SlideShare ist ein Scribd-Unternehmen logo
1 von 56
Downloaden Sie, um offline zu lesen
Fast ALS-Based Matrix
Factorization for
Recommender Systems
David Zibriczky
LAWA Workpackage Meeting
16th January, 2013
LAWA Workpackage Meeting
Problem setting
16th January, 20132
Item Recommendation
• Classical item recommendation problem (see Netflix)
• Explicit feedbacks (ratings)
16th January, 20133 LAWA Workpackage Meeting
5 ?
?
The Matrix The Matrix 2 Twilight The Matrix 3
?
Collaborative Filtering (Explicit)
• Classical item recommendation problem (see Netflix)
• Explicit feedbacks (ratings)
• Collaborative Filtering
• Based on other users
16th January, 20134 LAWA Workpackage Meeting
5
5
4
5
5
?
?
The Matrix 3The Matrix The Matrix 2 Twilight
5
?
Collaborative Filtering (Implicit)
• Items are not movies only (live content, products, holidays, …)
• Implicit feedbacks (buy, view, …)
• Less information about pref.
16th January, 20135 LAWA Workpackage Meeting
?
?
Item4Item1 Item2 Item3
?
Industrial motivation
• Keeping the response time low
• Up-to-date user models, the adaptation should be fast
• The items may change rapidly, the training time can be a bottleneck of
live performance
• Increasing amount of data from a customer  Increasing training time
• Limited resources
16th January, 20136 LAWA Workpackage Meeting
LAWA Workpackage Meeting
Model
16th January, 20137
Preference Matrix
• Matrix representation
• Implicit Feedbacks: Assuming
positive preference
• Value = 1
• Estimation of unknown preference?
• Sorting items by estimation  Item
Recommendation
16th January, 20138 LAWA Workpackage Meeting
R Item1 Item2 Item3 Item4
User1 1 ? ? ?
User2 ? ? 1 ?
User3 1 1 ? ?
User4 ? 1 ? 1
Matrix Factorization
𝑹 = 𝑷𝑸 𝑻
𝑟 𝑢𝑖 = 𝒑 𝑢
𝑇 𝒒𝑖
𝑹 𝑵𝒙𝑴: preference matrix
𝑷 𝑵𝒙𝑲: user feature matrix
𝑸 𝑴𝒙𝑲: item feature matrix
𝑵: #users
𝑴: #items
𝑲: #features
𝑲 ≪ 𝑴, 𝑲 ≪ 𝑵
16th January, 20139 LAWA Workpackage Meeting
R Item1 Item2 Item3 …
User1
User2 𝒓 𝑢𝑖
User3
…
P
𝒑 𝑢
𝑇
QT
𝒒𝑖
𝒑 𝒖 ≔ 𝑷 𝒖 𝑻
𝒒𝒊 ≔ 𝑸 𝒊 𝑻
LAWA Workpackage Meeting
Objective Function
16th January, 201310
Preference Matrix
16th January, 201311 LAWA Workpackage Meeting
R Item1 Item2 Item3 Item4
User1 1
User2 1
User3 1 1
User4 1 1
• Zero value for unknown preference (zero example). Many 0s, few 1s, in practice
Preference Matrix
16th January, 201312 LAWA Workpackage Meeting
R Item1 Item2 Item3 Item4
User1 1 0 0 0
User2 0 0 1 0
User3 1 1 0 0
User4 0 1 0 1
• Zero value for unknown preference (zero example). Many 0s, few 1s, in practice-
• 𝒄 𝑢𝑖 confidence for known feedback (constant or function of the context of event)
• Zero examples are less important, but important.
Confidence Matrix
16th January, 201313 LAWA Workpackage Meeting
R Item1 Item2 Item3 Item4
User1 1 0 0 0
User2 0 0 1 0
User3 1 1 0 0
User4 0 1 0 1
C Item1 Item2 Item3 Item4
User1 𝒄11 1 1 1
User2 1 1 𝒄23 1
User3 𝒄31 𝒄32 1 1
User4 1 𝒄42 1 𝒄44
• Objective function:
Weighted Sum of Squared Errors
16th January, 201314 LAWA Workpackage Meeting
C Item1 Item2 Item3 Item4
User1 𝒄11 1 1 1
User2 1 1 𝒄23 1
User3 𝒄31 𝒄32 1 1
User4 1 𝒄42 1 𝒄44
𝒇 𝑷, 𝑸 = 𝑾𝑺𝑺𝑬 =
(𝒖,𝒊)
𝒄 𝒖𝒊 𝒓 𝒖𝒊 − 𝒓 𝒖𝒊
𝟐 𝑷 = ?
𝑸 = ?
R Item1 Item2 Item3 Item4
User1 1 0 0 0
User2 0 0 1 0
User3 1 1 0 0
User4 0 1 0 1
LAWA Workpackage Meeting
Optimizer
16th January, 201315
• Ridge Regression
• 𝑝 𝑢 = 𝑄 𝑇
𝐶 𝑢
𝑄 −1
𝑄 𝑇
𝐶 𝑢
𝑅 𝑟 𝑢
• 𝑞𝑖 = 𝑃 𝑇
𝐶 𝑖
𝑃
−1
𝑃 𝑇
𝐶 𝑖
𝑅 𝑐 𝑖
Optimizer – Alternating Least Squares
16th January, 201316 LAWA Workpackage Meeting
QT
0.1 -0.4 0.8 0.6
0.6 0.7 -0.7 -0.2
P
-0.2 0.6
0.6 0.4
0.7 0.2
0.5 -0.2
R Item1 Item2 Item3 Item4
User1 1 0 0 0
User2 0 0 1 0
User3 1 1 0 0
User4 0 1 0 1
• Ridge Regression
• 𝑝 𝑢 = 𝑄 𝑇
𝐶 𝑢
𝑄 −1
𝑄 𝑇
𝐶 𝑢
𝑅 𝑟 𝑢
• 𝑞𝑖 = 𝑃 𝑇
𝐶 𝑖
𝑃
−1
𝑃 𝑇
𝐶 𝑖
𝑅 𝑐 𝑖
Optimizer – Alternating Least Squares
16th January, 201317 LAWA Workpackage Meeting
QT
0.3 -0.3 0.7 0.7
0.7 0.8 -0.5 -0.1
P
-0.2 0.6
0.6 0.4
0.7 0.2
0.5 -0.2
R Item1 Item2 Item3 Item4
User1 1 0 0 0
User2 0 0 1 0
User3 1 1 0 0
User4 0 1 0 1
• Ridge Regression
• 𝑝 𝑢 = 𝑄 𝑇
𝐶 𝑢
𝑄 −1
𝑄 𝑇
𝐶 𝑢
𝑅 𝑟 𝑢
• 𝑞𝑖 = 𝑃 𝑇
𝐶 𝑖
𝑃
−1
𝑃 𝑇
𝐶 𝑖
𝑅 𝑐 𝑖
Optimizer – Alternating Least Squares
16th January, 201318 LAWA Workpackage Meeting
QT
0.3 -0.3 0.7 0.7
0.7 0.8 -0.5 -0.1
P
-0.2 0.7
0.6 0.5
0.8 0.2
0.6 -0.2
R Item1 Item2 Item3 Item4
User1 1 0 0 0
User2 0 0 1 0
User3 1 1 0 0
User4 0 1 0 1
Optimizer – Alternating Least Squares
• Complexity of naive solution: 𝚶 𝑰𝑲 𝟐 𝑵𝑴 + 𝑰𝑲 𝟑 𝑵 + 𝑴
𝑬: number of examples, 𝑰 : number of iterations
• Improvement (Hu, Koren, Volinsky)
 Ridge Regression: 𝑝 𝑢 = 𝑄 𝑇
𝐶 𝑢
𝑄 −1
𝑄 𝑇
𝐶 𝑢
𝑅 𝑟 𝑢
 𝑄 𝑇
𝐶 𝑢
𝑄 = 𝑄 𝑇
𝑄 + 𝑄 𝑇
𝐶 𝑢
− 𝐼 𝑄 = 𝐶𝑂𝑉𝑄0 + 𝐶𝑂𝑉𝑄+, 𝚶(𝑰𝑲 𝟐
𝑵𝑴) is costly
 𝐶𝑂𝑉𝑄0 is user independent, need to be calculated at the start of the iteration
 Calculating 𝐶𝑂𝑉𝑄+ needs only #𝑷(𝒖)+
steps.
o #𝑷(𝒖)+
: number of positive examples of user u
 Complexity: 𝜪 𝑰𝑲 𝟐
𝑬 + 𝑰𝑲 𝟑
(𝑵 + 𝑴) = 𝜪 𝑰𝑲 𝟐
(𝑬 + 𝑲(𝑵 + 𝑴)
 Codename: IALS
• Complexity issues on large dataset:
 If 𝑲 is low: 𝜪(𝑰𝑲 𝟐 𝑬) is dominant
 If 𝑲 is high: 𝑶(𝑰𝑲 𝟑
(𝑵 + 𝑴)) is dominant
19 LAWA Workpackage Meeting 16th January, 2013
LAWA Workpackage Meeting
Problem: Complexity
16th January, 201320
Ridge Regression with Coordinate Descent
16th January, 201321 LAWA Workpackage Meeting
R Item1 Item2 Item3 Item4
User1 1 0 0 0
QT
0.9 -0.4 0.8 0.6
0.6 0.7 -0.7 -0.2
-0.1 -0.4 -0.1 0.6
P
? ? ?
• Initialize with zero values
Ridge Regression with Coordinate Descent
16th January, 201322 LAWA Workpackage Meeting
R Item1 Item2 Item3 Item4
User1 1 0 0 0
QT
0.9 -0.4 0.8 0.6
0.6 0.7 -0.7 -0.2
-0.1 -0.4 -0.1 0.6
P
0 0 0
Ridge Regression with Coordinate Descent
16th January, 201323 LAWA Workpackage Meeting
P
0.51 0 0
R Item1 Item2 Item3 Item4
User1 1 0 0 0
QT
0.9 -0.4 0.8 0.6
0.6 0.7 -0.7 -0.2
-0.1 -0.4 -0.1 0.6
• Target vector: 𝒆 𝒖= 𝑪 𝒖 𝒓 𝒖 − 𝒑 𝒖 𝑸 𝑻
• Optimize only one feature of 𝑝 𝑢 at once
• 𝑝 𝑢𝑘 = 𝑖=1
𝑀
𝑐 𝑢𝑖 𝑞 𝑖𝑘 𝑒 𝑢𝑖
𝑖=1
𝑀
𝑐 𝑢𝑖 𝑞 𝑖𝑘 𝑞 𝑖𝑘
=
𝑆𝑄𝐸
𝑆𝑄𝑄
• 𝑒 𝑢𝑖 = 𝑒 𝑢𝑖 − 𝑝 𝑢𝑘 𝑒 𝑢𝑖 𝑐 𝑢𝑖
• Apply more iteration
Ridge Regression with Coordinate Descent
16th January, 201324 LAWA Workpackage Meeting
P
0.51 0.10 0
R Item1 Item2 Item3 Item4
User1 1 0 0 0
QT
0.9 -0.4 0.8 0.6
0.6 0.7 -0.7 -0.2
-0.1 -0.4 -0.1 0.6
• Target vector: 𝒆 𝒖= 𝑪 𝒖 𝒓 𝒖 − 𝒑 𝒖 𝑸 𝑻
• Optimize only one feature of 𝑝 𝑢 at once
• 𝑝 𝑢𝑘 = 𝑖=1
𝑀
𝑐 𝑢𝑖 𝑞 𝑖𝑘 𝑒 𝑢𝑖
𝑖=1
𝑀
𝑐 𝑢𝑖 𝑞 𝑖𝑘 𝑞 𝑖𝑘
=
𝑆𝑄𝐸
𝑆𝑄𝑄
• 𝑒 𝑢𝑖 = 𝑒 𝑢𝑖 − 𝑝 𝑢𝑘 𝑒 𝑢𝑖 𝑐 𝑢𝑖
• Apply more iteration
Ridge Regression with Coordinate Descent
16th January, 201325 LAWA Workpackage Meeting
P
0.51 0.10 0.08
R Item1 Item2 Item3 Item4
User1 1 0 0 0
QT
0.9 -0.4 0.8 0.6
0.6 0.7 -0.7 -0.2
-0.1 -0.4 -0.1 0.6
• Target vector: 𝒆 𝒖= 𝑪 𝒖 𝒓 𝒖 − 𝒑 𝒖 𝑸 𝑻
• Optimize only one feature of 𝑝 𝑢 at once
• 𝑝 𝑢𝑘 = 𝑖=1
𝑀
𝑐 𝑢𝑖 𝑞 𝑖𝑘 𝑒 𝑢𝑖
𝑖=1
𝑀
𝑐 𝑢𝑖 𝑞 𝑖𝑘 𝑞 𝑖𝑘
=
𝑆𝑄𝐸
𝑆𝑄𝑄
• 𝑒 𝑢𝑖 = 𝑒 𝑢𝑖 − 𝑝 𝑢𝑘 𝑒 𝑢𝑖 𝑐 𝑢𝑖
• Apply more iteration
Ridge Regression with Coordinate Descent
16th January, 201326 LAWA Workpackage Meeting
P
0.47 0.10 0.08
R Item1 Item2 Item3 Item4
User1 1 0 0 0
QT
0.9 -0.4 0.8 0.6
0.6 0.7 -0.7 -0.2
-0.1 -0.4 -0.1 0.6
• Target vector: 𝒆 𝒖= 𝑪 𝒖 𝒓 𝒖 − 𝒑 𝒖 𝑸 𝑻
• Optimize only one feature of 𝑝 𝑢 at once
• 𝑝 𝑢𝑘 = 𝑖=1
𝑀
𝑐 𝑢𝑖 𝑞 𝑖𝑘 𝑒 𝑢𝑖
𝑖=1
𝑀
𝑐 𝑢𝑖 𝑞 𝑖𝑘 𝑞 𝑖𝑘
=
𝑆𝑄𝐸
𝑆𝑄𝑄
• 𝑒 𝑢𝑖 = 𝑒 𝑢𝑖 − 𝑝 𝑢𝑘 𝑒 𝑢𝑖 𝑐 𝑢𝑖
• Apply more iteration
Ridge Regression with Coordinate Descent
16th January, 201327 LAWA Workpackage Meeting
P
0.46 0.11 0.07
R Item1 Item2 Item3 Item4
User1 1 0 0 0
QT
0.9 -0.4 0.8 0.6
0.6 0.7 -0.7 -0.2
-0.1 -0.4 -0.1 0.6
• Target vector: 𝒆 𝒖= 𝑪 𝒖 𝒓 𝒖 − 𝒑 𝒖 𝑸 𝑻
• Optimize only one feature of 𝑝 𝑢 at once
• 𝑝 𝑢𝑘 = 𝑖=1
𝑀
𝑐 𝑢𝑖 𝑞 𝑖𝑘 𝑒 𝑢𝑖
𝑖=1
𝑀
𝑐 𝑢𝑖 𝑞 𝑖𝑘 𝑞 𝑖𝑘
=
𝑆𝑄𝐸
𝑆𝑄𝑄
• 𝑒 𝑢𝑖 = 𝑒 𝑢𝑖 − 𝑝 𝑢𝑘 𝑒 𝑢𝑖 𝑐 𝑢𝑖
• Apply more iteration
Optimizer – Coordinate Descent
16th January, 201328 LAWA Workpackage Meeting
QT
0.1 0.4 1.1 0.6
0.6 0.7 1.5 1.0
P
0.3 0
0 0
0 0
0 0
• Ridge Regression with Coordinate Descent
R Item1 Item2 Item3 Item4
User1 1 0 0 0
User2 0 0 1 0
User3 1 1 0 0
User4 0 1 0 1
Optimizer – Coordinate Descent
16th January, 201329 LAWA Workpackage Meeting
QT
0.1 0.4 1.1 0.6
0.6 0.7 1.5 1.0
P
0.3 -0.1
0 0
0 0
0 0
• Ridge Regression with Coordinate Descent
R Item1 Item2 Item3 Item4
User1 1 0 0 0
User2 0 0 1 0
User3 1 1 0 0
User4 0 1 0 1
Optimizer – Coordinate Descent
16th January, 201330 LAWA Workpackage Meeting
QT
0.1 0.4 1.1 0.6
0.6 0.7 1.5 1.0
P
0.3 -0.1
0.1 0
0 0
0 0
• Ridge Regression with Coordinate Descent
R Item1 Item2 Item3 Item4
User1 1 0 0 0
User2 0 0 1 0
User3 1 1 0 0
User4 0 1 0 1
Optimizer – Coordinate Descent
16th January, 201331 LAWA Workpackage Meeting
QT
0.1 0.4 1.1 0.6
0.6 0.7 1.5 1.0
P
0.3 -0.1
0.1 0.5
0 0
0 0
• Ridge Regression with Coordinate Descent
R Item1 Item2 Item3 Item4
User1 1 0 0 0
User2 0 0 1 0
User3 1 1 0 0
User4 0 1 0 1
Optimizer – Coordinate Descent
16th January, 201332 LAWA Workpackage Meeting
QT
0.1 0.4 1.1 0.6
0.6 0.7 1.5 1.0
P
0.3 -0.1
0.1 -0.5
-0.4 0.2
0.5 -0.4
• Ridge Regression with Coordinate Descent
R Item1 Item2 Item3 Item4
User1 1 0 0 0
User2 0 0 1 0
User3 1 1 0 0
User4 0 1 0 1
Optimizer – Coordinate Descent
16th January, 201333 LAWA Workpackage Meeting
QT
0.1 0 0 0
0 0 0 0
P
0.3 -0.1
0.1 -0.5
-0.4 0.2
0.5 -0.4
• Ridge Regression with Coordinate Descent
R Item1 Item2 Item3 Item4
User1 1 0 0 0
User2 0 0 1 0
User3 1 1 0 0
User4 0 1 0 1
Optimizer – Coordinate Descent
16th January, 201334 LAWA Workpackage Meeting
QT
0.1 0 0 0
0.6 0 0 0
P
0.3 -0.1
0.1 -0.5
-0.4 0.2
0.5 -0.4
• Ridge Regression with Coordinate Descent
R Item1 Item2 Item3 Item4
User1 1 0 0 0
User2 0 0 1 0
User3 1 1 0 0
User4 0 1 0 1
Optimizer – Coordinate Descent
16th January, 201335 LAWA Workpackage Meeting
QT
0.1 0.4 0 0
0.6 0 0 0
P
0.3 -0.1
0.1 -0.5
-0.4 0.2
0.5 -0.4
• Ridge Regression with Coordinate Descent
R Item1 Item2 Item3 Item4
User1 1 0 0 0
User2 0 0 1 0
User3 1 1 0 0
User4 0 1 0 1
Optimizer – Coordinate Descent
16th January, 201336 LAWA Workpackage Meeting
QT
0.1 0.4 -0.1 0.2
0.6 0.7 0.8 0.5
P
0.3 -0.1
0.1 -0.5
-0.4 0.2
0.5 -0.4
• Ridge Regression with Coordinate Descent
R Item1 Item2 Item3 Item4
User1 1 0 0 0
User2 0 0 1 0
User3 1 1 0 0
User4 0 1 0 1
Optimizer – Coordinate Descent
16th January, 201337 LAWA Workpackage Meeting
QT
0.1 0.4 -0.1 0.2
0.6 0.7 0.8 0.5
P
0.2 0
0 0
0 0
0 0
• Ridge Regression with Coordinate Descent
R Item1 Item2 Item3 Item4
User1 1 0 0 0
User2 0 0 1 0
User3 1 1 0 0
User4 0 1 0 1
Optimizer – Coordinate Descent
16th January, 201338 LAWA Workpackage Meeting
QT
0.1 0.4 -0.1 0.2
0.6 0.7 0.8 0.5
P
0.2 -0.1
0 0
0 0
0 0
• Ridge Regression with Coordinate Descent
R Item1 Item2 Item3 Item4
User1 1 0 0 0
User2 0 0 1 0
User3 1 1 0 0
User4 0 1 0 1
Optimizer – Coordinate Descent
16th January, 201339 LAWA Workpackage Meeting
QT
0.1 0.4 -0.1 0.2
0.6 0.7 0.8 0.5
P
0.2 -0.1
0.1 -0.4
-0.3 0.1
0.5 -0.6
• Ridge Regression with Coordinate Descent
R Item1 Item2 Item3 Item4
User1 1 0 0 0
User2 0 0 1 0
User3 1 1 0 0
User4 0 1 0 1
Optimizer – Coordinate Descent
• Complexity of naive solution: 𝚶 𝑰𝑲𝑵𝑴
• Ridge Regression calculates the features based on examples directly,
Covariance precomputing solution cannot be applied here.
40 LAWA Workpackage Meeting 16th January, 2013
Optimizer – Coordinate Descent Improvement
• Synthetic examples (Pilászy, Zibriczky, Tikk)
• Solution of Ridgre Regression with CD: 𝑝 𝑢𝑘 = 𝑖=1
𝑀
𝑐 𝑢𝑖 𝑞 𝑖𝑘 𝑒 𝑢𝑖
𝑖=1
𝑀
𝑐 𝑢𝑖 𝑞 𝑖𝑘 𝑞 𝑖𝑘
=
𝑆𝑄𝐸
𝑆𝑄𝑄
• Calculate statistics for this user, who watched nothing (𝑆𝐸𝑄0 and 𝑆𝑄𝑄0)
• The solution is calculated incrementally: 𝑝 𝑢𝑘 =
𝑆𝑄𝐸
𝑆𝑄𝑄
=
𝑆𝑄𝐸0+𝑆𝑄𝐸+
𝑆𝑄𝑄0+𝑆𝑄𝑄+
( 𝑴 + #𝑷(𝒖)+ steps)
• Eigenvalue decomposition: 𝑄 𝑇
𝑄 = 𝑆Λ𝑆 𝑇
= 𝑆 Λ
𝑇
Λ𝑆 = 𝐺 𝑇
𝐺
• Zero examples are compressed to synthetic examples: 𝑄 𝑀𝑥𝐾 → 𝐺 𝐾𝑥𝐾
• 𝑆𝐺𝐺0 = 𝑆𝑄𝑄0, but needs only 𝐊 steps to compute: 𝑝 𝑢𝑘 =
𝑺𝑮𝑬 𝟎+𝑆𝑄𝐸+
𝑺𝑮𝑮 𝟎+𝑆𝑄𝑄+
( 𝑲 + #𝑷(𝒖)+ steps)
• 𝑆𝐺𝐸0 is calculated the same way as 𝑆𝑄𝐸0, but using 𝐊 steps only.
• Complexity: 𝛰 𝐼𝐾(𝐸 + 𝐾𝑀 + 𝐾𝑁)) = 𝚶 𝑰𝑲(𝑬 + 𝑲(𝑴 + 𝑵)
41 LAWA Workpackage Meeting 16th January, 2013
Optimizer – Coordinate Descent
• Complexity of naive solution: 𝚶 𝑰𝑲𝑵𝑴
• Ridge Regression calculates the features based on examples directly,
Covariance precomputing solution cannot be applied here.
• Synthetic Examples
• Codename: IALS1
• Complexity reduction (IALSIALS1)
𝜪 𝑰𝑲(𝑬 + 𝑲(𝑴 + 𝑵)
• IALS1 requires higher 𝑲 for the same accuracy as IALS.
42 LAWA Workpackage Meeting 16th January, 2013
Optimizer – Coordinate Descent
...does it work in practice?
16th January, 201343 LAWA Workpackage Meeting
• Average Rank Position on the subset of a propietary implicit feedback dataset. The lower
value is better.
• IALS1 offers better time-accuracy tradeoffs, especially when K is large.
Comparison
44 LAWA Workpackage Meeting 16th January, 2013
IALS IALS1
K ARP time ARP time
5 0,1903 153 0,1898 112
10 0,1578 254 0,1588 134
20 0,1427 644 0,1432 209
50 0,1334 2862 0,1344 525
100 0,1314 11441 0,1325 1361
250 0,1311 92944 0,1312 6651
500 N/A N/A 0,1282 24697
1000 N/A N/A 0,1242 104611
0,120
0,125
0,130
0,135
0,140
0,145
0,150
0,155
100 1000 10000 100000
ARP
Training Time (s)
IALS IALS1
Conclusion
• Explicit feedbacks are rarely or not provided.
• Implicit feedbacks are more general.
• Complexity issues of Alternating Least Squares.
• Efficient solution by using approximation and synthetic examples.
• IALS1 offers better time-accuracy tradeoffs, especially when 𝑲 is large.
• IALS is approximation algorithm too, so why not change it to be even
more approximative?
45 LAWA Workpackage Meeting 16th January, 2013
LAWA Workpackage Meeting
Other algorithms
16th January, 201346
Model – Tensor Factorization
47 LAWA Workpackage Meeting 16th January, 2013
• Different preferences during the day
• Time period 1: 06:00-14:00
R1 Item1 Item2 Item3 …
User1 1 …
User2 1 …
User3 …
…. … … … …
• Different preferences during the day
• Time period 2: 14:00-22:00
Model – Tensor Factorization
48 LAWA Workpackage Meeting 16th January, 2013
R1 Item1 Item2 Item3 …
User1 1 …
User2 1 0 …
User3 …
…. … … … …
R2 Item1 Item2 Item3 …
User1 1 …
User2 1 …
User3 1 …
…. … … … …
Model – Tensor Factorization
• Different preferences during the day
• Time period 3: 22:00-06:00
49 LAWA Workpackage Meeting 16th January, 2013
R1 Item1 Item2 Item3 …
User1 1 …
User2 1 0 …
User3 …
…. … … … …
R2 Item1 Item2 Item3 …
User1 0 1 …
User2 1 …
User3 1 …
…. … … … …
R3 Item1 Item2 Item3 …
User1 1 …
User2 …
User3 1 1 …
…. … … … …
Model – Tensor Factorization
50 LAWA Workpackage Meeting 16th January, 2013
R1 Item1 Item2 Item3 …
User1 1 …
User2 1 0 …
User3 …
…. … … … …
R2 Item1 Item2 Item3 …
User1 0 1 …
User2 1 …
User3 1 …
…. … … … …
R3 Item1 Item2 Item3 …
User1 …
User2 𝒓 𝑢𝑖𝑡 …
User3 …
…. … … … …
QT
q11 q21 q31 …
q12 q22 q32 …
P
p11 p12
p21 p22
p31 p32
… …
Tt11
t12
t21
t22
t31
t32
𝑹 𝑵𝒙𝑴: preference matrix
𝑷 𝑵𝒙𝑲: user feature matrix
𝑸 𝑴𝒙𝑲: item feature matrix
𝑻 𝑳𝒙𝑲: time feature matrix
𝑵: #users
𝑴: #items
𝑳: #time periods
𝑲: #features
𝒓 𝒖𝒊t =
𝒌
𝒑 𝒖𝒌 𝒒𝒊𝒌 𝒕𝒕𝒌
𝑹 = 𝑷° 𝑸° 𝑻
• Data sets: Netflix Rating 5, IPTV Provider VOD rental, Grocery buys
• Evaluation Metric: Recall@20, Precision-Recall@20
• Number of features: 20
Comparison – ITALS vs. IALS
51 LAWA Workpackage Meeting 16th January, 2013
Test case (20) IALS ITALS
Netflix Probe 0.087 0.097
Netflix Time Split 0.054 0.071
IPTV VOD 1day 0.063 0.112
IPTV VOD 1week 0.055 0.100
Grocer 0.065 0.103
Comparison – ITALS vs. IALS
52 LAWA Workpackage Meeting 16th January, 2013
Objective Function – Ranking-based objective function
16th January, 201353 LAWA Workpackage Meeting
• Ranking-based objective function approach:
• 𝒓 𝒖𝒊 − 𝒓𝒖𝒋 : difference of preference between item i and j
• 𝒓 𝒖𝒊 − 𝒓 𝒖𝒋 : estimated difference of preference between item i and j
• 𝒔𝒋: importance of item j in objective function
• Model: Matrix Factorization
• Optimizer: Alternating Least Squares
• Name: RankALS
𝒇 𝜽 =
𝒖𝝐𝑼 𝒊𝝐𝑰
𝒄 𝒖𝒊
𝒊𝝐𝑰
𝒔𝒋[ 𝒓 𝒖𝒊 − 𝒓 𝒖𝒋 − 𝒓 𝒖𝒊 − 𝒓 𝒖𝒋 ] 𝟐
Comparison – RankIALS vs. IALS
54 LAWA Workpackage Meeting 16th January, 2013
Comparison – RankIALS vs. IALS
55 LAWA Workpackage Meeting 16th January, 2013
Related Publications
• Alternating Least Squares with Coordinate Descent
I. Pilászy, D. Zibriczky, D. Tikk. Fast ALS-based matrix factorization for explicit and
implicit feedback datasets. RecSys 2010
• Tensor Factorization
B. Hidasi, D. Tikk: Fast ALS-Based Tensor Factorization for Context-Aware
Recommendation from Implicit Feedback, ECML PKDD 2012
• Personalized Ranking
G. Takács, D. Tikk: Alternating least squares for personalized ranking, RecSys 2012
• IPTV Case Study
D. Zibriczky, B. Hidasi, Z. Petres, D. Tikk: Personalized recommendation of linear content
on interactive TV platforms: beating the cold start and noisy implicit user feedback,
TVMMP @ UMAP 2012
56 LAWA Workpackage Meeting 16th January, 2013

Weitere ähnliche Inhalte

Was ist angesagt?

Recommender systems: Content-based and collaborative filtering
Recommender systems: Content-based and collaborative filteringRecommender systems: Content-based and collaborative filtering
Recommender systems: Content-based and collaborative filteringViet-Trung TRAN
 
Recommendation system
Recommendation systemRecommendation system
Recommendation systemAkshat Thakar
 
Sentiment analysis-by-nltk
Sentiment analysis-by-nltkSentiment analysis-by-nltk
Sentiment analysis-by-nltkWei-Ting Kuo
 
Recommender system
Recommender systemRecommender system
Recommender systemSaiguru P.v
 
Recommendation system
Recommendation system Recommendation system
Recommendation system Vikrant Arya
 
Movies recommendation system in R Studio, Machine learning
Movies recommendation system in  R Studio, Machine learning Movies recommendation system in  R Studio, Machine learning
Movies recommendation system in R Studio, Machine learning Mauryasuraj98
 
[Final]collaborative filtering and recommender systems
[Final]collaborative filtering and recommender systems[Final]collaborative filtering and recommender systems
[Final]collaborative filtering and recommender systemsFalitokiniaina Rabearison
 
Recommendation System Explained
Recommendation System ExplainedRecommendation System Explained
Recommendation System ExplainedCrossing Minds
 
Music Recommendation 2018
Music Recommendation 2018Music Recommendation 2018
Music Recommendation 2018Fabien Gouyon
 
Recommendation Systems - Why How and Real Life Applications
Recommendation Systems - Why How and Real Life ApplicationsRecommendation Systems - Why How and Real Life Applications
Recommendation Systems - Why How and Real Life ApplicationsLiron Zighelnic
 
Movie recommendation project
Movie recommendation projectMovie recommendation project
Movie recommendation projectAbhishek Jaisingh
 
Sentiment Analysis
Sentiment AnalysisSentiment Analysis
Sentiment AnalysisDinesh V
 
An introduction to Recommender Systems
An introduction to Recommender SystemsAn introduction to Recommender Systems
An introduction to Recommender SystemsDavid Zibriczky
 

Was ist angesagt? (20)

Recommender systems: Content-based and collaborative filtering
Recommender systems: Content-based and collaborative filteringRecommender systems: Content-based and collaborative filtering
Recommender systems: Content-based and collaborative filtering
 
Recommender Systems
Recommender SystemsRecommender Systems
Recommender Systems
 
Recommender Systems
Recommender SystemsRecommender Systems
Recommender Systems
 
Recommendation system
Recommendation systemRecommendation system
Recommendation system
 
Sentiment analysis-by-nltk
Sentiment analysis-by-nltkSentiment analysis-by-nltk
Sentiment analysis-by-nltk
 
Recommender system
Recommender systemRecommender system
Recommender system
 
Recommendation system
Recommendation system Recommendation system
Recommendation system
 
Movies recommendation system in R Studio, Machine learning
Movies recommendation system in  R Studio, Machine learning Movies recommendation system in  R Studio, Machine learning
Movies recommendation system in R Studio, Machine learning
 
Apo core interface cif
Apo core interface cifApo core interface cif
Apo core interface cif
 
[Final]collaborative filtering and recommender systems
[Final]collaborative filtering and recommender systems[Final]collaborative filtering and recommender systems
[Final]collaborative filtering and recommender systems
 
Recommender Systems
Recommender SystemsRecommender Systems
Recommender Systems
 
Recommendation System Explained
Recommendation System ExplainedRecommendation System Explained
Recommendation System Explained
 
Music Recommendation 2018
Music Recommendation 2018Music Recommendation 2018
Music Recommendation 2018
 
Recommender system
Recommender systemRecommender system
Recommender system
 
Recommendation Systems - Why How and Real Life Applications
Recommendation Systems - Why How and Real Life ApplicationsRecommendation Systems - Why How and Real Life Applications
Recommendation Systems - Why How and Real Life Applications
 
Movie recommendation project
Movie recommendation projectMovie recommendation project
Movie recommendation project
 
Sentiment Analysis
Sentiment AnalysisSentiment Analysis
Sentiment Analysis
 
Teradata a z
Teradata a zTeradata a z
Teradata a z
 
Asug sap oct 2018
Asug sap oct 2018Asug sap oct 2018
Asug sap oct 2018
 
An introduction to Recommender Systems
An introduction to Recommender SystemsAn introduction to Recommender Systems
An introduction to Recommender Systems
 

Mehr von David Zibriczky

Highlights from the 8th ACM Conference on Recommender Systems (RecSys 2014)
Highlights from the 8th ACM Conference on Recommender Systems (RecSys 2014)Highlights from the 8th ACM Conference on Recommender Systems (RecSys 2014)
Highlights from the 8th ACM Conference on Recommender Systems (RecSys 2014)David Zibriczky
 
Predictive Solutions and Analytics for TV & Entertainment Businesses
Predictive Solutions and Analytics for TV & Entertainment BusinessesPredictive Solutions and Analytics for TV & Entertainment Businesses
Predictive Solutions and Analytics for TV & Entertainment BusinessesDavid Zibriczky
 
Improving the TV User Experience by Algorithms: Personalized Content Recommen...
Improving the TV User Experience by Algorithms: Personalized Content Recommen...Improving the TV User Experience by Algorithms: Personalized Content Recommen...
Improving the TV User Experience by Algorithms: Personalized Content Recommen...David Zibriczky
 
Recommender Systems meet Finance - A literature review
Recommender Systems meet Finance - A literature reviewRecommender Systems meet Finance - A literature review
Recommender Systems meet Finance - A literature reviewDavid Zibriczky
 
A Combination of Simple Models by Forward Predictor Selection for Job Recomme...
A Combination of Simple Models by Forward Predictor Selection for Job Recomme...A Combination of Simple Models by Forward Predictor Selection for Job Recomme...
A Combination of Simple Models by Forward Predictor Selection for Job Recomme...David Zibriczky
 
EPG content recommendation in large scale: a case study on interactive TV pla...
EPG content recommendation in large scale: a case study on interactive TV pla...EPG content recommendation in large scale: a case study on interactive TV pla...
EPG content recommendation in large scale: a case study on interactive TV pla...David Zibriczky
 
Personalized recommendation of linear content on interactive TV platforms
Personalized recommendation of linear content on interactive TV platformsPersonalized recommendation of linear content on interactive TV platforms
Personalized recommendation of linear content on interactive TV platformsDavid Zibriczky
 
Data Modeling in IPTV and OTT Recommender Systems
Data Modeling in IPTV and OTT Recommender SystemsData Modeling in IPTV and OTT Recommender Systems
Data Modeling in IPTV and OTT Recommender SystemsDavid Zibriczky
 
Entropy based asset pricing
Entropy based asset pricingEntropy based asset pricing
Entropy based asset pricingDavid Zibriczky
 

Mehr von David Zibriczky (9)

Highlights from the 8th ACM Conference on Recommender Systems (RecSys 2014)
Highlights from the 8th ACM Conference on Recommender Systems (RecSys 2014)Highlights from the 8th ACM Conference on Recommender Systems (RecSys 2014)
Highlights from the 8th ACM Conference on Recommender Systems (RecSys 2014)
 
Predictive Solutions and Analytics for TV & Entertainment Businesses
Predictive Solutions and Analytics for TV & Entertainment BusinessesPredictive Solutions and Analytics for TV & Entertainment Businesses
Predictive Solutions and Analytics for TV & Entertainment Businesses
 
Improving the TV User Experience by Algorithms: Personalized Content Recommen...
Improving the TV User Experience by Algorithms: Personalized Content Recommen...Improving the TV User Experience by Algorithms: Personalized Content Recommen...
Improving the TV User Experience by Algorithms: Personalized Content Recommen...
 
Recommender Systems meet Finance - A literature review
Recommender Systems meet Finance - A literature reviewRecommender Systems meet Finance - A literature review
Recommender Systems meet Finance - A literature review
 
A Combination of Simple Models by Forward Predictor Selection for Job Recomme...
A Combination of Simple Models by Forward Predictor Selection for Job Recomme...A Combination of Simple Models by Forward Predictor Selection for Job Recomme...
A Combination of Simple Models by Forward Predictor Selection for Job Recomme...
 
EPG content recommendation in large scale: a case study on interactive TV pla...
EPG content recommendation in large scale: a case study on interactive TV pla...EPG content recommendation in large scale: a case study on interactive TV pla...
EPG content recommendation in large scale: a case study on interactive TV pla...
 
Personalized recommendation of linear content on interactive TV platforms
Personalized recommendation of linear content on interactive TV platformsPersonalized recommendation of linear content on interactive TV platforms
Personalized recommendation of linear content on interactive TV platforms
 
Data Modeling in IPTV and OTT Recommender Systems
Data Modeling in IPTV and OTT Recommender SystemsData Modeling in IPTV and OTT Recommender Systems
Data Modeling in IPTV and OTT Recommender Systems
 
Entropy based asset pricing
Entropy based asset pricingEntropy based asset pricing
Entropy based asset pricing
 

Kürzlich hochgeladen

Genome organization in virus,bacteria and eukaryotes.pptx
Genome organization in virus,bacteria and eukaryotes.pptxGenome organization in virus,bacteria and eukaryotes.pptx
Genome organization in virus,bacteria and eukaryotes.pptxCherry
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....muralinath2
 
Use of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxUse of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxRenuJangid3
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Cherry
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .Poonam Aher Patil
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.Cherry
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspectsmuralinath2
 
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRLGwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRLkantirani197
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxMohamedFarag457087
 
FS P2 COMBO MSTA LAST PUSH past exam papers.
FS P2 COMBO MSTA LAST PUSH past exam papers.FS P2 COMBO MSTA LAST PUSH past exam papers.
FS P2 COMBO MSTA LAST PUSH past exam papers.takadzanijustinmaime
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryAlex Henderson
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professormuralinath2
 
PODOCARPUS...........................pptx
PODOCARPUS...........................pptxPODOCARPUS...........................pptx
PODOCARPUS...........................pptxCherry
 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Serviceshivanisharma5244
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.Cherry
 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Cherry
 
Plasmid: types, structure and functions.
Plasmid: types, structure and functions.Plasmid: types, structure and functions.
Plasmid: types, structure and functions.Cherry
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsSérgio Sacani
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusNazaninKarimi6
 

Kürzlich hochgeladen (20)

Genome organization in virus,bacteria and eukaryotes.pptx
Genome organization in virus,bacteria and eukaryotes.pptxGenome organization in virus,bacteria and eukaryotes.pptx
Genome organization in virus,bacteria and eukaryotes.pptx
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
 
Use of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxUse of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptx
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspects
 
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRLGwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
 
FS P2 COMBO MSTA LAST PUSH past exam papers.
FS P2 COMBO MSTA LAST PUSH past exam papers.FS P2 COMBO MSTA LAST PUSH past exam papers.
FS P2 COMBO MSTA LAST PUSH past exam papers.
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
 
PODOCARPUS...........................pptx
PODOCARPUS...........................pptxPODOCARPUS...........................pptx
PODOCARPUS...........................pptx
 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.
 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.
 
Plasmid: types, structure and functions.
Plasmid: types, structure and functions.Plasmid: types, structure and functions.
Plasmid: types, structure and functions.
 
Early Development of Mammals (Mouse and Human).pdf
Early Development of Mammals (Mouse and Human).pdfEarly Development of Mammals (Mouse and Human).pdf
Early Development of Mammals (Mouse and Human).pdf
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
 

Fast ALS-Based Matrix Factorization for Recommender Systems

  • 1. Fast ALS-Based Matrix Factorization for Recommender Systems David Zibriczky LAWA Workpackage Meeting 16th January, 2013
  • 2. LAWA Workpackage Meeting Problem setting 16th January, 20132
  • 3. Item Recommendation • Classical item recommendation problem (see Netflix) • Explicit feedbacks (ratings) 16th January, 20133 LAWA Workpackage Meeting 5 ? ? The Matrix The Matrix 2 Twilight The Matrix 3 ?
  • 4. Collaborative Filtering (Explicit) • Classical item recommendation problem (see Netflix) • Explicit feedbacks (ratings) • Collaborative Filtering • Based on other users 16th January, 20134 LAWA Workpackage Meeting 5 5 4 5 5 ? ? The Matrix 3The Matrix The Matrix 2 Twilight 5 ?
  • 5. Collaborative Filtering (Implicit) • Items are not movies only (live content, products, holidays, …) • Implicit feedbacks (buy, view, …) • Less information about pref. 16th January, 20135 LAWA Workpackage Meeting ? ? Item4Item1 Item2 Item3 ?
  • 6. Industrial motivation • Keeping the response time low • Up-to-date user models, the adaptation should be fast • The items may change rapidly, the training time can be a bottleneck of live performance • Increasing amount of data from a customer  Increasing training time • Limited resources 16th January, 20136 LAWA Workpackage Meeting
  • 8. Preference Matrix • Matrix representation • Implicit Feedbacks: Assuming positive preference • Value = 1 • Estimation of unknown preference? • Sorting items by estimation  Item Recommendation 16th January, 20138 LAWA Workpackage Meeting R Item1 Item2 Item3 Item4 User1 1 ? ? ? User2 ? ? 1 ? User3 1 1 ? ? User4 ? 1 ? 1
  • 9. Matrix Factorization 𝑹 = 𝑷𝑸 𝑻 𝑟 𝑢𝑖 = 𝒑 𝑢 𝑇 𝒒𝑖 𝑹 𝑵𝒙𝑴: preference matrix 𝑷 𝑵𝒙𝑲: user feature matrix 𝑸 𝑴𝒙𝑲: item feature matrix 𝑵: #users 𝑴: #items 𝑲: #features 𝑲 ≪ 𝑴, 𝑲 ≪ 𝑵 16th January, 20139 LAWA Workpackage Meeting R Item1 Item2 Item3 … User1 User2 𝒓 𝑢𝑖 User3 … P 𝒑 𝑢 𝑇 QT 𝒒𝑖 𝒑 𝒖 ≔ 𝑷 𝒖 𝑻 𝒒𝒊 ≔ 𝑸 𝒊 𝑻
  • 10. LAWA Workpackage Meeting Objective Function 16th January, 201310
  • 11. Preference Matrix 16th January, 201311 LAWA Workpackage Meeting R Item1 Item2 Item3 Item4 User1 1 User2 1 User3 1 1 User4 1 1
  • 12. • Zero value for unknown preference (zero example). Many 0s, few 1s, in practice Preference Matrix 16th January, 201312 LAWA Workpackage Meeting R Item1 Item2 Item3 Item4 User1 1 0 0 0 User2 0 0 1 0 User3 1 1 0 0 User4 0 1 0 1
  • 13. • Zero value for unknown preference (zero example). Many 0s, few 1s, in practice- • 𝒄 𝑢𝑖 confidence for known feedback (constant or function of the context of event) • Zero examples are less important, but important. Confidence Matrix 16th January, 201313 LAWA Workpackage Meeting R Item1 Item2 Item3 Item4 User1 1 0 0 0 User2 0 0 1 0 User3 1 1 0 0 User4 0 1 0 1 C Item1 Item2 Item3 Item4 User1 𝒄11 1 1 1 User2 1 1 𝒄23 1 User3 𝒄31 𝒄32 1 1 User4 1 𝒄42 1 𝒄44
  • 14. • Objective function: Weighted Sum of Squared Errors 16th January, 201314 LAWA Workpackage Meeting C Item1 Item2 Item3 Item4 User1 𝒄11 1 1 1 User2 1 1 𝒄23 1 User3 𝒄31 𝒄32 1 1 User4 1 𝒄42 1 𝒄44 𝒇 𝑷, 𝑸 = 𝑾𝑺𝑺𝑬 = (𝒖,𝒊) 𝒄 𝒖𝒊 𝒓 𝒖𝒊 − 𝒓 𝒖𝒊 𝟐 𝑷 = ? 𝑸 = ? R Item1 Item2 Item3 Item4 User1 1 0 0 0 User2 0 0 1 0 User3 1 1 0 0 User4 0 1 0 1
  • 16. • Ridge Regression • 𝑝 𝑢 = 𝑄 𝑇 𝐶 𝑢 𝑄 −1 𝑄 𝑇 𝐶 𝑢 𝑅 𝑟 𝑢 • 𝑞𝑖 = 𝑃 𝑇 𝐶 𝑖 𝑃 −1 𝑃 𝑇 𝐶 𝑖 𝑅 𝑐 𝑖 Optimizer – Alternating Least Squares 16th January, 201316 LAWA Workpackage Meeting QT 0.1 -0.4 0.8 0.6 0.6 0.7 -0.7 -0.2 P -0.2 0.6 0.6 0.4 0.7 0.2 0.5 -0.2 R Item1 Item2 Item3 Item4 User1 1 0 0 0 User2 0 0 1 0 User3 1 1 0 0 User4 0 1 0 1
  • 17. • Ridge Regression • 𝑝 𝑢 = 𝑄 𝑇 𝐶 𝑢 𝑄 −1 𝑄 𝑇 𝐶 𝑢 𝑅 𝑟 𝑢 • 𝑞𝑖 = 𝑃 𝑇 𝐶 𝑖 𝑃 −1 𝑃 𝑇 𝐶 𝑖 𝑅 𝑐 𝑖 Optimizer – Alternating Least Squares 16th January, 201317 LAWA Workpackage Meeting QT 0.3 -0.3 0.7 0.7 0.7 0.8 -0.5 -0.1 P -0.2 0.6 0.6 0.4 0.7 0.2 0.5 -0.2 R Item1 Item2 Item3 Item4 User1 1 0 0 0 User2 0 0 1 0 User3 1 1 0 0 User4 0 1 0 1
  • 18. • Ridge Regression • 𝑝 𝑢 = 𝑄 𝑇 𝐶 𝑢 𝑄 −1 𝑄 𝑇 𝐶 𝑢 𝑅 𝑟 𝑢 • 𝑞𝑖 = 𝑃 𝑇 𝐶 𝑖 𝑃 −1 𝑃 𝑇 𝐶 𝑖 𝑅 𝑐 𝑖 Optimizer – Alternating Least Squares 16th January, 201318 LAWA Workpackage Meeting QT 0.3 -0.3 0.7 0.7 0.7 0.8 -0.5 -0.1 P -0.2 0.7 0.6 0.5 0.8 0.2 0.6 -0.2 R Item1 Item2 Item3 Item4 User1 1 0 0 0 User2 0 0 1 0 User3 1 1 0 0 User4 0 1 0 1
  • 19. Optimizer – Alternating Least Squares • Complexity of naive solution: 𝚶 𝑰𝑲 𝟐 𝑵𝑴 + 𝑰𝑲 𝟑 𝑵 + 𝑴 𝑬: number of examples, 𝑰 : number of iterations • Improvement (Hu, Koren, Volinsky)  Ridge Regression: 𝑝 𝑢 = 𝑄 𝑇 𝐶 𝑢 𝑄 −1 𝑄 𝑇 𝐶 𝑢 𝑅 𝑟 𝑢  𝑄 𝑇 𝐶 𝑢 𝑄 = 𝑄 𝑇 𝑄 + 𝑄 𝑇 𝐶 𝑢 − 𝐼 𝑄 = 𝐶𝑂𝑉𝑄0 + 𝐶𝑂𝑉𝑄+, 𝚶(𝑰𝑲 𝟐 𝑵𝑴) is costly  𝐶𝑂𝑉𝑄0 is user independent, need to be calculated at the start of the iteration  Calculating 𝐶𝑂𝑉𝑄+ needs only #𝑷(𝒖)+ steps. o #𝑷(𝒖)+ : number of positive examples of user u  Complexity: 𝜪 𝑰𝑲 𝟐 𝑬 + 𝑰𝑲 𝟑 (𝑵 + 𝑴) = 𝜪 𝑰𝑲 𝟐 (𝑬 + 𝑲(𝑵 + 𝑴)  Codename: IALS • Complexity issues on large dataset:  If 𝑲 is low: 𝜪(𝑰𝑲 𝟐 𝑬) is dominant  If 𝑲 is high: 𝑶(𝑰𝑲 𝟑 (𝑵 + 𝑴)) is dominant 19 LAWA Workpackage Meeting 16th January, 2013
  • 20. LAWA Workpackage Meeting Problem: Complexity 16th January, 201320
  • 21. Ridge Regression with Coordinate Descent 16th January, 201321 LAWA Workpackage Meeting R Item1 Item2 Item3 Item4 User1 1 0 0 0 QT 0.9 -0.4 0.8 0.6 0.6 0.7 -0.7 -0.2 -0.1 -0.4 -0.1 0.6 P ? ? ?
  • 22. • Initialize with zero values Ridge Regression with Coordinate Descent 16th January, 201322 LAWA Workpackage Meeting R Item1 Item2 Item3 Item4 User1 1 0 0 0 QT 0.9 -0.4 0.8 0.6 0.6 0.7 -0.7 -0.2 -0.1 -0.4 -0.1 0.6 P 0 0 0
  • 23. Ridge Regression with Coordinate Descent 16th January, 201323 LAWA Workpackage Meeting P 0.51 0 0 R Item1 Item2 Item3 Item4 User1 1 0 0 0 QT 0.9 -0.4 0.8 0.6 0.6 0.7 -0.7 -0.2 -0.1 -0.4 -0.1 0.6 • Target vector: 𝒆 𝒖= 𝑪 𝒖 𝒓 𝒖 − 𝒑 𝒖 𝑸 𝑻 • Optimize only one feature of 𝑝 𝑢 at once • 𝑝 𝑢𝑘 = 𝑖=1 𝑀 𝑐 𝑢𝑖 𝑞 𝑖𝑘 𝑒 𝑢𝑖 𝑖=1 𝑀 𝑐 𝑢𝑖 𝑞 𝑖𝑘 𝑞 𝑖𝑘 = 𝑆𝑄𝐸 𝑆𝑄𝑄 • 𝑒 𝑢𝑖 = 𝑒 𝑢𝑖 − 𝑝 𝑢𝑘 𝑒 𝑢𝑖 𝑐 𝑢𝑖 • Apply more iteration
  • 24. Ridge Regression with Coordinate Descent 16th January, 201324 LAWA Workpackage Meeting P 0.51 0.10 0 R Item1 Item2 Item3 Item4 User1 1 0 0 0 QT 0.9 -0.4 0.8 0.6 0.6 0.7 -0.7 -0.2 -0.1 -0.4 -0.1 0.6 • Target vector: 𝒆 𝒖= 𝑪 𝒖 𝒓 𝒖 − 𝒑 𝒖 𝑸 𝑻 • Optimize only one feature of 𝑝 𝑢 at once • 𝑝 𝑢𝑘 = 𝑖=1 𝑀 𝑐 𝑢𝑖 𝑞 𝑖𝑘 𝑒 𝑢𝑖 𝑖=1 𝑀 𝑐 𝑢𝑖 𝑞 𝑖𝑘 𝑞 𝑖𝑘 = 𝑆𝑄𝐸 𝑆𝑄𝑄 • 𝑒 𝑢𝑖 = 𝑒 𝑢𝑖 − 𝑝 𝑢𝑘 𝑒 𝑢𝑖 𝑐 𝑢𝑖 • Apply more iteration
  • 25. Ridge Regression with Coordinate Descent 16th January, 201325 LAWA Workpackage Meeting P 0.51 0.10 0.08 R Item1 Item2 Item3 Item4 User1 1 0 0 0 QT 0.9 -0.4 0.8 0.6 0.6 0.7 -0.7 -0.2 -0.1 -0.4 -0.1 0.6 • Target vector: 𝒆 𝒖= 𝑪 𝒖 𝒓 𝒖 − 𝒑 𝒖 𝑸 𝑻 • Optimize only one feature of 𝑝 𝑢 at once • 𝑝 𝑢𝑘 = 𝑖=1 𝑀 𝑐 𝑢𝑖 𝑞 𝑖𝑘 𝑒 𝑢𝑖 𝑖=1 𝑀 𝑐 𝑢𝑖 𝑞 𝑖𝑘 𝑞 𝑖𝑘 = 𝑆𝑄𝐸 𝑆𝑄𝑄 • 𝑒 𝑢𝑖 = 𝑒 𝑢𝑖 − 𝑝 𝑢𝑘 𝑒 𝑢𝑖 𝑐 𝑢𝑖 • Apply more iteration
  • 26. Ridge Regression with Coordinate Descent 16th January, 201326 LAWA Workpackage Meeting P 0.47 0.10 0.08 R Item1 Item2 Item3 Item4 User1 1 0 0 0 QT 0.9 -0.4 0.8 0.6 0.6 0.7 -0.7 -0.2 -0.1 -0.4 -0.1 0.6 • Target vector: 𝒆 𝒖= 𝑪 𝒖 𝒓 𝒖 − 𝒑 𝒖 𝑸 𝑻 • Optimize only one feature of 𝑝 𝑢 at once • 𝑝 𝑢𝑘 = 𝑖=1 𝑀 𝑐 𝑢𝑖 𝑞 𝑖𝑘 𝑒 𝑢𝑖 𝑖=1 𝑀 𝑐 𝑢𝑖 𝑞 𝑖𝑘 𝑞 𝑖𝑘 = 𝑆𝑄𝐸 𝑆𝑄𝑄 • 𝑒 𝑢𝑖 = 𝑒 𝑢𝑖 − 𝑝 𝑢𝑘 𝑒 𝑢𝑖 𝑐 𝑢𝑖 • Apply more iteration
  • 27. Ridge Regression with Coordinate Descent 16th January, 201327 LAWA Workpackage Meeting P 0.46 0.11 0.07 R Item1 Item2 Item3 Item4 User1 1 0 0 0 QT 0.9 -0.4 0.8 0.6 0.6 0.7 -0.7 -0.2 -0.1 -0.4 -0.1 0.6 • Target vector: 𝒆 𝒖= 𝑪 𝒖 𝒓 𝒖 − 𝒑 𝒖 𝑸 𝑻 • Optimize only one feature of 𝑝 𝑢 at once • 𝑝 𝑢𝑘 = 𝑖=1 𝑀 𝑐 𝑢𝑖 𝑞 𝑖𝑘 𝑒 𝑢𝑖 𝑖=1 𝑀 𝑐 𝑢𝑖 𝑞 𝑖𝑘 𝑞 𝑖𝑘 = 𝑆𝑄𝐸 𝑆𝑄𝑄 • 𝑒 𝑢𝑖 = 𝑒 𝑢𝑖 − 𝑝 𝑢𝑘 𝑒 𝑢𝑖 𝑐 𝑢𝑖 • Apply more iteration
  • 28. Optimizer – Coordinate Descent 16th January, 201328 LAWA Workpackage Meeting QT 0.1 0.4 1.1 0.6 0.6 0.7 1.5 1.0 P 0.3 0 0 0 0 0 0 0 • Ridge Regression with Coordinate Descent R Item1 Item2 Item3 Item4 User1 1 0 0 0 User2 0 0 1 0 User3 1 1 0 0 User4 0 1 0 1
  • 29. Optimizer – Coordinate Descent 16th January, 201329 LAWA Workpackage Meeting QT 0.1 0.4 1.1 0.6 0.6 0.7 1.5 1.0 P 0.3 -0.1 0 0 0 0 0 0 • Ridge Regression with Coordinate Descent R Item1 Item2 Item3 Item4 User1 1 0 0 0 User2 0 0 1 0 User3 1 1 0 0 User4 0 1 0 1
  • 30. Optimizer – Coordinate Descent 16th January, 201330 LAWA Workpackage Meeting QT 0.1 0.4 1.1 0.6 0.6 0.7 1.5 1.0 P 0.3 -0.1 0.1 0 0 0 0 0 • Ridge Regression with Coordinate Descent R Item1 Item2 Item3 Item4 User1 1 0 0 0 User2 0 0 1 0 User3 1 1 0 0 User4 0 1 0 1
  • 31. Optimizer – Coordinate Descent 16th January, 201331 LAWA Workpackage Meeting QT 0.1 0.4 1.1 0.6 0.6 0.7 1.5 1.0 P 0.3 -0.1 0.1 0.5 0 0 0 0 • Ridge Regression with Coordinate Descent R Item1 Item2 Item3 Item4 User1 1 0 0 0 User2 0 0 1 0 User3 1 1 0 0 User4 0 1 0 1
  • 32. Optimizer – Coordinate Descent 16th January, 201332 LAWA Workpackage Meeting QT 0.1 0.4 1.1 0.6 0.6 0.7 1.5 1.0 P 0.3 -0.1 0.1 -0.5 -0.4 0.2 0.5 -0.4 • Ridge Regression with Coordinate Descent R Item1 Item2 Item3 Item4 User1 1 0 0 0 User2 0 0 1 0 User3 1 1 0 0 User4 0 1 0 1
  • 33. Optimizer – Coordinate Descent 16th January, 201333 LAWA Workpackage Meeting QT 0.1 0 0 0 0 0 0 0 P 0.3 -0.1 0.1 -0.5 -0.4 0.2 0.5 -0.4 • Ridge Regression with Coordinate Descent R Item1 Item2 Item3 Item4 User1 1 0 0 0 User2 0 0 1 0 User3 1 1 0 0 User4 0 1 0 1
  • 34. Optimizer – Coordinate Descent 16th January, 201334 LAWA Workpackage Meeting QT 0.1 0 0 0 0.6 0 0 0 P 0.3 -0.1 0.1 -0.5 -0.4 0.2 0.5 -0.4 • Ridge Regression with Coordinate Descent R Item1 Item2 Item3 Item4 User1 1 0 0 0 User2 0 0 1 0 User3 1 1 0 0 User4 0 1 0 1
  • 35. Optimizer – Coordinate Descent 16th January, 201335 LAWA Workpackage Meeting QT 0.1 0.4 0 0 0.6 0 0 0 P 0.3 -0.1 0.1 -0.5 -0.4 0.2 0.5 -0.4 • Ridge Regression with Coordinate Descent R Item1 Item2 Item3 Item4 User1 1 0 0 0 User2 0 0 1 0 User3 1 1 0 0 User4 0 1 0 1
  • 36. Optimizer – Coordinate Descent 16th January, 201336 LAWA Workpackage Meeting QT 0.1 0.4 -0.1 0.2 0.6 0.7 0.8 0.5 P 0.3 -0.1 0.1 -0.5 -0.4 0.2 0.5 -0.4 • Ridge Regression with Coordinate Descent R Item1 Item2 Item3 Item4 User1 1 0 0 0 User2 0 0 1 0 User3 1 1 0 0 User4 0 1 0 1
  • 37. Optimizer – Coordinate Descent 16th January, 201337 LAWA Workpackage Meeting QT 0.1 0.4 -0.1 0.2 0.6 0.7 0.8 0.5 P 0.2 0 0 0 0 0 0 0 • Ridge Regression with Coordinate Descent R Item1 Item2 Item3 Item4 User1 1 0 0 0 User2 0 0 1 0 User3 1 1 0 0 User4 0 1 0 1
  • 38. Optimizer – Coordinate Descent 16th January, 201338 LAWA Workpackage Meeting QT 0.1 0.4 -0.1 0.2 0.6 0.7 0.8 0.5 P 0.2 -0.1 0 0 0 0 0 0 • Ridge Regression with Coordinate Descent R Item1 Item2 Item3 Item4 User1 1 0 0 0 User2 0 0 1 0 User3 1 1 0 0 User4 0 1 0 1
  • 39. Optimizer – Coordinate Descent 16th January, 201339 LAWA Workpackage Meeting QT 0.1 0.4 -0.1 0.2 0.6 0.7 0.8 0.5 P 0.2 -0.1 0.1 -0.4 -0.3 0.1 0.5 -0.6 • Ridge Regression with Coordinate Descent R Item1 Item2 Item3 Item4 User1 1 0 0 0 User2 0 0 1 0 User3 1 1 0 0 User4 0 1 0 1
  • 40. Optimizer – Coordinate Descent • Complexity of naive solution: 𝚶 𝑰𝑲𝑵𝑴 • Ridge Regression calculates the features based on examples directly, Covariance precomputing solution cannot be applied here. 40 LAWA Workpackage Meeting 16th January, 2013
  • 41. Optimizer – Coordinate Descent Improvement • Synthetic examples (Pilászy, Zibriczky, Tikk) • Solution of Ridgre Regression with CD: 𝑝 𝑢𝑘 = 𝑖=1 𝑀 𝑐 𝑢𝑖 𝑞 𝑖𝑘 𝑒 𝑢𝑖 𝑖=1 𝑀 𝑐 𝑢𝑖 𝑞 𝑖𝑘 𝑞 𝑖𝑘 = 𝑆𝑄𝐸 𝑆𝑄𝑄 • Calculate statistics for this user, who watched nothing (𝑆𝐸𝑄0 and 𝑆𝑄𝑄0) • The solution is calculated incrementally: 𝑝 𝑢𝑘 = 𝑆𝑄𝐸 𝑆𝑄𝑄 = 𝑆𝑄𝐸0+𝑆𝑄𝐸+ 𝑆𝑄𝑄0+𝑆𝑄𝑄+ ( 𝑴 + #𝑷(𝒖)+ steps) • Eigenvalue decomposition: 𝑄 𝑇 𝑄 = 𝑆Λ𝑆 𝑇 = 𝑆 Λ 𝑇 Λ𝑆 = 𝐺 𝑇 𝐺 • Zero examples are compressed to synthetic examples: 𝑄 𝑀𝑥𝐾 → 𝐺 𝐾𝑥𝐾 • 𝑆𝐺𝐺0 = 𝑆𝑄𝑄0, but needs only 𝐊 steps to compute: 𝑝 𝑢𝑘 = 𝑺𝑮𝑬 𝟎+𝑆𝑄𝐸+ 𝑺𝑮𝑮 𝟎+𝑆𝑄𝑄+ ( 𝑲 + #𝑷(𝒖)+ steps) • 𝑆𝐺𝐸0 is calculated the same way as 𝑆𝑄𝐸0, but using 𝐊 steps only. • Complexity: 𝛰 𝐼𝐾(𝐸 + 𝐾𝑀 + 𝐾𝑁)) = 𝚶 𝑰𝑲(𝑬 + 𝑲(𝑴 + 𝑵) 41 LAWA Workpackage Meeting 16th January, 2013
  • 42. Optimizer – Coordinate Descent • Complexity of naive solution: 𝚶 𝑰𝑲𝑵𝑴 • Ridge Regression calculates the features based on examples directly, Covariance precomputing solution cannot be applied here. • Synthetic Examples • Codename: IALS1 • Complexity reduction (IALSIALS1) 𝜪 𝑰𝑲(𝑬 + 𝑲(𝑴 + 𝑵) • IALS1 requires higher 𝑲 for the same accuracy as IALS. 42 LAWA Workpackage Meeting 16th January, 2013
  • 43. Optimizer – Coordinate Descent ...does it work in practice? 16th January, 201343 LAWA Workpackage Meeting
  • 44. • Average Rank Position on the subset of a propietary implicit feedback dataset. The lower value is better. • IALS1 offers better time-accuracy tradeoffs, especially when K is large. Comparison 44 LAWA Workpackage Meeting 16th January, 2013 IALS IALS1 K ARP time ARP time 5 0,1903 153 0,1898 112 10 0,1578 254 0,1588 134 20 0,1427 644 0,1432 209 50 0,1334 2862 0,1344 525 100 0,1314 11441 0,1325 1361 250 0,1311 92944 0,1312 6651 500 N/A N/A 0,1282 24697 1000 N/A N/A 0,1242 104611 0,120 0,125 0,130 0,135 0,140 0,145 0,150 0,155 100 1000 10000 100000 ARP Training Time (s) IALS IALS1
  • 45. Conclusion • Explicit feedbacks are rarely or not provided. • Implicit feedbacks are more general. • Complexity issues of Alternating Least Squares. • Efficient solution by using approximation and synthetic examples. • IALS1 offers better time-accuracy tradeoffs, especially when 𝑲 is large. • IALS is approximation algorithm too, so why not change it to be even more approximative? 45 LAWA Workpackage Meeting 16th January, 2013
  • 46. LAWA Workpackage Meeting Other algorithms 16th January, 201346
  • 47. Model – Tensor Factorization 47 LAWA Workpackage Meeting 16th January, 2013 • Different preferences during the day • Time period 1: 06:00-14:00 R1 Item1 Item2 Item3 … User1 1 … User2 1 … User3 … …. … … … …
  • 48. • Different preferences during the day • Time period 2: 14:00-22:00 Model – Tensor Factorization 48 LAWA Workpackage Meeting 16th January, 2013 R1 Item1 Item2 Item3 … User1 1 … User2 1 0 … User3 … …. … … … … R2 Item1 Item2 Item3 … User1 1 … User2 1 … User3 1 … …. … … … …
  • 49. Model – Tensor Factorization • Different preferences during the day • Time period 3: 22:00-06:00 49 LAWA Workpackage Meeting 16th January, 2013 R1 Item1 Item2 Item3 … User1 1 … User2 1 0 … User3 … …. … … … … R2 Item1 Item2 Item3 … User1 0 1 … User2 1 … User3 1 … …. … … … … R3 Item1 Item2 Item3 … User1 1 … User2 … User3 1 1 … …. … … … …
  • 50. Model – Tensor Factorization 50 LAWA Workpackage Meeting 16th January, 2013 R1 Item1 Item2 Item3 … User1 1 … User2 1 0 … User3 … …. … … … … R2 Item1 Item2 Item3 … User1 0 1 … User2 1 … User3 1 … …. … … … … R3 Item1 Item2 Item3 … User1 … User2 𝒓 𝑢𝑖𝑡 … User3 … …. … … … … QT q11 q21 q31 … q12 q22 q32 … P p11 p12 p21 p22 p31 p32 … … Tt11 t12 t21 t22 t31 t32 𝑹 𝑵𝒙𝑴: preference matrix 𝑷 𝑵𝒙𝑲: user feature matrix 𝑸 𝑴𝒙𝑲: item feature matrix 𝑻 𝑳𝒙𝑲: time feature matrix 𝑵: #users 𝑴: #items 𝑳: #time periods 𝑲: #features 𝒓 𝒖𝒊t = 𝒌 𝒑 𝒖𝒌 𝒒𝒊𝒌 𝒕𝒕𝒌 𝑹 = 𝑷° 𝑸° 𝑻
  • 51. • Data sets: Netflix Rating 5, IPTV Provider VOD rental, Grocery buys • Evaluation Metric: Recall@20, Precision-Recall@20 • Number of features: 20 Comparison – ITALS vs. IALS 51 LAWA Workpackage Meeting 16th January, 2013 Test case (20) IALS ITALS Netflix Probe 0.087 0.097 Netflix Time Split 0.054 0.071 IPTV VOD 1day 0.063 0.112 IPTV VOD 1week 0.055 0.100 Grocer 0.065 0.103
  • 52. Comparison – ITALS vs. IALS 52 LAWA Workpackage Meeting 16th January, 2013
  • 53. Objective Function – Ranking-based objective function 16th January, 201353 LAWA Workpackage Meeting • Ranking-based objective function approach: • 𝒓 𝒖𝒊 − 𝒓𝒖𝒋 : difference of preference between item i and j • 𝒓 𝒖𝒊 − 𝒓 𝒖𝒋 : estimated difference of preference between item i and j • 𝒔𝒋: importance of item j in objective function • Model: Matrix Factorization • Optimizer: Alternating Least Squares • Name: RankALS 𝒇 𝜽 = 𝒖𝝐𝑼 𝒊𝝐𝑰 𝒄 𝒖𝒊 𝒊𝝐𝑰 𝒔𝒋[ 𝒓 𝒖𝒊 − 𝒓 𝒖𝒋 − 𝒓 𝒖𝒊 − 𝒓 𝒖𝒋 ] 𝟐
  • 54. Comparison – RankIALS vs. IALS 54 LAWA Workpackage Meeting 16th January, 2013
  • 55. Comparison – RankIALS vs. IALS 55 LAWA Workpackage Meeting 16th January, 2013
  • 56. Related Publications • Alternating Least Squares with Coordinate Descent I. Pilászy, D. Zibriczky, D. Tikk. Fast ALS-based matrix factorization for explicit and implicit feedback datasets. RecSys 2010 • Tensor Factorization B. Hidasi, D. Tikk: Fast ALS-Based Tensor Factorization for Context-Aware Recommendation from Implicit Feedback, ECML PKDD 2012 • Personalized Ranking G. Takács, D. Tikk: Alternating least squares for personalized ranking, RecSys 2012 • IPTV Case Study D. Zibriczky, B. Hidasi, Z. Petres, D. Tikk: Personalized recommendation of linear content on interactive TV platforms: beating the cold start and noisy implicit user feedback, TVMMP @ UMAP 2012 56 LAWA Workpackage Meeting 16th January, 2013