smått
 
Synthesis, characterization and electrocatalytic activity of silver nanorods ...
Synthesis, characterization and electrocatalytic activity of silver nanorods ...Synthesis, characterization and electrocatalytic activity of silver nanorods ...
Synthesis, characterization and electrocatalytic activity of silver nanorods ...
 
Synthesis, characterization and electrocatalytic activity of silver nanorods ...
Synthesis, characterization and electrocatalytic activity of silver nanorods ...Synthesis, characterization and electrocatalytic activity of silver nanorods ...
Synthesis, characterization and electrocatalytic activity of silver nanorods ...
 
Presentation ZnO (Final).pptx
Presentation ZnO (Final).pptxPresentation ZnO (Final).pptx
Presentation ZnO (Final).pptx
 
Sulzbach_REU_Poster
Sulzbach_REU_PosterSulzbach_REU_Poster
Sulzbach_REU_Poster
 
Sonia Katdare Research Presentation 2008
Sonia Katdare Research Presentation 2008Sonia Katdare Research Presentation 2008
Sonia Katdare Research Presentation 2008
 
Poster_SAS2012_final
Poster_SAS2012_finalPoster_SAS2012_final
Poster_SAS2012_final
 
Synthesis and Characterization Studies of Solvothermally Synthesized Undoped ...
Synthesis and Characterization Studies of Solvothermally Synthesized Undoped ...Synthesis and Characterization Studies of Solvothermally Synthesized Undoped ...
Synthesis and Characterization Studies of Solvothermally Synthesized Undoped ...
 
Precipitation and Hetero-nucleation Effect of V( C
Precipitation and Hetero-nucleation Effect of V( CPrecipitation and Hetero-nucleation Effect of V( C
Precipitation and Hetero-nucleation Effect of V( C
 
RSC Adv., 2015, 5, 51828–51833
RSC Adv., 2015, 5, 51828–51833RSC Adv., 2015, 5, 51828–51833
RSC Adv., 2015, 5, 51828–51833
 
Unit 3.ppt
Unit 3.pptUnit 3.ppt
Unit 3.ppt
 
2
22
2
 
325 steevn
325 steevn325 steevn
325 steevn
 
pic for linkedin
pic for linkedinpic for linkedin
pic for linkedin
 
CapItalIs Fuel Cell Challenge V Presentation
CapItalIs Fuel Cell Challenge V PresentationCapItalIs Fuel Cell Challenge V Presentation
CapItalIs Fuel Cell Challenge V Presentation
 
Structural characterization of TiO2 films grown on LaAlO3 and SrTiO3 substrat...
Structural characterization of TiO2 films grown on LaAlO3 and SrTiO3 substrat...Structural characterization of TiO2 films grown on LaAlO3 and SrTiO3 substrat...
Structural characterization of TiO2 films grown on LaAlO3 and SrTiO3 substrat...
 

Ivan Yordanov highlights

  • 1. 1
  • 2. Content 2 Aims State of the art Pt and Cu clusters in nanosized BEA zeolite: γ-irradiation and thermal reduction Pt clusters in BEA zeolite: plasma treatment Preparation of Cu doped nanosized LTA zeolite – in situ incorporation Conclusions
  • 3. 3 Aims I. Synthesis of nanosized porous materials - BEA & LTA types zeolite frameworks - crystal size - 10-500 nm II. Preparation of metal (Me) contain molecular sieves - Via two step approach: ion exchange follow by = γ-irradiation = plasma treatment = thermal reduction - Via one step approach using metal contains template III. Preparation of metal doped thin porous films IV. Me clusters in porous host for sensor application
  • 4. 4 State of the art: molecular sieves Molecular sieves are porous solids contain channels system run through the entire particle, interconnecting the cavities and terminating at the particle surface. Zeolite membrane for gas separation
  • 5. 5 State of the art: zeolites Zeolites are crystalline microporous aluminosilicates with a three-dimensional framework structure that forms regular channel system with molecular dimensions running throughout the zeolite crystals. The zeolite framework is consisting from corner sharing SiO4 and AlO4 tetrahedra Extraframework counter cations which are under-coordinated by the framework Zeolite A type LTA structure Zeolite Beta type BEA structure
  • 6. 6 State of the art: approaches for metal doping Building nanomaterials 1. Top-Down Για να καταλάβουμε τα πολλά και τα μεγάλα πρέπει να κατανοήσουμε πρώτα τα μικρά To understand the very large, we must understand the very small Δημόκριτος-Democritus 2. Bottom-Up The glass appears green in daylight (reflected light), but red when light is transmitted from the inside of the vessel.
  • 7. 7 Cluster size and location in porous frameworks Small clusters containing below 4 nuclearity located in the small cage or side pockets of the zeolites Low nuclearity metal cluster ( < 40 nuclearity) – situated in the zeolite cages or in the intersection spaces Metal clusters with more than 40 nuclearity, located in the channels or on the particle surface Examples: Pt and Ir in sodalite cage in Faujasites Super-cage in Faujasites BEA zeolites Pt clusters in LTL
  • 8. 8 Approaches for preparation of Me doped … Reducing agents chemical reduction / γ-irradiation Impregnation of zeolite frameworks Adsorption and decomposition of zerovalent metal compounds
  • 9. 9 Approaches for preparation of Me doped … Reducing agents chemical reduction / γ-irradiation Preparation of metal clusters in ion-exchanged zeolites In-situ incorporation of metals in zeolite matrixes (CH3)4N+ & [Cu(EDTA)]2- into LTA framework Initial colloidal suspension Hydrothermal synthesis
  • 10. 10
  • 11. 11 Pt clusters in Beta zeolite: BEA zeolite framework… BEA type zeolite structure Aperture of the straight channels 6.6 x 7.1 Å – directions [100] and [010] Tortuous channel with aperture of 5.6 x 5.6 Å –in direction [001]
  • 12. 12 Synthesis of nanosized BEA type crystals Initial precursor suspension: 7.5 (TEA)2O*: 1 Al2O3 **: 25S iO2 ***: 375 H2O Aged and hydrothermally treated: 3 days at RT followed by 72 h at 373 K Purified and ion-exchanged: BEA zeolite crystals have Si/Al= 14 and 0.75 wt.% Pt2+ (TEA)2O* - tetraethyammonium hydroxide, Al2O3 **- aluminum tri- sec-butoxide and SiO2**- fumed silica 10 20 30 40 50 BEA-Pt[(NH3 )4 ] 2+ BEA-pure BEA-C-ICSD-416768 BEA-B-ICSD-160441 BEA-B-ICSD-153254 Intensity[a.u.] 2[deg], CuK BEA-A-ICSD-153253 10 20 30 40 50 BEA-pure-100 nm BEA-pure-10 nm Intensity[a.u.] 2 [deg], CuK Sample FWHM[21.45°2θ, (013)], [rad] L, [nm] FWHM[22.47°2θ, (031)], [rad] L, [nm] BEA-pure-10 0.01375 10.7 0.01186 12.5 BEA-pure-100 0.01476 10 0.00623 23.6 Powder X-Ray Diffraction Pattern recorded in Debye-Scherrer Geometry I. Yordanov, R. Knoerr, V. De Waele, P. Bazin, S. Thomas, M. Rivallan, L. Lakiss, T. Metzger; S. Mintova, Elucidation on Pt Clusters in the Micropores of ZeoliteNanoparticles Assembledin ThinFilms, J. Phys. Chem. C 2010, 114, (49), 20974-20982,
  • 13. 13 PSD and stability of BEA colloidal suspensions 10 100 1000 BEA-Pt-1000 BEA-Pt-300 Colloidal suspension of BEA-Pt 2+ Washed BEA crystal stabilized in water ScatteringIntensity[a.u.] Particle size d, [nm] As prepared suspension of BEA Dynamic Light Scattering Particle size distribution -150 -100 -50 0 50 100 150 BEA-Pt-1000 BEA-Pt-300 Colloidal suspension of BEA-Pt 2+ Washed BEA crystals stabilized in water Intensity[a.u.] -potential [mV] As prepared suspension of BEA Stability of zeolite suspensions ζ – potentiel values Hydrodynamic diameter: 25 – 50 nm ζ - potential value: from -50 to -35 mV No change of the PSD and ζ-potentiels during post–synthesis treatments I. Yordanov, R. Knoerr, V. De Waele, P. Bazin, S. Thomas, M. Rivallan, L. Lakiss, T. Metzger; S. Mintova, Elucidation on Pt Clusters in the Micropores of ZeoliteNanoparticles Assembledin ThinFilms, J. Phys. Chem. C 2010, 114, (49), 20974-20982,
  • 14. 14 Preparation of Pt clusters via γ-radiolysis Pt plasmon band at 240- 260 nm due to formed Ptn 0 clusters UV-vis spectra of Pt-clusters n mm aq aq aq h MMnM MMe MMM MMe OHOHHOHeOH           2 0 )1( 2 0 0 22 ** 32  I. Yordanov, R. Knoerr, V. De Waele, P. Bazin, S. Thomas, M. Rivallan, L. Lakiss, T. Metzger; S. Mintova, Elucidation on Pt Clusters in the Micropores of ZeoliteNanoparticles Assembledin ThinFilms, J. Phys. Chem. C 2010, 114, (49), 20974-20982, 200 300 400 500 600 700 800 0.0 0.5 1.0 1.5 2.0 300 400 500 0 1 0 5 10 gfedc b Dose [kGy]Wavelength [nm] Absorbence[/cm] Wavelength [nm] a d c b 260 249 Absorbence[/cm]
  • 15. 15 Pt clusters in BEA zeolite: HRTEM study 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 20 40 60 80 100 120 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 20 40 60 80 100 120 Al Si Cu Pt Pt Pt Intensity[Counts] Energy [keV] BEA-Pt-300 Al Si Cu Pt Pt Intensity[Counts] Energy [keV] Pt BEA-Pt-1000 Scale bar = 10 nm Average diameter of BEA zeolite crystals: 10 nm No Pt cluster outside of the BEA crystals Pt clusters are situated in the BEA channels Size of Pt clusters: 1-2 nm dPt(220) =0.23 nm dBEA(100) =1.26 nm I. Yordanov, R. Knoerr, V. De Waele, P. Bazin, S. Thomas, M. Rivallan, L. Lakiss, T. Metzger, S. Mintova, Elucidation on Pt Clusters in the Micropores of ZeoliteNanoparticles Assembledin ThinFilms, J. Phys. Chem. C 2010, 114, (49), 20974-20982,
  • 16. 16
  • 17. 1717 1. Coating suspension: -1 wt. % zeolite suspension -co-solvant: ethanol -binder: 0.7 wt.% methyl cellulose 2. Spin coating deposition: 3. Conditions of spin coating: 1st layer 60 s at 4000 rpm 2nd – 4th layers 30 s at 1600 rpm and 5th – 6th layers 60 s at 3600 rpm All films contain 6 layers 500 nm 500 nm 500 nm Preparation of zeolite films
  • 18. 18 Grazing-Incidence X-Ray Diffraction 0.0 0.1 0.2 0.3 0.4 0.5 0.6 1 10 100 1000 Incident angle  , [deg] Penetrationdepth,[Angstrom] Principal scheme: GI-XRD geometry Characterization of films at different penetration depths Λ = f (Q) 500 nm ' i '' i ' f '' f   1 Im   ZQ I. Yordanov, R. Knoerr, V. De Waele, P. Bazin, S. Thomas, M. Rivallan, L. Lakiss, T. Metzger, S. Mintova, Elucidation on Pt Clusters in the Micropores of ZeoliteNanoparticles Assembledin ThinFilms, J. Phys. Chem. C 2010, 114, (49), 20974-20982,
  • 19. 19 Pt-clusters in BEA films: GI-XRD patterns BEA-Pt film: 1000 Gy 27 37 47 57 67 77 i =0.1° i =0.05° Intensity[a.u.] 2 [deg] Pt(111) Pt(200) Pt(220) 5 6 7 8 9 Intensity[a.u.] 2 [deg] 27 37 47 57 67 77 Pt(220)Pt(200) Pt(111) i =0.1° i =0.05° Intensity[a.u.] 2 [deg] Pt-BEA films: 300 Gy Small clusters Big clusters Scherrer’s equation:   cos. . FWHM K L Average cluster size: 1-2 nm I. Yordanov, R. Knoerr, V. De Waele, P. Bazin, S. Thomas, M. Rivallan, L. Lakiss, T. Metzger, S. Mintova, Elucidation on Pt Clusters in the Micropores of ZeoliteNanoparticles Assembledin ThinFilms, J. Phys. Chem. C 2010, 114, (49), 20974-20982,
  • 20. 20 Ellipsometry investigations 200 300 400 500 600 700 800 900 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Indexofrefraction Wavelength [nm] Principal scheme: Ellipsometry Film thickness: 200 - 500 nm Increase of the density of the materials leads to higher values of index refractive index 200 300 400 500 600 700 800 900 0 10 20 30 40 50 60 70 80 90 75° ,[deg] Wavelength , [nm] 65° Cauchy modelling Optical properties Beta Pt-Beta-300 Pt-Beta-1000
  • 21. 21 Preparation of Pt clusters in BEA zeolite by cold plasma3750 3500 3250 3000 2750 2500 , [cm -1 ] t,[sec] 25 0 A BEA-Pt-2+ in O2 Before plasma treatment After plasma treatment 3750 3500 3250 3000 2750 2500 AHC 25 t,[sec] 0 A , [cm -1 ] In Situ FTIR study of TEA decomposition from BEA zeolite M. Rivallan, I. Yordanov, S. Thomas, S. Mintova, F. Thibault-Starzyk, Plasma Synthesis of highlydispersed metal clusters confained in nanosized zeolites. ChemCatChem 2010, 2, (9), 1074-1078 BEA-Pt-2+ in N2 The CH3- stretching modes at 3100 - 2800 cm-1 originating from the TEA+ -ion vanishes due to plasma decomposition of TEA+ -ion.
  • 22. 22 Pt clusters in BEA zeolite for CO sensing 10 20 30 40 50 BEA pure BEA-Pt 2+ Intensity[a.u.] 2deg], CuK BEA-Pt Pt Stability of Pt clusters and Beta host 2150 2125 2100 2075 2050 2025 , [cm -1 ] 0,02 a.u. A CO chemisorbed on Pt-BEA BEA-Pt sample treated in O2 plasma The band at 2086 cm-1 of Pt-CO increases with the concentration of CO Global process: from template removal to formation of Pt0 M. Rivallan, I. Yordanov, S. Thomas, S. Mintova, F. Thibault-Starzyk, Plasma Synthesis of highlydispersed metal clusters confained in nanosized zeolites. ChemCatChem 2010, 2, (9), 1074-1078, Bragg’s reflections at 39.8° and 46.3 ° 2θ from Pt0 with hkl – values (111) and (002)
  • 23. 23 Copper clusters in BEA zeolite 10 20 30 40 50 Intensity[a.u.] 2 [deg], Cu K BEA pure BEA-Cu 2+ Crystallinity of the sample 10 100 1000 ScateringIntensity[a.u.] Particle size d, [nm] BEA pure BEA-Cu 2+ Particle size distribution (TEA)2O* - tetraethyammonium hydroxide, Al2O3 ** -aluminum tri- sec-butoxide and SiO2 **- fumed silica BEA-Cu2+ BEA-Cu-species Thermal treatment at 723 K for 6 h Initial precursor suspension: 7(TEA)2O*:1.9Al2O3 **:100SiO2 ***: 1000H2O Aged and hydrothermally treated: 27 h at RT followed by 72 h at 373 K Purified and ion-exchanged: BEA zeolite crystals have Si/Al= 14 and 1.74 wt.% Cu2+
  • 24. 24 i r 21002125 2150 2175 2200 Ar Ar Ar + CO Tim e Wavenumber [cm -1 ] 0.2 a.u. C u +-C O -2157 cm -1 C u+ -(C O ) 2-2177 cm-1 500 nm CO chemisorbed on Cu species Cu-doped zeolite Beta nanoparticles have good sensing response to CO. The solid films Cu-BEA/QCM can be used for sensing applications. Thin film on QCM Spin coating deposition Coating suspension Thin film on QCM from zeolite Beta nanocrystals doped with Cu species Operando DRIFTS study Gas composition: Lean flow: Ar Rich flow: 4000 ppm CO Total flow = 10 ml.min-1 Gas vector: Ar IR bands: 2157 cm-1 - Cu+ - CO 2177 cm-1 - Cu+(CO)2 Cu doped zeolite film on QCM for gas sensing
  • 25. 25
  • 26. 26 Structure of zeolite Linde A β – cage (sodalite cage) - [4866] α – cage - [4126886] The cages of zeolite A can host different cations such as Na+, K+, Ca+, Cs+, NH4 + etc. LTA zeolite framework has 3D pore structure with pores running perpendicular each other in x, y and z planes 4.2 ÅD4R O Na+ Na+ O
  • 27. 27 Synthesis of zeolite A crystals Sample name Molar ratio Template T,°C t,h dH,nm tf-Na-LTA 2.5Na2O*:1.5Al2O3 ***:2SiO2 ***:110H2O template free 60 24 410 Na-TMA-LTA 13.5(TMA)2O:1.8Al2O3 **:11.3SiO2 **:0.29Na2O*:763H2O [(CH3)4N]+ 70 24 170 Cu-EDTA-TMA-LTA 13.4(TMA)2O:1.7Al2O3:11.2SiO2:0.25[Cu(EDTA)2]2-:5NH3:650H2O [(CH3)4N]+ 2[Cu(EDTA)]2- 70 72 280 Chemical composition of the initial systems and conditions of synthesis LTA zeolite crystals have been separated from the mother liquid by double centrifugation at 13 000 rpm for 15 mins. After each cycle the zeolite crystals were re-dispersed in Milli-Q water using the ultrasonic bath for 1h in ice. Na2O* - NaOH, (TMA)2O - tetramethylammonium hydroxide, Al2O3 **- Al(O-i-Pr)3, Al2O3 *** - sodium aluminate, SiO2 ** - LUDOX SM-30 SiO2 *** - sodium silicate [(CH3)4N]+-ion ~6.4 Å [Cu(EDTA)]2—complex ~7.8 Å β – cage (sodalite cage) Cage inner space ~6.5 Å α – cage Cage inner space ~11.4 Å
  • 28. 28 PXRD data Powder X-Ray Diffraction Pattern recorded in Bragg-Brentano Geometry Experimental XRD patterns contain all typical for LTA framework Bragg’s reflections at: 2θ = 7.2 ° => (200); 2θ = 10.2 ° => (220); 2θ = 12.5 ° => (222); 2θ = 24.2 ° => (622) Cu2O Bragg’s reflections at: 2θ = 36.5 ° => (111) and 2θ = 42.4 ° => (002) - have not been observed 5 10 15 20 25 30 35 40 45 50 29.152 Intensity/a.u. 2deg, Cu K Simulated PXRD pattern tf-Na-LTA Na-TMA-LTA Cu-EDTA-TMA-LTA 17.202 200 220 222 622 I. Yordanov, I. Karatchevtseva, H. Chevreau, M. Avdeev, R. Holmes, G. Thorogood, T. Hanley, One-step approach for synthesisof nanosized Cu-doped zeoliteA crystalsusing the Cu-EDTA-complex. Micropor. Mesopor. Mat. 2014, 199, pp 18–28
  • 29. 29 In situ PXRD & TG-DTA data sets 10 20 30 40 50 60 70 80 29.152 Temperature/°C Intensity/a.u. 2deg, Cu K 17.202 35 100 125 150 175 200 250 300 450 35 15 20 25 30 35 Temperature/°C Intensity/a.u. 2deg, Cu K 35 100 125 150 175 200 250 300 450 35 25 20 15 10 5 0500 400 300 200 100 0 24.46 24.48 24.50 24.52 24.54 24.56 24.58 24.60 450 250175 Temperature / °C CellParametera/‫إ‬ Time / hours 24.47649 35 24.60318 125 24.60032 24.60420 24.53904 24.53703 35 cooleddown Temperature-dependent in situ XRD data sets I. Yordanov, I. Karatchevtseva, H. Chevreau, M. Avdeev, R. Holmes, G. Thorogood, T. Hanley, One-step approach for synthesisof nanosized Cu-doped zeoliteA crystalsusing the Cu-EDTA-complex. Micropor. Mesopor. Mat. 2014, 199, pp 18–28 Cell parameter a estimated from X-ray data sets, as a function of temperature Zeolite cell parameter a : - in the range 35 -125 °C increases due to a thermal expansion of both zeolite framework and occluded organic template - in the range 125 -250 °C is nearly constant - at 175 ° C contracts due to a release of H2O from the framework. - in the range 250- 450 °C decreases due to removal of H2O and thermal decomposition of various organic species. - at 35 ° C (cooled down) is higher in comparison to the initial value due to trapped carbonaceous char. Low-intensity and very broad Bragg reflections were observed between 17.20 ° and 29.15 ° 2θ. The intensity of the additional reflections in all patterns between 35 ° C and 175 ° C decreases with increasing the temperature.
  • 30. 3030 TG-DTA data I. Yordanov, I. Karatchevtseva, H. Chevreau, M. Avdeev, R. Holmes, G. Thorogood, T. Hanley, One-step approach for synthesisof nanosized Cu-doped zeoliteA crystalsusing the Cu-EDTA-complex. Micropor. Mesopor. Mat. 2014, 199, pp 18–28 Cell parameter a estimated from X-ray data sets, as a function of temperature 100 200 300 400 500 600 700 800 900 1000 60 70 80 90 100 Weightchange/% Tempareture / °C -20 0 20 40 60 80 100 DTA/V -2.0 -1.5 -1.0 -0.5 0.0 DerivativeWeight/%.(°C) -1 Endo Exo C) TG-DTA data < 100 °C - releasing of unbound or free H2O 175 - enlarged pore apertures allow H2O molecules to escape from the cages. 100 - 200 °C - releasing of chemically bound H2O 250 - 420 °C - the thermal decomposition of [Cu(EDTA)]2- -ion 450 -500 °C - thermal decomposition of TMA+ -ion. >500 ° C - slow ongoing mass-loss. 35 - 250 ° C - thermal expansion of both zeolite framework and template 175 ° C - contraction of the a due to a release of H2O from framework 250- 450 °C - a decreases due to removal of H2O and thermal decomposition of various organic species. 25 20 15 10 5 0500 400 300 200 100 0 24.46 24.48 24.50 24.52 24.54 24.56 24.58 24.60 450 250175 Temperature / °C CellParametera/‫إ‬ Time / hours 24.47649 35 24.60318 125 24.60032 24.60420 24.53904 24.53703 35 cooleddown
  • 31. 31 SEM - EDX data 200 nm 0 2 4 6 8 10 0 1000 2000 3000 4000 5000 6000 7000 8000 Na K Cu, K C K O K Na K Cu, K Intensity/Counts Energy / keV Si K Al K Cu, K Si K Al K 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0 1000 2000 3000 4000 5000 6000 7000 8000 Intensity/Counts Energy / keV Energy-dispersive X-ray spectrum Energy-dispersive X-ray analysis confirmed the presence of Cu2+-ion in the Cu-EDTA-TMA-LTA zeolite nano-crystals with the Cu peaks evident at 8.1 keV (Kα1) and 0.93 keV (Kβ1) SEM secondary micrograph Cu-EDTA-TMA-LTA zeolite nano-crystals are predominantly spherical in shape with the crystal size in the region 170-280 nm. I. Yordanov, I. Karatchevtseva, H. Chevreau, M. Avdeev, R. Holmes, G. Thorogood, T. Hanley, One-step approach for synthesisof nanosized Cu-doped zeoliteA crystalsusing the Cu-EDTA-complex. Micropor. Mesopor. Mat. 2014, 199, pp 18–28
  • 32. 32 ESR spectrum The asymmetric ESR spectrum suggests that the ligands (the O-atoms from COO--groups) along the z axis are much more screened from the Cu2+ ion than are the four radial ligands (2 N- and 2 O-atoms from chelate ring) along the x and y axes. 2500 3000 3500 4000 500 Gauss X-band magnetic field strength / Gauss T g = 2.08 gII = 2.30 AII = 150 Cu2+ ion - (d9 – t6 2ge1 g) O N Cu[EDTA]2- -complex LTA zeolite framework I. Yordanov, I. Karatchevtseva, H. Chevreau, M. Avdeev, R. Holmes, G. Thorogood, T. Hanley, One-step approach for synthesisof nanosized Cu-doped zeoliteA crystalsusing the Cu-EDTA-complex. Micropor. Mesopor. Mat. 2014, 199, pp 18–28
  • 33. 33 FTIR spectra The IR spectroscopy clearly shows the presence of bands due to bonding of copper to nitrogen and oxygen atoms from the EDTA4--ion, which is an indication of existence of a [Cu(EDTA)]2--complex in the LTA zeolite framework. I. Yordanov, I. Karatchevtseva, H. Chevreau, M. Avdeev, R. Holmes, G. Thorogood, T. Hanley, One-step approach for synthesisof nanosized Cu-doped zeoliteA crystalsusing the Cu-EDTA-complex. Micropor. Mesopor. Mat. 2014, 199, pp 18–28 Cu2+ ion O N Cu[EDTA]2- -complex IR bands: 1635 cm-1 – COO- ··· Cu2+ 1618 cm-1 – COO- ··· Cu2+ 1109 cm-1 – C–N··· Cu2+ 1800 1700 1600 1500 1400 1300 1200 1100 1000 900 800 700 3500 3000 2500 1109 1295 1340 1415 1485 690 838 1350 1385 1618 Wavenumber / cm-1 tf-Na-LTA Na-TMA-LTA Cu-EDTA-TMA-LTA 1635 Wavenumber / cm-1 νas-COO-···Cu2+ -νas–CH3 -νs–CH3 (CH3)4N+ -νs-COO- -ν–C–O -scis.vib.-COO- -wag.vib.-COO- -wag.vib.–CH2 -twist.–CH2 -stretch.–C–N···Cu2+ CH2
  • 34. 34 Raman spectra I. Yordanov, I. Karatchevtseva, H. Chevreau, M. Avdeev, R. Holmes, G. Thorogood, T. Hanley, One-step approach for synthesisof nanosized Cu-doped zeoliteA crystalsusing the Cu-EDTA-complex. Micropor. Mesopor. Mat. 2014, 199, pp 18–28 1600 1400 1200 1000 800 600 400 200 630 670 1050 1270 1465 1453 1675 1415 490 458 Na-TMA-LTA Raman shift / cm -1 tf-Na-LTA Cu-EDTA-TMA-LTA 1018 Cu2+ ion O N Cu[EDTA]2- -complex Raman bands: 1018 cm-1 – C – C 458 cm-1 – Cu – N 630 cm-1 – Cu – O -stretch.–C–C -C–N–deform.+Cu–N–s.stretch -νas-COO- -νas–CH3 -scis.vib.–CH2 -twist.–CH2 -νas–C–N -νs–C–N -stretch.–Cu–O -D4R I458/I490>1 I458/I490<1 The Raman spectroscopy data is in a good agreement with the IR results confirming the inclusion of the [Cu(EDTA)]2- -complex in the zeolite framework.
  • 35. 35 20 40 60 80 100 120 140 20 40 60 80 100 120 140 20 40 60 80 100 120 140 0 100 200 300 400 500 24.46 24.48 24.50 24.52 24.54 24.56 24.58 24.60 24.62 Intensity 2 / (°) 1000 a.u. 200C 500C Intensity 2 / (°) 1000 a.u. after cooling to 27C Intensity 2 / (°) 1000 a.u. X-ray data set CellParametera/Å Temperature / °C Neutrons data set I. Yordanov, I. Karatchevtseva, H. Chevreau, M. Avdeev, R. Holmes, G. Thorogood, T. Hanley, One-step approach for synthesisof nanosized Cu-doped zeoliteA crystalsusing the Cu-EDTA-complex. Micropor. Mesopor. Mat. 2014, 199, pp 18–28 Non-ambient Neutron Powder Diffraction study LeBail analysis on neutron data sets recorded in Debye-Scherrer Geometry Both the in situ XRD and NPD techniques show good agreement demonstrating the expansion of the zeolite cell during thermal treatment followed by subsequent contraction with the decomposition of the organic template. ECHIDNA High-Resolution Powder Diffractometer
  • 36. 36 Conclusions Nanosized zeolite crystals (with BEA type framework  10 nm & LTA framework < 300 nm) have been synthesized by hydrothermal treatment using conventional heating. Formation of metal clusters (Pt & Cu) can be achieved by different reducing approaches : i) γ-radiation, ii) plasma treatment, iii) thermal treatment. The selective detection of CO on Pt- and Cu- containing porous films is demonstrated. Cu doped nanocrystals of zeolite A have been prepared by one step approach of incorporation of Cu-EDTA complex into LTA framework during the zeolite synthesis The metal containing nanomaterials assembled in thin films are of great importance for gas chemical sensing application mainly for selective detection of CO, CO2 and hydrocarbons.     
  • 37. 37 Dr Svetlana Mintova – thesis supervisor Dr Till Metzger – beam scientist ID01 at ESRF Dr Gèrald Chaplais – MOF synthesis Dr Vincent de WAELE -– γ-irradaition Dr Mickaël Rivallan – FTIR spectroscopy Dr Sébastien Thomas – mathematical modeling Dr Inna Karatchevtseva – Raman spectroscopy Dr Hubert Chevreau – LeBail on X-ray data sets Dr Maxim Avdeev - beam scientist ECHIDNA beamline at ANSTO
  • 38. 3838