SlideShare ist ein Scribd-Unternehmen logo
1 von 18
Downloaden Sie, um offline zu lesen
International Diversification
with and without Stochastic Inflation
Elmar Mertens
University of Basel, WWZ/Department of Finance
elmar.mertens@unibas.ch
October 12, 2002
1
Some technical things to remember: We want to . . .
• Add / subtract inflation rates and exchange rate changes from
returns → Use log-changes (Why?)
• Construct portfolios, i.e. aggregate across assets
→ Use simple returns (Why?)
The only way to do both, is to go to continuous time. Right now, we
need this to make our approximation 1+r = 1+R
1+π → r ≈ R−π work as
good as it gets. Please note: We did not say 1+˜r = 1+ ˜R
1+˜π → ˜r ≈ ˜R−˜π
This will be crucial later.
2
Solnik-Sercu Setup
N Risky Assets N risky assets with mean returns in vector E ˜R and
covariance matrix Σ. Each risky asset has portfolio weight wi
stacked in vector w. They can be split into two groups: “assets”
(A) and foreign money markets (C)
1 Riskfree Asset with constant return Rf. Has portfolio weight
wf = 1 − 1 w.
No (Stochastic) Inflation It is easiest to derive the Solnik-Sercu
model without any inflation. We will later see that it works also
with deterministic inflation (some constant) or an inflation rate
which is stochastic but uncorrelated with assets
3
Solnik-Sercu Solution
max
w
V = w µ
e
+ Rf
µp
−
η
2
w Σw
σp
⇒
∂V
∂w
= µe − ηΣw
!
= 0
⇐⇒ w =
1
η
Σ−1µe
⇐⇒ w =
1
η
Σ−1µe + 1 −
1
η
0
w
wf
=
1
η
Σ−1µe
1 − 1 Σ
−1
µe
“Log-Portfolio”
+ 1 −
1
η
0
1 − 1 Σ
−1
µe
“Hedge”
Even though the role of the “hedge” portfolio is rather void here, it
mirrors the structure of the more general Adler-Dumas result
4
Invariance of Log-Portfolio
The log-portfolio Σ−1µe is not only the portfolio held by a log-utility
investor (η = 1). It is also invariant to the reference currency of
the investor. The direct proof of transforming Σ and µe and showing
that w remains the same is cumbersome (Ito Lemma and some matrix
algebra, see Sercu 1980).
But we can appeal to a more illuminating argument: Maximizing
log-wealth in one numeraire (ln W), yields the same portfolio as max-
imizing log-wealth measured in another numeraire ln W
S = ln W − ln S
5
Partitioning Σ−1µe
This is actually the international side of Solnik-Sercu
Σ =
ΣA,A ΣA,C
ΣC,A ΣC,C
B = Σ−1
C,CΣC,A
ΣA,A|C = ΣA,A − B ΣC,CB
Σ−1 =
Σ−1
A,A|C
−Σ−1
A,A|C
B
−B Σ−1
A,A|C
Σ−1
C,C + B Σ−1
A,A|C
B
w =
wA
wC
=
Σ−1
A,A|C
µe
A − Σ−1
A,A|C
B µe
C
Σ−1
C,C µe
C − B wA
= Σ−1µe
Note: ΣA,A|C is the covariance matrix of the assets after minimum
variance hedging against currency risks
6
Solnik-Sercu: Numerical Example (2 × 2)
µe =
0.15
−0.05
Σ =
0.252 0.25 · 0.20 · 0.4
0.25 · 0.20 · 0.4 0.202 =
0.252 0.02
0.02 0.202
B =
0.02
0.202
= 0.5
ΣA,A|C = 0.252 − 0.52 · 0.20 = 0.0525
Σ−1µe =






0.15
0.0525 − 0.5·(−0.05)
0.0525
−0.05
0.202 − 0.5 ·
0.15
0.0525
−
0.5 · (−0.05)
0.0525
=wA






≈
3.33
−2.92
wf = 1 − wA − wC ≈ 1 − 3.33 + 2.92 = 0.59
7
Solnik-Sercu: Numerical Example (2 × 2) with Matrix Formula
Same data as before. Now we use the formula for a 2 × 2 inverse:
µe =
0.15
−0.05
Σ =
σ2
A σAB
σAB σ2
B
=
0.252 0.02
0.02 0.202
|Σ| = σ2
Aσ2
B − (σAB)2
Σ−1 =
1
|Σ|
σ2
B −σAB
−σAB σ2
A
Σ−1µe =
1
0.0021
0.202 −0.02
−0.02 0.252
=Σ−1
0.15
−0.05
=µe
=
1
0.0021
0.202 · 0.15 + (−0.02) · (−0.05)
(−0.02) · 0.15 + 0.252 · (−0.05)
≈
3.33
−2.92
wf = 1 − wA − wC ≈ 1 − 3.33 + 2.92 = 0.59
8
Solnik-Sercu deviation: Currency Overlay
A currency overlay proceeds sequentially, first optimizing over the un-
hedged assets, then doing some minimum-variance currency hedging
and speculating with currencies – no feedback with asset positions,
though!
wOV =
wA
wC
=
Σ−1
A,A µe
A
Σ−1
C,C µe
C − B wA
This is only optimal when B = 0, then
w
B=0
= wOV
B=0
=
wA
wC
B=0
=
Σ−1
A,A µe
A
Σ−1
C,C µe
C B=0
9
Adler-Dumas Setup:
N Risky Assets N risky assets with nominal mean returns in vector
E ˜R and covariance matrix Σ. Each risky asset has portfolio weight
wi stacked in vector w
1 Riskfree Asset is only nominally riskfree. Return is Rf with zero
variance. Note that this is a really risky investment! Has portfolio
weight wf. Note: wf = 1 − 1 w.
Inflation ˜π is stochastic with mean µπ and variance σp. Covariances
with the N risky assets are stacked in vector σAπ. Note that the
covariance with riskfree asset is zero (why?)
10
Objective:
Again we want to maximize
V = µp −
η
2
σ2
p
but now we will have stochastic inflation and need to be careful how to
calculate the real returns. It is here that the trickiness of continuous
time sneaks in!!
Steps:
• Figure out how to write real µp and σ2
p as function of asset weights
• Solve FOC with respect to weights to get optimal portfolio
11
Moments of real portfolio returns: THE WRONG WAY
µp = w E ˜R + wfRf − µπ
Something missing here . . .
= w µ
e
+ Rf − µπ
Where µe ≡ E ˜R − Rf1
σp = Var w ˜R + wf Rf − ˜π = Var w ˜R − ˜π = w Σw − 2w σAπ + σ2
π
But then we would get an inflation hedge independent from η . . .
Does the log-investor suddenly care about numeraire-risks?
∂V
∂w
= µe − ηΣw + ησAπ
!
= 0 ⇐⇒ w =
1
η
Σ−1µe + Σ−1σAπ
Inflation Hedge
DON’T DO THIS AT HOME!!!
12
Step 1: Real Moments
Once we have realized that we need to apply stochastic calculus
in order account for stochastic inflation when computing the real
portfolio returns, we get:
µp = w µ
e
− w σAπ
KEY!
+Rf − µπ + σ2
π
Variance has been right:
σp = w Σw − 2w σAπ + σ2
π
13
Step 2: Adler-Dumas FOC
max
w
V = w µ
e
− w σAπ + Rf − µπ + σ2
π −
η
2
w Σw − 2w σAπ + σ2
π
⇒
∂V
∂w
= µe − σAπ − ηΣw + η σAπ
!
= 0
⇐⇒ w =
1
η
Σ−1(µe − σAπ) + Σ−1σAπ
⇐⇒ w =
1
η
Σ−1µe + 1 −
1
η
Σ−1σAπ
With wf = 1 − 1 w we get Adler-Dumas formula (9)
w
wf
=
1
η
Σ−1µe
1 − 1 Σ
−1
µe
“Log-Portfolio”
+ 1 −
1
η
Σ−1σAπ
1 − 1 σAπ
Inflation Hedge
With σAπ = 0, we obtain again the Solnik-Sercu portfolio
14
BACKUP:
APPLICATION OF ITO LEMMA FOR ADLER DUMAS
15
Stochastic processes for real portfolio
N Risky Assets dSi = µi Si dt + σi Si dXi
1 Riskfree Asset dM = Rf M dt
Price Level dP = µπ P dt + σπ P dXP
Where E(dXi) = E(dXP ) = 0, E(dXi)2 = E(dXP )2 = 1, E(dXidXj) =
σij (∀i = j) and E(dXidXP ) = σiπ
16
Stochastic calculus for real portfolio
We want to know how the portfolio
W = i ni Si + nf M
W · P
where wi ≡
ni Si
W
·
1
P
and wf ≡
nf M
W
·
1
P
evolves in real terms. Applying Ito’s Lemma yields
dW
W =


N
i=1
wi(µi − Rf − σiπ) + Rf − µπ + σ2
π


µp
dt+
N
i=1
wiσidXi − σπdXP
σp=E(·)2
THIS, YOU MAY DO AT HOME!!!
. . . and you will learn how to do Ito by heart
. .
17
Multidimensional Ito
dW =
N
i=1
∂W
∂Si
dSi +
∂W
∂M
dM +
2
2
N
i=1
∂2W
∂Si∂P
σiπ Si P dt +
1
2
∂2W
∂P2
σ2
πP2dt
+
∂W
∂P
dP +
1
2
N
i=1
N
j=1
∂2W
∂Si∂Sj
σij Si Sj dt +
1
2
∂2W
∂M2
σ2
M
=0
M2dt
+
1
2
N
i=1
∂2W
∂Si∂M
σiM
=0
Si M dt +
1
2
∂2W
∂P∂M
σπM
=0
P M dt +
∂W
∂t
dt
∂W
∂Si
=
ni
P
∂2W
∂Si∂P
= −
ni
P2
∂W
∂P
= − i ni Si + nf M
P2
∂W
∂M
=
nf
P
∂2W
∂Si∂Sj
= 0 =
∂W
∂t
∂2W
∂P2
= 2 · i ni Si + nf M
P3
18

Weitere ähnliche Inhalte

Ähnlich wie monica02

Ähnlich wie monica02 (20)

Black scholas theory for venu(RVSKVK)
Black scholas theory for venu(RVSKVK)Black scholas theory for venu(RVSKVK)
Black scholas theory for venu(RVSKVK)
 
Market Risk Modelling
Market Risk ModellingMarket Risk Modelling
Market Risk Modelling
 
Lec11 logistic regression
Lec11 logistic regressionLec11 logistic regression
Lec11 logistic regression
 
1635 variance portfolio
1635 variance portfolio1635 variance portfolio
1635 variance portfolio
 
Chapter 6
Chapter 6Chapter 6
Chapter 6
 
Capital structure and cost of equity pdf
Capital structure and cost of equity pdfCapital structure and cost of equity pdf
Capital structure and cost of equity pdf
 
BB_11_Futures & Options_Hull_Chap_12.pptx
BB_11_Futures & Options_Hull_Chap_12.pptxBB_11_Futures & Options_Hull_Chap_12.pptx
BB_11_Futures & Options_Hull_Chap_12.pptx
 
The Limits of Leverage
The Limits of LeverageThe Limits of Leverage
The Limits of Leverage
 
Risk and Risk Aversion FM
Risk and Risk Aversion FMRisk and Risk Aversion FM
Risk and Risk Aversion FM
 
Lifting 1
Lifting 1Lifting 1
Lifting 1
 
SPU Optimizations - Part 2
SPU Optimizations - Part 2SPU Optimizations - Part 2
SPU Optimizations - Part 2
 
Notes for Volatility Modeling lectures, Antoine Savine at Copenhagen University
Notes for Volatility Modeling lectures, Antoine Savine at Copenhagen UniversityNotes for Volatility Modeling lectures, Antoine Savine at Copenhagen University
Notes for Volatility Modeling lectures, Antoine Savine at Copenhagen University
 
Simple Equations I
Simple Equations ISimple Equations I
Simple Equations I
 
Cheatsheet deep-learning
Cheatsheet deep-learningCheatsheet deep-learning
Cheatsheet deep-learning
 
Stochastic modelling and quasi-random numbers
Stochastic modelling and quasi-random numbersStochastic modelling and quasi-random numbers
Stochastic modelling and quasi-random numbers
 
Solow growth model wifh maths
Solow growth model wifh mathsSolow growth model wifh maths
Solow growth model wifh maths
 
Mean variance
Mean varianceMean variance
Mean variance
 
dd_sampleslides.ppt
dd_sampleslides.pptdd_sampleslides.ppt
dd_sampleslides.ppt
 
Mpt pdf
Mpt pdfMpt pdf
Mpt pdf
 
mean_variance
mean_variancemean_variance
mean_variance
 

Mehr von Elmar Mertens

Mehr von Elmar Mertens (7)

monica01chartsAT
monica01chartsATmonica01chartsAT
monica01chartsAT
 
guessnumberCharts
guessnumberChartsguessnumberCharts
guessnumberCharts
 
firststeps
firststepsfirststeps
firststeps
 
eviewsOLSMLE
eviewsOLSMLEeviewsOLSMLE
eviewsOLSMLE
 
emNAFI2007
emNAFI2007emNAFI2007
emNAFI2007
 
LectureNoteAPT
LectureNoteAPTLectureNoteAPT
LectureNoteAPT
 
LectureNoteCAPM
LectureNoteCAPMLectureNoteCAPM
LectureNoteCAPM
 

monica02

  • 1. International Diversification with and without Stochastic Inflation Elmar Mertens University of Basel, WWZ/Department of Finance elmar.mertens@unibas.ch October 12, 2002 1
  • 2. Some technical things to remember: We want to . . . • Add / subtract inflation rates and exchange rate changes from returns → Use log-changes (Why?) • Construct portfolios, i.e. aggregate across assets → Use simple returns (Why?) The only way to do both, is to go to continuous time. Right now, we need this to make our approximation 1+r = 1+R 1+π → r ≈ R−π work as good as it gets. Please note: We did not say 1+˜r = 1+ ˜R 1+˜π → ˜r ≈ ˜R−˜π This will be crucial later. 2
  • 3. Solnik-Sercu Setup N Risky Assets N risky assets with mean returns in vector E ˜R and covariance matrix Σ. Each risky asset has portfolio weight wi stacked in vector w. They can be split into two groups: “assets” (A) and foreign money markets (C) 1 Riskfree Asset with constant return Rf. Has portfolio weight wf = 1 − 1 w. No (Stochastic) Inflation It is easiest to derive the Solnik-Sercu model without any inflation. We will later see that it works also with deterministic inflation (some constant) or an inflation rate which is stochastic but uncorrelated with assets 3
  • 4. Solnik-Sercu Solution max w V = w µ e + Rf µp − η 2 w Σw σp ⇒ ∂V ∂w = µe − ηΣw ! = 0 ⇐⇒ w = 1 η Σ−1µe ⇐⇒ w = 1 η Σ−1µe + 1 − 1 η 0 w wf = 1 η Σ−1µe 1 − 1 Σ −1 µe “Log-Portfolio” + 1 − 1 η 0 1 − 1 Σ −1 µe “Hedge” Even though the role of the “hedge” portfolio is rather void here, it mirrors the structure of the more general Adler-Dumas result 4
  • 5. Invariance of Log-Portfolio The log-portfolio Σ−1µe is not only the portfolio held by a log-utility investor (η = 1). It is also invariant to the reference currency of the investor. The direct proof of transforming Σ and µe and showing that w remains the same is cumbersome (Ito Lemma and some matrix algebra, see Sercu 1980). But we can appeal to a more illuminating argument: Maximizing log-wealth in one numeraire (ln W), yields the same portfolio as max- imizing log-wealth measured in another numeraire ln W S = ln W − ln S 5
  • 6. Partitioning Σ−1µe This is actually the international side of Solnik-Sercu Σ = ΣA,A ΣA,C ΣC,A ΣC,C B = Σ−1 C,CΣC,A ΣA,A|C = ΣA,A − B ΣC,CB Σ−1 = Σ−1 A,A|C −Σ−1 A,A|C B −B Σ−1 A,A|C Σ−1 C,C + B Σ−1 A,A|C B w = wA wC = Σ−1 A,A|C µe A − Σ−1 A,A|C B µe C Σ−1 C,C µe C − B wA = Σ−1µe Note: ΣA,A|C is the covariance matrix of the assets after minimum variance hedging against currency risks 6
  • 7. Solnik-Sercu: Numerical Example (2 × 2) µe = 0.15 −0.05 Σ = 0.252 0.25 · 0.20 · 0.4 0.25 · 0.20 · 0.4 0.202 = 0.252 0.02 0.02 0.202 B = 0.02 0.202 = 0.5 ΣA,A|C = 0.252 − 0.52 · 0.20 = 0.0525 Σ−1µe =       0.15 0.0525 − 0.5·(−0.05) 0.0525 −0.05 0.202 − 0.5 · 0.15 0.0525 − 0.5 · (−0.05) 0.0525 =wA       ≈ 3.33 −2.92 wf = 1 − wA − wC ≈ 1 − 3.33 + 2.92 = 0.59 7
  • 8. Solnik-Sercu: Numerical Example (2 × 2) with Matrix Formula Same data as before. Now we use the formula for a 2 × 2 inverse: µe = 0.15 −0.05 Σ = σ2 A σAB σAB σ2 B = 0.252 0.02 0.02 0.202 |Σ| = σ2 Aσ2 B − (σAB)2 Σ−1 = 1 |Σ| σ2 B −σAB −σAB σ2 A Σ−1µe = 1 0.0021 0.202 −0.02 −0.02 0.252 =Σ−1 0.15 −0.05 =µe = 1 0.0021 0.202 · 0.15 + (−0.02) · (−0.05) (−0.02) · 0.15 + 0.252 · (−0.05) ≈ 3.33 −2.92 wf = 1 − wA − wC ≈ 1 − 3.33 + 2.92 = 0.59 8
  • 9. Solnik-Sercu deviation: Currency Overlay A currency overlay proceeds sequentially, first optimizing over the un- hedged assets, then doing some minimum-variance currency hedging and speculating with currencies – no feedback with asset positions, though! wOV = wA wC = Σ−1 A,A µe A Σ−1 C,C µe C − B wA This is only optimal when B = 0, then w B=0 = wOV B=0 = wA wC B=0 = Σ−1 A,A µe A Σ−1 C,C µe C B=0 9
  • 10. Adler-Dumas Setup: N Risky Assets N risky assets with nominal mean returns in vector E ˜R and covariance matrix Σ. Each risky asset has portfolio weight wi stacked in vector w 1 Riskfree Asset is only nominally riskfree. Return is Rf with zero variance. Note that this is a really risky investment! Has portfolio weight wf. Note: wf = 1 − 1 w. Inflation ˜π is stochastic with mean µπ and variance σp. Covariances with the N risky assets are stacked in vector σAπ. Note that the covariance with riskfree asset is zero (why?) 10
  • 11. Objective: Again we want to maximize V = µp − η 2 σ2 p but now we will have stochastic inflation and need to be careful how to calculate the real returns. It is here that the trickiness of continuous time sneaks in!! Steps: • Figure out how to write real µp and σ2 p as function of asset weights • Solve FOC with respect to weights to get optimal portfolio 11
  • 12. Moments of real portfolio returns: THE WRONG WAY µp = w E ˜R + wfRf − µπ Something missing here . . . = w µ e + Rf − µπ Where µe ≡ E ˜R − Rf1 σp = Var w ˜R + wf Rf − ˜π = Var w ˜R − ˜π = w Σw − 2w σAπ + σ2 π But then we would get an inflation hedge independent from η . . . Does the log-investor suddenly care about numeraire-risks? ∂V ∂w = µe − ηΣw + ησAπ ! = 0 ⇐⇒ w = 1 η Σ−1µe + Σ−1σAπ Inflation Hedge DON’T DO THIS AT HOME!!! 12
  • 13. Step 1: Real Moments Once we have realized that we need to apply stochastic calculus in order account for stochastic inflation when computing the real portfolio returns, we get: µp = w µ e − w σAπ KEY! +Rf − µπ + σ2 π Variance has been right: σp = w Σw − 2w σAπ + σ2 π 13
  • 14. Step 2: Adler-Dumas FOC max w V = w µ e − w σAπ + Rf − µπ + σ2 π − η 2 w Σw − 2w σAπ + σ2 π ⇒ ∂V ∂w = µe − σAπ − ηΣw + η σAπ ! = 0 ⇐⇒ w = 1 η Σ−1(µe − σAπ) + Σ−1σAπ ⇐⇒ w = 1 η Σ−1µe + 1 − 1 η Σ−1σAπ With wf = 1 − 1 w we get Adler-Dumas formula (9) w wf = 1 η Σ−1µe 1 − 1 Σ −1 µe “Log-Portfolio” + 1 − 1 η Σ−1σAπ 1 − 1 σAπ Inflation Hedge With σAπ = 0, we obtain again the Solnik-Sercu portfolio 14
  • 15. BACKUP: APPLICATION OF ITO LEMMA FOR ADLER DUMAS 15
  • 16. Stochastic processes for real portfolio N Risky Assets dSi = µi Si dt + σi Si dXi 1 Riskfree Asset dM = Rf M dt Price Level dP = µπ P dt + σπ P dXP Where E(dXi) = E(dXP ) = 0, E(dXi)2 = E(dXP )2 = 1, E(dXidXj) = σij (∀i = j) and E(dXidXP ) = σiπ 16
  • 17. Stochastic calculus for real portfolio We want to know how the portfolio W = i ni Si + nf M W · P where wi ≡ ni Si W · 1 P and wf ≡ nf M W · 1 P evolves in real terms. Applying Ito’s Lemma yields dW W =   N i=1 wi(µi − Rf − σiπ) + Rf − µπ + σ2 π   µp dt+ N i=1 wiσidXi − σπdXP σp=E(·)2 THIS, YOU MAY DO AT HOME!!! . . . and you will learn how to do Ito by heart . . 17
  • 18. Multidimensional Ito dW = N i=1 ∂W ∂Si dSi + ∂W ∂M dM + 2 2 N i=1 ∂2W ∂Si∂P σiπ Si P dt + 1 2 ∂2W ∂P2 σ2 πP2dt + ∂W ∂P dP + 1 2 N i=1 N j=1 ∂2W ∂Si∂Sj σij Si Sj dt + 1 2 ∂2W ∂M2 σ2 M =0 M2dt + 1 2 N i=1 ∂2W ∂Si∂M σiM =0 Si M dt + 1 2 ∂2W ∂P∂M σπM =0 P M dt + ∂W ∂t dt ∂W ∂Si = ni P ∂2W ∂Si∂P = − ni P2 ∂W ∂P = − i ni Si + nf M P2 ∂W ∂M = nf P ∂2W ∂Si∂Sj = 0 = ∂W ∂t ∂2W ∂P2 = 2 · i ni Si + nf M P3 18