SlideShare ist ein Scribd-Unternehmen logo
1 von 10
Downloaden Sie, um offline zu lesen
Biopharma PEG https://www.biochempeg.com
Molecular Glues: A New Dawn of Small Molecule
Drugs After PROTAC
Currently, targeted protein degradation (TPD) is an emerging therapeutic strategy that
exerts therapeutic effects by inducing the degradation of pathogenic target proteins. TPD
has attracted much attention because of its wider range of action, higher activity, targeting
"non-drugable" targets, and overcoming drug resistance. Targeted protein degradation
(TPD) is a promising research field, and its emergence has changed the pattern of drug
development, opened up new drug targets and drug blueprints, and opened up new
avenues for "Undruggable" target drug development.
PROTAC and molecular glues are the two main modes of targeted protein
degradation technology based on the ubiquitin-proteasome system (Figure
1). PROTAC induces target proteins to approach ubiquitin ligases by recruiting ubiquitin
ligases, resulting in ubiquitination and degradation of target proteins. Molecular glues
promote or induce protein-protein interaction (PPI) between E3 ubiquitin ligase and target
protein by modifying the surface of ubiquitin ligase, so that the target protein is
ubiquitinated and then degraded.
Figure 1. Mechanism of action of molecular glue degraders
Biopharma PEG https://www.biochempeg.com
The concept of "molecular glue" first appeared in the early 1990s. The
immunosuppressants cyclosporine A (CsA) and FK506 were the first examples of
molecular glues. Studies have found that cyclosporine A and FK506 act in the form of
molecular glues. CsA and FK506 could induce the formation of two ternary complexes of
cyclophilin-CsA-calcineurin and FKBP12-FK506-calcineurin, respectively. The later
immunosuppressant rapamycin can also act as a molecular glue to stabilize the
FKBP12-rapamycin-FRB (mTOR) ternary complex. In 2013, researchers first elucidated
the mechanism of action of thalidomide analogs as molecular glue degraders. After 2014,
molecular glue degraders gradually emerged and gradually developed into the focus of
researchers (Figure 2). In recent years, there has been a wave of research and
development of molecular gel inhibitors in the medical circle.
Figure 2. Development history of molecular glues
With the "continuous warming" in the field of targeted protein degradation, molecular glue
degraders have become the focus of many pharmaceutical companies around the world.
A number of ubiquitin proteasome-based molecular glue degraders have achieved
positive research results and have been approved for clinical studies. Thalidomide and
its derivatives (lenalidomide and pomalidomide) have immunomodulatory,
anti-inflammatory and anti-tumor effects and have been approved by the US FDA for the
Biopharma PEG https://www.biochempeg.com
treatment of multiple myeloma and other diseases. In the follow-up mechanism study, it
was accidentally found that thalidomide and its derivatives also act as molecular glue
degraders, and promote the ubiquitination and degradation of substrate proteins by
inducing the PPI of CRBN and substrate proteins (IKZF1/3, etc.).
Molecular glues and PROTAC
Although both molecular glue and PROTAC are bifunctional protein degraders, they have
different mechanisms of action and structural features (Figure 3). PROTAC is a
heterobifunctional degrader that interacts with both E3 ubiquitin ligase and target protein,
inducing the target protein to approach E3 ubiquitin ligase, leading to ubiquitination and
degradation of the target protein. The molecular glue is a small molecule degrader,
which can only interact with the ligase (more frequently) or the target protein, by inducing
or stabilizing the PPI between the E3 ubiquitin ligase and the target protein to form ternary
complexes that induce ubiquitination and degradation of target proteins.
Figure 3. Schematic diagram of the structure of molecular glue and PROTAC
In addition, the target proteins and molecular mechanisms of PROTACs are predictable
and can be rationally designed according to the binding mode of ligands to target proteins.
Biopharma PEG https://www.biochempeg.com
However, the discovery of molecular glues is very accidental, and there is a lack of
systematic discovery methods and reasonable design strategies. Molecular glues cannot
be obtained through large-scale screening of components like PROTAC, which makes
drug design based on molecular glue more difficult, so few molecular glue degraders have
been discovered so far.
The advantage of molecular glue is that it can degrade non-ligand-bound proteins by
promoting the PPI between ubiquitin ligase and target protein, showing a therapeutic
effect superior to that of small molecule drugs. However, PROTACs usually have high
molecular weight (MW), poor cell permeability and pharmacokinetic (PK) characteristics,
which hinder the development of PROTACs in clinical therapy. Molecular glue has lower
molecular weight, higher cell permeability and better oral absorption, which conforms to
the "Five Rules for Drugs" and shows better druggability (Figure 4). The molecular glue
strategy provides a new research idea for drug development in the field of targeted protein
degradation.
Figure 4. Comparison of molecular glues and PROTACs
Research and development strategy of
molecular glue degraders
Biopharma PEG https://www.biochempeg.com
Molecular glue degrader is a very ideal targeted therapy drug, and its clinical effect is also
very potential. However, drug discovery based on molecular glue is very contingent, which
makes the development of molecular glue drugs very limited.
1. Obtained from the transformation of kinase inhibitors
In 2020, Benjamin L. Ebert's research group discovered that CR8, a cyclin-dependent
kinase CDK inhibitor, is a new molecular glue degrader by systematically mining the
database and screening with CRISPR-Cas9 technology (Figure 5). Among them, CR8
bound to CDK can induce CDK12/cyclinK to directly form a complex with CUL4/DDB1,
thereby bypassing the substrate receptor DCAFs, enabling cyclinK to be ubiquitinated and
degraded by the proteasome system.
Biopharma PEG https://www.biochempeg.com
Figure 5. CR8 molecular glue degrader and bioactivity evaluation
2. Phenotype-Based Screening Strategies
In 2020, Georg E. Winter's team discovered a new RBM39 molecular glue
degrader-dCeMM1 (Figure 6) through phenotypic chemical screening. dCeMM1 acts by
redirecting the activity of CRL4 DCAF15 ligase, ubiquitinating and degrading target
proteins RBM39.
Biopharma PEG https://www.biochempeg.com
Figure 6. Discovery of RBM39 molecular glue degraders
3. The strategy of new use of old drugs
The strategy of reusing old drugs is one of the important means of drug discovery.
Compared with the research and development of new drugs, the new use of old drugs has
the advantages of low cost and short time consumption. Thalidomide and its analogues
are immunomodulatory imides approved by FDA in the United States for the treatment of
multiple myeloma and other diseases (Figure 7). The researchers found in follow-up
mechanism studies that these drugs are also molecular glues. They can bind to the highly
conserved tri-tryptophan cavity on CRBN and form E3 ubiquitin ligase complexes with
damaged DNA-binding protein-1 (DDB1) and Cul4A type E3 ubiquitin ligases, which
subsequently induces ubiquitination and degradation of target proteins such as IKZF1/3,
CK1α and SALL4.
Biopharma PEG https://www.biochempeg.com
Figure 7. Chemical structures of thalidomide and its derivatives
Indisulam is a potential small-molecule anticancer drug developed by Eisai
Pharmaceuticals. But in recent studies, Indisulam was also found to be a molecular glue
(Figure 9), which can enhance the protein-protein interaction between DCAF15 and a new
substrate protein (RBM39), and induce ubiquitination and degradation of the target protein
RBM39.
Figure 8. Chemical structure and mechanism of action of Indisulam
Biopharma PEG https://www.biochempeg.com
Conclusion
Targeted protein degradation (TPD) is becoming a promising therapeutic strategy in the
development of new drugs. The discovery of molecular glue-mediated
proximity-induced protein degradation technology reveals new biological mechanisms
and new therapeutics. At present, drug research and development based on molecular
glue is still in its infancy. The discovery of molecular glue drugs is a serendipity, and there
is no strategy for rationally designing molecular glue degraders. Therefore, there is an
urgent need to develop some reasonable structure-based molecular glue drug discovery
technologies. In conclusion, a full understanding of the molecular mechanisms, structural
biological characteristics, and medicinal chemistry information of molecular glue
degraders will play an increasingly important role in translating targeted protein
degradation strategies into practical clinical applications.
The commonly used linkers in the development of PROTACs are PEGs, Alkyl-Chain and
Alkyl/ether. Biopharma PEG is a reliable PEG supplier provides multi-functionalized PEG
derivatives as PROTAC linkers to customers all over the world .
References:
[1]. The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin
K. 10.1038/s41586-020-2374-x
[2]. Haven’t got a glue:Protein surface variation for the design of molecular glue
degraders. doi.org/10.1016/j.chembiol.2021.04.009
[3]. Molecular Glues for Targeted Protein Degradation: From Serendipity to Rational
Discovery. doi.org/10.1021/acs.jmedchem.1c00895
Related articles:
[1]. Four Major Trends In The Development of PROTAC
Biopharma PEG https://www.biochempeg.com
[2]. PROTAC And Other Protein Degradation Technology
[3]. PROTACs VS. Tranditional Small Molecule Inhibitors
[4]. PROTACs and Targeted Protein Degradation
[5]. PEGylation of Small Molecule Drugs

Weitere ähnliche Inhalte

Ähnlich wie Molecular Glues A New Dawn of Small Molecule Drugs After PROTAC.pdf

Bioanalytical Method Development and Validation of Biosimilars: Lessons Learned
Bioanalytical Method Development and Validation of Biosimilars: Lessons LearnedBioanalytical Method Development and Validation of Biosimilars: Lessons Learned
Bioanalytical Method Development and Validation of Biosimilars: Lessons LearnedSai Babitha
 
PROTAC Technology: An Effective Targeted Protein Degrader.pdf
PROTAC Technology: An Effective Targeted Protein Degrader.pdfPROTAC Technology: An Effective Targeted Protein Degrader.pdf
PROTAC Technology: An Effective Targeted Protein Degrader.pdfDoriaFang
 
Summary of Targeted Protein Degradation in Clinical Trials.pdf
Summary of Targeted Protein Degradation in Clinical Trials.pdfSummary of Targeted Protein Degradation in Clinical Trials.pdf
Summary of Targeted Protein Degradation in Clinical Trials.pdfDoriaFang
 
12 Types of Targeted Protein Degradation Technologies.pdf
12 Types of Targeted Protein Degradation Technologies.pdf12 Types of Targeted Protein Degradation Technologies.pdf
12 Types of Targeted Protein Degradation Technologies.pdfDoriaFang
 
computational chemistry
computational chemistrycomputational chemistry
computational chemistrySAMUELAKANDE3
 
Significance of computational tools in drug discovery
Significance of computational tools in drug discoverySignificance of computational tools in drug discovery
Significance of computational tools in drug discoveryDrMopuriDeepaReddy
 
Peptide Drug Conjugates (PDCs) Novel Targeted Therapeutics For Cancer.pdf
Peptide Drug Conjugates (PDCs) Novel Targeted Therapeutics For Cancer.pdfPeptide Drug Conjugates (PDCs) Novel Targeted Therapeutics For Cancer.pdf
Peptide Drug Conjugates (PDCs) Novel Targeted Therapeutics For Cancer.pdfDoriaFang
 
Several Types of PROTACs Based On Nucleic Acids
Several Types of PROTACs Based On Nucleic AcidsSeveral Types of PROTACs Based On Nucleic Acids
Several Types of PROTACs Based On Nucleic AcidsDoriaFang
 
Summary of PROTAC Degraders in Clinical Trials.pdf
Summary of PROTAC Degraders in Clinical Trials.pdfSummary of PROTAC Degraders in Clinical Trials.pdf
Summary of PROTAC Degraders in Clinical Trials.pdfDoriaFang
 
COMPUTATIONAL MODELING OF DRUG DISPOSITION.pptx
COMPUTATIONAL MODELING OF DRUG DISPOSITION.pptxCOMPUTATIONAL MODELING OF DRUG DISPOSITION.pptx
COMPUTATIONAL MODELING OF DRUG DISPOSITION.pptxPoojaArya34
 
INTRODUCTION TO BIOPHARMACEUTICS & ABSORPTION
INTRODUCTION TO BIOPHARMACEUTICS & ABSORPTION INTRODUCTION TO BIOPHARMACEUTICS & ABSORPTION
INTRODUCTION TO BIOPHARMACEUTICS & ABSORPTION Ram Kanth
 
Antisense Oligonucleotides, Aptamers & Triple Helix: Speech by Michael L Rior...
Antisense Oligonucleotides, Aptamers & Triple Helix: Speech by Michael L Rior...Antisense Oligonucleotides, Aptamers & Triple Helix: Speech by Michael L Rior...
Antisense Oligonucleotides, Aptamers & Triple Helix: Speech by Michael L Rior...EduConnections
 
Summary of Molecular Glues Approved or in Clinical Trial.pdf
Summary of Molecular Glues Approved or in Clinical Trial.pdfSummary of Molecular Glues Approved or in Clinical Trial.pdf
Summary of Molecular Glues Approved or in Clinical Trial.pdfDoriaFang
 
COMPUTER AIDED DRUG DESIGN.pptx
COMPUTER  AIDED DRUG DESIGN.pptxCOMPUTER  AIDED DRUG DESIGN.pptx
COMPUTER AIDED DRUG DESIGN.pptxManimegalaiG3
 
Computational modeling in drug disposition
Computational modeling in drug dispositionComputational modeling in drug disposition
Computational modeling in drug dispositionSUJITHA MARY
 

Ähnlich wie Molecular Glues A New Dawn of Small Molecule Drugs After PROTAC.pdf (20)

Bioanalytical Method Development and Validation of Biosimilars: Lessons Learned
Bioanalytical Method Development and Validation of Biosimilars: Lessons LearnedBioanalytical Method Development and Validation of Biosimilars: Lessons Learned
Bioanalytical Method Development and Validation of Biosimilars: Lessons Learned
 
PROTAC Technology: An Effective Targeted Protein Degrader.pdf
PROTAC Technology: An Effective Targeted Protein Degrader.pdfPROTAC Technology: An Effective Targeted Protein Degrader.pdf
PROTAC Technology: An Effective Targeted Protein Degrader.pdf
 
Summary of Targeted Protein Degradation in Clinical Trials.pdf
Summary of Targeted Protein Degradation in Clinical Trials.pdfSummary of Targeted Protein Degradation in Clinical Trials.pdf
Summary of Targeted Protein Degradation in Clinical Trials.pdf
 
12 Types of Targeted Protein Degradation Technologies.pdf
12 Types of Targeted Protein Degradation Technologies.pdf12 Types of Targeted Protein Degradation Technologies.pdf
12 Types of Targeted Protein Degradation Technologies.pdf
 
computational chemistry
computational chemistrycomputational chemistry
computational chemistry
 
Significance of computational tools in drug discovery
Significance of computational tools in drug discoverySignificance of computational tools in drug discovery
Significance of computational tools in drug discovery
 
Presentation on rational drug design converted
Presentation on rational drug design convertedPresentation on rational drug design converted
Presentation on rational drug design converted
 
Peptide Drug Conjugates (PDCs) Novel Targeted Therapeutics For Cancer.pdf
Peptide Drug Conjugates (PDCs) Novel Targeted Therapeutics For Cancer.pdfPeptide Drug Conjugates (PDCs) Novel Targeted Therapeutics For Cancer.pdf
Peptide Drug Conjugates (PDCs) Novel Targeted Therapeutics For Cancer.pdf
 
Several Types of PROTACs Based On Nucleic Acids
Several Types of PROTACs Based On Nucleic AcidsSeveral Types of PROTACs Based On Nucleic Acids
Several Types of PROTACs Based On Nucleic Acids
 
Summary of PROTAC Degraders in Clinical Trials.pdf
Summary of PROTAC Degraders in Clinical Trials.pdfSummary of PROTAC Degraders in Clinical Trials.pdf
Summary of PROTAC Degraders in Clinical Trials.pdf
 
COMPUTATIONAL MODELING OF DRUG DISPOSITION.pptx
COMPUTATIONAL MODELING OF DRUG DISPOSITION.pptxCOMPUTATIONAL MODELING OF DRUG DISPOSITION.pptx
COMPUTATIONAL MODELING OF DRUG DISPOSITION.pptx
 
Oct.13 tips ntn
Oct.13 tips ntn Oct.13 tips ntn
Oct.13 tips ntn
 
oct.13 tips NTN
oct.13 tips NTN oct.13 tips NTN
oct.13 tips NTN
 
Molecular docking
Molecular dockingMolecular docking
Molecular docking
 
INTRODUCTION TO BIOPHARMACEUTICS & ABSORPTION
INTRODUCTION TO BIOPHARMACEUTICS & ABSORPTION INTRODUCTION TO BIOPHARMACEUTICS & ABSORPTION
INTRODUCTION TO BIOPHARMACEUTICS & ABSORPTION
 
Antisense Oligonucleotides, Aptamers & Triple Helix: Speech by Michael L Rior...
Antisense Oligonucleotides, Aptamers & Triple Helix: Speech by Michael L Rior...Antisense Oligonucleotides, Aptamers & Triple Helix: Speech by Michael L Rior...
Antisense Oligonucleotides, Aptamers & Triple Helix: Speech by Michael L Rior...
 
Summary of Molecular Glues Approved or in Clinical Trial.pdf
Summary of Molecular Glues Approved or in Clinical Trial.pdfSummary of Molecular Glues Approved or in Clinical Trial.pdf
Summary of Molecular Glues Approved or in Clinical Trial.pdf
 
Presenatation on insillico drug design
Presenatation on insillico drug designPresenatation on insillico drug design
Presenatation on insillico drug design
 
COMPUTER AIDED DRUG DESIGN.pptx
COMPUTER  AIDED DRUG DESIGN.pptxCOMPUTER  AIDED DRUG DESIGN.pptx
COMPUTER AIDED DRUG DESIGN.pptx
 
Computational modeling in drug disposition
Computational modeling in drug dispositionComputational modeling in drug disposition
Computational modeling in drug disposition
 

Mehr von DoriaFang

Cyclic Peptides Current Status & Future Prospects.pdf
Cyclic Peptides Current Status & Future Prospects.pdfCyclic Peptides Current Status & Future Prospects.pdf
Cyclic Peptides Current Status & Future Prospects.pdfDoriaFang
 
Antibody–Oligonucleotide Conjugates (AOCs) in Clinical Trials.pdf
Antibody–Oligonucleotide Conjugates (AOCs) in Clinical Trials.pdfAntibody–Oligonucleotide Conjugates (AOCs) in Clinical Trials.pdf
Antibody–Oligonucleotide Conjugates (AOCs) in Clinical Trials.pdfDoriaFang
 
Alzheimer's Disease Drug Development Aducanumab, Lecanemab & Donanemab.pdf
Alzheimer's Disease Drug Development Aducanumab, Lecanemab & Donanemab.pdfAlzheimer's Disease Drug Development Aducanumab, Lecanemab & Donanemab.pdf
Alzheimer's Disease Drug Development Aducanumab, Lecanemab & Donanemab.pdfDoriaFang
 
Claudin6 (CLDN6) A Emerging Target For Solid Tumor.pdf
Claudin6 (CLDN6) A Emerging Target For Solid Tumor.pdfClaudin6 (CLDN6) A Emerging Target For Solid Tumor.pdf
Claudin6 (CLDN6) A Emerging Target For Solid Tumor.pdfDoriaFang
 
ROR1 ADCs in Clinical Trials MK-2140, NBE-002 & CS5001.pdf
ROR1 ADCs in Clinical Trials MK-2140, NBE-002 & CS5001.pdfROR1 ADCs in Clinical Trials MK-2140, NBE-002 & CS5001.pdf
ROR1 ADCs in Clinical Trials MK-2140, NBE-002 & CS5001.pdfDoriaFang
 
Overview of New Targets For Anti-tumor Drugs.pdf
Overview of New Targets For Anti-tumor Drugs.pdfOverview of New Targets For Anti-tumor Drugs.pdf
Overview of New Targets For Anti-tumor Drugs.pdfDoriaFang
 
Cleavable Linkers Used In ADC Development.pdf
Cleavable Linkers Used In ADC Development.pdfCleavable Linkers Used In ADC Development.pdf
Cleavable Linkers Used In ADC Development.pdfDoriaFang
 
The Role of Four Lipid Components Of LNPs.pdf
The Role of Four Lipid Components Of LNPs.pdfThe Role of Four Lipid Components Of LNPs.pdf
The Role of Four Lipid Components Of LNPs.pdfDoriaFang
 
Trophoblast Glycoprotein (TPGB5T4) A New Target For ADC Drugs.pdf
Trophoblast Glycoprotein (TPGB5T4) A New Target For ADC Drugs.pdfTrophoblast Glycoprotein (TPGB5T4) A New Target For ADC Drugs.pdf
Trophoblast Glycoprotein (TPGB5T4) A New Target For ADC Drugs.pdfDoriaFang
 
Advances in TROP-2 Directed ADCs.pdf
Advances in TROP-2 Directed ADCs.pdfAdvances in TROP-2 Directed ADCs.pdf
Advances in TROP-2 Directed ADCs.pdfDoriaFang
 
DS-8201 (Enhertu) A Potential ADC Drug Targeting HER2.pdf
DS-8201 (Enhertu) A Potential ADC Drug Targeting HER2.pdfDS-8201 (Enhertu) A Potential ADC Drug Targeting HER2.pdf
DS-8201 (Enhertu) A Potential ADC Drug Targeting HER2.pdfDoriaFang
 
List of New Anti-cancer Drugs Approved By FDA In The First Half of 2023.pdf
List of New Anti-cancer Drugs Approved By FDA In The First Half of 2023.pdfList of New Anti-cancer Drugs Approved By FDA In The First Half of 2023.pdf
List of New Anti-cancer Drugs Approved By FDA In The First Half of 2023.pdfDoriaFang
 
Overview of Oral Delivery Strategies for Peptides.pdf
Overview of Oral Delivery Strategies for Peptides.pdfOverview of Oral Delivery Strategies for Peptides.pdf
Overview of Oral Delivery Strategies for Peptides.pdfDoriaFang
 
The Future Development of ADC For Cancer.pdf
The Future Development of ADC For Cancer.pdfThe Future Development of ADC For Cancer.pdf
The Future Development of ADC For Cancer.pdfDoriaFang
 
Summary of ADC Targets For Solid Tumors & Hematological Tumors.pdf
Summary of ADC Targets For Solid Tumors & Hematological Tumors.pdfSummary of ADC Targets For Solid Tumors & Hematological Tumors.pdf
Summary of ADC Targets For Solid Tumors & Hematological Tumors.pdfDoriaFang
 
New Oncology Trends ADCs, Bispecific Antibodies & CAR-T Cell.pdf
New Oncology Trends ADCs, Bispecific Antibodies & CAR-T Cell.pdfNew Oncology Trends ADCs, Bispecific Antibodies & CAR-T Cell.pdf
New Oncology Trends ADCs, Bispecific Antibodies & CAR-T Cell.pdfDoriaFang
 
Summary of Treatments for Multiple Myeloma.pdf
Summary of Treatments for Multiple Myeloma.pdfSummary of Treatments for Multiple Myeloma.pdf
Summary of Treatments for Multiple Myeloma.pdfDoriaFang
 
Bispecific Antibody-drug Conjugate Drugs In Clinical or Preclinical.pdf
Bispecific Antibody-drug Conjugate Drugs In Clinical or Preclinical.pdfBispecific Antibody-drug Conjugate Drugs In Clinical or Preclinical.pdf
Bispecific Antibody-drug Conjugate Drugs In Clinical or Preclinical.pdfDoriaFang
 
ADCs Targeting the HER Family.pdf
ADCs Targeting the HER Family.pdfADCs Targeting the HER Family.pdf
ADCs Targeting the HER Family.pdfDoriaFang
 
Nectin-4 New Antibody-Drug Conjugate (ADC) Target.pdf
Nectin-4 New Antibody-Drug Conjugate (ADC) Target.pdfNectin-4 New Antibody-Drug Conjugate (ADC) Target.pdf
Nectin-4 New Antibody-Drug Conjugate (ADC) Target.pdfDoriaFang
 

Mehr von DoriaFang (20)

Cyclic Peptides Current Status & Future Prospects.pdf
Cyclic Peptides Current Status & Future Prospects.pdfCyclic Peptides Current Status & Future Prospects.pdf
Cyclic Peptides Current Status & Future Prospects.pdf
 
Antibody–Oligonucleotide Conjugates (AOCs) in Clinical Trials.pdf
Antibody–Oligonucleotide Conjugates (AOCs) in Clinical Trials.pdfAntibody–Oligonucleotide Conjugates (AOCs) in Clinical Trials.pdf
Antibody–Oligonucleotide Conjugates (AOCs) in Clinical Trials.pdf
 
Alzheimer's Disease Drug Development Aducanumab, Lecanemab & Donanemab.pdf
Alzheimer's Disease Drug Development Aducanumab, Lecanemab & Donanemab.pdfAlzheimer's Disease Drug Development Aducanumab, Lecanemab & Donanemab.pdf
Alzheimer's Disease Drug Development Aducanumab, Lecanemab & Donanemab.pdf
 
Claudin6 (CLDN6) A Emerging Target For Solid Tumor.pdf
Claudin6 (CLDN6) A Emerging Target For Solid Tumor.pdfClaudin6 (CLDN6) A Emerging Target For Solid Tumor.pdf
Claudin6 (CLDN6) A Emerging Target For Solid Tumor.pdf
 
ROR1 ADCs in Clinical Trials MK-2140, NBE-002 & CS5001.pdf
ROR1 ADCs in Clinical Trials MK-2140, NBE-002 & CS5001.pdfROR1 ADCs in Clinical Trials MK-2140, NBE-002 & CS5001.pdf
ROR1 ADCs in Clinical Trials MK-2140, NBE-002 & CS5001.pdf
 
Overview of New Targets For Anti-tumor Drugs.pdf
Overview of New Targets For Anti-tumor Drugs.pdfOverview of New Targets For Anti-tumor Drugs.pdf
Overview of New Targets For Anti-tumor Drugs.pdf
 
Cleavable Linkers Used In ADC Development.pdf
Cleavable Linkers Used In ADC Development.pdfCleavable Linkers Used In ADC Development.pdf
Cleavable Linkers Used In ADC Development.pdf
 
The Role of Four Lipid Components Of LNPs.pdf
The Role of Four Lipid Components Of LNPs.pdfThe Role of Four Lipid Components Of LNPs.pdf
The Role of Four Lipid Components Of LNPs.pdf
 
Trophoblast Glycoprotein (TPGB5T4) A New Target For ADC Drugs.pdf
Trophoblast Glycoprotein (TPGB5T4) A New Target For ADC Drugs.pdfTrophoblast Glycoprotein (TPGB5T4) A New Target For ADC Drugs.pdf
Trophoblast Glycoprotein (TPGB5T4) A New Target For ADC Drugs.pdf
 
Advances in TROP-2 Directed ADCs.pdf
Advances in TROP-2 Directed ADCs.pdfAdvances in TROP-2 Directed ADCs.pdf
Advances in TROP-2 Directed ADCs.pdf
 
DS-8201 (Enhertu) A Potential ADC Drug Targeting HER2.pdf
DS-8201 (Enhertu) A Potential ADC Drug Targeting HER2.pdfDS-8201 (Enhertu) A Potential ADC Drug Targeting HER2.pdf
DS-8201 (Enhertu) A Potential ADC Drug Targeting HER2.pdf
 
List of New Anti-cancer Drugs Approved By FDA In The First Half of 2023.pdf
List of New Anti-cancer Drugs Approved By FDA In The First Half of 2023.pdfList of New Anti-cancer Drugs Approved By FDA In The First Half of 2023.pdf
List of New Anti-cancer Drugs Approved By FDA In The First Half of 2023.pdf
 
Overview of Oral Delivery Strategies for Peptides.pdf
Overview of Oral Delivery Strategies for Peptides.pdfOverview of Oral Delivery Strategies for Peptides.pdf
Overview of Oral Delivery Strategies for Peptides.pdf
 
The Future Development of ADC For Cancer.pdf
The Future Development of ADC For Cancer.pdfThe Future Development of ADC For Cancer.pdf
The Future Development of ADC For Cancer.pdf
 
Summary of ADC Targets For Solid Tumors & Hematological Tumors.pdf
Summary of ADC Targets For Solid Tumors & Hematological Tumors.pdfSummary of ADC Targets For Solid Tumors & Hematological Tumors.pdf
Summary of ADC Targets For Solid Tumors & Hematological Tumors.pdf
 
New Oncology Trends ADCs, Bispecific Antibodies & CAR-T Cell.pdf
New Oncology Trends ADCs, Bispecific Antibodies & CAR-T Cell.pdfNew Oncology Trends ADCs, Bispecific Antibodies & CAR-T Cell.pdf
New Oncology Trends ADCs, Bispecific Antibodies & CAR-T Cell.pdf
 
Summary of Treatments for Multiple Myeloma.pdf
Summary of Treatments for Multiple Myeloma.pdfSummary of Treatments for Multiple Myeloma.pdf
Summary of Treatments for Multiple Myeloma.pdf
 
Bispecific Antibody-drug Conjugate Drugs In Clinical or Preclinical.pdf
Bispecific Antibody-drug Conjugate Drugs In Clinical or Preclinical.pdfBispecific Antibody-drug Conjugate Drugs In Clinical or Preclinical.pdf
Bispecific Antibody-drug Conjugate Drugs In Clinical or Preclinical.pdf
 
ADCs Targeting the HER Family.pdf
ADCs Targeting the HER Family.pdfADCs Targeting the HER Family.pdf
ADCs Targeting the HER Family.pdf
 
Nectin-4 New Antibody-Drug Conjugate (ADC) Target.pdf
Nectin-4 New Antibody-Drug Conjugate (ADC) Target.pdfNectin-4 New Antibody-Drug Conjugate (ADC) Target.pdf
Nectin-4 New Antibody-Drug Conjugate (ADC) Target.pdf
 

Kürzlich hochgeladen

FULL ENJOY Call girls in Paharganj Delhi | 8377087607
FULL ENJOY Call girls in Paharganj Delhi | 8377087607FULL ENJOY Call girls in Paharganj Delhi | 8377087607
FULL ENJOY Call girls in Paharganj Delhi | 8377087607dollysharma2066
 
Intro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdfIntro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdfpollardmorgan
 
Market Sizes Sample Report - 2024 Edition
Market Sizes Sample Report - 2024 EditionMarket Sizes Sample Report - 2024 Edition
Market Sizes Sample Report - 2024 EditionMintel Group
 
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607dollysharma2066
 
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu MenzaYouth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu Menzaictsugar
 
Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024Kirill Klimov
 
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / NcrCall Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncrdollysharma2066
 
Buy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail AccountsBuy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail AccountsBuy Verified Accounts
 
Marketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent ChirchirMarketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent Chirchirictsugar
 
8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR
8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR
8447779800, Low rate Call girls in Shivaji Enclave Delhi NCRashishs7044
 
8447779800, Low rate Call girls in Rohini Delhi NCR
8447779800, Low rate Call girls in Rohini Delhi NCR8447779800, Low rate Call girls in Rohini Delhi NCR
8447779800, Low rate Call girls in Rohini Delhi NCRashishs7044
 
8447779800, Low rate Call girls in Tughlakabad Delhi NCR
8447779800, Low rate Call girls in Tughlakabad Delhi NCR8447779800, Low rate Call girls in Tughlakabad Delhi NCR
8447779800, Low rate Call girls in Tughlakabad Delhi NCRashishs7044
 
Digital Transformation in the PLM domain - distrib.pdf
Digital Transformation in the PLM domain - distrib.pdfDigital Transformation in the PLM domain - distrib.pdf
Digital Transformation in the PLM domain - distrib.pdfJos Voskuil
 
India Consumer 2024 Redacted Sample Report
India Consumer 2024 Redacted Sample ReportIndia Consumer 2024 Redacted Sample Report
India Consumer 2024 Redacted Sample ReportMintel Group
 
2024 Numerator Consumer Study of Cannabis Usage
2024 Numerator Consumer Study of Cannabis Usage2024 Numerator Consumer Study of Cannabis Usage
2024 Numerator Consumer Study of Cannabis UsageNeil Kimberley
 
Global Scenario On Sustainable and Resilient Coconut Industry by Dr. Jelfina...
Global Scenario On Sustainable  and Resilient Coconut Industry by Dr. Jelfina...Global Scenario On Sustainable  and Resilient Coconut Industry by Dr. Jelfina...
Global Scenario On Sustainable and Resilient Coconut Industry by Dr. Jelfina...ictsugar
 
Organizational Structure Running A Successful Business
Organizational Structure Running A Successful BusinessOrganizational Structure Running A Successful Business
Organizational Structure Running A Successful BusinessSeta Wicaksana
 

Kürzlich hochgeladen (20)

FULL ENJOY Call girls in Paharganj Delhi | 8377087607
FULL ENJOY Call girls in Paharganj Delhi | 8377087607FULL ENJOY Call girls in Paharganj Delhi | 8377087607
FULL ENJOY Call girls in Paharganj Delhi | 8377087607
 
Intro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdfIntro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdf
 
Market Sizes Sample Report - 2024 Edition
Market Sizes Sample Report - 2024 EditionMarket Sizes Sample Report - 2024 Edition
Market Sizes Sample Report - 2024 Edition
 
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
 
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu MenzaYouth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
 
Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024
 
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / NcrCall Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
 
Buy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail AccountsBuy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail Accounts
 
Marketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent ChirchirMarketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent Chirchir
 
8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR
8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR
8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR
 
8447779800, Low rate Call girls in Rohini Delhi NCR
8447779800, Low rate Call girls in Rohini Delhi NCR8447779800, Low rate Call girls in Rohini Delhi NCR
8447779800, Low rate Call girls in Rohini Delhi NCR
 
8447779800, Low rate Call girls in Tughlakabad Delhi NCR
8447779800, Low rate Call girls in Tughlakabad Delhi NCR8447779800, Low rate Call girls in Tughlakabad Delhi NCR
8447779800, Low rate Call girls in Tughlakabad Delhi NCR
 
Digital Transformation in the PLM domain - distrib.pdf
Digital Transformation in the PLM domain - distrib.pdfDigital Transformation in the PLM domain - distrib.pdf
Digital Transformation in the PLM domain - distrib.pdf
 
Corporate Profile 47Billion Information Technology
Corporate Profile 47Billion Information TechnologyCorporate Profile 47Billion Information Technology
Corporate Profile 47Billion Information Technology
 
India Consumer 2024 Redacted Sample Report
India Consumer 2024 Redacted Sample ReportIndia Consumer 2024 Redacted Sample Report
India Consumer 2024 Redacted Sample Report
 
2024 Numerator Consumer Study of Cannabis Usage
2024 Numerator Consumer Study of Cannabis Usage2024 Numerator Consumer Study of Cannabis Usage
2024 Numerator Consumer Study of Cannabis Usage
 
Enjoy ➥8448380779▻ Call Girls In Sector 18 Noida Escorts Delhi NCR
Enjoy ➥8448380779▻ Call Girls In Sector 18 Noida Escorts Delhi NCREnjoy ➥8448380779▻ Call Girls In Sector 18 Noida Escorts Delhi NCR
Enjoy ➥8448380779▻ Call Girls In Sector 18 Noida Escorts Delhi NCR
 
Japan IT Week 2024 Brochure by 47Billion (English)
Japan IT Week 2024 Brochure by 47Billion (English)Japan IT Week 2024 Brochure by 47Billion (English)
Japan IT Week 2024 Brochure by 47Billion (English)
 
Global Scenario On Sustainable and Resilient Coconut Industry by Dr. Jelfina...
Global Scenario On Sustainable  and Resilient Coconut Industry by Dr. Jelfina...Global Scenario On Sustainable  and Resilient Coconut Industry by Dr. Jelfina...
Global Scenario On Sustainable and Resilient Coconut Industry by Dr. Jelfina...
 
Organizational Structure Running A Successful Business
Organizational Structure Running A Successful BusinessOrganizational Structure Running A Successful Business
Organizational Structure Running A Successful Business
 

Molecular Glues A New Dawn of Small Molecule Drugs After PROTAC.pdf

  • 1. Biopharma PEG https://www.biochempeg.com Molecular Glues: A New Dawn of Small Molecule Drugs After PROTAC Currently, targeted protein degradation (TPD) is an emerging therapeutic strategy that exerts therapeutic effects by inducing the degradation of pathogenic target proteins. TPD has attracted much attention because of its wider range of action, higher activity, targeting "non-drugable" targets, and overcoming drug resistance. Targeted protein degradation (TPD) is a promising research field, and its emergence has changed the pattern of drug development, opened up new drug targets and drug blueprints, and opened up new avenues for "Undruggable" target drug development. PROTAC and molecular glues are the two main modes of targeted protein degradation technology based on the ubiquitin-proteasome system (Figure 1). PROTAC induces target proteins to approach ubiquitin ligases by recruiting ubiquitin ligases, resulting in ubiquitination and degradation of target proteins. Molecular glues promote or induce protein-protein interaction (PPI) between E3 ubiquitin ligase and target protein by modifying the surface of ubiquitin ligase, so that the target protein is ubiquitinated and then degraded. Figure 1. Mechanism of action of molecular glue degraders
  • 2. Biopharma PEG https://www.biochempeg.com The concept of "molecular glue" first appeared in the early 1990s. The immunosuppressants cyclosporine A (CsA) and FK506 were the first examples of molecular glues. Studies have found that cyclosporine A and FK506 act in the form of molecular glues. CsA and FK506 could induce the formation of two ternary complexes of cyclophilin-CsA-calcineurin and FKBP12-FK506-calcineurin, respectively. The later immunosuppressant rapamycin can also act as a molecular glue to stabilize the FKBP12-rapamycin-FRB (mTOR) ternary complex. In 2013, researchers first elucidated the mechanism of action of thalidomide analogs as molecular glue degraders. After 2014, molecular glue degraders gradually emerged and gradually developed into the focus of researchers (Figure 2). In recent years, there has been a wave of research and development of molecular gel inhibitors in the medical circle. Figure 2. Development history of molecular glues With the "continuous warming" in the field of targeted protein degradation, molecular glue degraders have become the focus of many pharmaceutical companies around the world. A number of ubiquitin proteasome-based molecular glue degraders have achieved positive research results and have been approved for clinical studies. Thalidomide and its derivatives (lenalidomide and pomalidomide) have immunomodulatory, anti-inflammatory and anti-tumor effects and have been approved by the US FDA for the
  • 3. Biopharma PEG https://www.biochempeg.com treatment of multiple myeloma and other diseases. In the follow-up mechanism study, it was accidentally found that thalidomide and its derivatives also act as molecular glue degraders, and promote the ubiquitination and degradation of substrate proteins by inducing the PPI of CRBN and substrate proteins (IKZF1/3, etc.). Molecular glues and PROTAC Although both molecular glue and PROTAC are bifunctional protein degraders, they have different mechanisms of action and structural features (Figure 3). PROTAC is a heterobifunctional degrader that interacts with both E3 ubiquitin ligase and target protein, inducing the target protein to approach E3 ubiquitin ligase, leading to ubiquitination and degradation of the target protein. The molecular glue is a small molecule degrader, which can only interact with the ligase (more frequently) or the target protein, by inducing or stabilizing the PPI between the E3 ubiquitin ligase and the target protein to form ternary complexes that induce ubiquitination and degradation of target proteins. Figure 3. Schematic diagram of the structure of molecular glue and PROTAC In addition, the target proteins and molecular mechanisms of PROTACs are predictable and can be rationally designed according to the binding mode of ligands to target proteins.
  • 4. Biopharma PEG https://www.biochempeg.com However, the discovery of molecular glues is very accidental, and there is a lack of systematic discovery methods and reasonable design strategies. Molecular glues cannot be obtained through large-scale screening of components like PROTAC, which makes drug design based on molecular glue more difficult, so few molecular glue degraders have been discovered so far. The advantage of molecular glue is that it can degrade non-ligand-bound proteins by promoting the PPI between ubiquitin ligase and target protein, showing a therapeutic effect superior to that of small molecule drugs. However, PROTACs usually have high molecular weight (MW), poor cell permeability and pharmacokinetic (PK) characteristics, which hinder the development of PROTACs in clinical therapy. Molecular glue has lower molecular weight, higher cell permeability and better oral absorption, which conforms to the "Five Rules for Drugs" and shows better druggability (Figure 4). The molecular glue strategy provides a new research idea for drug development in the field of targeted protein degradation. Figure 4. Comparison of molecular glues and PROTACs Research and development strategy of molecular glue degraders
  • 5. Biopharma PEG https://www.biochempeg.com Molecular glue degrader is a very ideal targeted therapy drug, and its clinical effect is also very potential. However, drug discovery based on molecular glue is very contingent, which makes the development of molecular glue drugs very limited. 1. Obtained from the transformation of kinase inhibitors In 2020, Benjamin L. Ebert's research group discovered that CR8, a cyclin-dependent kinase CDK inhibitor, is a new molecular glue degrader by systematically mining the database and screening with CRISPR-Cas9 technology (Figure 5). Among them, CR8 bound to CDK can induce CDK12/cyclinK to directly form a complex with CUL4/DDB1, thereby bypassing the substrate receptor DCAFs, enabling cyclinK to be ubiquitinated and degraded by the proteasome system.
  • 6. Biopharma PEG https://www.biochempeg.com Figure 5. CR8 molecular glue degrader and bioactivity evaluation 2. Phenotype-Based Screening Strategies In 2020, Georg E. Winter's team discovered a new RBM39 molecular glue degrader-dCeMM1 (Figure 6) through phenotypic chemical screening. dCeMM1 acts by redirecting the activity of CRL4 DCAF15 ligase, ubiquitinating and degrading target proteins RBM39.
  • 7. Biopharma PEG https://www.biochempeg.com Figure 6. Discovery of RBM39 molecular glue degraders 3. The strategy of new use of old drugs The strategy of reusing old drugs is one of the important means of drug discovery. Compared with the research and development of new drugs, the new use of old drugs has the advantages of low cost and short time consumption. Thalidomide and its analogues are immunomodulatory imides approved by FDA in the United States for the treatment of multiple myeloma and other diseases (Figure 7). The researchers found in follow-up mechanism studies that these drugs are also molecular glues. They can bind to the highly conserved tri-tryptophan cavity on CRBN and form E3 ubiquitin ligase complexes with damaged DNA-binding protein-1 (DDB1) and Cul4A type E3 ubiquitin ligases, which subsequently induces ubiquitination and degradation of target proteins such as IKZF1/3, CK1α and SALL4.
  • 8. Biopharma PEG https://www.biochempeg.com Figure 7. Chemical structures of thalidomide and its derivatives Indisulam is a potential small-molecule anticancer drug developed by Eisai Pharmaceuticals. But in recent studies, Indisulam was also found to be a molecular glue (Figure 9), which can enhance the protein-protein interaction between DCAF15 and a new substrate protein (RBM39), and induce ubiquitination and degradation of the target protein RBM39. Figure 8. Chemical structure and mechanism of action of Indisulam
  • 9. Biopharma PEG https://www.biochempeg.com Conclusion Targeted protein degradation (TPD) is becoming a promising therapeutic strategy in the development of new drugs. The discovery of molecular glue-mediated proximity-induced protein degradation technology reveals new biological mechanisms and new therapeutics. At present, drug research and development based on molecular glue is still in its infancy. The discovery of molecular glue drugs is a serendipity, and there is no strategy for rationally designing molecular glue degraders. Therefore, there is an urgent need to develop some reasonable structure-based molecular glue drug discovery technologies. In conclusion, a full understanding of the molecular mechanisms, structural biological characteristics, and medicinal chemistry information of molecular glue degraders will play an increasingly important role in translating targeted protein degradation strategies into practical clinical applications. The commonly used linkers in the development of PROTACs are PEGs, Alkyl-Chain and Alkyl/ether. Biopharma PEG is a reliable PEG supplier provides multi-functionalized PEG derivatives as PROTAC linkers to customers all over the world . References: [1]. The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K. 10.1038/s41586-020-2374-x [2]. Haven’t got a glue:Protein surface variation for the design of molecular glue degraders. doi.org/10.1016/j.chembiol.2021.04.009 [3]. Molecular Glues for Targeted Protein Degradation: From Serendipity to Rational Discovery. doi.org/10.1021/acs.jmedchem.1c00895 Related articles: [1]. Four Major Trends In The Development of PROTAC
  • 10. Biopharma PEG https://www.biochempeg.com [2]. PROTAC And Other Protein Degradation Technology [3]. PROTACs VS. Tranditional Small Molecule Inhibitors [4]. PROTACs and Targeted Protein Degradation [5]. PEGylation of Small Molecule Drugs