SlideShare ist ein Scribd-Unternehmen logo
1 von 7
QUANTUM
CHEMISTRY
Postulates of quantum mechanics
Postulate I:
The state of a micro system is described in terms of a function of position
coordinates and time. It is given by . The function contains all the
information about the system.
Postulate II:
To every observable like position, momentum, energy corresponds a quantum
mechanical operator.
Physical quantity Quantum mechanical operator
position (x) x
position (r) r
x-component of
momentum (Px)
kinetic energy (T)
potential energy (V) V
)
,
,
,
( t
z
y
x
 
x
i
h



2
2
2
2
8


m
h

Postulate III:
The possible values of any physical quantitiy of a system (e.g. energy, angular
momentum) are given by the Eigen value a in the operator equation,
Postulate IV:
The expected (average) value of a physical quantity (M) of a system is given by
If is normalized
Postulate V:
For every system, time-dependent Schrödinger equation is given by,

 a
A 
ˆ






d
d
M
M
ˆ
*
*






 d
M
M ˆ
*


t
ih
H






2
ˆ
Hamiltonian operator
The operator corresponding to the total energy of a system, written as a sum of kinetic and
potential energies, is called Hamiltonian operator ( ). The total energy of a single particle of
mass m is
where V is written for V(x,y,z)
The corresponding operator will, therefore, be
But
Similarly,
and
Thus,
Ĥ
V
P
P
P
m
z
y
x
V
m
p
H z
y
x 




 )
(
2
1
)
,
,
(
2
2
2
2
2
V
p
p
p
m
H z
y
x
ˆ
)
ˆ
ˆ
ˆ
(
2
1
ˆ 2
2
2




2
2
2
2
2
4
2
2
ˆ
x
h
x
i
h
x
i
h
px
























2
2
2
2
4
ˆ
y
h
py





2
2
2
2
4
ˆ
z
h
pz





V
z
y
x
m
h
H ˆ
8
ˆ
2
2
2
2
2
2
2
2




















V
m
h ˆ
8
2
2
2





For a system of n particles,
Where mi is the mass and the Laplacian operator of the ith particle.
Angular momentum operator
The angular momentum (L) is a very important physical quantity for rotating systems.
Classically, it is given by the vector product of position ( ) and linear momentum ( ).
If are unit vectors along x,y and z coordinates respectively, we have
And
Therefore,
V
m
h
H i
i
i
ˆ
1
8
ˆ 2
2
2






2
i

r
 p

p
r
L





k
,



and
j
i
z
k
y
j
x
i
r







z
y
x p
k
p
j
p
i
p







)
(
)
( z
y
x p
k
p
j
p
i
z
k
y
j
x
i
L













)
(
)
(
)
( x
y
z
x
y
z yp
xp
k
xp
zp
j
zp
yp
i 








Also, by definition,
Where Lx,Ly and Lz represent the three components of L. Replacing Px,Py and Pz by their
corresponding operators we obtain the operators for the three components of angular
momentum. Thus,
z
y
x L
k
L
j
L
i
L























y
z
z
y
i
h
p
z
p
y
L y
z
x

2
)
ˆ
ˆ
(
ˆ














z
x
x
z
i
h
p
x
p
z
L z
x
y

2
)
ˆ
ˆ
(
ˆ
















x
y
y
x
i
h
p
y
p
x
L x
y
z

2
)
ˆ
ˆ
(
ˆ
Postulates of quantum mechanics & operators

Weitere ähnliche Inhalte

Was ist angesagt?

Particle in a box- Application of Schrodinger wave equation
Particle in a box- Application of Schrodinger wave equationParticle in a box- Application of Schrodinger wave equation
Particle in a box- Application of Schrodinger wave equation
Rawat DA Greatt
 

Was ist angesagt? (20)

Huckel Molecular Orbital Theory
Huckel Molecular Orbital Theory Huckel Molecular Orbital Theory
Huckel Molecular Orbital Theory
 
Introduction to perturbation theory, part-1
Introduction to perturbation theory, part-1Introduction to perturbation theory, part-1
Introduction to perturbation theory, part-1
 
Quantum chemistry ppt
Quantum chemistry pptQuantum chemistry ppt
Quantum chemistry ppt
 
Chemical dynamics, intro,rrk, rrkm theory
Chemical dynamics, intro,rrk, rrkm theoryChemical dynamics, intro,rrk, rrkm theory
Chemical dynamics, intro,rrk, rrkm theory
 
Postulates of quantum mechanics
Postulates of quantum mechanicsPostulates of quantum mechanics
Postulates of quantum mechanics
 
Quantum Chemistry
Quantum ChemistryQuantum Chemistry
Quantum Chemistry
 
Lect. 23 rotational vibrational raman spectroscopy
Lect. 23 rotational   vibrational raman spectroscopyLect. 23 rotational   vibrational raman spectroscopy
Lect. 23 rotational vibrational raman spectroscopy
 
Lecture7
Lecture7Lecture7
Lecture7
 
Ph 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSPh 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICS
 
Born-Oppenheimer approximation.pptx
Born-Oppenheimer approximation.pptxBorn-Oppenheimer approximation.pptx
Born-Oppenheimer approximation.pptx
 
Hinshel wood theory
Hinshel wood   theoryHinshel wood   theory
Hinshel wood theory
 
Introduction to quantum mechanics and schrodinger equation
Introduction to quantum mechanics and schrodinger equationIntroduction to quantum mechanics and schrodinger equation
Introduction to quantum mechanics and schrodinger equation
 
Electronic spectra of metal complexes-1
Electronic spectra of metal complexes-1Electronic spectra of metal complexes-1
Electronic spectra of metal complexes-1
 
Particle in a box- Application of Schrodinger wave equation
Particle in a box- Application of Schrodinger wave equationParticle in a box- Application of Schrodinger wave equation
Particle in a box- Application of Schrodinger wave equation
 
Kinetics of solution in reaction
Kinetics of solution in reactionKinetics of solution in reaction
Kinetics of solution in reaction
 
Statics presentation ppt(1)
Statics presentation ppt(1)Statics presentation ppt(1)
Statics presentation ppt(1)
 
Flash photolysis and Shock tube method
Flash photolysis and Shock tube method Flash photolysis and Shock tube method
Flash photolysis and Shock tube method
 
Franck Condon Principle
Franck Condon Principle Franck Condon Principle
Franck Condon Principle
 
Ligand substitution reactions
Ligand substitution reactionsLigand substitution reactions
Ligand substitution reactions
 
Esr spectroscopy
Esr spectroscopyEsr spectroscopy
Esr spectroscopy
 

Ähnlich wie Postulates of quantum mechanics & operators

Meeting w4 chapter 2 part 2
Meeting w4   chapter 2 part 2Meeting w4   chapter 2 part 2
Meeting w4 chapter 2 part 2
mkazree
 
Meeting w4 chapter 2 part 2
Meeting w4   chapter 2 part 2Meeting w4   chapter 2 part 2
Meeting w4 chapter 2 part 2
Hattori Sidek
 
Chapter_3_State_Variable_Models.ppt
Chapter_3_State_Variable_Models.pptChapter_3_State_Variable_Models.ppt
Chapter_3_State_Variable_Models.ppt
khinmuyaraye
 

Ähnlich wie Postulates of quantum mechanics & operators (20)

Basics of Quantum Mechanics-II.pptx
Basics of Quantum Mechanics-II.pptxBasics of Quantum Mechanics-II.pptx
Basics of Quantum Mechanics-II.pptx
 
Quantum mechanics an overview
Quantum mechanics an overviewQuantum mechanics an overview
Quantum mechanics an overview
 
Meeting w4 chapter 2 part 2
Meeting w4   chapter 2 part 2Meeting w4   chapter 2 part 2
Meeting w4 chapter 2 part 2
 
Meeting w4 chapter 2 part 2
Meeting w4   chapter 2 part 2Meeting w4   chapter 2 part 2
Meeting w4 chapter 2 part 2
 
Wave function
Wave functionWave function
Wave function
 
Statistical Mechanics B.Sc. Sem VI
Statistical Mechanics B.Sc. Sem VIStatistical Mechanics B.Sc. Sem VI
Statistical Mechanics B.Sc. Sem VI
 
Schrodinger equation and its applications: Chapter 2
Schrodinger equation and its applications: Chapter 2Schrodinger equation and its applications: Chapter 2
Schrodinger equation and its applications: Chapter 2
 
lec02.pdf
lec02.pdflec02.pdf
lec02.pdf
 
An1 derivat.ro fizica-2_quantum physics 2 2010 2011_24125
An1 derivat.ro fizica-2_quantum physics 2 2010 2011_24125An1 derivat.ro fizica-2_quantum physics 2 2010 2011_24125
An1 derivat.ro fizica-2_quantum physics 2 2010 2011_24125
 
An1 derivat.ro fizica-2_quantum physics 2 2010 2011_24125
An1 derivat.ro fizica-2_quantum physics 2 2010 2011_24125An1 derivat.ro fizica-2_quantum physics 2 2010 2011_24125
An1 derivat.ro fizica-2_quantum physics 2 2010 2011_24125
 
Control Analysis of a mass- loaded String
Control Analysis of a mass- loaded StringControl Analysis of a mass- loaded String
Control Analysis of a mass- loaded String
 
Quantum mechanics
Quantum mechanicsQuantum mechanics
Quantum mechanics
 
lecture1ddddgggggggggggghhhhhhh (11).ppt
lecture1ddddgggggggggggghhhhhhh (11).pptlecture1ddddgggggggggggghhhhhhh (11).ppt
lecture1ddddgggggggggggghhhhhhh (11).ppt
 
Chapter_3_State_Variable_Models.ppt
Chapter_3_State_Variable_Models.pptChapter_3_State_Variable_Models.ppt
Chapter_3_State_Variable_Models.ppt
 
Dynamics
DynamicsDynamics
Dynamics
 
LieGroup
LieGroupLieGroup
LieGroup
 
Oscillations
OscillationsOscillations
Oscillations
 
506
506506
506
 
ACTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU AN...
ACTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU AN...ACTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU AN...
ACTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC XU AN...
 
Small amplitude oscillations
Small amplitude oscillationsSmall amplitude oscillations
Small amplitude oscillations
 

Kürzlich hochgeladen

Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
heathfieldcps1
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 

Kürzlich hochgeladen (20)

Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 

Postulates of quantum mechanics & operators

  • 2. Postulates of quantum mechanics Postulate I: The state of a micro system is described in terms of a function of position coordinates and time. It is given by . The function contains all the information about the system. Postulate II: To every observable like position, momentum, energy corresponds a quantum mechanical operator. Physical quantity Quantum mechanical operator position (x) x position (r) r x-component of momentum (Px) kinetic energy (T) potential energy (V) V ) , , , ( t z y x   x i h    2 2 2 2 8   m h 
  • 3. Postulate III: The possible values of any physical quantitiy of a system (e.g. energy, angular momentum) are given by the Eigen value a in the operator equation, Postulate IV: The expected (average) value of a physical quantity (M) of a system is given by If is normalized Postulate V: For every system, time-dependent Schrödinger equation is given by,   a A  ˆ       d d M M ˆ * *        d M M ˆ *   t ih H       2 ˆ
  • 4. Hamiltonian operator The operator corresponding to the total energy of a system, written as a sum of kinetic and potential energies, is called Hamiltonian operator ( ). The total energy of a single particle of mass m is where V is written for V(x,y,z) The corresponding operator will, therefore, be But Similarly, and Thus, Ĥ V P P P m z y x V m p H z y x       ) ( 2 1 ) , , ( 2 2 2 2 2 V p p p m H z y x ˆ ) ˆ ˆ ˆ ( 2 1 ˆ 2 2 2     2 2 2 2 2 4 2 2 ˆ x h x i h x i h px                         2 2 2 2 4 ˆ y h py      2 2 2 2 4 ˆ z h pz      V z y x m h H ˆ 8 ˆ 2 2 2 2 2 2 2 2                    
  • 5. V m h ˆ 8 2 2 2      For a system of n particles, Where mi is the mass and the Laplacian operator of the ith particle. Angular momentum operator The angular momentum (L) is a very important physical quantity for rotating systems. Classically, it is given by the vector product of position ( ) and linear momentum ( ). If are unit vectors along x,y and z coordinates respectively, we have And Therefore, V m h H i i i ˆ 1 8 ˆ 2 2 2       2 i  r  p  p r L      k ,    and j i z k y j x i r        z y x p k p j p i p        ) ( ) ( z y x p k p j p i z k y j x i L              ) ( ) ( ) ( x y z x y z yp xp k xp zp j zp yp i         
  • 6. Also, by definition, Where Lx,Ly and Lz represent the three components of L. Replacing Px,Py and Pz by their corresponding operators we obtain the operators for the three components of angular momentum. Thus, z y x L k L j L i L                        y z z y i h p z p y L y z x  2 ) ˆ ˆ ( ˆ               z x x z i h p x p z L z x y  2 ) ˆ ˆ ( ˆ                 x y y x i h p y p x L x y z  2 ) ˆ ˆ ( ˆ