SlideShare ist ein Scribd-Unternehmen logo
1 von 70
Downloaden Sie, um offline zu lesen
Engineering Electromagnetics
Poisson’s & Laplace’s Equations
Nguyễn Công Phương
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Contents
I. Introduction
II. Vector Analysis
III. Coulomb’s Law & Electric Field Intensity
IV. Electric Flux Density, Gauss’ Law & Divergence
V. Energy & Potential
VI. Current & Conductors
VII. Dielectrics & Capacitance
VIII.Poisson’s & Laplace’s Equations
IX. The Steady Magnetic Field
X. Magnetic Forces & Inductance
XI. Time – Varying Fields & Maxwell’s Equations
XII. Transmission Lines
XIII. The Uniform Plane Wave
XIV. Plane Wave Reflection & Dispersion
XV. Guided Waves & Radiation
2
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Poisson’s & Laplace’s Equations
1. Poisson’s Equation
2. Laplace’s Equation
3. Uniqueness Theorem
4. Examples of the Solution of Laplace’s Equation
5. Examples of the Solution of Poisson’s Equation
6. Product Solution of Laplace’s Equation
7. Numerical Methods
3
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Poisson's Equation (1)
0
D E
ε
=
Gauss’s Law: v
ρ
∇ =
.D
( ) ( ) v
V
ε ε ρ
→ ∇ = ∇ = −∇ ∇ =
.D . E .
V
= −∇
E
Gradient: v
V
ρ
ε
→ ∇ ∇ = −
.
(Poisson's Equation)
x y z
V V V
V
x y z
∂ ∂ ∂
∇ = + +
∂ ∂ ∂
a a a
y
x z
A
A A
x y z
∂
∂ ∂
∇ = + +
∂ ∂ ∂
.A
2 2 2
2 2 2
.
y
x z
V
V V V V V
V
x x y y z z x y z
∂
 
∂ ∂
∂ ∂ ∂ ∂ ∂ ∂
   
→ ∇∇ = + + = + +
   
 
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 
   
4
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Poisson's Equation (2)
v
V
ρ
ε
∇ ∇ = −
.
Define
2
∇ ∇ = ∇
.
2 2 2
2 2 2
.
V V V
V
x y z
∂ ∂ ∂
∇ ∇ = + +
∂ ∂ ∂
2 2 2
2
2 2 2
v
V V V
V
x y z
ρ
ε
∂ ∂ ∂
∇ = + + = −
∂ ∂ ∂
(rectangular)
2 2
2 2 2
1 1 v
V V V
z
ρ
ρ
ρ ρ ρ ρ ϕ ε
 
∂ ∂ ∂ ∂
+ + = −
 
∂ ∂ ∂ ∂
 
2
2
2 2 2 2 2
1 1 1
sin
sin sin
v
V V V
r
r r r r r
ρ
θ
θ θ θ θ ϕ ε
∂ ∂ ∂ ∂ ∂
   
+ + = −
   
∂ ∂ ∂ ∂ ∂
   
(cylindrical)
(spherical)
5
Poisson’s Equation (3)
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Ex.
Find the Laplacian of the following scalar fields:
2 3
3
) 2
cos2
)
20sin
)
a A xy z
b B
c C
r
ϕ
ρ
θ
=
=
=
6
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Poisson’s & Laplace’s Equations
1. Poisson’s Equation
2. Laplace’s Equation
3. Uniqueness Theorem
4. Examples of the Solution of Laplace’s Equation
5. Examples of the Solution of Poisson’s Equation
6. Product Solution of Laplace’s Equation
7. Numerical Methods
7
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Laplace’s Equation
0
v
ρ =
2 2 2
2
2 2 2
v
V V V
V
x y z
ρ
ε
∂ ∂ ∂
∇ = + + = −
∂ ∂ ∂
(Laplace’s equation, rectangular)
2 2
2 2 2
1 1
0
V V V
z
ρ
ρ ρ ρ ρ ϕ
 
∂ ∂ ∂ ∂
+ + =
 
∂ ∂ ∂ ∂
 
2
2
2 2 2 2 2
1 1 1
sin 0
sin sin
V V V
r
r r r r r
θ
θ θ θ θ ϕ
∂ ∂ ∂ ∂ ∂
   
+ + =
   
∂ ∂ ∂ ∂ ∂
   
(cylindrical)
(spherical)
2 2 2
2
2 2 2
0
V V V
V
x y z
∂ ∂ ∂
∇ = + + =
∂ ∂ ∂
Poisson's Equation:
8
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Poisson’s & Laplace’s Equations
1. Poisson’s Equation
2. Laplace’s Equation
3. Uniqueness Theorem
4. Examples of the Solution of Laplace’s Equation
5. Examples of the Solution of Poisson’s Equation
6. Product Solution of Laplace’s Equation
7. Numerical Methods
9
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Uniqueness Theorem (1)
2 2 2
2
2 2 2
0
V V V
V
x y z
∂ ∂ ∂
∇ = + + =
∂ ∂ ∂
Assume two solutions V1 & V2, :
2
1 0
V
∇ =
2
2 0
V
∇ =
2
1 2
( ) 0
V V
→ ∇ − =
Assume the boundary condition Vb 1 2
b b b
V V V
→ = =
( ) ( ) ( )
. D .D D.
V V V
∇ = ∇ + ∇
1 2 1 2 1 2 1 2
1 2 1 2
[( ) ( )] ( )[ ( )]
( ) ( )
. .
.
V V V V V V V V
V V V V
→ ∇ − ∇ − = − ∇ ∇ − +
+∇ − ∇ −
1 2
V V V
= −
1 2
( )
D V V
= ∇ −
10
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Uniqueness Theorem (2)
1 2 1 2 1 2 1 2 1 2 1 2
[( ) ( )] ( )[ ( )] ( ) ( )
. . .
V V V V V V V V V V V V
∇ − ∇ − = − ∇ ∇ − +∇ − ∇ −
1 2 1 2 1 2 1 2
1 2 1 2
[( ) ( )] ( )[ ( )]
( ) ( )
V V
V
V V V V dv V V V V dv
V V V V dv
→ ∇ − ∇ − = − ∇ ∇ − +
+ ∇ − ∇ −
 

. .
.
. .
S V
d dv
= ∇
 
D S D
Divergence theorem:
1 2 1 2 1 2 1 2
[( ) ( )] [( ) ( )]
b b b b
V S
V V V V dv V V V V d
→ ∇ − ∇ − = − ∇ −
 
. . S
1 2
b b b
V V V
= =
1 2 1 2
[( ) ( )] 0
V
V V V V dv
→ ∇ − ∇ − =
 .
1 2 1 2 1 2 1 2
0 ( )[ ( )] ( ) ( )
V V
V V V V dv V V V V dv
→ = − ∇ ∇ − + ∇ − ∇ −
 
. .
11
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Uniqueness Theorem (3)
1 2 1 2 1 2 1 2
( )[ ( )] ( ) ( ) 0
V V
V V V V dv V V V V dv
− ∇ ∇ − + ∇ − ∇ − =
 
. .
2
1 2 1 2
( ) ( ) 0
. V V V V
∇ ∇ − = ∇ − =
1 2 1 2
( ) ( ) 0
V
V V V V dv
→ ∇ − ∇ − =
 . [ ]
2
1 2
( )
V
V V dv
= ∇ −

[ ]
2
1 2
( ) 0
V V
→ ∇ − =
[ ]
2
1 2
( ) 0
V V
∇ − ≥
1 2 const
V V
→ − =
1 2
( ) 0
V V
→ ∇ − =
x y z
V V V
V
x y z
∂ ∂ ∂
∇ = + +
∂ ∂ ∂
a a a
At boundary V1 = Vb1, V2 = Vb2
→ const = Vb1 – Vb2 = 0
1 2
b b b
V V V
= =
V1 = V2
12
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Poisson’s & Laplace’s Equations
1. Poisson’s Equation
2. Laplace’s Equation
3. Uniqueness Theorem
4. Examples of the Solution of Laplace’s Equation
5. Examples of the Solution of Poisson’s Equation
6. Product Solution of Laplace’s Equation
7. Numerical Methods
13
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Examples of the Solution of Laplace’s Equation (1)
Assume V = V(x)
2 2 2
2
2 2 2
0
V V V
V
x y z
∂ ∂ ∂
∇ = + + =
∂ ∂ ∂
2
2
0
d V
dx
→ = V Ax B
→ = +
1
1
x x
V V
=
=
2
2
x x
V V
=
=
1 2
1 2
2 1 1 2
1 2
V V
A
x x
V x V x
B
x x
−

=
 −

→ 
−
 =
 −

1 2 2 1
1 2
( ) ( )
V x x V x x
V
x x
− − −
→ =
−
0
0
x
V =
=
0
x d
V V
=
=
0
V x
V
d
→ =
Ex. 1
14
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Examples of the Solution of Laplace’s Equation (2)
Conductor surface
Conductor surface
x = d
x = 0
x
V = V(x)
0
0
x
V =
=
0
x d
V V
=
=
0
V x
V
d
→ =
E V
= −∇
0
E ax
V
d
→ = −
D E
ε
=
0
D ax
V
d
ε
→ = −
0
0
D D a
S x
x
V
d
ε
=
→ = = − 0
N
V
D
d
ε
→ = − 0
S N
V
D
d
ρ ε
→ = = −
0
V S
d
ε
= −
0
S
S S
V
Q dS dS
d
ε
ρ
−
→ = =
  0
Q
C
V
→ =
S
d
ε
=
Ex. 1
15
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Examples of the Solution of Laplace’s Equation (3)
Assume V = V(ρ) (cylindrical)
2 2
2
2 2 2
1 1
0
V V V
V
z
ρ
ρ ρ ρ ρ ϕ
 
∂ ∂ ∂ ∂
∇ = + + =
 
∂ ∂ ∂ ∂
 
1
0
V
ρ
ρ ρ ρ
 
∂ ∂
→ =
 
∂ ∂
 
1
0
d dV
d d
ρ
ρ ρ ρ
 
→ =
 
 
0
d dV
d d
ρ
ρ ρ
 
→ =
 
 
dV
A
d
ρ
ρ
→ =
ln
V A B
ρ
→ = +
0
ln
a
V A a B V
ρ =
= + =
ln 0 ( )
b
V A b B b a
ρ =
= + = >
0
0
ln ln
ln
ln ln
V
A
a b
V b
B
a b

=

 −
→ 
 = −
 −

0
ln( / )
ln( / )
b
V V
b a
ρ
→ =
Ex. 2
16
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Examples of the Solution of Laplace’s Equation (4)
Assume V = V(ρ) (cylindrical)
2 2
2
2 2 2
1 1
0
V V V
V
z
ρ
ρ ρ ρ ρ ϕ
 
∂ ∂ ∂ ∂
∇ = + + =
 
∂ ∂ ∂ ∂
 
0
ln( / )
ln( / )
b
V V
b a
ρ
→ =
0
ln( / )
E a
V
V
b a
ρ
ρ
→ = −∇ =
0
( )
ln( / )
N a S
V
D
a b a
ρ
ε
ρ
=
→ = =
0 2
ln( / )
S
S
V aL
Q dS
a b a
ε π
ρ
→ = =
 0
2
ln( / )
Q L
C
V b a
ε π
→ = =
Ex. 2
17
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Examples of the Solution of Laplace’s Equation (5)
Assume V = V(φ) (cylindrical)
2 2
2
2 2 2
1 1
0
V V V
V
z
ρ
ρ ρ ρ ρ ϕ
 
∂ ∂ ∂ ∂
∇ = + + =
 
∂ ∂ ∂ ∂
 
2
2 2
1
0
V
ρ ϕ
∂
→ =
∂
2
2
0
V
ϕ
∂
→ =
∂
V A B
ϕ
→ = +
0
0
V B
ϕ=
= =
0
V A B V
ϕ α
α
=
= + =
0
0
B
V
A
α
=


→ 
=


0
V V
ϕ
α
→ =
0
E a
V
V ϕ
αρ
→ = −∇ = −
Ex. 3
z
α
Air gap
18
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Examples of the Solution of Laplace’s Equation (6)
Ex. 4
Assume V = V(θ) (spherical)
2
2 2
2 2 2 2 2
1 1 1
sin 0
sin sin
V V V
V r
r r r r r
θ
θ θ θ θ ϕ
∂ ∂ ∂ ∂ ∂
   
∇ = + + =
   
∂ ∂ ∂ ∂ ∂
   
2
1
sin 0
sin
V
r
θ
θ θ θ
∂ ∂
 
→ =
 
∂ ∂
  sin 0
V
θ
θ θ
∂ ∂
 
→ =
 
∂ ∂
 
sin
dV
A
d
θ
θ
→ =
sin
d
dV A
θ
θ
→ = ln tan
2
A B
θ
 
= +
 
 
sin
d
V A B
θ
θ
→ = +

Assume r ≠ 0; θ ≠ 0; θ ≠ π
19
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Examples of the Solution of Laplace’s Equation (7)
Ex. 4
Assume V = V(θ) ln tan
2
V A B
θ
 
→ = +
 
 
0
ln tan
2
ln tan
2
V V
θ
α
 
 
 
→ =
 
 
 
/ 2
0
V θ π
=
=
0 ( / 2)
V V
θ α
α π
=
= <
V = 0
V = V0
α
Air gap
0
1
sin ln tan
2
V V
V
r
r
θ θ
α
θ
θ
∂
→ = −∇ = − = −
∂  
 
 
E a a
0
sin ln tan
2
S N
V
D E
r
ε
ρ ε
α
α
→ = = = −
 
 
 
20
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Examples of the Solution of Laplace’s Equation (8)
Ex. 4
Assume V = V(θ)
0
0
2
ln tan
2
V
dr
πε
α
∞
−
=
 
 
 

0
sin ln tan
2
S
S S
V
Q dS dS
r
ε
ρ
α
α
→ = = −
 
 
 
 
2
0
0 0
sin
sin ln tan
2
V r d dr
Q
r
π
ε α ϕ
α
α
∞
−
→ =
 
 
 
 
sin
dS r d dr
α ϕ
=
0
sin ln tan
2
S
V
r
ε
ρ
α
α
→ = −
 
 
 
1
0
2
ln cot
2
Q r
C
V
πε
α
→ =
 
 
 
≐
V = 0
V = V0
α
Air gap
21
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Poisson’s & Laplace’s Equations
1. Poisson’s Equation
2. Laplace’s Equation
3. Uniqueness Theorem
4. Examples of the Solution of Laplace’s Equation
5. Examples of the Solution of Poisson’s Equation
6. Product Solution of Laplace’s Equation
7. Numerical Methods
22
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Examples of the Solution of
Poisson’s Equation (1)
2
0
2
2
sech th
v
d V x x
a a
dx
ρ
ε
→ = −
2
( sech ; th )
x x
x x x x
e e
x x
e e e e
−
− −
−
= =
+ +
0
2 sech th
v v
x x
a a
ρ ρ
=
x
dV
E
dx
= −
2 v
V
ρ
ε
∇ = −
Poisson’s Equation :
0
1
2
sech
v a
dV x
C
dx a
ρ
ε
→ = +
0
1
2
sech
v
x
a x
E C
a
ρ
ε
→ = − −
–5 –4 –3 –2 –1
1 2 3 4 5
0,5
1
–0,5
–1
/
x a
0
v
v
ρ
ρ
p-type n-type
v
ρ
–5 –4 –3 –2 –1
1 2 3 4 5
–0,5
–1
/
x a
0
2
x
v
E
a
ε
ρ
x
E
1 0
C
→ =
0
2
sech
v
x
a x
E
a
ρ
ε
→ = −
If x → ± ∞ then Ex → 0
23
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
2
/
0
4
arctg
4
x a
v a
V e
ρ π
ε
 
→ = −
 
 
0
2 sech th
v v
x x
a a
ρ ρ
=
2 v
V
ρ
ε
∇ = −
2
/
0
2
4
arctg x a
v a
V e C
ρ
ε
→ = +
0
2
sech
v
x
a x
E
a
ρ
ε
→ = −
–5 –4 –3 –2 –1
1 2 3 4 5
–0,5
–1
/
x a
0
2
x
v
E
a
ε
ρ
V
–5 –4 –3 –2 –1
1 2 3 4 5
0,25
0,5
–0,25
–0,5
/
x a
2
0
2 v
V
a
πε
ρ
x
E
Poisson’s equation :
0
0
x
V =
=
Supp.
2
0
2
4
0
4
v a
C
ρ π
ε
→ = +
Examples of the Solution of
Poisson’s Equation (2)
–5 –4 –3 –2 –1
1 2 3 4 5
0,5
1
–0,5
–1
/
x a
0
v
v
ρ
ρ
p-type n-type
v
ρ
24
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
2
/
0
4
arctg
4
x a
v a
V e
ρ π
ε
 
= −
 
 
2
0
0
2 v
x x
a
V V V
πρ
ε
→ ∞ → −∞
= − =
0 0 0
0
2 sech th 2 sech th 2
v v v v
V V
x x x x
Q dv dv S dx aS
a a a a
ρ ρ ρ ρ
∞
= = = =
  
0 0
2 v V
Q S
ρ ε
π
→ =
0
2 sech th
v v
x x
a a
ρ ρ
=
0
0
dV
dQ dQ
I C C
dt dt dV
= = → =
0
0
2 2
v S
C S
V a
ρ ε ε
π π
→ = =
Examples of the Solution of
Poisson’s Equation (3)
–5 –4 –3 –2 –1
1 2 3 4 5
0,5
1
–0,5
–1
/
x a
0
v
v
ρ
ρ
p-type n-type
v
ρ
25
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Poisson’s & Laplace’s Equations
1. Poisson’s Equation
2. Laplace’s Equation
3. Uniqueness Theorem
4. Examples of the Solution of Laplace’s Equation
5. Examples of the Solution of Poisson’s Equation
6. Product Solution of Laplace’s Equation
7. Numerical Methods
26
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Product Solution of Laplace’s Equation (1)
• Previous examples assumed that V varies with one of the
three coordinates
• The product solution can be used to solve for V(x, y)
• Assume V = XY, X = X(x), Y = Y(y)
2 2 2
2
2 2 2
0
V V V
V
x y z
∂ ∂ ∂
∇ = + + =
∂ ∂ ∂
2 2
2 2
0
V V
x y
∂ ∂
→ + =
∂ ∂
( , )
V V x y
=
2 2
2 2
0
X Y
Y X
x y
∂ ∂
→ + =
∂ ∂
2 2
2 2
0
d X d Y
Y X
dx dy
→ + =
27
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Product Solution of Laplace’s Equation (2)
2 2
2 2
0
d X d Y
Y X
dx dy
+ =
2 2
2 2
1 1
0
d X d Y
X dx Y dy
→ + =
2 2
2 2
1 1
d X d Y
X dx Y dy
→ = −
2
2
1 d X
X dx
involves no y
2
2
1 d Y
Y dy
− involves no x
2
2
2
2
2
2
1
1
d X
X dx
d Y
Y dy
α
α

=


→ 
− =


28
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Product Solution of Laplace’s Equation (3)
2
2
2
2
1
d dR
R d d
d
d
ρ
ρ α
ρ ρ
α
ϕ
  
=
  
  
→ 
Φ
− =
 Φ

( , ) ( ) ( )
V V R
ρ ϕ ρ ϕ
= = Φ
2 2
2 2 2
1 1
0
V V V
z
ρ
ρ ρ ρ ρ ϕ
 
∂ ∂ ∂ ∂
+ + =
 
∂ ∂ ∂ ∂
 
2
2
1
0
R
R
ρ
ρ
ρ ρ ϕ
 
∂ ∂ ∂ Φ
→ + =
 
∂ ∂ Φ ∂
 
29
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Product Solution of Laplace’s Equation (4)
2
2 2
2
2
2
( 1)
1 1
( 1)
tg
R R
n n
R R
n n
ρ ρ
ρ ρ
θ θ θ
 ∂ ∂
+ = +

∂ ∂

→ 
∂ Θ ∂Θ
 + = − +
Θ ∂ Θ ∂

( , ) ( ) ( )
V V R
ρ θ ρ θ
= = Θ
2 2
2 2 2
2 1 1
0
tg
R R
R R
ρ ρ
ρ ρ θ θ θ
   
∂ ∂ ∂ Θ ∂Θ
→ + + + =
   
∂ ∂ Θ ∂ Θ ∂
   
2
2
2 2 2 2 2
1 1 1
sin 0
sin sin
V V V
r
r r r r r
θ
θ θ θ θ ϕ
∂ ∂ ∂ ∂ ∂
   
+ + =
   
∂ ∂ ∂ ∂ ∂
   
30
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Product Solution of Laplace’s Equation (5)
Ex.
2
2
2
2
1
d dR
R d d
d
d
ρ
ρ α
ρ ρ
α
ϕ
  
=
  
  
→ 
Φ
− =
 Φ

( , ) ( ) ( )
V V R
ρ ϕ ρ ϕ
= = Φ
( ) ( ); ( ) ( )
V V V V
ϕ ϕ ϕ π ϕ
= − = − −
( ) cos sin ,
Assume p p
A p B p p
ϕ ϕ ϕ α
Φ = + = ±
 
1
( ) cos , 1
A
ϕ ϕ α
→ Φ = =
Solve for the potential & EFI in the vicinity of a conducting cylinder (posses an
infinite length) in a uniform EFI E0. The permittivities of the environment & the
cylinder are ε1 & ε2 respectively. EFI is perpendicular to the cylinder’s axis.
31
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Product Solution of Laplace’s Equation (6)
2
2
2
2
1 d
d
d dR
R d d
α
ϕ
ρ
ρ α
ρ ρ
 Φ
− =

Φ


 
 =
 
  

2
2
k
k
k
k
k B
d dR
R d d B
ρ
ρ
ρ α
ρ ρ ρ
 
→ = =
 
 
1
α =
( )
Assume k
k
R B
ρ ρ
=
1
( ) cos , 1
A
ϕ ϕ α
→ Φ = =
1
k
→ = ±
1
1 1
( )
R B B
ρ ρ ρ
+ − −
→ = +
Ex.
32
Solve for the potential & EFI in the vicinity of a conducting cylinder (posses an
infinite length) in a uniform EFI E0. The permittivities of the environment & the
cylinder are ε1 & ε2 respectively. EFI is perpendicular to the cylinder’s axis.
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Product Solution of Laplace’s Equation (7)
2
2
1
2
2 1
1 1
1
( ) cos
( )
d
A
d
d dR
R B B
R d d
α ϕ ϕ
ϕ
ρ
ρ α ρ ρ ρ
ρ ρ
+ − −
 Φ
− = → Φ =

Φ


 
 = → = +
 
  

1
1 1 1 1
cos cos
V A B A B
ρ ϕ ρ ϕ
+ − −
→ = +
( , ) ( ) ( )
V V R
ρ ϕ ρ ϕ
= = Φ
1
cos cos
C C
ρ ϕ ρ ϕ
+ − −
= +
Ex.
33
Solve for the potential & EFI in the vicinity of a conducting cylinder (posses an
infinite length) in a uniform EFI E0. The permittivities of the environment & the
cylinder are ε1 & ε2 respectively. EFI is perpendicular to the cylinder’s axis.
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Product Solution of Laplace’s Equation (8)
1
1 1 1
cos cos
Exterior: V C C
ρ ϕ ρ ϕ
+ − −
= +
0 x
V E x
−∞ →−∞
=
1
2 2 2
cos cos
Interior: V C C
ρ ϕ ρ ϕ
+ − −
= +
1 1
, x
V V C x
θ π ρ
+
−∞ = →−∞ →−∞
= = −
x
y
E0
ρ
θ
ε1
ε2
1 0
C E
+
→ = −
2
2 0
0
gèc täa ®é
C
V V ρ
ρ
ρ
−
→
→
= = → ∞
2 0
C−
→ =
EFI is finite at the origin
Ex.
34
Solve for the potential & EFI in the vicinity of a conducting cylinder (posses an
infinite length) in a uniform EFI E0. The permittivities of the environment & the
cylinder are ε1 & ε2 respectively. EFI is perpendicular to the cylinder’s axis.
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Product Solution of Laplace’s Equation (9)
1
1 1 1
cos cos
Exterior: V C C
ρ ϕ ρ ϕ
+ − −
= +
1
2 2 2
cos cos
Interior: V C C
ρ ϕ ρ ϕ
+ − −
= +
x
y
E0
ρ
θ
ε1
ε2
1 0 2
, 0
C E C
+ −
= − =
1
1 0 1
2 2
cos cos
cos
V E C
V C
ρ ϕ ρ ϕ
ρ ϕ
− −
+
 = − +

→ 
=


Ex.
35
Solve for the potential & EFI in the vicinity of a conducting cylinder (posses an
infinite length) in a uniform EFI E0. The permittivities of the environment & the
cylinder are ε1 & ε2 respectively. EFI is perpendicular to the cylinder’s axis.
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Product Solution of Laplace’s Equation (10)
1
1 0 1
cos cos
V E C
ρ ϕ ρ ϕ
− −
= − +
2 2 cos
V C ρ ϕ
+
=
x
y
E0
ρ
θ
ε1
ε2
1 2
a a
V V
ρ ρ
= =
=
1
0 1 2
( )cos cos
E a C a C a
ϕ ϕ
− − +
→ − + =
a
1 2
1 2
a a
V V
ρ ρ
ε ε
ρ ρ
= =
∂ ∂
=
∂ ∂
2
1 0 1 2 2
( )cos cos
E C a C a
ε ϕ ε ϕ
− − +
→ − − =
Ex.
36
Solve for the potential & EFI in the vicinity of a conducting cylinder (posses an
infinite length) in a uniform EFI E0. The permittivities of the environment & the
cylinder are ε1 & ε2 respectively. EFI is perpendicular to the cylinder’s axis.
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Product Solution of Laplace’s Equation (11)
1
0 1 2
( )cos cos
E a C a C a
ϕ ϕ
− − +
− + =
2
1 0 1 2 2
( )cos cos
E C a C a
ε ϕ ε ϕ
− − +
− − =
2
1 2 1
1 0 2 0
1 2 1 2
2
,
C E a C E
ε ε ε
ε ε ε ε
− +
−
→ = − = −
+ +
2
1 2
1 0 2
1 2
1
2 0
1 2
1 cos ,
2
cos
as
as
a
V E a
V E a
ε ε
ρ ϕ ρ
ε ε ρ
ε
ρ ϕ ρ
ε ε
  
−
= − − ≥
  
+
  
→ 
 = − ≤
 +

1
1 0 1
cos cos
V E C
ρ ϕ ρ ϕ
− −
= − +
2 2 cos
V C ρ ϕ
+
=
Ex.
37
Solve for the potential & EFI in the vicinity of a conducting cylinder (posses an
infinite length) in a uniform EFI E0. The permittivities of the environment & the
cylinder are ε1 & ε2 respectively. EFI is perpendicular to the cylinder’s axis.
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Product Solution of Laplace’s Equation (12)
2
1 2
1 0 2
1 2
1
2 0
1 2
1 cos ,
2
cos
as
as
a
V E a
V E a
ε ε
ρ ϕ ρ
ε ε ρ
ε
ρ ϕ ρ
ε ε
  
−
= − − ≥
  
+
  

 = − ≤
 +

2 1 2 1
2 0 2 0
1 2 1 2
2 2
cos , sin
V V
E E E E
ρ ϕ
ε ε
ϕ ϕ
ρ ε ε ϕ ε ε
∂ ∂
= − = = − = −
∂ + ∂ +
2 2
1 1 2 1 1 2
1 0 1 0
2 2
1 2 1 2
1 cos , 1 sin
V V
a a
E E E E
ρ ϕ
ε ε ε ε
ϕ ϕ
ρ ε ε ρ ϕ ε ε ρ
   
∂ − ∂ −
= − = − = − = − −
   
∂ + ∂ +
   
1
2 2 0
1 2
2
z
E E E
ε
ε ε
→ = =
+
Ex.
38
Solve for the potential & EFI in the vicinity of a conducting cylinder (posses an
infinite length) in a uniform EFI E0. The permittivities of the environment & the
cylinder are ε1 & ε2 respectively. EFI is perpendicular to the cylinder’s axis.
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Poisson’s & Laplace’s Equations
1. Poisson’s Equation
2. Laplace’s Equation
3. Uniqueness Theorem
4. Examples of the Solution of Laplace’s Equation
5. Examples of the Solution of Poisson’s Equation
6. Product Solution of Laplace’s Equation
7. Numerical Methods
a. Finite Difference Method
b. Finite Element Method
39
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Finite Difference Method (1) x
y
h
h
V0 V1
V2
V3
V4
a
b
c
d
2 2 2
2
2 2 2
0
V V V
V
x y z
∂ ∂ ∂
∇ = + + =
∂ ∂ ∂
2 2
2 2
0
V V
x y
∂ ∂
→ + =
∂ ∂
( , )
V V x y
=
1 0
a
V V
V
x h
−
∂
≈
∂
2
1 0 0 3
2 2
V V V V
V
x h
− − +
∂
→ ≈
∂
0 3
c
V V
V
x h
−
∂
≈
∂
2
2
a c
V V
V x x
x h
∂ ∂
−
∂ ∂ ∂
≈
∂ 40
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Finite Difference Method (2) x
y
h
h
V0 V1
V2
V3
V4
2 2
2 2
0
V V
x y
∂ ∂
+ =
∂ ∂
2
2 0 0 4
2 2
V V V V
V
y h
− − +
∂
≈
∂
2
1 0 0 3
2 2
V V V V
V
x h
− − +
∂
≈
∂
2 2
1 2 3 4 0
2 2
4
0
V V V V V
V V
x y h
+ + + −
∂ ∂
→ + ≈ =
∂ ∂
( )
0 1 2 3 4
1
4
V V V V V
≈ + + +
→
41
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Finite Difference Method (3)
Ex. 1 V = 100
V = 0
V = 0
V = 0
Air gap Air gap
( )
0 1 2 3 4
1
4
V V V V V
= + + +
42
Ve
Vc
Va Vb
Vd Vf
Vg Vi
Vh
4 100 0
a d b
V V V
= + + +
4 100
b a e c
V V V V
= + + +
4 0 100
c b f
V V V
= + + +
4 0
d g e a
V V V V
= + + +
4 e b d h f
V V V V V
= + + +
4 0
f c e i
V V V V
= + + +
4 0 0
g d h
V V V
= + + +
4 0
h e g i
V V V V
= + + +
4 0 0
i f h
V V V
= + + +
42.86V
52.68V
42.86V
18.75V
25.00V
18,75V
7.14V
9.82 V
7.14V
a
b
c
d
e
f
g
h
i
V
V
V
V
V
V
V
V
V
 =

=

 =

=


→ =

 =

 =

=

 =

Method 1
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Finite Difference Method (4)
Ex. 1 V = 100
V = 0
V = 0
V = 0
Air gap Air gap
( )
0 1 2 3 4
1
4
V V V V V
= + + +
( )
1
0 100 0 0 25
4
+ + + =
( )
1
100 50 0 25 43.8
4
+ + + =
( )
1
0 25 0 0 6.2
4
+ + + =
( )
1
43.8 100 43.8 25 53.2
4
+ + + =
( )
1
25 43.8 0 6.2 18.8
4
+ + + = ( )
1
6.2 25 6.2 0 9.4
4
+ + + =
25
43.8
43.8 53.2
18.8 18.8
6.2 6.2
9.4
Step 1
43
Method 2
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Finite Difference Method (5)
V = 100
V = 0
V = 0
V = 0
Air gap Air gap
( )
0 1 2 3 4
1
4
V V V V V
= + + +
( )
1
53.2 100 0 18.8 43
4
+ + + =
( )
1
100 50 0 25 43.8
4
+ + + =
( )
1
43 100 43 25 52.8
4
+ + + =
( )
1
43.8 100 43.8 25 53.2
4
+ + + =
( )
1
25 43.8 0 6.2 18.8
4
+ + + =
25
43.8
43.8 53.2
18.8 18.8
6.2 6.2
9.4
( )
1
25 43 0 6.2 18.6
4
+ + + =
43 43
52.8
18.6 18.6
Step 2
Ex. 1
44
Method 2
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Finite Difference Method (6)
V = 100
V = 0
V = 0
V = 0
Air gap Air gap
( )
0 1 2 3 4
1
4
V V V V V
= + + +
25
43.8
43.8 53.2
18.8 18.8
6.2 6.2
9.4
43 43
52.8
18.6 18.6
( )
1
0 100 0 0 25
4
+ + + =
( )
1
0 25 0 0 6.2
4
+ + + =
( )
1
6.2 25 6.2 0 9.4
4
+ + + =
( )
1
18.6 52.8 18.6 9.4 24.9
4
+ + + =
( )
1
9.4 18.6 0 0 7.0
4
+ + + =
24.9
7.0 7.0
( )
1
7.0 25 7.0 0 9.8
4
+ + + =
9.8
Step 2
Ex. 1
45
Method 2
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Finite Difference Method (7)
V = 100
V = 0
V = 0
V = 0
Air gap Air gap
( )
0 1 2 3 4
1
4
V V V V V
= + + +
25
43.8
43.8 53.2
18.8 18.8
6.2 6.2
9.4
43 43
52.8
18.6 18.6
24.9
7.0 7.0
9.8
( )
1
52.8 100 0 18.6 42.9
4
+ + + =
( )
1
42.9 100 42.9 24.9 52.7
4
+ + + =
( )
1
24.9 42.9 0 7.0 18.7
4
+ + + =
( )
1
18.7 52.7 18.7 9.8 25.0
4
+ + + =
( )
1
9.8 18.7 0 0 7.1
4
+ + + = ( )
1
7.1 25 7.1 0 9.8
4
+ + + =
42.9 42.9
52.7
18.7 18.7
25.0
7.1 7.1
9.8
Step 3
Ex. 1
46
Method 2
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Finite Difference Method (8)
Ex. 2
0 V
0 V
0 V
0 V
10 V
20 V
4
1 2 3
5 6
7 8
9 10
47
1 2 4
4 10 0
V V V
= + + +
2 1 5 3
4 10
V V V V
= + + +
3 2 6
4 20 10
V V V
= + + +
4 1 5
4 0 0
V V V
= + + +
5 2 4 7 6
4V V V V V
= + + +
6 3 5 8
4 20
V V V V
= + + +
7 5 9 8
4 0
V V V V
= + + +
8 6 7 10
4 20
V V V V
= + + +
9 7 10
4 0 0
V V V
= + + +
10 8 9
4 0 20
V V V
= + + +
1
2
3
4
5
6
7
8
9
10
5.6423V
9.1735V
13.1111V
3.3957 V
7.9405V
13.2710 V
5.9219 V
12.0324V
3.7147 V
8.9368V
V
V
V
V
V
V
V
V
V
V
=


=

 =

=

 =

→ 
=

 =

=

 =

 =

Method 1
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Finite Difference Method (9)
Ex. 2
0 V
0 V
0 V
0 V
10 V
20 V
4
1 2 3
5 6
7 8
9 10
(0) (0) (0)
1 2 10
... 0
V V V
= = = =
( )
(1) (0) (0)
1 2 4
1
10 0 2.5000V
4
V V V
= + + + =
( )
(1) (0) (1) (0)
2 3 1 5
1
10 3.1250V
4
V V V V
= + + + =
( )
(1) (0) (1) (0)
7 8 5 9
...
1
0 0.2344V
4
...
V V V V
= + + + =
( )
(1) (1) (1)
10 8 9
1
20 0 6.7358V
4
V V V
= + + + =
48
Method 2
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Finite Difference Method (10)
Ex. 2
0 V
0 V
0 V
0 V
10 V
20 V
4
1 2 3
5 6
7 8
9 10
k
( )
1 (V)
k
V
( )
2 (V)
k
V
( )
3 (V)
k
V
( )
4 (V)
k
V
( )
5 (V)
k
V
( )
6 (V)
k
V
( )
7 (V)
k
V
( )
8 (V)
k
V
( )
9 (V)
k
V
( )
10 (V)
k
V
0 1
0
0
0
0
0
0
0
0
0
0
2.5000
3.1250
8.2813
0.6250
0.9375
7.3047
0.2344
6.8848
0.0586
6.7358
23
5.6429
9.1735
13.1111
3.3957
7.9405
13.2710
5.9219
13.0324
3.7147
8.9368
24
5.6429
9.1735
13.1111
3.3957
7.9405
13.2710
5.9219
13.0324
3.7147
8.9368
49
Method 2
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
Poisson’s & Laplace’s Equations
1. Poisson’s Equation
2. Laplace’s Equation
3. Uniqueness Theorem
4. Examples of the Solution of Laplace’s Equation
5. Examples of the Solution of Poisson’s Equation
6. Product Solution of Laplace’s Equation
7. Numerical Methods
a. Finite Difference Method
b. Finite Element Method
50
Finite Element Method (1)
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
http://w ww.cosy.sbg.ac.at/~held/projects/mesh/mesh.html
51
http://imagine.inrialpes.fr/people/Francois.Faure/htmlCourses/FiniteElements.html
2
0
V
∇ =
( , )
V x y
1( , )
V x y
2
V
3
V
4
V
Finite Element Method (2)
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn
http://illustrations.marin.ntnu.no/structures/analysis/FEM/theory/index.html
52
http://imagine.inrialpes.fr/people/Francois.Faure/htmlCourses/FiniteElements.html
2
0
V
∇ =
( , )
V x y
1( , )
V x y
2
V
3
V
4
V
Finite Element Method (3)
• Discretizing the solution region into a finite number of
elements,
• Obtaining governing equations for a typical elements,
• Combining all elements in the solution, &
• Solving the system of equations obtained.
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 53
http://imagine.inrialpes.fr/people/Francois.Faure/htmlCourses/FiniteElements.html
2
0
V
∇ =
( , )
V x y
1( , )
V x y
2
V
3
V
4
V
Finite Element Method (4)
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 54
1
e
V
2
e
V
3
e
V
1 1
( , )
x y
2 2
( , )
x y
3 3
( , )
x y
1
2
3
x
y
1
( , ) ( , )
N
e
e
V x y V x y
=
= 
( , )
e
V x y a bx cy
= + +
1 1 1
2 2 2
3 3 3
1
1
1
e
e
e
V x y a
V x y b
V x y c
     
     
=
     
     
     
1
1 1 1
2 2 2
3 3 3
1
1
1
e
e
e
a x y V
b x y V
c x y V
−
     
     
→ =
     
     
     
[ ]
1
2 3 3 2 3 1 1 3 1 2 2 1 1
2 3 3 1 1 2 2
1 1
3 2 1 3 2 1 3
2 2
3 3
( ) ( ) ( )
1
1 ( ) ( ) ( )
1
( ) ( ) ( )
1
1
e
e e
e
x y x y x y x y x y x y V
V x y y y y y y y V
x y
x x x x x x V
x y
x y
−
− − −
   
   
→ = − − −
   
   
− − −
   
Finite Element Method (5)
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 55
[ ]
1
2 3 3 2 3 1 1 3 1 2 2 1 1
2 3 3 1 1 2 2
1 1
3 2 1 3 2 1 3
2 2
3 3
( ) ( ) ( )
1
1 ( ) ( ) ( )
1
( ) ( ) ( )
1
1
e
e e
e
x y x y x y x y x y x y V
V x y y y y y y y V
x y
x x x x x x V
x y
x y
−
− − −
   
   
= − − −
   
   
− − −
   
3
1
( , )
e i ei
i
V x y V
α
=
= 
1 2 3 3 2 2 3 3 2
2 3 1 1 3 3 1 1 3
3 1 2 2 1 1 2 2 1
2 1 3 1 3 1 2 1
1
[( ) ( ) ( ) ],
2
1
[( ) ( ) ( ) ],
2
1
[( ) ( ) ( ) ],
2
1
[( )( ) ( )( )]
2
x y x y y y x x x y
A
x y x y y y x x x y
A
x y x y y y x x x y
A
A x x y y x x y y
α
α
α
= − + − + −
= − + − + −
= − + − + −
= − − − − −
Finite Element Method (6)
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 56
2
0
V
∇ = 0
ax b
+ =
2
0
2
d ax
bx c
dx
 
+ + =
 
 
2
1
2
e e
S
W E dS
ε
= 
V
= −∇
E
2
1
2
e e
S
W V dS
ε
→ = ∇

3
1
( , )
e i ei
i
V x y V
α
=
= 
3
1
e ei i
i
V V α
=
→ ∇ = ∇

3 3
1 1
1
( )( )
2
e ei i j ej
S
i j
W V dS V
ε α α
= =
 
→ = ∇ ∇
 
 
Finite Element Method (7)
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 57
3 3
1 1
1
( )( )
2
e ei i j ej
S
i j
W V dS V
ε α α
= =
 
= ∇ ∇
 
 
( )
( )( )
e
ij i j
S
C dS
α α
= ∇ ∇

[ ]
1
2
3
e
e e
e
V
V V
V
 
 
=  
 
 
( ) ( ) ( )
11 12 13
( ) ( ) ( ) ( )
21 22 23
( ) ( ) ( )
31 32 33
e e e
e e e e
e e e
C C C
C C C C
C C C
 
 
  =  
 
 
 
[ ] [ ]
( )
1
2
T e
e e e
W V C V
ε  
→ =  
Finite Element Method (8)
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 58
( )
( )( )
e
ij i j
S
C dS
α α
= ∇ ∇

( )
12 1 2
( )( )
e
S
C dS
α α
= ∇ ∇

1 2 3 3 2 2 3 3 2
2 3 1 1 3 3 1 1 3
2 1 3 1 3 1 2 1
1
[( ) ( ) ( ) ],
2
1
[( ) ( ) ( ) ],
2
1
[( )( ) ( )( )]
2
x y x y y y x x x y
A
x y x y y y x x x y
A
A x x y y x x y y
α
α
= − + − + −
= − + − + −
= − − − − −
( )
12 2 3 3 1 3 2 1 3
1
[( )( ) ( )( )]
4
e
C y y y y x x x x
A
→ = − − + − −
Finite Element Method (9)
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 59
( )
12 2 3 3 1 3 2 1 3
1
[( )( ) ( )( )]
4
e
C y y y y x x x x
A
= − − + − −
( )
13 2 3 1 2 3 2 2 1
( )
23 3 1 1 2 1 3 2 1
( ) 2 2
11 2 3 3 2
( ) 2 2
22 3 1 1 3
( ) 2 2
33 1 2 2 1
( ) ( ) ( ) ( )
21 12 31 13 32
1
[( )( ) ( )( )]
4
1
[( )( ) ( )( )]
4
1
[( ) ( ) ]
4
1
[( ) ( ) ]
4
1
[( ) ( ) ]
4
, ,
e
e
e
e
e
e e e e
C y y y y x x x x
A
C y y y y x x x x
A
C y y x x
A
C y y x x
A
C y y x x
A
C C C C C
= − − + − −
= − − + − −
= − + −
= − + −
= − + −
= = ( ) ( )
23
e e
C
=
1 2 3 2 3 1 3 1 2
1 3 2 2 1 3 3 2 1
, ,
, ,
P y y P y y P y y
Q x x Q x x Q x x
= − = − = −
= − = − = −
( )
2 3 3 2
1
( )
4
2
e
ij i j i j
C PP QQ
A
PQ PQ
A
→ = +
−
=
Finite Element Method (3)
• Discretizing the solution region into a finite number of
elements,
• Obtaining governing equations for a typical elements,
• Combining all elements in the solution, &
• Solving the system of equations obtained.
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 60
http://imagine.inrialpes.fr/people/Francois.Faure/htmlCourses/FiniteElements.html
2
0
V
∇ =
( , )
V x y
1( , )
V x y
2
V
3
V
4
V
Finite Element Method (10)
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 61
[ ] [ ]
( )
1
2
T e
e e e
W V C V
ε  
=  
[ ] [ ][ ]
1
1
2
N
T
e
e
W W V C V
ε
=
= =

[ ]
1
2
3
n
V
V
V V
V
 
 
 
 
=
 
 
 
 
⋮
Finite Element Method (11)
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 62
3
2
1
1
1
1
2
2
2
3
3 3
1
2 4
3
5
[ ] [ ][ ]
1
2
T
W V C V
ε
=
[ ]
11 12 13 14 15
21 22 23 24 25
31 32 33 34 35
41 42 43 44 45
51 52 53 54 55
C C C C C
C C C C C
C C C C C C
C C C C C
C C C C C
 
 
 
 
=
 
 
 
  (1) (2)
11 11 11
C C C
= +
(1)
22 33
C C
=
(1) (2) (3)
44 22 33 33
C C C C
= + +
(1) (2)
14 41 12 13
C C C C
= = +
23 32 0
C C
= =
[ ]
(1) (2) (1) (2) (1) (2)
11 11 13 12 12 13
(1) (1) (1)
31 33 32
(2) (2) (3) (2) (3) (3)
21 22 11 23 13 12
(1) (2) (1) (2) (3) (1) (2) (3) (3)
21 31 23 32 31 22 33 33 32
(3) (3) (3)
21 23 22
0
0 0
0
0 0
C C C C C C
C C C
C C C C C C C
C C C C C C C C C
C C C
 
+ +
 
 
 
= + +
 
+ + + +
 
 
 
Finite Element Method (3)
• Discretizing the solution region into a finite number of
elements,
• Obtaining governing equations for a typical elements,
• Combining all elements in the solution, &
• Solving the system of equations obtained.
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 63
http://imagine.inrialpes.fr/people/Francois.Faure/htmlCourses/FiniteElements.html
2
0
V
∇ =
( , )
V x y
1( , )
V x y
2
V
3
V
4
V
Finite Element Method (12)
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 64
0
ax b
+ =
2
0
2
d ax
bx c
dx
 
+ + =
 
 
2
0
V
∇ =
[ ] [ ][ ]
1
2
T
W V C V
ε
=
1 2
0 0, 1, 2,...,
n k
W W W W
k n
V V V V
∂ ∂ ∂ ∂
= = = = ↔ = =
∂ ∂ ∂ ∂
⋯
1,
1 n
k i ki
i i k
kk
V VC
C = ≠
→ = − 
Finite Element Method (13)
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 65
Ex.
0
V =
1
2
3
x
y 4
100
V =
2
1
1
2
3
1
2
4
3
2
4
1
2
3
Node 1 2 3 4
x 0.5 3.1 5.0 2.8
y 1.0 0.4 1.7 2.0
( ) 2 3 3 2
1 2 3 2 3 1 3 1 2
1 3 2 2 1 3 3 2 1
1
( ),
4 2
, ,
, ,
e
ij i j i j
P Q PQ
C PP QQ A
A
P y y P y y P y y
Q x x Q x x Q x x
−
= + =
= − = − = −
= − = − = −
Element 1:
1 2 3
0.4 2.0 1.6; 2.0 1.0 1.0; 1.0 0.4 0.6
P P P
= − = − = − = = − =
1 2 3
2.8 3.1 0.3; 0.5 2.8 2.3; 3.1 0.5 2.6
Q Q Q
= − = − = − = − = − =
1.0 2.6 0.6( 2.3)
1.99
2
A
× − −
= =
(1) 1 2 1 2
12
( 1.6)1.0 ( 0.3)( 2.3)
0.1143
4 1.99 4 1.99
PP Q Q
C
+ − + − −
= = = −
× ×
(1)
0.3329 0.1143 0.2186
0.1143 0.7902 0.6759
0.2186 0.6759 0.8945
C
− −
 
 
  = − −
   
 
− −
 
Finite Element Method (14)
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 66
Ex.
0
V =
1
2
3
x
y 4
100
V =
Node 1 2 3 4
x 0.5 3.1 5.0 2.8
y 1.0 0.4 1.7 2.0
2
1
1
2
3
1
2
4
3
2
4
1
2
3
( ) 2 3 3 2
1 2 3 2 3 1 3 1 2
1 3 2 2 1 3 3 2 1
1
( ),
4 2
, ,
, ,
e
ij i j i j
P Q PQ
C PP QQ A
A
P y y P y y P y y
Q x x Q x x Q x x
−
= + =
= − = − = −
= − = − = −
Element 2:
1 2 3
1.7 2.0 0.3; 2.0 0.4 1.6; 0.4 1.7 1.3
P P P
= − = − = − = = − = −
1 2 3
2.8 5 2.2; 3.1 2.8 0.3; 5.0 3.1 1.9
Q Q Q
= − = − = − = = − =
1.6 1.9 ( 1.3)0.3
1.715
2
A
× − −
= =
(2) 2 2 2 2
22
1.6 1.6 0.3 0.3
0.3863
4 1.715 4 1.715
P P Q Q
C
+ × + ×
= = =
× ×
(2)
0.7187 0.1662 0.5525
0.1662 0.3863 0.2201
0.5525 0.2201 0.7726
C
− −
 
 
  = − −
   
 
− −
 
Finite Element Method (15)
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 67
Ex.
0
V =
1
2
3
x
y 4
100
V =
(1)
(2)
0.3329 0.1143 0.2186
0.1143 0.7902 0.6759
0.2186 0.6759 0.8945
0.7187 0.1662 0.5525
0.1662 0.3863 0.2201
0.5525 0.2201 0.7726
C
C
− −
 
 
  = − −
   
 
− −
 
− −
 
 
  = − −
   
 
− −
 
[ ]
(1) (1) (1)
11 12 13
(1) (1) (2) (2) (1) (2)
21 22 11 12 23 13
(2) (2) (2)
21 22 23
(1) (1) (2) (2) (1) (2)
31 32 31 32 33 33
0
0
C C C
C C C C C C
C
C C C
C C C C C C
 
 
+ +
 
=
 
 
+ +
 
 
1
2
3
1
2
3
0.3329 0.1143 0 0.2186
0.1143 1.5089 0.1662 1.2284
0 0.1662 0.3863 0.2201
0.2186 1.2284 0.2201 1.6671
− −
 
 
− − −
 
=
 
− −
 
− − −
 
Finite Element Method (16)
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 68
Ex.
0
V =
1
2
3
x
y 4
100
V =
[ ]
0.3329 0.1143 0 0.2186
0.1143 1.5089 0.1662 1.2284
0 0.1662 0.3863 0.2201
0.2186 1.2284 0.2201 1.6671
C
− −
 
 
− − −
 
=
 
− −
 
− − −
 
1,
1 n
k i ki
i i k
kk
V VC
C = ≠
= − 
1
2
3
1
2
3
2 1 12 3 32 4 42
22
4 1 14 2 24 3 34
44
1
( )
1
( )
V VC V C V C
C
V VC V C V C
C

= − + +


→ 
 = − + +


( 1) ( ) ( )
2 4 4
( 1) ( ) ( )
4 2 2
1
[(0( 0.1143) 100( 0.1662) ( 1.2284)] 11.0146 0.8141
1.5089
1
[0( 0.2186) ( 1.2284) 100( 0.2201)] 13.2026 0.7368
1.6671
k k k
k k k
V V V
V V V
+
+

= − − + − + − = +


→ 
 = − − + − + − = +


Finite Element Method (17)
Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 69
Ex.
0
V =
1
2
3
x
y 4
100
V =
( 1) ( )
2 4
( 1) ( )
4 2
11.0146 0.8141
13.2026 0.7368
k k
k k
V V
V V
+
+
 = +


= +


(0) (0)
2 4
0 100
50
2
V V
+
= = =
1
2
3
1
2
3
(1) (0)
2 4
(1) (0)
4 2
11.0146 0.8141 11.0146 0.8141 50 51.7196
13.2026 0.7368 13.2026 0.7368 50 50.0426
V V
V V
 = + = + × =


= + = + × =


(2) (1)
2 4
(2) (1)
4 2
11.0146 0.8141 11.0146 0.8141 50.0426 51.7543
13.2026 0.7368 13.2026 0.7368 51.7196 51.3096
V V
V V
 = + = + × =


= + = + × =


(3) (2)
2 4
(3) (2)
4 2
11.0146 0.8141 11.0146 0.8141 51.3096 52.7857
13.2026 0.7368 13.2026 0.7368 51.7543 51.3352
V V
V V
 = + = + × =


= + = + × =


Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 70
Q 1 2
2
4
R
Q Q
R
πε
=
F a 2
4
R
Q
R
πε
=
E a ε
=
D E
.
W Q d
= − E L .
V d
= −E L
Q
C
V
=
dQ
I
dt
=
V
R
I
= 2 v
V
ρ
ε
∇ = −

Weitere ähnliche Inhalte

Ähnlich wie 07_Poisson_2019b_mk.pdf

Laplace equation
Laplace equationLaplace equation
Laplace equationalexkhan129
 
dot product of vectors
dot product of vectorsdot product of vectors
dot product of vectorsElias Dinsa
 
Lecture Notes: EEEC4340318 Instrumentation and Control Systems - System Models
Lecture Notes:  EEEC4340318 Instrumentation and Control Systems - System ModelsLecture Notes:  EEEC4340318 Instrumentation and Control Systems - System Models
Lecture Notes: EEEC4340318 Instrumentation and Control Systems - System ModelsAIMST University
 
complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)tejaspatel1997
 
Mathcad explicit solution cubic equation examples
Mathcad   explicit solution cubic equation examplesMathcad   explicit solution cubic equation examples
Mathcad explicit solution cubic equation examplesJulio Banks
 
ELECTROMAGNETICS: Laplace’s and poisson’s equation
ELECTROMAGNETICS: Laplace’s and poisson’s equationELECTROMAGNETICS: Laplace’s and poisson’s equation
ELECTROMAGNETICS: Laplace’s and poisson’s equationShivangiSingh241
 
Conformal mapping
Conformal mappingConformal mapping
Conformal mappingCss Founder
 

Ähnlich wie 07_Poisson_2019b_mk.pdf (20)

Laplace equation
Laplace equationLaplace equation
Laplace equation
 
Trigonometry cheat sheet
Trigonometry cheat sheetTrigonometry cheat sheet
Trigonometry cheat sheet
 
Trig cheat sheet
Trig cheat sheetTrig cheat sheet
Trig cheat sheet
 
dot product of vectors
dot product of vectorsdot product of vectors
dot product of vectors
 
B.Tech-II_Unit-IV
B.Tech-II_Unit-IVB.Tech-II_Unit-IV
B.Tech-II_Unit-IV
 
Lecture5_Laplace_ODE.pdf
Lecture5_Laplace_ODE.pdfLecture5_Laplace_ODE.pdf
Lecture5_Laplace_ODE.pdf
 
0704 ch 7 day 4
0704 ch 7 day 40704 ch 7 day 4
0704 ch 7 day 4
 
Boundary Value Problems
Boundary Value ProblemsBoundary Value Problems
Boundary Value Problems
 
Lecture Notes: EEEC4340318 Instrumentation and Control Systems - System Models
Lecture Notes:  EEEC4340318 Instrumentation and Control Systems - System ModelsLecture Notes:  EEEC4340318 Instrumentation and Control Systems - System Models
Lecture Notes: EEEC4340318 Instrumentation and Control Systems - System Models
 
complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)
 
Module_VI.pdf
Module_VI.pdfModule_VI.pdf
Module_VI.pdf
 
Lecture 11
Lecture 11Lecture 11
Lecture 11
 
Maths04
Maths04Maths04
Maths04
 
Iwsmbvs
IwsmbvsIwsmbvs
Iwsmbvs
 
Mathcad explicit solution cubic equation examples
Mathcad   explicit solution cubic equation examplesMathcad   explicit solution cubic equation examples
Mathcad explicit solution cubic equation examples
 
ELECTROMAGNETICS: Laplace’s and poisson’s equation
ELECTROMAGNETICS: Laplace’s and poisson’s equationELECTROMAGNETICS: Laplace’s and poisson’s equation
ELECTROMAGNETICS: Laplace’s and poisson’s equation
 
Conformal mapping
Conformal mappingConformal mapping
Conformal mapping
 
Legendre
LegendreLegendre
Legendre
 
Trig cheat sheet
Trig cheat sheetTrig cheat sheet
Trig cheat sheet
 
Trig cheat sheet
Trig cheat sheetTrig cheat sheet
Trig cheat sheet
 

Kürzlich hochgeladen

How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxCeline George
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSCeline George
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxannathomasp01
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfDr Vijay Vishwakarma
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17Celine George
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfNirmal Dwivedi
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and ModificationsMJDuyan
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - Englishneillewis46
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxUmeshTimilsina1
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxDr. Sarita Anand
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17Celine George
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024Elizabeth Walsh
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Pooja Bhuva
 

Kürzlich hochgeladen (20)

How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptx
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 

07_Poisson_2019b_mk.pdf

  • 1. Engineering Electromagnetics Poisson’s & Laplace’s Equations Nguyễn Công Phương
  • 2. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Contents I. Introduction II. Vector Analysis III. Coulomb’s Law & Electric Field Intensity IV. Electric Flux Density, Gauss’ Law & Divergence V. Energy & Potential VI. Current & Conductors VII. Dielectrics & Capacitance VIII.Poisson’s & Laplace’s Equations IX. The Steady Magnetic Field X. Magnetic Forces & Inductance XI. Time – Varying Fields & Maxwell’s Equations XII. Transmission Lines XIII. The Uniform Plane Wave XIV. Plane Wave Reflection & Dispersion XV. Guided Waves & Radiation 2
  • 3. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Poisson’s & Laplace’s Equations 1. Poisson’s Equation 2. Laplace’s Equation 3. Uniqueness Theorem 4. Examples of the Solution of Laplace’s Equation 5. Examples of the Solution of Poisson’s Equation 6. Product Solution of Laplace’s Equation 7. Numerical Methods 3
  • 4. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Poisson's Equation (1) 0 D E ε = Gauss’s Law: v ρ ∇ = .D ( ) ( ) v V ε ε ρ → ∇ = ∇ = −∇ ∇ = .D . E . V = −∇ E Gradient: v V ρ ε → ∇ ∇ = − . (Poisson's Equation) x y z V V V V x y z ∂ ∂ ∂ ∇ = + + ∂ ∂ ∂ a a a y x z A A A x y z ∂ ∂ ∂ ∇ = + + ∂ ∂ ∂ .A 2 2 2 2 2 2 . y x z V V V V V V V x x y y z z x y z ∂   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     → ∇∇ = + + = + +       ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂       4
  • 5. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Poisson's Equation (2) v V ρ ε ∇ ∇ = − . Define 2 ∇ ∇ = ∇ . 2 2 2 2 2 2 . V V V V x y z ∂ ∂ ∂ ∇ ∇ = + + ∂ ∂ ∂ 2 2 2 2 2 2 2 v V V V V x y z ρ ε ∂ ∂ ∂ ∇ = + + = − ∂ ∂ ∂ (rectangular) 2 2 2 2 2 1 1 v V V V z ρ ρ ρ ρ ρ ρ ϕ ε   ∂ ∂ ∂ ∂ + + = −   ∂ ∂ ∂ ∂   2 2 2 2 2 2 2 1 1 1 sin sin sin v V V V r r r r r r ρ θ θ θ θ θ ϕ ε ∂ ∂ ∂ ∂ ∂     + + = −     ∂ ∂ ∂ ∂ ∂     (cylindrical) (spherical) 5
  • 6. Poisson’s Equation (3) Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Ex. Find the Laplacian of the following scalar fields: 2 3 3 ) 2 cos2 ) 20sin ) a A xy z b B c C r ϕ ρ θ = = = 6
  • 7. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Poisson’s & Laplace’s Equations 1. Poisson’s Equation 2. Laplace’s Equation 3. Uniqueness Theorem 4. Examples of the Solution of Laplace’s Equation 5. Examples of the Solution of Poisson’s Equation 6. Product Solution of Laplace’s Equation 7. Numerical Methods 7
  • 8. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Laplace’s Equation 0 v ρ = 2 2 2 2 2 2 2 v V V V V x y z ρ ε ∂ ∂ ∂ ∇ = + + = − ∂ ∂ ∂ (Laplace’s equation, rectangular) 2 2 2 2 2 1 1 0 V V V z ρ ρ ρ ρ ρ ϕ   ∂ ∂ ∂ ∂ + + =   ∂ ∂ ∂ ∂   2 2 2 2 2 2 2 1 1 1 sin 0 sin sin V V V r r r r r r θ θ θ θ θ ϕ ∂ ∂ ∂ ∂ ∂     + + =     ∂ ∂ ∂ ∂ ∂     (cylindrical) (spherical) 2 2 2 2 2 2 2 0 V V V V x y z ∂ ∂ ∂ ∇ = + + = ∂ ∂ ∂ Poisson's Equation: 8
  • 9. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Poisson’s & Laplace’s Equations 1. Poisson’s Equation 2. Laplace’s Equation 3. Uniqueness Theorem 4. Examples of the Solution of Laplace’s Equation 5. Examples of the Solution of Poisson’s Equation 6. Product Solution of Laplace’s Equation 7. Numerical Methods 9
  • 10. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Uniqueness Theorem (1) 2 2 2 2 2 2 2 0 V V V V x y z ∂ ∂ ∂ ∇ = + + = ∂ ∂ ∂ Assume two solutions V1 & V2, : 2 1 0 V ∇ = 2 2 0 V ∇ = 2 1 2 ( ) 0 V V → ∇ − = Assume the boundary condition Vb 1 2 b b b V V V → = = ( ) ( ) ( ) . D .D D. V V V ∇ = ∇ + ∇ 1 2 1 2 1 2 1 2 1 2 1 2 [( ) ( )] ( )[ ( )] ( ) ( ) . . . V V V V V V V V V V V V → ∇ − ∇ − = − ∇ ∇ − + +∇ − ∇ − 1 2 V V V = − 1 2 ( ) D V V = ∇ − 10
  • 11. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Uniqueness Theorem (2) 1 2 1 2 1 2 1 2 1 2 1 2 [( ) ( )] ( )[ ( )] ( ) ( ) . . . V V V V V V V V V V V V ∇ − ∇ − = − ∇ ∇ − +∇ − ∇ − 1 2 1 2 1 2 1 2 1 2 1 2 [( ) ( )] ( )[ ( )] ( ) ( ) V V V V V V V dv V V V V dv V V V V dv → ∇ − ∇ − = − ∇ ∇ − + + ∇ − ∇ −    . . . . . S V d dv = ∇   D S D Divergence theorem: 1 2 1 2 1 2 1 2 [( ) ( )] [( ) ( )] b b b b V S V V V V dv V V V V d → ∇ − ∇ − = − ∇ −   . . S 1 2 b b b V V V = = 1 2 1 2 [( ) ( )] 0 V V V V V dv → ∇ − ∇ − =  . 1 2 1 2 1 2 1 2 0 ( )[ ( )] ( ) ( ) V V V V V V dv V V V V dv → = − ∇ ∇ − + ∇ − ∇ −   . . 11
  • 12. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Uniqueness Theorem (3) 1 2 1 2 1 2 1 2 ( )[ ( )] ( ) ( ) 0 V V V V V V dv V V V V dv − ∇ ∇ − + ∇ − ∇ − =   . . 2 1 2 1 2 ( ) ( ) 0 . V V V V ∇ ∇ − = ∇ − = 1 2 1 2 ( ) ( ) 0 V V V V V dv → ∇ − ∇ − =  . [ ] 2 1 2 ( ) V V V dv = ∇ −  [ ] 2 1 2 ( ) 0 V V → ∇ − = [ ] 2 1 2 ( ) 0 V V ∇ − ≥ 1 2 const V V → − = 1 2 ( ) 0 V V → ∇ − = x y z V V V V x y z ∂ ∂ ∂ ∇ = + + ∂ ∂ ∂ a a a At boundary V1 = Vb1, V2 = Vb2 → const = Vb1 – Vb2 = 0 1 2 b b b V V V = = V1 = V2 12
  • 13. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Poisson’s & Laplace’s Equations 1. Poisson’s Equation 2. Laplace’s Equation 3. Uniqueness Theorem 4. Examples of the Solution of Laplace’s Equation 5. Examples of the Solution of Poisson’s Equation 6. Product Solution of Laplace’s Equation 7. Numerical Methods 13
  • 14. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Examples of the Solution of Laplace’s Equation (1) Assume V = V(x) 2 2 2 2 2 2 2 0 V V V V x y z ∂ ∂ ∂ ∇ = + + = ∂ ∂ ∂ 2 2 0 d V dx → = V Ax B → = + 1 1 x x V V = = 2 2 x x V V = = 1 2 1 2 2 1 1 2 1 2 V V A x x V x V x B x x −  =  −  →  −  =  −  1 2 2 1 1 2 ( ) ( ) V x x V x x V x x − − − → = − 0 0 x V = = 0 x d V V = = 0 V x V d → = Ex. 1 14
  • 15. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Examples of the Solution of Laplace’s Equation (2) Conductor surface Conductor surface x = d x = 0 x V = V(x) 0 0 x V = = 0 x d V V = = 0 V x V d → = E V = −∇ 0 E ax V d → = − D E ε = 0 D ax V d ε → = − 0 0 D D a S x x V d ε = → = = − 0 N V D d ε → = − 0 S N V D d ρ ε → = = − 0 V S d ε = − 0 S S S V Q dS dS d ε ρ − → = =   0 Q C V → = S d ε = Ex. 1 15
  • 16. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Examples of the Solution of Laplace’s Equation (3) Assume V = V(ρ) (cylindrical) 2 2 2 2 2 2 1 1 0 V V V V z ρ ρ ρ ρ ρ ϕ   ∂ ∂ ∂ ∂ ∇ = + + =   ∂ ∂ ∂ ∂   1 0 V ρ ρ ρ ρ   ∂ ∂ → =   ∂ ∂   1 0 d dV d d ρ ρ ρ ρ   → =     0 d dV d d ρ ρ ρ   → =     dV A d ρ ρ → = ln V A B ρ → = + 0 ln a V A a B V ρ = = + = ln 0 ( ) b V A b B b a ρ = = + = > 0 0 ln ln ln ln ln V A a b V b B a b  =   − →   = −  −  0 ln( / ) ln( / ) b V V b a ρ → = Ex. 2 16
  • 17. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Examples of the Solution of Laplace’s Equation (4) Assume V = V(ρ) (cylindrical) 2 2 2 2 2 2 1 1 0 V V V V z ρ ρ ρ ρ ρ ϕ   ∂ ∂ ∂ ∂ ∇ = + + =   ∂ ∂ ∂ ∂   0 ln( / ) ln( / ) b V V b a ρ → = 0 ln( / ) E a V V b a ρ ρ → = −∇ = 0 ( ) ln( / ) N a S V D a b a ρ ε ρ = → = = 0 2 ln( / ) S S V aL Q dS a b a ε π ρ → = =  0 2 ln( / ) Q L C V b a ε π → = = Ex. 2 17
  • 18. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Examples of the Solution of Laplace’s Equation (5) Assume V = V(φ) (cylindrical) 2 2 2 2 2 2 1 1 0 V V V V z ρ ρ ρ ρ ρ ϕ   ∂ ∂ ∂ ∂ ∇ = + + =   ∂ ∂ ∂ ∂   2 2 2 1 0 V ρ ϕ ∂ → = ∂ 2 2 0 V ϕ ∂ → = ∂ V A B ϕ → = + 0 0 V B ϕ= = = 0 V A B V ϕ α α = = + = 0 0 B V A α =   →  =   0 V V ϕ α → = 0 E a V V ϕ αρ → = −∇ = − Ex. 3 z α Air gap 18
  • 19. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Examples of the Solution of Laplace’s Equation (6) Ex. 4 Assume V = V(θ) (spherical) 2 2 2 2 2 2 2 2 1 1 1 sin 0 sin sin V V V V r r r r r r θ θ θ θ θ ϕ ∂ ∂ ∂ ∂ ∂     ∇ = + + =     ∂ ∂ ∂ ∂ ∂     2 1 sin 0 sin V r θ θ θ θ ∂ ∂   → =   ∂ ∂   sin 0 V θ θ θ ∂ ∂   → =   ∂ ∂   sin dV A d θ θ → = sin d dV A θ θ → = ln tan 2 A B θ   = +     sin d V A B θ θ → = +  Assume r ≠ 0; θ ≠ 0; θ ≠ π 19
  • 20. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Examples of the Solution of Laplace’s Equation (7) Ex. 4 Assume V = V(θ) ln tan 2 V A B θ   → = +     0 ln tan 2 ln tan 2 V V θ α       → =       / 2 0 V θ π = = 0 ( / 2) V V θ α α π = = < V = 0 V = V0 α Air gap 0 1 sin ln tan 2 V V V r r θ θ α θ θ ∂ → = −∇ = − = − ∂       E a a 0 sin ln tan 2 S N V D E r ε ρ ε α α → = = = −       20
  • 21. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Examples of the Solution of Laplace’s Equation (8) Ex. 4 Assume V = V(θ) 0 0 2 ln tan 2 V dr πε α ∞ − =        0 sin ln tan 2 S S S V Q dS dS r ε ρ α α → = = −         2 0 0 0 sin sin ln tan 2 V r d dr Q r π ε α ϕ α α ∞ − → =         sin dS r d dr α ϕ = 0 sin ln tan 2 S V r ε ρ α α → = −       1 0 2 ln cot 2 Q r C V πε α → =       ≐ V = 0 V = V0 α Air gap 21
  • 22. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Poisson’s & Laplace’s Equations 1. Poisson’s Equation 2. Laplace’s Equation 3. Uniqueness Theorem 4. Examples of the Solution of Laplace’s Equation 5. Examples of the Solution of Poisson’s Equation 6. Product Solution of Laplace’s Equation 7. Numerical Methods 22
  • 23. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Examples of the Solution of Poisson’s Equation (1) 2 0 2 2 sech th v d V x x a a dx ρ ε → = − 2 ( sech ; th ) x x x x x x e e x x e e e e − − − − = = + + 0 2 sech th v v x x a a ρ ρ = x dV E dx = − 2 v V ρ ε ∇ = − Poisson’s Equation : 0 1 2 sech v a dV x C dx a ρ ε → = + 0 1 2 sech v x a x E C a ρ ε → = − − –5 –4 –3 –2 –1 1 2 3 4 5 0,5 1 –0,5 –1 / x a 0 v v ρ ρ p-type n-type v ρ –5 –4 –3 –2 –1 1 2 3 4 5 –0,5 –1 / x a 0 2 x v E a ε ρ x E 1 0 C → = 0 2 sech v x a x E a ρ ε → = − If x → ± ∞ then Ex → 0 23
  • 24. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 2 / 0 4 arctg 4 x a v a V e ρ π ε   → = −     0 2 sech th v v x x a a ρ ρ = 2 v V ρ ε ∇ = − 2 / 0 2 4 arctg x a v a V e C ρ ε → = + 0 2 sech v x a x E a ρ ε → = − –5 –4 –3 –2 –1 1 2 3 4 5 –0,5 –1 / x a 0 2 x v E a ε ρ V –5 –4 –3 –2 –1 1 2 3 4 5 0,25 0,5 –0,25 –0,5 / x a 2 0 2 v V a πε ρ x E Poisson’s equation : 0 0 x V = = Supp. 2 0 2 4 0 4 v a C ρ π ε → = + Examples of the Solution of Poisson’s Equation (2) –5 –4 –3 –2 –1 1 2 3 4 5 0,5 1 –0,5 –1 / x a 0 v v ρ ρ p-type n-type v ρ 24
  • 25. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 2 / 0 4 arctg 4 x a v a V e ρ π ε   = −     2 0 0 2 v x x a V V V πρ ε → ∞ → −∞ = − = 0 0 0 0 2 sech th 2 sech th 2 v v v v V V x x x x Q dv dv S dx aS a a a a ρ ρ ρ ρ ∞ = = = =    0 0 2 v V Q S ρ ε π → = 0 2 sech th v v x x a a ρ ρ = 0 0 dV dQ dQ I C C dt dt dV = = → = 0 0 2 2 v S C S V a ρ ε ε π π → = = Examples of the Solution of Poisson’s Equation (3) –5 –4 –3 –2 –1 1 2 3 4 5 0,5 1 –0,5 –1 / x a 0 v v ρ ρ p-type n-type v ρ 25
  • 26. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Poisson’s & Laplace’s Equations 1. Poisson’s Equation 2. Laplace’s Equation 3. Uniqueness Theorem 4. Examples of the Solution of Laplace’s Equation 5. Examples of the Solution of Poisson’s Equation 6. Product Solution of Laplace’s Equation 7. Numerical Methods 26
  • 27. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Product Solution of Laplace’s Equation (1) • Previous examples assumed that V varies with one of the three coordinates • The product solution can be used to solve for V(x, y) • Assume V = XY, X = X(x), Y = Y(y) 2 2 2 2 2 2 2 0 V V V V x y z ∂ ∂ ∂ ∇ = + + = ∂ ∂ ∂ 2 2 2 2 0 V V x y ∂ ∂ → + = ∂ ∂ ( , ) V V x y = 2 2 2 2 0 X Y Y X x y ∂ ∂ → + = ∂ ∂ 2 2 2 2 0 d X d Y Y X dx dy → + = 27
  • 28. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Product Solution of Laplace’s Equation (2) 2 2 2 2 0 d X d Y Y X dx dy + = 2 2 2 2 1 1 0 d X d Y X dx Y dy → + = 2 2 2 2 1 1 d X d Y X dx Y dy → = − 2 2 1 d X X dx involves no y 2 2 1 d Y Y dy − involves no x 2 2 2 2 2 2 1 1 d X X dx d Y Y dy α α  =   →  − =   28
  • 29. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Product Solution of Laplace’s Equation (3) 2 2 2 2 1 d dR R d d d d ρ ρ α ρ ρ α ϕ    =       →  Φ − =  Φ  ( , ) ( ) ( ) V V R ρ ϕ ρ ϕ = = Φ 2 2 2 2 2 1 1 0 V V V z ρ ρ ρ ρ ρ ϕ   ∂ ∂ ∂ ∂ + + =   ∂ ∂ ∂ ∂   2 2 1 0 R R ρ ρ ρ ρ ϕ   ∂ ∂ ∂ Φ → + =   ∂ ∂ Φ ∂   29
  • 30. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Product Solution of Laplace’s Equation (4) 2 2 2 2 2 2 ( 1) 1 1 ( 1) tg R R n n R R n n ρ ρ ρ ρ θ θ θ  ∂ ∂ + = +  ∂ ∂  →  ∂ Θ ∂Θ  + = − + Θ ∂ Θ ∂  ( , ) ( ) ( ) V V R ρ θ ρ θ = = Θ 2 2 2 2 2 2 1 1 0 tg R R R R ρ ρ ρ ρ θ θ θ     ∂ ∂ ∂ Θ ∂Θ → + + + =     ∂ ∂ Θ ∂ Θ ∂     2 2 2 2 2 2 2 1 1 1 sin 0 sin sin V V V r r r r r r θ θ θ θ θ ϕ ∂ ∂ ∂ ∂ ∂     + + =     ∂ ∂ ∂ ∂ ∂     30
  • 31. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Product Solution of Laplace’s Equation (5) Ex. 2 2 2 2 1 d dR R d d d d ρ ρ α ρ ρ α ϕ    =       →  Φ − =  Φ  ( , ) ( ) ( ) V V R ρ ϕ ρ ϕ = = Φ ( ) ( ); ( ) ( ) V V V V ϕ ϕ ϕ π ϕ = − = − − ( ) cos sin , Assume p p A p B p p ϕ ϕ ϕ α Φ = + = ±   1 ( ) cos , 1 A ϕ ϕ α → Φ = = Solve for the potential & EFI in the vicinity of a conducting cylinder (posses an infinite length) in a uniform EFI E0. The permittivities of the environment & the cylinder are ε1 & ε2 respectively. EFI is perpendicular to the cylinder’s axis. 31
  • 32. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Product Solution of Laplace’s Equation (6) 2 2 2 2 1 d d d dR R d d α ϕ ρ ρ α ρ ρ  Φ − =  Φ      =       2 2 k k k k k B d dR R d d B ρ ρ ρ α ρ ρ ρ   → = =     1 α = ( ) Assume k k R B ρ ρ = 1 ( ) cos , 1 A ϕ ϕ α → Φ = = 1 k → = ± 1 1 1 ( ) R B B ρ ρ ρ + − − → = + Ex. 32 Solve for the potential & EFI in the vicinity of a conducting cylinder (posses an infinite length) in a uniform EFI E0. The permittivities of the environment & the cylinder are ε1 & ε2 respectively. EFI is perpendicular to the cylinder’s axis.
  • 33. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Product Solution of Laplace’s Equation (7) 2 2 1 2 2 1 1 1 1 ( ) cos ( ) d A d d dR R B B R d d α ϕ ϕ ϕ ρ ρ α ρ ρ ρ ρ ρ + − −  Φ − = → Φ =  Φ      = → = +       1 1 1 1 1 cos cos V A B A B ρ ϕ ρ ϕ + − − → = + ( , ) ( ) ( ) V V R ρ ϕ ρ ϕ = = Φ 1 cos cos C C ρ ϕ ρ ϕ + − − = + Ex. 33 Solve for the potential & EFI in the vicinity of a conducting cylinder (posses an infinite length) in a uniform EFI E0. The permittivities of the environment & the cylinder are ε1 & ε2 respectively. EFI is perpendicular to the cylinder’s axis.
  • 34. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Product Solution of Laplace’s Equation (8) 1 1 1 1 cos cos Exterior: V C C ρ ϕ ρ ϕ + − − = + 0 x V E x −∞ →−∞ = 1 2 2 2 cos cos Interior: V C C ρ ϕ ρ ϕ + − − = + 1 1 , x V V C x θ π ρ + −∞ = →−∞ →−∞ = = − x y E0 ρ θ ε1 ε2 1 0 C E + → = − 2 2 0 0 gèc täa ®é C V V ρ ρ ρ − → → = = → ∞ 2 0 C− → = EFI is finite at the origin Ex. 34 Solve for the potential & EFI in the vicinity of a conducting cylinder (posses an infinite length) in a uniform EFI E0. The permittivities of the environment & the cylinder are ε1 & ε2 respectively. EFI is perpendicular to the cylinder’s axis.
  • 35. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Product Solution of Laplace’s Equation (9) 1 1 1 1 cos cos Exterior: V C C ρ ϕ ρ ϕ + − − = + 1 2 2 2 cos cos Interior: V C C ρ ϕ ρ ϕ + − − = + x y E0 ρ θ ε1 ε2 1 0 2 , 0 C E C + − = − = 1 1 0 1 2 2 cos cos cos V E C V C ρ ϕ ρ ϕ ρ ϕ − − +  = − +  →  =   Ex. 35 Solve for the potential & EFI in the vicinity of a conducting cylinder (posses an infinite length) in a uniform EFI E0. The permittivities of the environment & the cylinder are ε1 & ε2 respectively. EFI is perpendicular to the cylinder’s axis.
  • 36. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Product Solution of Laplace’s Equation (10) 1 1 0 1 cos cos V E C ρ ϕ ρ ϕ − − = − + 2 2 cos V C ρ ϕ + = x y E0 ρ θ ε1 ε2 1 2 a a V V ρ ρ = = = 1 0 1 2 ( )cos cos E a C a C a ϕ ϕ − − + → − + = a 1 2 1 2 a a V V ρ ρ ε ε ρ ρ = = ∂ ∂ = ∂ ∂ 2 1 0 1 2 2 ( )cos cos E C a C a ε ϕ ε ϕ − − + → − − = Ex. 36 Solve for the potential & EFI in the vicinity of a conducting cylinder (posses an infinite length) in a uniform EFI E0. The permittivities of the environment & the cylinder are ε1 & ε2 respectively. EFI is perpendicular to the cylinder’s axis.
  • 37. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Product Solution of Laplace’s Equation (11) 1 0 1 2 ( )cos cos E a C a C a ϕ ϕ − − + − + = 2 1 0 1 2 2 ( )cos cos E C a C a ε ϕ ε ϕ − − + − − = 2 1 2 1 1 0 2 0 1 2 1 2 2 , C E a C E ε ε ε ε ε ε ε − + − → = − = − + + 2 1 2 1 0 2 1 2 1 2 0 1 2 1 cos , 2 cos as as a V E a V E a ε ε ρ ϕ ρ ε ε ρ ε ρ ϕ ρ ε ε    − = − − ≥    +    →   = − ≤  +  1 1 0 1 cos cos V E C ρ ϕ ρ ϕ − − = − + 2 2 cos V C ρ ϕ + = Ex. 37 Solve for the potential & EFI in the vicinity of a conducting cylinder (posses an infinite length) in a uniform EFI E0. The permittivities of the environment & the cylinder are ε1 & ε2 respectively. EFI is perpendicular to the cylinder’s axis.
  • 38. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Product Solution of Laplace’s Equation (12) 2 1 2 1 0 2 1 2 1 2 0 1 2 1 cos , 2 cos as as a V E a V E a ε ε ρ ϕ ρ ε ε ρ ε ρ ϕ ρ ε ε    − = − − ≥    +      = − ≤  +  2 1 2 1 2 0 2 0 1 2 1 2 2 2 cos , sin V V E E E E ρ ϕ ε ε ϕ ϕ ρ ε ε ϕ ε ε ∂ ∂ = − = = − = − ∂ + ∂ + 2 2 1 1 2 1 1 2 1 0 1 0 2 2 1 2 1 2 1 cos , 1 sin V V a a E E E E ρ ϕ ε ε ε ε ϕ ϕ ρ ε ε ρ ϕ ε ε ρ     ∂ − ∂ − = − = − = − = − −     ∂ + ∂ +     1 2 2 0 1 2 2 z E E E ε ε ε → = = + Ex. 38 Solve for the potential & EFI in the vicinity of a conducting cylinder (posses an infinite length) in a uniform EFI E0. The permittivities of the environment & the cylinder are ε1 & ε2 respectively. EFI is perpendicular to the cylinder’s axis.
  • 39. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Poisson’s & Laplace’s Equations 1. Poisson’s Equation 2. Laplace’s Equation 3. Uniqueness Theorem 4. Examples of the Solution of Laplace’s Equation 5. Examples of the Solution of Poisson’s Equation 6. Product Solution of Laplace’s Equation 7. Numerical Methods a. Finite Difference Method b. Finite Element Method 39
  • 40. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Finite Difference Method (1) x y h h V0 V1 V2 V3 V4 a b c d 2 2 2 2 2 2 2 0 V V V V x y z ∂ ∂ ∂ ∇ = + + = ∂ ∂ ∂ 2 2 2 2 0 V V x y ∂ ∂ → + = ∂ ∂ ( , ) V V x y = 1 0 a V V V x h − ∂ ≈ ∂ 2 1 0 0 3 2 2 V V V V V x h − − + ∂ → ≈ ∂ 0 3 c V V V x h − ∂ ≈ ∂ 2 2 a c V V V x x x h ∂ ∂ − ∂ ∂ ∂ ≈ ∂ 40
  • 41. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Finite Difference Method (2) x y h h V0 V1 V2 V3 V4 2 2 2 2 0 V V x y ∂ ∂ + = ∂ ∂ 2 2 0 0 4 2 2 V V V V V y h − − + ∂ ≈ ∂ 2 1 0 0 3 2 2 V V V V V x h − − + ∂ ≈ ∂ 2 2 1 2 3 4 0 2 2 4 0 V V V V V V V x y h + + + − ∂ ∂ → + ≈ = ∂ ∂ ( ) 0 1 2 3 4 1 4 V V V V V ≈ + + + → 41
  • 42. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Finite Difference Method (3) Ex. 1 V = 100 V = 0 V = 0 V = 0 Air gap Air gap ( ) 0 1 2 3 4 1 4 V V V V V = + + + 42 Ve Vc Va Vb Vd Vf Vg Vi Vh 4 100 0 a d b V V V = + + + 4 100 b a e c V V V V = + + + 4 0 100 c b f V V V = + + + 4 0 d g e a V V V V = + + + 4 e b d h f V V V V V = + + + 4 0 f c e i V V V V = + + + 4 0 0 g d h V V V = + + + 4 0 h e g i V V V V = + + + 4 0 0 i f h V V V = + + + 42.86V 52.68V 42.86V 18.75V 25.00V 18,75V 7.14V 9.82 V 7.14V a b c d e f g h i V V V V V V V V V  =  =   =  =   → =   =   =  =   =  Method 1
  • 43. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Finite Difference Method (4) Ex. 1 V = 100 V = 0 V = 0 V = 0 Air gap Air gap ( ) 0 1 2 3 4 1 4 V V V V V = + + + ( ) 1 0 100 0 0 25 4 + + + = ( ) 1 100 50 0 25 43.8 4 + + + = ( ) 1 0 25 0 0 6.2 4 + + + = ( ) 1 43.8 100 43.8 25 53.2 4 + + + = ( ) 1 25 43.8 0 6.2 18.8 4 + + + = ( ) 1 6.2 25 6.2 0 9.4 4 + + + = 25 43.8 43.8 53.2 18.8 18.8 6.2 6.2 9.4 Step 1 43 Method 2
  • 44. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Finite Difference Method (5) V = 100 V = 0 V = 0 V = 0 Air gap Air gap ( ) 0 1 2 3 4 1 4 V V V V V = + + + ( ) 1 53.2 100 0 18.8 43 4 + + + = ( ) 1 100 50 0 25 43.8 4 + + + = ( ) 1 43 100 43 25 52.8 4 + + + = ( ) 1 43.8 100 43.8 25 53.2 4 + + + = ( ) 1 25 43.8 0 6.2 18.8 4 + + + = 25 43.8 43.8 53.2 18.8 18.8 6.2 6.2 9.4 ( ) 1 25 43 0 6.2 18.6 4 + + + = 43 43 52.8 18.6 18.6 Step 2 Ex. 1 44 Method 2
  • 45. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Finite Difference Method (6) V = 100 V = 0 V = 0 V = 0 Air gap Air gap ( ) 0 1 2 3 4 1 4 V V V V V = + + + 25 43.8 43.8 53.2 18.8 18.8 6.2 6.2 9.4 43 43 52.8 18.6 18.6 ( ) 1 0 100 0 0 25 4 + + + = ( ) 1 0 25 0 0 6.2 4 + + + = ( ) 1 6.2 25 6.2 0 9.4 4 + + + = ( ) 1 18.6 52.8 18.6 9.4 24.9 4 + + + = ( ) 1 9.4 18.6 0 0 7.0 4 + + + = 24.9 7.0 7.0 ( ) 1 7.0 25 7.0 0 9.8 4 + + + = 9.8 Step 2 Ex. 1 45 Method 2
  • 46. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Finite Difference Method (7) V = 100 V = 0 V = 0 V = 0 Air gap Air gap ( ) 0 1 2 3 4 1 4 V V V V V = + + + 25 43.8 43.8 53.2 18.8 18.8 6.2 6.2 9.4 43 43 52.8 18.6 18.6 24.9 7.0 7.0 9.8 ( ) 1 52.8 100 0 18.6 42.9 4 + + + = ( ) 1 42.9 100 42.9 24.9 52.7 4 + + + = ( ) 1 24.9 42.9 0 7.0 18.7 4 + + + = ( ) 1 18.7 52.7 18.7 9.8 25.0 4 + + + = ( ) 1 9.8 18.7 0 0 7.1 4 + + + = ( ) 1 7.1 25 7.1 0 9.8 4 + + + = 42.9 42.9 52.7 18.7 18.7 25.0 7.1 7.1 9.8 Step 3 Ex. 1 46 Method 2
  • 47. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Finite Difference Method (8) Ex. 2 0 V 0 V 0 V 0 V 10 V 20 V 4 1 2 3 5 6 7 8 9 10 47 1 2 4 4 10 0 V V V = + + + 2 1 5 3 4 10 V V V V = + + + 3 2 6 4 20 10 V V V = + + + 4 1 5 4 0 0 V V V = + + + 5 2 4 7 6 4V V V V V = + + + 6 3 5 8 4 20 V V V V = + + + 7 5 9 8 4 0 V V V V = + + + 8 6 7 10 4 20 V V V V = + + + 9 7 10 4 0 0 V V V = + + + 10 8 9 4 0 20 V V V = + + + 1 2 3 4 5 6 7 8 9 10 5.6423V 9.1735V 13.1111V 3.3957 V 7.9405V 13.2710 V 5.9219 V 12.0324V 3.7147 V 8.9368V V V V V V V V V V V =   =   =  =   =  →  =   =  =   =   =  Method 1
  • 48. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Finite Difference Method (9) Ex. 2 0 V 0 V 0 V 0 V 10 V 20 V 4 1 2 3 5 6 7 8 9 10 (0) (0) (0) 1 2 10 ... 0 V V V = = = = ( ) (1) (0) (0) 1 2 4 1 10 0 2.5000V 4 V V V = + + + = ( ) (1) (0) (1) (0) 2 3 1 5 1 10 3.1250V 4 V V V V = + + + = ( ) (1) (0) (1) (0) 7 8 5 9 ... 1 0 0.2344V 4 ... V V V V = + + + = ( ) (1) (1) (1) 10 8 9 1 20 0 6.7358V 4 V V V = + + + = 48 Method 2
  • 49. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Finite Difference Method (10) Ex. 2 0 V 0 V 0 V 0 V 10 V 20 V 4 1 2 3 5 6 7 8 9 10 k ( ) 1 (V) k V ( ) 2 (V) k V ( ) 3 (V) k V ( ) 4 (V) k V ( ) 5 (V) k V ( ) 6 (V) k V ( ) 7 (V) k V ( ) 8 (V) k V ( ) 9 (V) k V ( ) 10 (V) k V 0 1 0 0 0 0 0 0 0 0 0 0 2.5000 3.1250 8.2813 0.6250 0.9375 7.3047 0.2344 6.8848 0.0586 6.7358 23 5.6429 9.1735 13.1111 3.3957 7.9405 13.2710 5.9219 13.0324 3.7147 8.9368 24 5.6429 9.1735 13.1111 3.3957 7.9405 13.2710 5.9219 13.0324 3.7147 8.9368 49 Method 2
  • 50. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn Poisson’s & Laplace’s Equations 1. Poisson’s Equation 2. Laplace’s Equation 3. Uniqueness Theorem 4. Examples of the Solution of Laplace’s Equation 5. Examples of the Solution of Poisson’s Equation 6. Product Solution of Laplace’s Equation 7. Numerical Methods a. Finite Difference Method b. Finite Element Method 50
  • 51. Finite Element Method (1) Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn http://w ww.cosy.sbg.ac.at/~held/projects/mesh/mesh.html 51 http://imagine.inrialpes.fr/people/Francois.Faure/htmlCourses/FiniteElements.html 2 0 V ∇ = ( , ) V x y 1( , ) V x y 2 V 3 V 4 V
  • 52. Finite Element Method (2) Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn http://illustrations.marin.ntnu.no/structures/analysis/FEM/theory/index.html 52 http://imagine.inrialpes.fr/people/Francois.Faure/htmlCourses/FiniteElements.html 2 0 V ∇ = ( , ) V x y 1( , ) V x y 2 V 3 V 4 V
  • 53. Finite Element Method (3) • Discretizing the solution region into a finite number of elements, • Obtaining governing equations for a typical elements, • Combining all elements in the solution, & • Solving the system of equations obtained. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 53 http://imagine.inrialpes.fr/people/Francois.Faure/htmlCourses/FiniteElements.html 2 0 V ∇ = ( , ) V x y 1( , ) V x y 2 V 3 V 4 V
  • 54. Finite Element Method (4) Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 54 1 e V 2 e V 3 e V 1 1 ( , ) x y 2 2 ( , ) x y 3 3 ( , ) x y 1 2 3 x y 1 ( , ) ( , ) N e e V x y V x y = =  ( , ) e V x y a bx cy = + + 1 1 1 2 2 2 3 3 3 1 1 1 e e e V x y a V x y b V x y c             =                   1 1 1 1 2 2 2 3 3 3 1 1 1 e e e a x y V b x y V c x y V −             → =                   [ ] 1 2 3 3 2 3 1 1 3 1 2 2 1 1 2 3 3 1 1 2 2 1 1 3 2 1 3 2 1 3 2 2 3 3 ( ) ( ) ( ) 1 1 ( ) ( ) ( ) 1 ( ) ( ) ( ) 1 1 e e e e x y x y x y x y x y x y V V x y y y y y y y V x y x x x x x x V x y x y − − − −         → = − − −         − − −    
  • 55. Finite Element Method (5) Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 55 [ ] 1 2 3 3 2 3 1 1 3 1 2 2 1 1 2 3 3 1 1 2 2 1 1 3 2 1 3 2 1 3 2 2 3 3 ( ) ( ) ( ) 1 1 ( ) ( ) ( ) 1 ( ) ( ) ( ) 1 1 e e e e x y x y x y x y x y x y V V x y y y y y y y V x y x x x x x x V x y x y − − − −         = − − −         − − −     3 1 ( , ) e i ei i V x y V α = =  1 2 3 3 2 2 3 3 2 2 3 1 1 3 3 1 1 3 3 1 2 2 1 1 2 2 1 2 1 3 1 3 1 2 1 1 [( ) ( ) ( ) ], 2 1 [( ) ( ) ( ) ], 2 1 [( ) ( ) ( ) ], 2 1 [( )( ) ( )( )] 2 x y x y y y x x x y A x y x y y y x x x y A x y x y y y x x x y A A x x y y x x y y α α α = − + − + − = − + − + − = − + − + − = − − − − −
  • 56. Finite Element Method (6) Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 56 2 0 V ∇ = 0 ax b + = 2 0 2 d ax bx c dx   + + =     2 1 2 e e S W E dS ε =  V = −∇ E 2 1 2 e e S W V dS ε → = ∇  3 1 ( , ) e i ei i V x y V α = =  3 1 e ei i i V V α = → ∇ = ∇  3 3 1 1 1 ( )( ) 2 e ei i j ej S i j W V dS V ε α α = =   → = ∇ ∇    
  • 57. Finite Element Method (7) Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 57 3 3 1 1 1 ( )( ) 2 e ei i j ej S i j W V dS V ε α α = =   = ∇ ∇     ( ) ( )( ) e ij i j S C dS α α = ∇ ∇  [ ] 1 2 3 e e e e V V V V     =       ( ) ( ) ( ) 11 12 13 ( ) ( ) ( ) ( ) 21 22 23 ( ) ( ) ( ) 31 32 33 e e e e e e e e e e C C C C C C C C C C       =         [ ] [ ] ( ) 1 2 T e e e e W V C V ε   → =  
  • 58. Finite Element Method (8) Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 58 ( ) ( )( ) e ij i j S C dS α α = ∇ ∇  ( ) 12 1 2 ( )( ) e S C dS α α = ∇ ∇  1 2 3 3 2 2 3 3 2 2 3 1 1 3 3 1 1 3 2 1 3 1 3 1 2 1 1 [( ) ( ) ( ) ], 2 1 [( ) ( ) ( ) ], 2 1 [( )( ) ( )( )] 2 x y x y y y x x x y A x y x y y y x x x y A A x x y y x x y y α α = − + − + − = − + − + − = − − − − − ( ) 12 2 3 3 1 3 2 1 3 1 [( )( ) ( )( )] 4 e C y y y y x x x x A → = − − + − −
  • 59. Finite Element Method (9) Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 59 ( ) 12 2 3 3 1 3 2 1 3 1 [( )( ) ( )( )] 4 e C y y y y x x x x A = − − + − − ( ) 13 2 3 1 2 3 2 2 1 ( ) 23 3 1 1 2 1 3 2 1 ( ) 2 2 11 2 3 3 2 ( ) 2 2 22 3 1 1 3 ( ) 2 2 33 1 2 2 1 ( ) ( ) ( ) ( ) 21 12 31 13 32 1 [( )( ) ( )( )] 4 1 [( )( ) ( )( )] 4 1 [( ) ( ) ] 4 1 [( ) ( ) ] 4 1 [( ) ( ) ] 4 , , e e e e e e e e e C y y y y x x x x A C y y y y x x x x A C y y x x A C y y x x A C y y x x A C C C C C = − − + − − = − − + − − = − + − = − + − = − + − = = ( ) ( ) 23 e e C = 1 2 3 2 3 1 3 1 2 1 3 2 2 1 3 3 2 1 , , , , P y y P y y P y y Q x x Q x x Q x x = − = − = − = − = − = − ( ) 2 3 3 2 1 ( ) 4 2 e ij i j i j C PP QQ A PQ PQ A → = + − =
  • 60. Finite Element Method (3) • Discretizing the solution region into a finite number of elements, • Obtaining governing equations for a typical elements, • Combining all elements in the solution, & • Solving the system of equations obtained. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 60 http://imagine.inrialpes.fr/people/Francois.Faure/htmlCourses/FiniteElements.html 2 0 V ∇ = ( , ) V x y 1( , ) V x y 2 V 3 V 4 V
  • 61. Finite Element Method (10) Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 61 [ ] [ ] ( ) 1 2 T e e e e W V C V ε   =   [ ] [ ][ ] 1 1 2 N T e e W W V C V ε = = =  [ ] 1 2 3 n V V V V V         =         ⋮
  • 62. Finite Element Method (11) Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 62 3 2 1 1 1 1 2 2 2 3 3 3 1 2 4 3 5 [ ] [ ][ ] 1 2 T W V C V ε = [ ] 11 12 13 14 15 21 22 23 24 25 31 32 33 34 35 41 42 43 44 45 51 52 53 54 55 C C C C C C C C C C C C C C C C C C C C C C C C C C         =         (1) (2) 11 11 11 C C C = + (1) 22 33 C C = (1) (2) (3) 44 22 33 33 C C C C = + + (1) (2) 14 41 12 13 C C C C = = + 23 32 0 C C = = [ ] (1) (2) (1) (2) (1) (2) 11 11 13 12 12 13 (1) (1) (1) 31 33 32 (2) (2) (3) (2) (3) (3) 21 22 11 23 13 12 (1) (2) (1) (2) (3) (1) (2) (3) (3) 21 31 23 32 31 22 33 33 32 (3) (3) (3) 21 23 22 0 0 0 0 0 0 C C C C C C C C C C C C C C C C C C C C C C C C C C C C   + +       = + +   + + + +      
  • 63. Finite Element Method (3) • Discretizing the solution region into a finite number of elements, • Obtaining governing equations for a typical elements, • Combining all elements in the solution, & • Solving the system of equations obtained. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 63 http://imagine.inrialpes.fr/people/Francois.Faure/htmlCourses/FiniteElements.html 2 0 V ∇ = ( , ) V x y 1( , ) V x y 2 V 3 V 4 V
  • 64. Finite Element Method (12) Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 64 0 ax b + = 2 0 2 d ax bx c dx   + + =     2 0 V ∇ = [ ] [ ][ ] 1 2 T W V C V ε = 1 2 0 0, 1, 2,..., n k W W W W k n V V V V ∂ ∂ ∂ ∂ = = = = ↔ = = ∂ ∂ ∂ ∂ ⋯ 1, 1 n k i ki i i k kk V VC C = ≠ → = − 
  • 65. Finite Element Method (13) Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 65 Ex. 0 V = 1 2 3 x y 4 100 V = 2 1 1 2 3 1 2 4 3 2 4 1 2 3 Node 1 2 3 4 x 0.5 3.1 5.0 2.8 y 1.0 0.4 1.7 2.0 ( ) 2 3 3 2 1 2 3 2 3 1 3 1 2 1 3 2 2 1 3 3 2 1 1 ( ), 4 2 , , , , e ij i j i j P Q PQ C PP QQ A A P y y P y y P y y Q x x Q x x Q x x − = + = = − = − = − = − = − = − Element 1: 1 2 3 0.4 2.0 1.6; 2.0 1.0 1.0; 1.0 0.4 0.6 P P P = − = − = − = = − = 1 2 3 2.8 3.1 0.3; 0.5 2.8 2.3; 3.1 0.5 2.6 Q Q Q = − = − = − = − = − = 1.0 2.6 0.6( 2.3) 1.99 2 A × − − = = (1) 1 2 1 2 12 ( 1.6)1.0 ( 0.3)( 2.3) 0.1143 4 1.99 4 1.99 PP Q Q C + − + − − = = = − × × (1) 0.3329 0.1143 0.2186 0.1143 0.7902 0.6759 0.2186 0.6759 0.8945 C − −       = − −       − −  
  • 66. Finite Element Method (14) Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 66 Ex. 0 V = 1 2 3 x y 4 100 V = Node 1 2 3 4 x 0.5 3.1 5.0 2.8 y 1.0 0.4 1.7 2.0 2 1 1 2 3 1 2 4 3 2 4 1 2 3 ( ) 2 3 3 2 1 2 3 2 3 1 3 1 2 1 3 2 2 1 3 3 2 1 1 ( ), 4 2 , , , , e ij i j i j P Q PQ C PP QQ A A P y y P y y P y y Q x x Q x x Q x x − = + = = − = − = − = − = − = − Element 2: 1 2 3 1.7 2.0 0.3; 2.0 0.4 1.6; 0.4 1.7 1.3 P P P = − = − = − = = − = − 1 2 3 2.8 5 2.2; 3.1 2.8 0.3; 5.0 3.1 1.9 Q Q Q = − = − = − = = − = 1.6 1.9 ( 1.3)0.3 1.715 2 A × − − = = (2) 2 2 2 2 22 1.6 1.6 0.3 0.3 0.3863 4 1.715 4 1.715 P P Q Q C + × + × = = = × × (2) 0.7187 0.1662 0.5525 0.1662 0.3863 0.2201 0.5525 0.2201 0.7726 C − −       = − −       − −  
  • 67. Finite Element Method (15) Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 67 Ex. 0 V = 1 2 3 x y 4 100 V = (1) (2) 0.3329 0.1143 0.2186 0.1143 0.7902 0.6759 0.2186 0.6759 0.8945 0.7187 0.1662 0.5525 0.1662 0.3863 0.2201 0.5525 0.2201 0.7726 C C − −       = − −       − −   − −       = − −       − −   [ ] (1) (1) (1) 11 12 13 (1) (1) (2) (2) (1) (2) 21 22 11 12 23 13 (2) (2) (2) 21 22 23 (1) (1) (2) (2) (1) (2) 31 32 31 32 33 33 0 0 C C C C C C C C C C C C C C C C C C C     + +   =     + +     1 2 3 1 2 3 0.3329 0.1143 0 0.2186 0.1143 1.5089 0.1662 1.2284 0 0.1662 0.3863 0.2201 0.2186 1.2284 0.2201 1.6671 − −     − − −   =   − −   − − −  
  • 68. Finite Element Method (16) Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 68 Ex. 0 V = 1 2 3 x y 4 100 V = [ ] 0.3329 0.1143 0 0.2186 0.1143 1.5089 0.1662 1.2284 0 0.1662 0.3863 0.2201 0.2186 1.2284 0.2201 1.6671 C − −     − − −   =   − −   − − −   1, 1 n k i ki i i k kk V VC C = ≠ = −  1 2 3 1 2 3 2 1 12 3 32 4 42 22 4 1 14 2 24 3 34 44 1 ( ) 1 ( ) V VC V C V C C V VC V C V C C  = − + +   →   = − + +   ( 1) ( ) ( ) 2 4 4 ( 1) ( ) ( ) 4 2 2 1 [(0( 0.1143) 100( 0.1662) ( 1.2284)] 11.0146 0.8141 1.5089 1 [0( 0.2186) ( 1.2284) 100( 0.2201)] 13.2026 0.7368 1.6671 k k k k k k V V V V V V + +  = − − + − + − = +   →   = − − + − + − = +  
  • 69. Finite Element Method (17) Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 69 Ex. 0 V = 1 2 3 x y 4 100 V = ( 1) ( ) 2 4 ( 1) ( ) 4 2 11.0146 0.8141 13.2026 0.7368 k k k k V V V V + +  = +   = +   (0) (0) 2 4 0 100 50 2 V V + = = = 1 2 3 1 2 3 (1) (0) 2 4 (1) (0) 4 2 11.0146 0.8141 11.0146 0.8141 50 51.7196 13.2026 0.7368 13.2026 0.7368 50 50.0426 V V V V  = + = + × =   = + = + × =   (2) (1) 2 4 (2) (1) 4 2 11.0146 0.8141 11.0146 0.8141 50.0426 51.7543 13.2026 0.7368 13.2026 0.7368 51.7196 51.3096 V V V V  = + = + × =   = + = + × =   (3) (2) 2 4 (3) (2) 4 2 11.0146 0.8141 11.0146 0.8141 51.3096 52.7857 13.2026 0.7368 13.2026 0.7368 51.7543 51.3352 V V V V  = + = + × =   = + = + × =  
  • 70. Poisson's & Laplace's Equations - sites.google.com/site/ncpdhbkhn 70 Q 1 2 2 4 R Q Q R πε = F a 2 4 R Q R πε = E a ε = D E . W Q d = − E L . V d = −E L Q C V = dQ I dt = V R I = 2 v V ρ ε ∇ = −