SlideShare ist ein Scribd-Unternehmen logo
1 von 5
Downloaden Sie, um offline zu lesen
Biochempeg https://www.biochempeg.com
The Role of PEGylated Materials In 3D
Bioprinting
Three dimensional (3D) bioprinting has emerged as a promising new approach for
fabricating complex biological constructs in the field of tissue engineering and
regenerative medicine. What is 3D Bioprinting? What are bio-ink materials for it? How
does it work and what are the applications of it?
1. What Is 3D Bioprinting?
3D Bioprinting uses 3D printing–like techniques to combine cells, growth factors, and
biomaterials to fabricate biomedical parts that maximally imitate natural tissue
characteristics. It is a form of additive manufacturing that uses cells and other
biocompatible materials as “inks”, also known as bio-inks, to print biological structures
layer-by-layer that mimic the behavior of natural living systems.
This technology is widely used in the fields of medicine and bioengineering. Recently, this
technology has even made progress in the production of cartilage tissue for reconstruction
and regeneration.
Essentially, bioprinting works similarly to conventional 3D printing. The digital model
becomes a physical 3D object layer by layer. However, in this case, a live cell suspension
is used instead of thermoplastic or resin.
3D bioprinting generally involves the following three steps.
Pre-bioprinting involves creating a digital model that the printer will produce. The
techniques used are computed tomography (CT) and magnetic resonance imaging (MRI)
scans.
Biochempeg https://www.biochempeg.com
Bioprinting is the actual printing process in which bioink is placed in a printer cartridge and
then deposited according to the digital model.
Post-printing is the mechanical and chemical stimulation of printed parts to create a stable
structure for biological materials.
2. Bio-ink Materials For 3D Bioprinting
Bio-ink is a material used to produce engineered/artificial live tissue in 3D printing. It
contains living cells and biological materials that mimic the extracellular matrix
environment. It supports cell adhesion, proliferation and differentiation after printing.
3D bioprinting allows for the spatially-controlled placement of cells in a defined 3D
microenvironment. Bioinks are formed by combining cells and various biocompatible
materials, which are subsequently printed in specific shapes to generate tissue-like, 3D
structures.
Although a variety of materials are used for bio-inks, the most popular ones include
gelatin methacryloyl (GelMA), collagen, polyethylene glycol (PEG), Pluronic, alginate, and
decellularized extracellular matrix (ECM)-based materials.
PEG is a synthetic polymer synthesized through the polymerization of ethylene oxide. It is
an ideal synthetic material because of its customizable but typically strong mechanical
properties. The advantages of PEG also include non-cytotoxicity and non-immunogenicity.
However, PEG is biologically inert and needs to be used in combination with other
biologically active hydrogels.
Biochempeg is a worldwide PEG supplier which supplies varieties of PEG derivatives to
empower biochemical drug research & development. We are able to
supply AC-PEG-AC( also called PEGDA) which can be used as bio-inks for 3D
Biochempeg https://www.biochempeg.com
Bioprinting. We aslo supply RGD, an additive suitable for most bio-inks which plays an
important role in 3D cell culture, tissue engineering, and organ manufacturing.
3. How Does 3D Bioprinting Work?
The 3D bioprinting process. Source: University of Rhode Island
3D bioprinting starts with a structural model, which is recreated layer by layer with bio-ink
mixed with living cells or seeded with cells after printing. These starting models can come
from anywhere-CT or MRI scans, a computer generated design (CAD) programs or files
downloaded from the internet.
The 3D model file is then fed into the slicer-a special kind of computer program that
analyzes the geometry of the model and generates a series of thin layers or slices that
form the shape of the original model when stacked vertically.
After slicing the model, the slice is converted into path data and stored as a g-code file,
which can then be sent to a 3D bioprinter for printing. The bioprinter follows the
instructions in the g-code file in order, including instructions to control the extruder
Biochempeg https://www.biochempeg.com
temperature, extrusion pressure, bottom plate temperature, cross-linking strength and
frequency, and control the 3D movement path generated by the slicer. Once all the g-code
commands are completed, the printing is done and it can be cultured or seeded with cells
as part of biological research.
4. Why Is 3D Bioprinting Important?
Source: blogs.kentplace.org
The greatest importance of bioprinting is to mimic the final tissue-like structure of the
actual micro and macro environment of human tissues and organs. This is critical in drug
testing and clinical trials, for example, it can greatly reduce the need for animal trials.
When the living tissues and organs of the human body are not needed, this new
technology offers other huge opportunities. One example is the use of
artificially-influenced tissues to test treatments for diseases.
The process can also eradicate headaches associated with organ donation and
Biochempeg https://www.biochempeg.com
transplantation. In addition to the lack of available organs, the entire process has also
been criticized from a moral and ethical perspective.
Organ replacement is the main goal, but at the same time tissue repair can also be
performed. With bio-ink, it is much easier to solve problems at a specific patient level,
thereby simplifying operations.
For pharmaceutical development, 3D bioprinting offers a means of testing drugs faster, at
a lower cost, and with better biological relevance to humans than animal testing.
5. What Are The Applications of 3D Bioprinting?
Here are a few of the main application areas of bioprinting:
1. Due to the high incidence of vital organ failure, artificial organs are one of the greatest
driving forces of this technology. The availability of 3D printed organs helps to solve
organ-related issues faster and faster, which is crucial for patients, their families and the
medical system.
2. Developing tissue for pharmaceutical testing is a more cost-effective and ethical
option when 3D printing is done.It also helps identify drug side effects and allows
recommended drugs to be administered to humans with validated safe doses.
3. Cosmetic surgery, especially for plastic surgery and skin graft surgery, also benefit
from this technology. In this particular application, bioprinted skin tissue can be
commercialized. Some 3D printed tissues have been bioprinted for research on
therapeutic purposes.
4. 3D Bioprinting also be applied in bone tissue regeneration as well as prosthetics and
dental. There are various other uses and applications of 3D Bioprinting, including
producing foodstuffs such as meat and vegetables.
3D Bioprinting contributes to significant advances in the medical field of tissue
engineering by allowing for research to be done on innovative materials called
biomaterials.
References:
[1] 3D bioprinting of cells, tissues and organs
[2] What Is 3D Bioprinting? – Simply Explained
[3] What Is 3D Bioprinting?

Weitere ähnliche Inhalte

Was ist angesagt?

Bioprinting
BioprintingBioprinting
BioprintingMIT
 
Advances and Innovations and Impediments in Tissue Engineering and Regenerati...
Advances and Innovations and Impediments in Tissue Engineering and Regenerati...Advances and Innovations and Impediments in Tissue Engineering and Regenerati...
Advances and Innovations and Impediments in Tissue Engineering and Regenerati...CrimsonpublishersITERM
 
Joint-on-Chip
Joint-on-ChipJoint-on-Chip
Joint-on-ChipOARSI
 
PROTEOMICS INTRODUCTION AND TECHNIQUES
PROTEOMICS  INTRODUCTION AND TECHNIQUESPROTEOMICS  INTRODUCTION AND TECHNIQUES
PROTEOMICS INTRODUCTION AND TECHNIQUESMuhammad Imran
 
Substrate stiffness and cell fate
Substrate stiffness and cell fateSubstrate stiffness and cell fate
Substrate stiffness and cell fateDiana Santos
 
Polymeric and metallic scaffolds for tissue engineering
Polymeric and metallic scaffolds for tissue engineeringPolymeric and metallic scaffolds for tissue engineering
Polymeric and metallic scaffolds for tissue engineeringMohamed M. Abdul-Monem
 
Analysis of microscope images_FINAL PRESENTATION
Analysis of microscope images_FINAL PRESENTATIONAnalysis of microscope images_FINAL PRESENTATION
Analysis of microscope images_FINAL PRESENTATIONGeorge Livanos
 
Inside3DPrintingSantaClara_LauraHockaday
Inside3DPrintingSantaClara_LauraHockadayInside3DPrintingSantaClara_LauraHockaday
Inside3DPrintingSantaClara_LauraHockadayMecklerMedia
 

Was ist angesagt? (11)

3D bioprinting
3D bioprinting3D bioprinting
3D bioprinting
 
Bioprinting
BioprintingBioprinting
Bioprinting
 
Advances and Innovations and Impediments in Tissue Engineering and Regenerati...
Advances and Innovations and Impediments in Tissue Engineering and Regenerati...Advances and Innovations and Impediments in Tissue Engineering and Regenerati...
Advances and Innovations and Impediments in Tissue Engineering and Regenerati...
 
3D Bioprinting
3D Bioprinting3D Bioprinting
3D Bioprinting
 
Joint-on-Chip
Joint-on-ChipJoint-on-Chip
Joint-on-Chip
 
PROTEOMICS INTRODUCTION AND TECHNIQUES
PROTEOMICS  INTRODUCTION AND TECHNIQUESPROTEOMICS  INTRODUCTION AND TECHNIQUES
PROTEOMICS INTRODUCTION AND TECHNIQUES
 
Substrate stiffness and cell fate
Substrate stiffness and cell fateSubstrate stiffness and cell fate
Substrate stiffness and cell fate
 
Polymeric and metallic scaffolds for tissue engineering
Polymeric and metallic scaffolds for tissue engineeringPolymeric and metallic scaffolds for tissue engineering
Polymeric and metallic scaffolds for tissue engineering
 
Analysis of microscope images_FINAL PRESENTATION
Analysis of microscope images_FINAL PRESENTATIONAnalysis of microscope images_FINAL PRESENTATION
Analysis of microscope images_FINAL PRESENTATION
 
13 biomaterials
13 biomaterials13 biomaterials
13 biomaterials
 
Inside3DPrintingSantaClara_LauraHockaday
Inside3DPrintingSantaClara_LauraHockadayInside3DPrintingSantaClara_LauraHockaday
Inside3DPrintingSantaClara_LauraHockaday
 

Ähnlich wie The role of pe gylated materials in 3 d bioprinting-biochempeg

3D Bioprinting in Disease Prevention & Treatment.pdf
3D Bioprinting in Disease Prevention & Treatment.pdf3D Bioprinting in Disease Prevention & Treatment.pdf
3D Bioprinting in Disease Prevention & Treatment.pdfDoriaFang
 
3D Printing Technology in Medical Science
3D Printing Technology in Medical Science3D Printing Technology in Medical Science
3D Printing Technology in Medical ScienceDrimran13
 
3D Organ Printing Technology
3D Organ Printing Technology3D Organ Printing Technology
3D Organ Printing TechnologyDrimran13
 
Organ printing (or) Bio Printing
Organ printing (or) Bio PrintingOrgan printing (or) Bio Printing
Organ printing (or) Bio PrintingKrishna Moorthy
 
Stem cell therapy and organoid and 3D bioprinting
Stem cell therapy and organoid and 3D bioprintingStem cell therapy and organoid and 3D bioprinting
Stem cell therapy and organoid and 3D bioprintingCandy Swift
 
3D BIOPRINTING
3D BIOPRINTING3D BIOPRINTING
3D BIOPRINTINGKAVYA K N
 
Applications of 3 d printing in biomedical engineering
Applications of 3 d printing in biomedical engineeringApplications of 3 d printing in biomedical engineering
Applications of 3 d printing in biomedical engineeringDebanjan Parbat
 
3D bioprinting in the era of 4th industrial revolution – insights, advanced a...
3D bioprinting in the era of 4th industrial revolution – insights, advanced a...3D bioprinting in the era of 4th industrial revolution – insights, advanced a...
3D bioprinting in the era of 4th industrial revolution – insights, advanced a...Adib Bin Rashid
 
3d bioprinting
3d bioprinting3d bioprinting
3d bioprintingBrianIgoe4
 
3D BIO PRINTING USING TISSUE AND ORGANS
3D BIO PRINTING USING TISSUE AND ORGANS3D BIO PRINTING USING TISSUE AND ORGANS
3D BIO PRINTING USING TISSUE AND ORGANSsathish sak
 
3D Bioprinting Presentation.pptx
3D Bioprinting Presentation.pptx3D Bioprinting Presentation.pptx
3D Bioprinting Presentation.pptxSwapnilUgle
 
3D BIOPRINTING: PRINCIPLE, TECHNIQUES AND IT’S APPLICATION IN HUMAN T...
 3D BIOPRINTING:  PRINCIPLE, TECHNIQUES  AND  IT’S  APPLICATION  IN  HUMAN  T... 3D BIOPRINTING:  PRINCIPLE, TECHNIQUES  AND  IT’S  APPLICATION  IN  HUMAN  T...
3D BIOPRINTING: PRINCIPLE, TECHNIQUES AND IT’S APPLICATION IN HUMAN T...Akshita Dholakiya
 
3D_Bio_Printing seminar Slide
3D_Bio_Printing seminar Slide3D_Bio_Printing seminar Slide
3D_Bio_Printing seminar SlideAnees PK
 

Ähnlich wie The role of pe gylated materials in 3 d bioprinting-biochempeg (20)

3D Bioprinting in Disease Prevention & Treatment.pdf
3D Bioprinting in Disease Prevention & Treatment.pdf3D Bioprinting in Disease Prevention & Treatment.pdf
3D Bioprinting in Disease Prevention & Treatment.pdf
 
Bio printing
Bio printingBio printing
Bio printing
 
3D Printing Technology in Medical Science
3D Printing Technology in Medical Science3D Printing Technology in Medical Science
3D Printing Technology in Medical Science
 
3D Organ Printing Technology
3D Organ Printing Technology3D Organ Printing Technology
3D Organ Printing Technology
 
3D Bioprinting
3D  Bioprinting3D  Bioprinting
3D Bioprinting
 
Organ printing (or) Bio Printing
Organ printing (or) Bio PrintingOrgan printing (or) Bio Printing
Organ printing (or) Bio Printing
 
Stem cell therapy and organoid and 3D bioprinting
Stem cell therapy and organoid and 3D bioprintingStem cell therapy and organoid and 3D bioprinting
Stem cell therapy and organoid and 3D bioprinting
 
3D BIOPRINTING
3D BIOPRINTING3D BIOPRINTING
3D BIOPRINTING
 
Bioprinting
BioprintingBioprinting
Bioprinting
 
3d-bioprinting_2.pdf
3d-bioprinting_2.pdf3d-bioprinting_2.pdf
3d-bioprinting_2.pdf
 
Applications of 3 d printing in biomedical engineering
Applications of 3 d printing in biomedical engineeringApplications of 3 d printing in biomedical engineering
Applications of 3 d printing in biomedical engineering
 
3D bioprinting in the era of 4th industrial revolution – insights, advanced a...
3D bioprinting in the era of 4th industrial revolution – insights, advanced a...3D bioprinting in the era of 4th industrial revolution – insights, advanced a...
3D bioprinting in the era of 4th industrial revolution – insights, advanced a...
 
3d bioprinting
3d bioprinting3d bioprinting
3d bioprinting
 
3D BIO PRINTING USING TISSUE AND ORGANS
3D BIO PRINTING USING TISSUE AND ORGANS3D BIO PRINTING USING TISSUE AND ORGANS
3D BIO PRINTING USING TISSUE AND ORGANS
 
3D Bioprinting Presentation.pptx
3D Bioprinting Presentation.pptx3D Bioprinting Presentation.pptx
3D Bioprinting Presentation.pptx
 
3D BIOPRINTING: PRINCIPLE, TECHNIQUES AND IT’S APPLICATION IN HUMAN T...
 3D BIOPRINTING:  PRINCIPLE, TECHNIQUES  AND  IT’S  APPLICATION  IN  HUMAN  T... 3D BIOPRINTING:  PRINCIPLE, TECHNIQUES  AND  IT’S  APPLICATION  IN  HUMAN  T...
3D BIOPRINTING: PRINCIPLE, TECHNIQUES AND IT’S APPLICATION IN HUMAN T...
 
3D printing
3D printing3D printing
3D printing
 
3D printing
3D printing3D printing
3D printing
 
Bio Printing Presentation
Bio Printing PresentationBio Printing Presentation
Bio Printing Presentation
 
3D_Bio_Printing seminar Slide
3D_Bio_Printing seminar Slide3D_Bio_Printing seminar Slide
3D_Bio_Printing seminar Slide
 

Mehr von DoriaFang

Cyclic Peptides Current Status & Future Prospects.pdf
Cyclic Peptides Current Status & Future Prospects.pdfCyclic Peptides Current Status & Future Prospects.pdf
Cyclic Peptides Current Status & Future Prospects.pdfDoriaFang
 
Antibody–Oligonucleotide Conjugates (AOCs) in Clinical Trials.pdf
Antibody–Oligonucleotide Conjugates (AOCs) in Clinical Trials.pdfAntibody–Oligonucleotide Conjugates (AOCs) in Clinical Trials.pdf
Antibody–Oligonucleotide Conjugates (AOCs) in Clinical Trials.pdfDoriaFang
 
Alzheimer's Disease Drug Development Aducanumab, Lecanemab & Donanemab.pdf
Alzheimer's Disease Drug Development Aducanumab, Lecanemab & Donanemab.pdfAlzheimer's Disease Drug Development Aducanumab, Lecanemab & Donanemab.pdf
Alzheimer's Disease Drug Development Aducanumab, Lecanemab & Donanemab.pdfDoriaFang
 
Claudin6 (CLDN6) A Emerging Target For Solid Tumor.pdf
Claudin6 (CLDN6) A Emerging Target For Solid Tumor.pdfClaudin6 (CLDN6) A Emerging Target For Solid Tumor.pdf
Claudin6 (CLDN6) A Emerging Target For Solid Tumor.pdfDoriaFang
 
ROR1 ADCs in Clinical Trials MK-2140, NBE-002 & CS5001.pdf
ROR1 ADCs in Clinical Trials MK-2140, NBE-002 & CS5001.pdfROR1 ADCs in Clinical Trials MK-2140, NBE-002 & CS5001.pdf
ROR1 ADCs in Clinical Trials MK-2140, NBE-002 & CS5001.pdfDoriaFang
 
Summary of Targeted Protein Degradation in Clinical Trials.pdf
Summary of Targeted Protein Degradation in Clinical Trials.pdfSummary of Targeted Protein Degradation in Clinical Trials.pdf
Summary of Targeted Protein Degradation in Clinical Trials.pdfDoriaFang
 
Overview of New Targets For Anti-tumor Drugs.pdf
Overview of New Targets For Anti-tumor Drugs.pdfOverview of New Targets For Anti-tumor Drugs.pdf
Overview of New Targets For Anti-tumor Drugs.pdfDoriaFang
 
Cleavable Linkers Used In ADC Development.pdf
Cleavable Linkers Used In ADC Development.pdfCleavable Linkers Used In ADC Development.pdf
Cleavable Linkers Used In ADC Development.pdfDoriaFang
 
The Role of Four Lipid Components Of LNPs.pdf
The Role of Four Lipid Components Of LNPs.pdfThe Role of Four Lipid Components Of LNPs.pdf
The Role of Four Lipid Components Of LNPs.pdfDoriaFang
 
Trophoblast Glycoprotein (TPGB5T4) A New Target For ADC Drugs.pdf
Trophoblast Glycoprotein (TPGB5T4) A New Target For ADC Drugs.pdfTrophoblast Glycoprotein (TPGB5T4) A New Target For ADC Drugs.pdf
Trophoblast Glycoprotein (TPGB5T4) A New Target For ADC Drugs.pdfDoriaFang
 
Advances in TROP-2 Directed ADCs.pdf
Advances in TROP-2 Directed ADCs.pdfAdvances in TROP-2 Directed ADCs.pdf
Advances in TROP-2 Directed ADCs.pdfDoriaFang
 
DS-8201 (Enhertu) A Potential ADC Drug Targeting HER2.pdf
DS-8201 (Enhertu) A Potential ADC Drug Targeting HER2.pdfDS-8201 (Enhertu) A Potential ADC Drug Targeting HER2.pdf
DS-8201 (Enhertu) A Potential ADC Drug Targeting HER2.pdfDoriaFang
 
List of New Anti-cancer Drugs Approved By FDA In The First Half of 2023.pdf
List of New Anti-cancer Drugs Approved By FDA In The First Half of 2023.pdfList of New Anti-cancer Drugs Approved By FDA In The First Half of 2023.pdf
List of New Anti-cancer Drugs Approved By FDA In The First Half of 2023.pdfDoriaFang
 
Overview of Oral Delivery Strategies for Peptides.pdf
Overview of Oral Delivery Strategies for Peptides.pdfOverview of Oral Delivery Strategies for Peptides.pdf
Overview of Oral Delivery Strategies for Peptides.pdfDoriaFang
 
The Future Development of ADC For Cancer.pdf
The Future Development of ADC For Cancer.pdfThe Future Development of ADC For Cancer.pdf
The Future Development of ADC For Cancer.pdfDoriaFang
 
Summary of ADC Targets For Solid Tumors & Hematological Tumors.pdf
Summary of ADC Targets For Solid Tumors & Hematological Tumors.pdfSummary of ADC Targets For Solid Tumors & Hematological Tumors.pdf
Summary of ADC Targets For Solid Tumors & Hematological Tumors.pdfDoriaFang
 
New Oncology Trends ADCs, Bispecific Antibodies & CAR-T Cell.pdf
New Oncology Trends ADCs, Bispecific Antibodies & CAR-T Cell.pdfNew Oncology Trends ADCs, Bispecific Antibodies & CAR-T Cell.pdf
New Oncology Trends ADCs, Bispecific Antibodies & CAR-T Cell.pdfDoriaFang
 
Summary of Treatments for Multiple Myeloma.pdf
Summary of Treatments for Multiple Myeloma.pdfSummary of Treatments for Multiple Myeloma.pdf
Summary of Treatments for Multiple Myeloma.pdfDoriaFang
 
Bispecific Antibody-drug Conjugate Drugs In Clinical or Preclinical.pdf
Bispecific Antibody-drug Conjugate Drugs In Clinical or Preclinical.pdfBispecific Antibody-drug Conjugate Drugs In Clinical or Preclinical.pdf
Bispecific Antibody-drug Conjugate Drugs In Clinical or Preclinical.pdfDoriaFang
 
ADCs Targeting the HER Family.pdf
ADCs Targeting the HER Family.pdfADCs Targeting the HER Family.pdf
ADCs Targeting the HER Family.pdfDoriaFang
 

Mehr von DoriaFang (20)

Cyclic Peptides Current Status & Future Prospects.pdf
Cyclic Peptides Current Status & Future Prospects.pdfCyclic Peptides Current Status & Future Prospects.pdf
Cyclic Peptides Current Status & Future Prospects.pdf
 
Antibody–Oligonucleotide Conjugates (AOCs) in Clinical Trials.pdf
Antibody–Oligonucleotide Conjugates (AOCs) in Clinical Trials.pdfAntibody–Oligonucleotide Conjugates (AOCs) in Clinical Trials.pdf
Antibody–Oligonucleotide Conjugates (AOCs) in Clinical Trials.pdf
 
Alzheimer's Disease Drug Development Aducanumab, Lecanemab & Donanemab.pdf
Alzheimer's Disease Drug Development Aducanumab, Lecanemab & Donanemab.pdfAlzheimer's Disease Drug Development Aducanumab, Lecanemab & Donanemab.pdf
Alzheimer's Disease Drug Development Aducanumab, Lecanemab & Donanemab.pdf
 
Claudin6 (CLDN6) A Emerging Target For Solid Tumor.pdf
Claudin6 (CLDN6) A Emerging Target For Solid Tumor.pdfClaudin6 (CLDN6) A Emerging Target For Solid Tumor.pdf
Claudin6 (CLDN6) A Emerging Target For Solid Tumor.pdf
 
ROR1 ADCs in Clinical Trials MK-2140, NBE-002 & CS5001.pdf
ROR1 ADCs in Clinical Trials MK-2140, NBE-002 & CS5001.pdfROR1 ADCs in Clinical Trials MK-2140, NBE-002 & CS5001.pdf
ROR1 ADCs in Clinical Trials MK-2140, NBE-002 & CS5001.pdf
 
Summary of Targeted Protein Degradation in Clinical Trials.pdf
Summary of Targeted Protein Degradation in Clinical Trials.pdfSummary of Targeted Protein Degradation in Clinical Trials.pdf
Summary of Targeted Protein Degradation in Clinical Trials.pdf
 
Overview of New Targets For Anti-tumor Drugs.pdf
Overview of New Targets For Anti-tumor Drugs.pdfOverview of New Targets For Anti-tumor Drugs.pdf
Overview of New Targets For Anti-tumor Drugs.pdf
 
Cleavable Linkers Used In ADC Development.pdf
Cleavable Linkers Used In ADC Development.pdfCleavable Linkers Used In ADC Development.pdf
Cleavable Linkers Used In ADC Development.pdf
 
The Role of Four Lipid Components Of LNPs.pdf
The Role of Four Lipid Components Of LNPs.pdfThe Role of Four Lipid Components Of LNPs.pdf
The Role of Four Lipid Components Of LNPs.pdf
 
Trophoblast Glycoprotein (TPGB5T4) A New Target For ADC Drugs.pdf
Trophoblast Glycoprotein (TPGB5T4) A New Target For ADC Drugs.pdfTrophoblast Glycoprotein (TPGB5T4) A New Target For ADC Drugs.pdf
Trophoblast Glycoprotein (TPGB5T4) A New Target For ADC Drugs.pdf
 
Advances in TROP-2 Directed ADCs.pdf
Advances in TROP-2 Directed ADCs.pdfAdvances in TROP-2 Directed ADCs.pdf
Advances in TROP-2 Directed ADCs.pdf
 
DS-8201 (Enhertu) A Potential ADC Drug Targeting HER2.pdf
DS-8201 (Enhertu) A Potential ADC Drug Targeting HER2.pdfDS-8201 (Enhertu) A Potential ADC Drug Targeting HER2.pdf
DS-8201 (Enhertu) A Potential ADC Drug Targeting HER2.pdf
 
List of New Anti-cancer Drugs Approved By FDA In The First Half of 2023.pdf
List of New Anti-cancer Drugs Approved By FDA In The First Half of 2023.pdfList of New Anti-cancer Drugs Approved By FDA In The First Half of 2023.pdf
List of New Anti-cancer Drugs Approved By FDA In The First Half of 2023.pdf
 
Overview of Oral Delivery Strategies for Peptides.pdf
Overview of Oral Delivery Strategies for Peptides.pdfOverview of Oral Delivery Strategies for Peptides.pdf
Overview of Oral Delivery Strategies for Peptides.pdf
 
The Future Development of ADC For Cancer.pdf
The Future Development of ADC For Cancer.pdfThe Future Development of ADC For Cancer.pdf
The Future Development of ADC For Cancer.pdf
 
Summary of ADC Targets For Solid Tumors & Hematological Tumors.pdf
Summary of ADC Targets For Solid Tumors & Hematological Tumors.pdfSummary of ADC Targets For Solid Tumors & Hematological Tumors.pdf
Summary of ADC Targets For Solid Tumors & Hematological Tumors.pdf
 
New Oncology Trends ADCs, Bispecific Antibodies & CAR-T Cell.pdf
New Oncology Trends ADCs, Bispecific Antibodies & CAR-T Cell.pdfNew Oncology Trends ADCs, Bispecific Antibodies & CAR-T Cell.pdf
New Oncology Trends ADCs, Bispecific Antibodies & CAR-T Cell.pdf
 
Summary of Treatments for Multiple Myeloma.pdf
Summary of Treatments for Multiple Myeloma.pdfSummary of Treatments for Multiple Myeloma.pdf
Summary of Treatments for Multiple Myeloma.pdf
 
Bispecific Antibody-drug Conjugate Drugs In Clinical or Preclinical.pdf
Bispecific Antibody-drug Conjugate Drugs In Clinical or Preclinical.pdfBispecific Antibody-drug Conjugate Drugs In Clinical or Preclinical.pdf
Bispecific Antibody-drug Conjugate Drugs In Clinical or Preclinical.pdf
 
ADCs Targeting the HER Family.pdf
ADCs Targeting the HER Family.pdfADCs Targeting the HER Family.pdf
ADCs Targeting the HER Family.pdf
 

Kürzlich hochgeladen

Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service BangaloreCall Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangaloreamitlee9823
 
Cheap Rate Call Girls In Noida Sector 62 Metro 959961乂3876
Cheap Rate Call Girls In Noida Sector 62 Metro 959961乂3876Cheap Rate Call Girls In Noida Sector 62 Metro 959961乂3876
Cheap Rate Call Girls In Noida Sector 62 Metro 959961乂3876dlhescort
 
Call Girls Ludhiana Just Call 98765-12871 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 98765-12871 Top Class Call Girl Service AvailableCall Girls Ludhiana Just Call 98765-12871 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 98765-12871 Top Class Call Girl Service AvailableSeo
 
RSA Conference Exhibitor List 2024 - Exhibitors Data
RSA Conference Exhibitor List 2024 - Exhibitors DataRSA Conference Exhibitor List 2024 - Exhibitors Data
RSA Conference Exhibitor List 2024 - Exhibitors DataExhibitors Data
 
Uneak White's Personal Brand Exploration Presentation
Uneak White's Personal Brand Exploration PresentationUneak White's Personal Brand Exploration Presentation
Uneak White's Personal Brand Exploration Presentationuneakwhite
 
Value Proposition canvas- Customer needs and pains
Value Proposition canvas- Customer needs and painsValue Proposition canvas- Customer needs and pains
Value Proposition canvas- Customer needs and painsP&CO
 
Russian Call Girls In Rajiv Chowk Gurgaon ❤️8448577510 ⊹Best Escorts Service ...
Russian Call Girls In Rajiv Chowk Gurgaon ❤️8448577510 ⊹Best Escorts Service ...Russian Call Girls In Rajiv Chowk Gurgaon ❤️8448577510 ⊹Best Escorts Service ...
Russian Call Girls In Rajiv Chowk Gurgaon ❤️8448577510 ⊹Best Escorts Service ...lizamodels9
 
Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...
Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...
Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...Sheetaleventcompany
 
PHX May 2024 Corporate Presentation Final
PHX May 2024 Corporate Presentation FinalPHX May 2024 Corporate Presentation Final
PHX May 2024 Corporate Presentation FinalPanhandleOilandGas
 
The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...
The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...
The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...Aggregage
 
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756dollysharma2066
 
How to Get Started in Social Media for Art League City
How to Get Started in Social Media for Art League CityHow to Get Started in Social Media for Art League City
How to Get Started in Social Media for Art League CityEric T. Tung
 
Call Girls In Noida 959961⊹3876 Independent Escort Service Noida
Call Girls In Noida 959961⊹3876 Independent Escort Service NoidaCall Girls In Noida 959961⊹3876 Independent Escort Service Noida
Call Girls In Noida 959961⊹3876 Independent Escort Service Noidadlhescort
 
Call Girls In Majnu Ka Tilla 959961~3876 Shot 2000 Night 8000
Call Girls In Majnu Ka Tilla 959961~3876 Shot 2000 Night 8000Call Girls In Majnu Ka Tilla 959961~3876 Shot 2000 Night 8000
Call Girls In Majnu Ka Tilla 959961~3876 Shot 2000 Night 8000dlhescort
 
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...amitlee9823
 
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876dlhescort
 
Phases of Negotiation .pptx
 Phases of Negotiation .pptx Phases of Negotiation .pptx
Phases of Negotiation .pptxnandhinijagan9867
 
Organizational Transformation Lead with Culture
Organizational Transformation Lead with CultureOrganizational Transformation Lead with Culture
Organizational Transformation Lead with CultureSeta Wicaksana
 
Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...
Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...
Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...amitlee9823
 

Kürzlich hochgeladen (20)

Falcon Invoice Discounting platform in india
Falcon Invoice Discounting platform in indiaFalcon Invoice Discounting platform in india
Falcon Invoice Discounting platform in india
 
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service BangaloreCall Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
 
Cheap Rate Call Girls In Noida Sector 62 Metro 959961乂3876
Cheap Rate Call Girls In Noida Sector 62 Metro 959961乂3876Cheap Rate Call Girls In Noida Sector 62 Metro 959961乂3876
Cheap Rate Call Girls In Noida Sector 62 Metro 959961乂3876
 
Call Girls Ludhiana Just Call 98765-12871 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 98765-12871 Top Class Call Girl Service AvailableCall Girls Ludhiana Just Call 98765-12871 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 98765-12871 Top Class Call Girl Service Available
 
RSA Conference Exhibitor List 2024 - Exhibitors Data
RSA Conference Exhibitor List 2024 - Exhibitors DataRSA Conference Exhibitor List 2024 - Exhibitors Data
RSA Conference Exhibitor List 2024 - Exhibitors Data
 
Uneak White's Personal Brand Exploration Presentation
Uneak White's Personal Brand Exploration PresentationUneak White's Personal Brand Exploration Presentation
Uneak White's Personal Brand Exploration Presentation
 
Value Proposition canvas- Customer needs and pains
Value Proposition canvas- Customer needs and painsValue Proposition canvas- Customer needs and pains
Value Proposition canvas- Customer needs and pains
 
Russian Call Girls In Rajiv Chowk Gurgaon ❤️8448577510 ⊹Best Escorts Service ...
Russian Call Girls In Rajiv Chowk Gurgaon ❤️8448577510 ⊹Best Escorts Service ...Russian Call Girls In Rajiv Chowk Gurgaon ❤️8448577510 ⊹Best Escorts Service ...
Russian Call Girls In Rajiv Chowk Gurgaon ❤️8448577510 ⊹Best Escorts Service ...
 
Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...
Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...
Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...
 
PHX May 2024 Corporate Presentation Final
PHX May 2024 Corporate Presentation FinalPHX May 2024 Corporate Presentation Final
PHX May 2024 Corporate Presentation Final
 
The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...
The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...
The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...
 
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756
 
How to Get Started in Social Media for Art League City
How to Get Started in Social Media for Art League CityHow to Get Started in Social Media for Art League City
How to Get Started in Social Media for Art League City
 
Call Girls In Noida 959961⊹3876 Independent Escort Service Noida
Call Girls In Noida 959961⊹3876 Independent Escort Service NoidaCall Girls In Noida 959961⊹3876 Independent Escort Service Noida
Call Girls In Noida 959961⊹3876 Independent Escort Service Noida
 
Call Girls In Majnu Ka Tilla 959961~3876 Shot 2000 Night 8000
Call Girls In Majnu Ka Tilla 959961~3876 Shot 2000 Night 8000Call Girls In Majnu Ka Tilla 959961~3876 Shot 2000 Night 8000
Call Girls In Majnu Ka Tilla 959961~3876 Shot 2000 Night 8000
 
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
 
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
 
Phases of Negotiation .pptx
 Phases of Negotiation .pptx Phases of Negotiation .pptx
Phases of Negotiation .pptx
 
Organizational Transformation Lead with Culture
Organizational Transformation Lead with CultureOrganizational Transformation Lead with Culture
Organizational Transformation Lead with Culture
 
Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...
Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...
Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...
 

The role of pe gylated materials in 3 d bioprinting-biochempeg

  • 1. Biochempeg https://www.biochempeg.com The Role of PEGylated Materials In 3D Bioprinting Three dimensional (3D) bioprinting has emerged as a promising new approach for fabricating complex biological constructs in the field of tissue engineering and regenerative medicine. What is 3D Bioprinting? What are bio-ink materials for it? How does it work and what are the applications of it? 1. What Is 3D Bioprinting? 3D Bioprinting uses 3D printing–like techniques to combine cells, growth factors, and biomaterials to fabricate biomedical parts that maximally imitate natural tissue characteristics. It is a form of additive manufacturing that uses cells and other biocompatible materials as “inks”, also known as bio-inks, to print biological structures layer-by-layer that mimic the behavior of natural living systems. This technology is widely used in the fields of medicine and bioengineering. Recently, this technology has even made progress in the production of cartilage tissue for reconstruction and regeneration. Essentially, bioprinting works similarly to conventional 3D printing. The digital model becomes a physical 3D object layer by layer. However, in this case, a live cell suspension is used instead of thermoplastic or resin. 3D bioprinting generally involves the following three steps. Pre-bioprinting involves creating a digital model that the printer will produce. The techniques used are computed tomography (CT) and magnetic resonance imaging (MRI) scans.
  • 2. Biochempeg https://www.biochempeg.com Bioprinting is the actual printing process in which bioink is placed in a printer cartridge and then deposited according to the digital model. Post-printing is the mechanical and chemical stimulation of printed parts to create a stable structure for biological materials. 2. Bio-ink Materials For 3D Bioprinting Bio-ink is a material used to produce engineered/artificial live tissue in 3D printing. It contains living cells and biological materials that mimic the extracellular matrix environment. It supports cell adhesion, proliferation and differentiation after printing. 3D bioprinting allows for the spatially-controlled placement of cells in a defined 3D microenvironment. Bioinks are formed by combining cells and various biocompatible materials, which are subsequently printed in specific shapes to generate tissue-like, 3D structures. Although a variety of materials are used for bio-inks, the most popular ones include gelatin methacryloyl (GelMA), collagen, polyethylene glycol (PEG), Pluronic, alginate, and decellularized extracellular matrix (ECM)-based materials. PEG is a synthetic polymer synthesized through the polymerization of ethylene oxide. It is an ideal synthetic material because of its customizable but typically strong mechanical properties. The advantages of PEG also include non-cytotoxicity and non-immunogenicity. However, PEG is biologically inert and needs to be used in combination with other biologically active hydrogels. Biochempeg is a worldwide PEG supplier which supplies varieties of PEG derivatives to empower biochemical drug research & development. We are able to supply AC-PEG-AC( also called PEGDA) which can be used as bio-inks for 3D
  • 3. Biochempeg https://www.biochempeg.com Bioprinting. We aslo supply RGD, an additive suitable for most bio-inks which plays an important role in 3D cell culture, tissue engineering, and organ manufacturing. 3. How Does 3D Bioprinting Work? The 3D bioprinting process. Source: University of Rhode Island 3D bioprinting starts with a structural model, which is recreated layer by layer with bio-ink mixed with living cells or seeded with cells after printing. These starting models can come from anywhere-CT or MRI scans, a computer generated design (CAD) programs or files downloaded from the internet. The 3D model file is then fed into the slicer-a special kind of computer program that analyzes the geometry of the model and generates a series of thin layers or slices that form the shape of the original model when stacked vertically. After slicing the model, the slice is converted into path data and stored as a g-code file, which can then be sent to a 3D bioprinter for printing. The bioprinter follows the instructions in the g-code file in order, including instructions to control the extruder
  • 4. Biochempeg https://www.biochempeg.com temperature, extrusion pressure, bottom plate temperature, cross-linking strength and frequency, and control the 3D movement path generated by the slicer. Once all the g-code commands are completed, the printing is done and it can be cultured or seeded with cells as part of biological research. 4. Why Is 3D Bioprinting Important? Source: blogs.kentplace.org The greatest importance of bioprinting is to mimic the final tissue-like structure of the actual micro and macro environment of human tissues and organs. This is critical in drug testing and clinical trials, for example, it can greatly reduce the need for animal trials. When the living tissues and organs of the human body are not needed, this new technology offers other huge opportunities. One example is the use of artificially-influenced tissues to test treatments for diseases. The process can also eradicate headaches associated with organ donation and
  • 5. Biochempeg https://www.biochempeg.com transplantation. In addition to the lack of available organs, the entire process has also been criticized from a moral and ethical perspective. Organ replacement is the main goal, but at the same time tissue repair can also be performed. With bio-ink, it is much easier to solve problems at a specific patient level, thereby simplifying operations. For pharmaceutical development, 3D bioprinting offers a means of testing drugs faster, at a lower cost, and with better biological relevance to humans than animal testing. 5. What Are The Applications of 3D Bioprinting? Here are a few of the main application areas of bioprinting: 1. Due to the high incidence of vital organ failure, artificial organs are one of the greatest driving forces of this technology. The availability of 3D printed organs helps to solve organ-related issues faster and faster, which is crucial for patients, their families and the medical system. 2. Developing tissue for pharmaceutical testing is a more cost-effective and ethical option when 3D printing is done.It also helps identify drug side effects and allows recommended drugs to be administered to humans with validated safe doses. 3. Cosmetic surgery, especially for plastic surgery and skin graft surgery, also benefit from this technology. In this particular application, bioprinted skin tissue can be commercialized. Some 3D printed tissues have been bioprinted for research on therapeutic purposes. 4. 3D Bioprinting also be applied in bone tissue regeneration as well as prosthetics and dental. There are various other uses and applications of 3D Bioprinting, including producing foodstuffs such as meat and vegetables. 3D Bioprinting contributes to significant advances in the medical field of tissue engineering by allowing for research to be done on innovative materials called biomaterials. References: [1] 3D bioprinting of cells, tissues and organs [2] What Is 3D Bioprinting? – Simply Explained [3] What Is 3D Bioprinting?