SlideShare ist ein Scribd-Unternehmen logo
1 von 65
Downloaden Sie, um offline zu lesen
Eco-hydrological modeling
in a mountain laboratory:
the LTSER site Matsch/Mazia
Bertoldi	
  G.,	
  Cordano	
  E.,	
  Brenner	
  J.,	
  Notarnicola.	
  C.,	
  
Niedrist	
  G.,	
  Tappeiner	
  U.	
  
Workshop	
  on	
  coupled	
  hydrological	
  modeling,	
  	
  
23-­‐24	
  September	
  2015,	
  	
  
University	
  of	
  Padova,	
  Italy.	
  
Outline	
  
Overview	
  of	
  the	
  research	
  area	
  and	
  of	
  the	
  collected	
  data	
  	
  
	
  
Modelling	
  approach:	
  	
  	
  the	
  GEOtop	
  2	
  -­‐	
  DV	
  model.	
  
	
  
Applica=ons	
  :	
  
	
  1.	
  Plot	
  scale	
  experiment	
  
	
  Modelling	
  snow,	
  soil	
  moisture,	
  ET,	
  biomass	
  	
  along	
  an	
  elevaOon	
  gradient.	
  
	
  	
  
	
  2.	
  Catchment	
  scale	
  applica=on	
  
	
  Modelling	
  impacts	
  of	
  climate	
  change	
  on	
  snow,	
  evapotranspiraOon	
  and	
  soil	
  
moisture	
  spaOal	
  paPerns.	
  	
  
	
  	
  
	
  3.	
  Comparison	
  with	
  remote	
  sensing	
  data	
  	
  
	
  EsOmaOon	
  of	
  soil	
  moisture	
  paPerns	
  by	
  means	
  of	
  SAR	
  images.	
  
	
  	
  
Discussion:	
  	
  	
  Limita=ons	
  and	
  uncertain=es	
  of	
  the	
  results.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Opportuni=es	
  hydrological	
  modelling	
  in	
  mountain	
  areas.	
  
Matsch/Mazia,	
  Vinschgau,	
  South	
  Tyrol,	
  Italy	
  
3	
  
Area:	
  ca.	
  100	
  km2.	
  	
  	
  	
  
AlOtudinal	
  range:	
  
920–	
  3738	
  m	
  a.s.l.	
  
	
  Mean	
  annual	
  
precipitaOon	
  
(Mazia,	
  1580	
  m	
  
a.s.l.):	
  525	
  mm	
  
Matsch	
  |	
  Mazia	
  
A	
  dry	
  inneralpine	
  valley	
  
	
  
4	
  
low	
  precipitaOon	
  
human	
  land-­‐use	
  
closed	
  catchment	
  	
  	
  
alOtudinal	
  transect	
  
Eco	
  hydrological	
  monitoring	
  since	
  2009,	
  LTSER	
  since	
  2015	
  
Research	
  topics	
  
5	
  
climate change & elevation
evapotranspiration
soil moisture dynamics
water and runoff
agriculture productivity
land use change ecosystem services
biodiversity
snow and ice
grasslands and forest ecosystems
Alps	
  
Ecosystem	
  
Plot	
  
Global	
  
Future	
  History	
   Present	
  
Region	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5	
  research	
  sites	
  
4.	
  Saldur/Saldura	
  river	
  
3.	
  Saldur/Saldura	
  
catchment	
  network	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5.	
  Glacierforefield	
  of	
  
Weisskugel/Palla	
  Bianca	
  
1.	
  Muntatschinig/	
  
Monteschino	
  	
  
In	
  collabora=on	
  with:	
  	
  
University of Bolzano	
  
Hydrographic	
  Office	
  (Province	
  BZ)	
  
Biological	
  Laboratory	
  (Province	
  BZ)	
  
Chemical	
  Laboratory	
  (Province	
  BZ)	
  	
  
In	
  collabora=on	
  with:	
  	
  
Hydrographic	
  Office	
  (Province	
  BZ)	
  
University	
  of	
  Bolzano	
  
University	
  of	
  Padova	
  
University of Innsbruck (AT)	
  
In	
  collabora=on	
  with:	
  	
  
University	
  of	
  Innsbruck	
  (AT)	
  
BoKu	
  Vienna	
  (AT)	
  
Duke	
  University	
  (USA)	
  
In	
  collabora=on	
  with:	
  	
  
University of Innsbruck (AT)
Forest	
  department	
  (Province	
  BZ)	
  	
  
LTER	
  Matsch/Mazia:	
  Major	
  research	
  sites	
  
2.	
  Al=tudinal	
  
transect	
  of	
  
Matsch/Mazia	
  
In	
  collabora=on	
  with:	
  	
  
University	
  of	
  Innsbruck	
  (AT)	
  
IRSTEA	
  Grenoble	
  (FR)	
  
2000m	
  
1500m	
  
1000m	
  
ΔT~	
  3.5K	
  
ΔT~	
  3.5K	
  
T	
  
P	
  
Matsch	
  |	
  Mazia	
  7	
  
-20 permanent micro-climate. stations, soil
moisture.
-2 eddy covariance stations.
-3 gauge level/temp. measure points.
-5 SAP flow measurements points.
-5 weighting lysimeters
Site	
  infrastructure	
  
Micro-­‐climate	
  staOons	
  
Data	
  recorded	
  intervalic	
  
8	
  
Soil determinations
and analyses
Water quality
analyses
Vegetation
transplantation
experiments
Vegetation
surveys and
biomass
estimation
Diversity
analyses
Mapping	
  and	
  spaOal	
  data	
  
Mapping of soil moisture: ground
spatial campaigns, remote
sensing (SAR, thermal, UAV).
Mapping of vegetation/landuse:
current and hystorical changes.
Mapping of soil type / properties.
ApplicaOon	
  1:	
  modelling	
  along	
  an	
  elevaOon	
  gradient	
  
Mo=va=on	
  
	
  
•  Mountains	
  Region	
  are	
  considered	
  parOcularly	
  vulnerable	
  to	
  CC	
  1,	
  	
  
	
  	
  	
  esp.	
  considering	
  the	
  alteraOons	
  of	
  the	
  water	
  cycle	
  2	
  
	
  
•  In	
  dry	
  	
  inner-­‐alpine	
  regions,	
  managed	
  grasslands	
  are	
  irrigated.	
  
Climate	
  change	
  raises	
  issues	
  about	
  future	
  water	
  availability.	
  
	
  
Which	
  are	
  the	
  effects	
  of	
  the	
  eleva=on	
  gradient	
  on	
  water	
  budget?	
  
(SWE,	
  SWC,	
  ET)	
  and	
  grassland	
  produc=vity	
  ?	
  
	
  
	
  
Della	
  Chiesa	
  et	
  al.,	
  Modeling	
  changes	
  in	
  grassland	
  	
  hydrological	
  cycling	
  	
  
along	
  an	
  eleva6onal	
  gradient	
  in	
  the	
  Alps,	
  
Ecohydrology,	
  2014	
  
	
  
	
   	
  	
  
	
  
.	
  
1	
  Bruneb	
  et	
  al.	
  (2006).	
  Temperature	
  and	
  precipitaOon	
  variability	
  in	
  Italy	
  in	
  the	
  last	
  two	
  centuries	
  from	
  homogenised	
  instrumental	
  Ome	
  series.	
  
	
  	
  InternaOonal	
  Journal	
  of	
  Climatology,	
  26(3),	
  345–381.	
  	
  
2	
  Bates	
  et	
  al.	
  (2008).	
  Climate	
  Change	
  and	
  water.	
  IPCC	
  Technical	
  Paper	
  VI	
  (p.	
  214).	
  Geneva,	
  Switzerland:	
  IPCC	
  Secretariat.	
  Retrieved	
  from	
  hPp://www.ipcc.ch	
  
	
  
	
  
	
  
An	
  experimental	
  elevaOon	
  transect	
  
Eleva=on	
  as	
  a	
  proxy	
  of	
  climate	
  change	
  
Sta=on	
  	
  
B2000	
  m	
  
Hs,	
  SWC,	
  	
  
Biomass,	
  GAI	
  
Sta=on	
  
B1500	
  m	
  
Hs,	
  SWC,	
  	
  
Biomass,	
  GAI,ET	
  
Sta=on	
  
B1000	
  m	
  
Hs,	
  SWC,	
  	
  
Biomass,	
  GAI	
  
ΔT~	
  3.5K	
  
ΔT~	
  3.5K	
  
The	
  GEOtop	
  2.0	
  	
  –	
  DV	
  	
  model	
  
€
LWa tm
↓
V
€
D0V
€
I
€
LWs ur r
↓
1−V( )
€
SWs ur r
↓
1−V( )
€
εsσTs
4
Shortwave
radiatio n(yell ow)
Lo ngwave radiatio n
(red )
€
SW r ef l
Complex	
  topography	
  
Bertoldi	
  et	
  al.,	
  J	
  of	
  Hydromet,	
  2006.	
  
s	
  
Snow	
  module	
  
Endrizzi	
  et	
  al.,	
  GMDD,	
  2014	
  
Zanob	
  et	
  al.,	
  Hydrol	
  Proc,	
  2004	
  
Water	
  budget	
  
Rigon	
  et	
  al.,	
  J	
  of	
  Hydromet,	
  2006.	
  
Figures	
  adapted	
  from	
  	
  VIC	
  model	
  (Liang	
  et	
  al.,	
  1994)	
  
Energy	
  budget	
  
Bertoldi	
  al.,	
  Ecohydrol,	
  2010.	
  
Vegeta=on	
  dynamics	
  
Della	
  Chiesa	
  et	
  al.,	
  Ecohydrol.,	
  2014	
  
	
  From	
  SHE	
  model	
  (Abbot	
  et	
  al.,	
  1986)	
  
TRIBS-­‐VEGGIE	
  FaOchi	
  et	
  al.,	
  2012	
  
Montaldo	
  et	
  al.,	
  2005	
  
Eagleson,	
  2002	
  
	
  
Alpine3D,	
  Lenhing	
  et	
  al.,	
  2006	
  
CROCUS,	
  Brun	
  et	
  al.,	
  1992	
  
SNTHERM,	
  Jordan,	
  1991	
  
	
  
CLM,	
  Dai	
  et	
  al.,	
  2003	
  
SEWAB,	
  Megelkamp	
  et	
  al.,	
  1999	
  
Noah	
  LSM,	
  Chen	
  et	
  al.,	
  1996,	
  
LSM,	
  Bonan,	
  1996	
  
BATS,	
  Dickinson	
  et	
  al.,	
  1986,	
  
	
  
Corripio,	
  2010.	
  
Erbs	
  et	
  al.,	
  1983.	
  
Iqbal,	
  1981.	
  
	
  
tRIBS,	
  Ivanov	
  et	
  al,	
  2004	
  
Cailow,	
  Zehe	
  et	
  al.,	
  2001	
  
InHM,	
  VanderKwaak,	
  and	
  Loague,	
  2001	
  
WaSim-­‐ETH,	
  Shulla	
  1997	
  
Hydrogeosphere,	
  Therrien	
  and	
  Sudicki,	
  1996	
  
Parflow,	
  Asby	
  an	
  Falgout,	
  1996	
  
Cathy,	
  Paniconi	
  and	
  Pub,	
  1994	
  
DHSVM,	
  Wigmosta	
  et	
  al.,	
  1994	
  
SHE,	
  Abbot	
  et	
  al.	
  1986	
  
Freeze	
  and	
  Harlan,	
  1969	
  
	
  
Coupling	
  GEOtop	
  2.0	
  	
  with	
  a	
  DV	
  	
  model	
  
Rigon	
  et	
  al.,	
  JHM,	
  2006;	
  	
  
Endrizzi	
  et	
  al.	
  GMDD,	
  2014.	
  
Processes	
  
Dynamic vegetation
model (for grasslands)	
  
From	
  Montaldo	
  et	
  al.,	
  	
  2005;	
  
Della	
  Chiesa	
  et	
  al.,	
  2014	
  
ElevaOon	
  gradient:	
  validaOon	
  
MulOple	
  variables	
  validaOon:	
  SWE,	
  SWC,	
  above	
  ground	
  biomass	
  (Bag),	
  ET	
  
Two	
  years	
  of	
  data:	
  calibra=on	
  in	
  B1500,	
  valida=on	
  in	
  B1000,	
  B2000	
  
B2000	
  m	
  B1500	
  m	
  B1000	
  m	
  
Snow	
  Height	
  [cm]	
   SWC	
  5cm	
  []	
   ET	
  [mm]	
  
Not	
  Measured	
  
Not	
  Measured	
  
r2=0.66	
  
RMSE=7.1	
  
r2=0.57	
  
RMSE=5.9	
  
r2=0.55	
  
RMSE=2.9	
  
r2=0.80	
  
r2=0.78	
  
r2=0.82	
  
Bag	
  [gDMm-­‐2]	
  
RMSE=0.04	
  
RMSE=0.05	
  
RMSE=0.04	
  
r2=0.93	
  
RMSE=58.39	
  
Simula=on	
  extension	
  to	
  20	
  year	
  	
  
Coupling	
  snow	
  –	
  veg	
  –	
  ET	
  -­‐	
  SWC	
   Water	
  limitaOon	
  below	
  1500	
  m	
  
SWC	
  along	
  the	
  year	
  
SWC	
  []	
  
2000	
  m	
  1500	
  m	
  1000	
  m	
  
SWC	
  along	
  the	
  year	
  
Water	
  source	
  
Water	
  sink	
  
CriOcal	
  elevaOon	
  
ElevaOon	
  gradient:	
  soil	
  moisture	
  and	
  ET	
  
ElevaOon	
  gradient:	
  implicaOons	
  at	
  catchment	
  scale	
  
It	
  exists	
  a	
  cri=cal	
  eleva=on	
  below	
  which	
  most	
  of	
  the	
  precipitaOon	
  is	
  used	
  for	
  ET.	
  
Will	
  climate	
  change	
  move	
  this	
  cri=cal	
  eleva=on	
  upward?	
  	
  	
  	
  
2000	
  m	
  1500	
  m	
  1000	
  m	
  
SWC	
  along	
  the	
  year	
  
ApplicaOon	
  2:	
  modelling	
  impacts	
  of	
  CC	
  in	
  	
  Venosta	
  	
  
Downscaling	
  of	
  RCMs	
  
to	
  	
  Venosta	
  Valley	
  	
  
Mapping	
  cri=cal	
  varia=ons	
  in	
  
water	
  budget	
  (ET,	
  	
  SMC,	
  snow)	
  
Hydrological	
  
experiment	
  along	
  an	
  
elevaOon	
  gradient	
  as	
  
proxy	
  of	
  CC	
  
(Mazia,	
  Venosta)	
  
ApplicaOon	
  2:	
  impacts	
  of	
  CC	
  on	
  sinw	
  ET	
  and	
  SWC	
  
Research	
  ques=ons	
  
	
  
	
  
Which	
  are	
  the	
  major	
  impacts	
  of	
  CC	
  on	
  snow,	
  evapotranspira=on,	
  	
  
soil	
  moisture	
  in	
  a	
  dry	
  alpine	
  valley?	
  
	
  
How	
  to	
  iden=fy	
  the	
  most	
  vulnerable	
  areas	
  in	
  terms	
  of	
  	
  
topography/land	
  cover?	
  
	
  
Which	
  are	
  the	
  major	
  uncertain=es?	
  	
  
	
  
Main	
  issues	
  
	
  
Complex	
  topography	
  à	
  scale	
  vs.	
  computa=onal	
  effort	
  
	
  
Model	
  parameteriza=on,	
  boundary	
  condi=ons	
  
	
  
Brenner.,	
  Modeling	
  impacts	
  of	
  climate	
  change	
  on	
  evapotranspira6on	
  	
  
and	
  soil	
  moisture	
  spa6al	
  paTerns	
  in	
  an	
  alpine	
  catchment,	
  Thesis,	
  2014.	
  
	
  
	
   	
  	
  
	
  
.	
  
 	
   ApplicaOon	
  2:	
  Study	
  Area	
  
Venosta	
  Valley,	
  Upper	
  Adige	
  River	
  1000	
  km2	
  
 	
  
•  RCM	
  ensemble	
  based	
  on	
  SRES	
  A1B	
  (ESEMBLES	
  
project)1	
  
•  Ctrl:	
  1990-­‐2010,	
  Scen2100:	
  2080-­‐2100	
  
•  ∆	
  approach	
  (30	
  day	
  moving	
  average)	
  	
  
•  ∆	
  change	
  signals	
  at	
  daily	
  scale	
  for	
  air	
  temperature	
  
and	
  precipitaOon	
  
Downscaling	
  
Technique	
  
TopoSUB	
  
Tool	
  
GEOtop	
  
Model	
  
Simula=on	
  
set-­‐up	
  
1	
  Van	
  der	
  Linden,	
  P.,	
  &	
  Mitchell,	
  J.	
  (2009).	
  ENSEMBLES:	
  Climate	
  change	
  and	
  its	
  impacts	
  at	
  seasonal,	
  decadal	
  and	
  centennial	
  6mescales	
  (p.	
  160).	
  Exeter,	
  UK.	
  
	
   	
  Retrieved	
  from	
  hPp://ensembles-­‐eu.metoffice.com/docs/Ensembles_final_report_Nov09.pdf	
  	
  
	
  
ApplicaOon	
  2:	
  Methods	
  
 	
  
Downscale	
  
Technique	
  
TopoSUB	
  
Tool	
  
GEOtop	
  
Model	
  
Simula=on	
  
set-­‐up	
  
1	
  Fiddes,	
  J.,	
  &	
  Gruber,	
  S.	
  (2012).	
  TopoSUB:	
  a	
  tool	
  for	
  efficient	
  large	
  area	
  numerical	
  modelling	
  in	
  complex	
  topography	
  at	
  sub-­‐grid	
  scales.	
  
	
  	
  Geoscien6fic	
  Model	
  Development	
  Discussions,	
  5(5),	
  1245–1257.	
  	
  
2	
  HarOgan,	
  J.	
  A.,	
  &	
  Wong,	
  M.	
  A.	
  (1979).	
  A	
  K-­‐Means	
  Clustering	
  Algorithm.	
  Journal	
  of	
  the	
  Royal	
  Sta6s6cal	
  Society.	
  Series	
  C	
  (Applied	
  Sta6s6cs),	
  28(1),	
  100–108.	
  
	
  
Clustering	
  
• sampling	
  of	
  most	
  important	
  aspects	
  of	
  land	
  surface	
  
heterogeneiOes	
  and	
  land	
  cover	
  
• K-­‐Means	
  clustering	
  algorithm	
  2	
  
• based	
  on	
  20m	
  grids	
  
GEOtop	
  
• 1-­‐dimensional	
  simulaOons	
  for	
  cluster	
  centroids	
  
Mapping	
  
• Crisp	
  memberships	
  
ApplicaOon	
  2:	
  Methods	
  
 	
  
Downscale	
  
Technique	
  
TopoSUB	
  
Tool	
  
GEOtop	
  
Model	
  
Simula=on	
  
set-­‐up	
  
•  GEOtop	
  model	
  
•  DistribuOng	
  meteorological	
  input	
  
•  Energy	
  and	
  mass	
  conservaOon	
  
•  Soil	
  volumetric	
  water	
  content	
  
•  Actual	
  evapotranspiraOon	
  
•  Snow	
  accumulaOon	
  &	
  melt	
  
	
  
•  ApplicaOon	
  in	
  mountain	
  areas	
  
1	
  Rigon	
  et	
  al.	
  (2006).	
  GEOtop:	
  A	
  Distributed	
  Hydrological	
  Model	
  with	
  Coupled	
  Water	
  and	
  Energy	
  Budgets.	
  Journal	
  of	
  Hydrometeorology,	
  7(3),	
  371–388.	
  
2	
  Endrizzi	
  et	
  al.	
  (2014).	
  GEOtop	
  2.0:	
  simulaOng	
  the	
  combined	
  energy	
  and	
  water	
  balance	
  at	
  and	
  below	
  the	
  land	
  surface	
  accounOng	
  for	
  soil	
  freezing,	
  
	
   	
  snow	
  cover	
  and	
  terrain	
  effects.	
  Geoscien6fic	
  Model	
  Development	
  6(4),	
  6279–6341.	
  
	
  
ApplicaOon	
  2:	
  Methods	
  
 	
  
Downscale	
  
Technique	
  
TopoSUB	
  
Tool	
  
GEOtop	
  
Model	
  
Simula=on	
  
set-­‐up	
  
•  SimulaOon	
  calibraOon/performance	
  
•  	
  2010/2011	
  (AlOtudinal	
  Transect)	
  
•  MulOple	
  Point	
  SimulaOon	
  (300	
  cluster	
  centroids)	
  
•  baseline	
  simulaOon	
  1990-­‐2010	
  
•  7	
  scenario	
  simulaOon	
  2080-­‐2100	
  
ApplicaOon	
  2:	
  Methods	
  
 	
  
scen2100	
   DJF	
   MAM	
   JJA	
   SON	
  
∆P	
  (%)	
   +14	
   +1.7	
   -­‐13	
   +16	
  
∆T	
  (°C)	
   +3.1	
   +3.3	
   +4.2	
   +3.2	
  
ApplicaOon	
  2:	
  Results	
  
Climate	
  Change	
  Projec=ons	
  for	
  the	
  Venosta	
  Valley	
  
 	
  
	
  	
  	
  	
  Baseline	
  SimulaOon 	
   	
   	
  	
  	
  	
  	
  	
  ∆%	
  (scen2100-­‐ctrl)	
  
ApplicaOon	
  2:	
  Results	
  
Climate	
  Change	
  Impact	
  –	
  Snow	
  Cover	
  Dura=on	
  
 	
  
	
  	
  	
  	
  Baseline	
  SimulaOon 	
   	
   	
  	
  	
  	
  	
  	
  ∆abs	
  (scen2100-­‐ctrl)	
  
ApplicaOon	
  2:	
  Results	
  
Climate	
  Change	
  Impact	
  –	
  Actual	
  Evapotranspira=on	
  
 	
  
	
  	
  	
  	
   	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  ∆abs	
  (scen2100-­‐ctrl)	
  
Change	
  in	
  Mean	
  Annual	
  ETA	
  (mm)	
  
Aspect	
  
Forest:	
  South-­‐east	
  
Major	
  impact	
  
Pasture:	
  East	
  
Bare	
  Soil:	
  South-­‐east	
  
Grassland	
  &	
  Agriculture:	
  
No	
  effect	
  of	
  aspect	
  
ApplicaOon	
  2:	
  Results	
  
Climate	
  Change	
  Impact	
  –	
  Actual	
  Evapotranspira=on	
  
 	
   ApplicaOon	
  2:	
  Results	
  
Climate	
  Change	
  Impact	
  –	
  Actual	
  Evapotranspira=on	
  
4	
  	
  	
  14	
  
+	
  250%	
  
	
  48	
  	
  	
  	
  	
  69	
  
+	
  43%	
  
131	
  	
  	
  	
  	
  149	
  
+	
  12%	
  
53	
  	
  	
  62	
  
+	
  17%	
  
 	
   ApplicaOon	
  2:	
  Results	
  
Climate	
  Change	
  Impact	
  –	
  Soil	
  Mositure–	
  Severe	
  Water	
  Stress	
  
CriOcal	
  soil	
  moisture	
  level	
  is	
  refered	
  to	
  plant	
  available	
  water	
  
1
1	
  Jasper	
  et	
  al.	
  (2006).	
  Changes	
  in	
  summerOme	
  soil	
  water	
  paPerns	
  in	
  complex	
  terrain	
  due	
  to	
  climaOc	
  change.	
  Journal	
  of	
  Hydrology,	
  327(3-­‐4),	
  550–563.	
  	
  	
  
	
  
 	
   ApplicaOon	
  2:	
  Results	
  
Climate	
  Change	
  Impact	
  –	
  Soil	
  Water	
  Content	
  –	
  Severe	
  Water	
  Stress	
  
 	
   ApplicaOon	
  2:	
  Conclusions	
  
Conclusions	
  
	
  
•  General	
  decrease	
  in	
  snow	
  cover	
  duraOon	
  (max	
  9	
  weeks),	
  
which	
  drives	
  major	
  increase	
  in	
  evapotranspira=on	
  in	
  winter	
  
and	
  spring	
  (+25%).	
  
•  LiPle	
  decrease	
  of	
  catchment-­‐averaged	
  soil	
  moisture	
  (except	
  
for	
  some	
  rainfall	
  scenarios).	
  
•  Specific	
  sites,	
  which	
  are	
  already	
  characterized	
  by	
  water	
  stress,	
  
show	
  an	
  increase	
  in	
  drought	
  days	
  (esp.	
  pastures	
  and	
  forests	
  ~	
  
1500	
  m	
  a.s.l.).	
  
 	
   Major	
  uncertainOes	
  and	
  perspecOves	
  
Clima=c	
  scenarios	
  
	
  
•  Temperature	
  -­‐>	
  Depends	
  on	
  concentraOon	
  scenarios	
  (IPPC,	
  2013)*	
  
•  PrecipitaOon	
  -­‐>	
  No	
  clear	
  trend.	
  RCMs	
  do	
  not	
  reproduce	
  local	
  climatology.	
  
•  No	
  info	
  on	
  trends	
  of	
  air	
  humidity,	
  wind,	
  radiaOon	
  (clouds).	
  
Hydrological	
  model	
  (GEOtop	
  2.0)	
  
	
  
•  ComputaOonal	
  limitaOons	
  (full	
  3D	
  	
  vs.	
  1D)	
  for	
  soil	
  water	
  distribu=on	
  and	
  
runoff	
  simulaOon.	
  
•  Full	
  dynamic	
  vegetaOon	
  and	
  glaciers.	
  
•  Land	
  cover	
  scenarios.	
  
Data	
  availability	
  
	
  
•  PrecipitaOon	
  in	
  high	
  elevaOon	
  regions	
  (>	
  2000	
  m)	
  (Mair	
  et	
  al.,	
  2013)**	
  
•  InformaOon	
  on	
  soil	
  properOes	
  (IRKIS).	
  
*IPPC	
  (2013).	
  Climate	
  Change	
  2013:	
  The	
  Physical	
  Science	
  Basis.	
  IPCC	
  Working	
  Group	
  I	
  ContribuOon	
  to	
  AR5.	
  
**	
  	
  Mair,	
  et	
  al..	
  (2013).	
  ESOLIP;	
  esOmate	
  of	
  solid	
  and	
  liquid	
  precipitaOon	
  at	
  sub-­‐daily	
  Ome	
  resoluOon	
  by	
  combining	
  snow	
  
height	
  and	
  rain	
  gauge	
  measurements.	
  Hydrology	
  and	
  Earth	
  System	
  Sciences	
  Discussions,	
  10(7),	
  8683–8714.	
  	
  
	
  
 	
   Summer	
  2015	
  
Courtesy	
  od	
  Andrea	
  Debiasi,	
  27	
  Luglio	
  2015	
  
ApplicaOon	
  3:	
  remote	
  sensing	
  of	
  soil	
  moisture	
  
Mo=va=on	
  
	
  
Limited	
  availability	
  of	
  reliable	
  soil	
  moisture	
  high	
  resoluOon	
  products	
  on	
  mountain	
  areas.	
  	
  
	
  
Heterogeneity	
  in	
  soil	
  type,	
  land	
  cover,	
  	
  topography	
  limits	
  distributed	
  models	
  parameteriza=on.	
  
	
  
How	
  far	
  can	
  SAR	
  remote	
  sensing	
  help	
  for	
  improving	
  modelling	
  surface	
  soil	
  moisture	
  	
  
in	
  mountain	
  grassland	
  areas?	
  
	
  
	
  
	
  
	
  
	
  
	
  
Bertoldi,	
  G.,	
  et	
  al.	
  Es6ma6on	
  of	
  soil	
  moisture	
  paTerns	
  
	
  in	
  mountain	
  grasslands	
  by	
  means	
  of	
  
SAR	
  RADARSAT2	
  images	
  and	
  	
  
hydrological	
  modeling.	
  J.	
  Hydrol.	
  (2014)	
  
	
  
	
  
RADASAT2	
  SAR	
  	
  
Distributed	
  models	
  are	
  “hungry”	
  of	
  spa=ally	
  
distributed	
  informa=on1	
  
1Grayson	
  et	
  al.,	
  1998	
  
Soil	
  moisture:	
  observaOons	
  
Fixed	
  Sta=ons	
  
Field	
  surveys	
  
Mazia,	
  South	
  
Tyrol,	
  Italy	
  ~	
  
100	
  km2	
  
RADASAT2	
  SAR	
  
images	
  20m	
  res	
  
Surface	
  SWC	
  
retrieval	
  (SVR	
  Pasolli	
  
et	
  el.,	
  2011)	
  
Ground	
  observaOons:	
  mobile	
  surveys	
  
•  Monitoring	
  SMC	
  spa=al	
  paserns	
  at	
  hillslope	
  scale;	
  
•  Survey	
  planned	
  to	
  map	
  land	
  cover/topographic	
  features;	
  
•  Good	
  correspondence	
  with	
  staOon	
  values.	
  
•  More	
  than	
  10	
  surveys	
  between	
  2010	
  and	
  2014;	
  
•  More	
  than	
  1000	
  points	
  with	
  mobile	
  Delta-­‐T	
  wet	
  sensor	
  (TDR)	
  0	
  –	
  5	
  cm	
  depth;	
  
10	
  %	
  
50	
  %	
  
SWC	
  
Remote	
  sensing:	
  SAR	
  datasets	
  
RADARSAT2	
  images:	
  
•  Fully	
  polarimetric	
  images	
  (HH,	
  HV,	
  VH,	
  VV)	
  and	
  dual	
  
pol	
  (HH-­‐HV)	
  	
  
•  5.5	
  cm	
  wavelength	
  (C-­‐band	
  radar)	
  
•  Almost	
  all	
  images	
  with	
  45°nominal	
  incidence	
  angle	
  
•  Final	
  spaOal	
  resoluOon	
  20x20	
  m2	
  
(RADARSAT-­‐2	
  Data	
  and	
  Products©	
  MacDonald,	
  DeTwiler	
  and	
  
Associates	
  Ltd.	
  (2010)	
  –	
  All	
  Rights	
  Reserved)	
  
Data	
   Period	
   Number	
  
RADARSAT2	
   2010-­‐2011,	
  2013-­‐2015	
   Un=l	
  now	
  20	
  
ASAR	
  WS	
   2005-­‐2012	
   Un=l	
  now	
  analyzed	
  
around	
  200	
  images	
  
ASAR	
  WS:	
  
•  Mainly	
  VV	
  pol.	
  
•  5.5	
  cm	
  wavelength	
  (C-­‐band	
  radar)	
  
•  Ascending	
  nd	
  descending	
  
•  Final	
  spaOal	
  resoluOon	
  150x150	
  m2	
  
Methodological approach
GEOtop	
  Model	
  
(Rigon	
  et	
  al.,	
  2006)	
  
Support	
  Vector	
  
Regression	
  	
  
(Pasolli	
  et	
  al.,	
  2011)	
  	
  
gsr QQQETP
t
SMC
−−−−=
∂
∂
ET
Qr
QrQs
Qs
Qg
P
Mass	
  and	
  enegy	
  
budget	
  
3D	
  Richard	
  	
  
3D	
  
equa=ons	
  
SMC	
  
es=ma=on	
  
@	
  5cm	
  	
  
HH HV
NDVI
Modis
Elev.DEM
Land
use
Radarsat polarizations
Features
SMC
observations
Target
SVR
Param.
SVR
Regression
Analysis
SVR
Map Estimation
Estimated
SMC
Estimation
Training
GEOtop	
  validaOon	
  in	
  staOons	
  locaOons	
  
Model	
  validated	
  for	
  SMC	
  for	
  staOons	
  located	
  both	
  in	
  pastures	
  and	
  irrigated	
  meadows	
  
Bias -0.047 m3/m3
RMSE 0.054 m3/m3
Bias -0.016 m3/m3
RMSE 0.041 m3/m3
SAR	
  SMC	
  validaOon	
  
Outcome:	
  
1. The	
   proposed	
   es:ma:on	
   system	
   is	
   effec:ve	
   in	
   handling	
   the	
  
challenging	
  soil	
  moisture	
  retrieval	
  problem	
  in	
  Alpine	
  areas.	
  
2. Mul:ple	
   polariza:ons	
   and	
   ancillary	
   data	
   are	
   needed	
   to	
   disentangle	
  
the	
  effects	
  of	
  local	
  scale	
  vegeta:on	
  and	
  roughness.	
  
RADARSAT 2 ASAR WS
R2=0.89	
  
R2=0.88	
  
ValidaOon	
  on	
  a	
  different	
  ground	
  observaOons	
  subset	
  
Soil	
  moisture:	
  Radarsat	
  2	
  maps	
  
Wettest locations are along the valley bottom and in irrigated areas.
Driest locations are south-facing low elevation pastures.
Soil	
  moisture:	
  spaOal	
  comparison	
  
Results:	
  Radarsat	
  –	
  GEOtop	
  differences	
  
•  Major	
  differences	
  in	
  in	
  irrigated	
  meadows;	
  
•  Too	
  coarse	
  scale	
  model	
  soil	
  and	
  land	
  cover	
  parameterizaOon.	
  
•  Radarsat	
  captures	
  the	
  small	
  scale	
  variability	
  related	
  to	
  land	
  cover/irrigaOon	
  	
  
What	
  controls	
  the	
  observed	
  SMC	
  paPerns?	
  
Coupling	
  between	
  (surface)	
  soil	
  type	
  and	
  land	
  management.	
  
	
  
	
  Model	
  helps	
  to	
  understand	
  physical	
  reasons	
  of	
  observed	
  paserns.	
  
Topography, soil type or land use?
SAR	
  soil	
  moisture	
  esOmaOon:	
  conclusions	
  
Modelling:	
  GEOtop	
  
+  conOnuous	
  spaOal	
  and	
  temporal	
  coverage;	
  
+  good	
  capability	
  to	
  capture	
  temporal	
  paPerns;	
  
-  limitaOons	
  due	
  land	
  cover	
  /	
  soil	
  /	
  irrigaOon	
  parameterizaOon.	
  
SAR:	
  RADARSAT	
  2	
  
+  good	
  capability	
  to	
  capture	
  fine	
  scale	
  spaOal	
  paPerns;	
  
+  strong	
  signature	
  of	
  land	
  cover	
  /	
  vegetaOon	
  /	
  irrigaOon	
  paPerns;	
  
+  High	
  spaOal	
  resoluOon,	
  limited	
  temporal	
  coverage;	
  
-  Possible	
  ambiguity	
  due	
  soil/land	
  cover	
  coupling;	
  
-  limited	
  to	
  surface	
  layer	
  (~5	
  cm)	
  and	
  grassland	
  areas.	
  
PerspecOves:	
  toward	
  an	
  integraOon	
  strategy	
  …	
  temporal	
  
Possible	
  integra=on	
  strategy:	
  	
  
temporal	
  driving	
  from	
  the	
  model,	
  spaOal	
  paPerns	
  SAR	
  imaging	
  
Average	
  and	
  std	
  ASAR	
  and	
  GEOtop	
  SMC	
  
Toward	
  an	
  integraOon	
  strategy	
  …	
  spaOal	
  
ASAR	
   GEOtop	
  
Use	
  model-­‐derived	
  data	
  as	
  addiOonal	
  input	
  feature	
  for	
  a	
  SVR	
  
approach	
  in	
  areas	
  where	
  limited	
  ground	
  truth	
  is	
  available.	
  
Overall Conclusions
Experimental	
  
observa=ons	
  
Experimental	
  design	
  
Models	
  valida=on	
  	
  
parameteriza=on	
  
Process	
  
understanding	
  
Eco-­‐hydrological	
  
modelling	
  
ET
2 W/m2
286 W/
m2
Come	
  and	
  visit	
  us,	
  	
  
we	
  are	
  waiOng	
  for	
  you	
  J	
  
Matsch	
  |	
  Mazia	
   49	
  
Our data need modellers !
Acknowledgments	
  
	
  
	
  This	
  study	
  is	
  supported	
  by	
  the	
  projects	
  “and	
  “HydroAlp”	
  and	
  “HiResAlp”	
  financed	
  by	
  Provincia	
  
Autonoma	
  di	
  Bolzano,	
  Alto	
  Adige,	
  Ripar=zione	
  Diriso	
  allo	
  sudio,	
  Università	
  e	
  ricerca	
  scien=fica.	
  
	
  
We	
  hereby	
  would	
  like	
  to	
  thank:	
  
	
  
M.	
  Dall´Amico,	
  Mountaneering	
  s.r.l.	
  
S.	
  Endrizzi,	
  University	
  of	
  Zurich.	
  
R.	
  Rigon,	
  University	
  of	
  Trento.	
  
G.	
  Wohlxart,	
  University	
  of	
  Innsbruck	
  
	
  
Thank	
  you	
  for	
  your	
  aGen:on!	
  
 	
  
Opportunites	
  and	
  challenges	
  
Ø  Using	
  physically	
  models	
  in	
  real	
  contexts	
  is	
  
someOmes	
  more	
  Ome-­‐consuming	
  than	
  
doing	
  real	
  experiments.	
  
Ø  A	
  deep	
  knowledge	
  of	
  the	
  system	
  is	
  needed	
  
for	
  set-­‐up	
  proper	
  assumpOons	
  in	
  model	
  
parameterizaOon	
  (a	
  lot	
  on	
  unknown	
  
informaOon).	
  
Ø  	
  Great	
  tools	
  for	
  tesOng	
  hypotheses	
  and	
  
generalize	
  results.	
  
Opportunites	
  and	
  challenges	
  
Ø  The	
  parOcularly	
  dry	
  area	
  represents	
  a	
  unique	
  
chance	
  to	
  study	
  climate	
  change	
  allowing	
  predicOons	
  
of	
  future	
  climate	
  on	
  mountain	
  ecosystems.	
  
Ø  The	
  eleva=on	
  transect	
  allows	
  for	
  experimental	
  and	
  
numerical	
  invesOgaOon	
  on	
  effects	
  of	
  elevaOon	
  on	
  
eco-­‐hydrological	
  processes.	
  	
  
Ø  The	
  site	
  allows	
  interdisciplinary	
  observaOons	
  of	
  
relevant	
  eco-­‐hydrological	
  processes	
  in	
  	
  a	
  human-­‐
influenced	
  mountain	
  region.	
  	
  
Ø  The	
  climaOc	
  condiOons	
  of	
  Val	
  Mazia	
  may	
  allow	
  
interesOng	
  comparisons	
  among	
  different	
  mountain	
  
sites	
  of	
  the	
  MRI	
  /	
  LTER	
  network.	
  	
  
Ø  Chance	
  to	
  be	
  part	
  of	
  a	
  well	
  organized	
  and	
  good	
  
structured	
  scien=fic	
  network.	
  
 	
  
ElevaOon	
  gradient:	
  results	
  B2000	
  m	
  B1500	
  m	
  B1000	
  m	
  
Coupling	
  snow	
  –	
  veg	
  –	
  ET	
  -­‐	
  SWC	
  
SWC	
  along	
  the	
  year	
  
IrrigaOon	
  below	
  1500	
  m	
  
GEOtop validation in stations locations
Model	
  validated	
  for	
  SMC	
  for	
  staOons	
  located	
  both	
  in	
  pastures	
  and	
  irrigated	
  meadows	
  
Study	
  Area:	
  meadows	
  
57
Mazia	
  Valley,	
  South	
  Tyrol,	
  Italy	
  
	
  
Meadows	
  
Up	
  to	
  ~	
  1700m	
  a.s.l.	
  
Intensively	
  managed:	
  
	
  -­‐	
  cubng	
  
	
  -­‐	
  manuring	
  
	
  -­‐	
  irrigaOon	
  
Homogenous	
  soil	
  surface	
  
VegetaOon	
  dominated	
  by	
  grasses	
  
	
  
Study	
  Area:	
  pastures	
  
58
Mazia	
  Valley,	
  South	
  Tyrol,	
  Italy	
  
	
  
Pastures	
  
Located	
  at	
  1700	
  to	
  2400m	
  a.s.l.	
  
Steep	
  terrain	
  
Heterogeneous	
  soil	
  surface:	
  
	
  -­‐	
  bare	
  soil	
  
	
  -­‐	
  stones	
  
	
  -­‐	
  large	
  rocks	
  
VegetaOon	
  dominated	
  by	
  grasses	
  
	
  
	
  
	
  
Study	
  area:	
  soil	
  properOes	
  
Kolmann and Tasser, 2012
•  Two	
  main	
  soil	
  types:	
  	
  	
  
1.  Haplic	
  Leptosol	
  	
  (ranker)	
  mainly	
  in	
  pastures;	
  
2.  Dystric	
  Cambisol	
  (braunerde)	
  mainly	
  in	
  meadows	
  (Kollman,	
  M.	
  Th.,	
  2013).	
  
•  Observed	
  soil	
  parameters	
  are	
  in	
  the	
  typical	
  range	
  of	
  loamy	
  sand	
  (Leptosoil)	
  and	
  
sandy	
  loam	
  (Cambisoil).	
  
Kollmann,	
  K..	
  Klima-­‐	
  und	
  landnutzungsbedingte	
  Bodenverteilung	
  im	
  Matschertal,	
  SüdOrol.	
  Ms.	
  Thesis,	
  Universität	
  Innsbruck.(2012).	
  
Ground	
  observaOons:	
  fixed	
  staOons	
  
Network	
  of	
  14	
  staOons	
  with:	
  
• 	
  Meteorological	
  data	
  
• 	
  SMC	
  5	
  and	
  20	
  cm	
  depth	
  	
  
	
  (Decagon	
  capaciOve	
  sensors	
  10Hs)	
  	
  
Transect	
  sta=ons	
  
Catchment	
  sta=ons	
  
Run-­‐off	
  measurements	
  
Area	
  ~100	
  km2	
  
•  Monitoring	
  SMC	
  temporal	
  dynamic	
  at	
  catchment	
  scale.	
  
Ground	
  observaOons:	
  mobile	
  surveys	
  
•  Monitoring	
  SMC	
  spa=al	
  paserns	
  at	
  hillslope	
  scale;	
  
•  Survey	
  planned	
  to	
  map	
  land	
  cover/topographic	
  features;	
  
•  Good	
  correspondence	
  with	
  staOon	
  values.	
  
•  More	
  than	
  10	
  surveys	
  between	
  2010	
  and	
  2014;	
  
•  More	
  than	
  1000	
  points	
  with	
  mobile	
  Delta-­‐T	
  wet	
  sensor	
  (TDR)	
  0	
  –	
  5	
  cm	
  depth;	
  
10	
  %	
  
50	
  %	
  
SWC	
  
Hydrological	
  modeling:	
  GEOtop	
  SMC	
  simulaOon	
  
GEOtop	
  model	
  
Rigon	
  et	
  al.,	
  JHM,	
  2006.	
  
Endrizzi	
  et	
  al.,	
  GMDD,	
  2013.	
  
∂SMC
∂t
= P − ET −Qr −Qs −Qg
ET	
  
Qr	
  
Qr	
  Qs	
  
Qs	
  
Qg	
  
P	
  
Plot	
  scale	
  water	
  budget	
  
Catchment	
  scale	
  SMC	
  
@	
  5cm	
  	
  
3D	
  Richard’s	
  eq.	
  
Endrizzi,	
  S.,	
  et	
  al.	
  GEOtop	
  2.0:	
  simulaOng	
  the	
  combined	
  energy	
  and	
  water	
  balance	
  at	
  and	
  below	
  the	
  land	
  surface	
  accounOng	
  for	
  soil	
  freezing,	
  
snow	
  cover	
  and	
  terrain	
  effects.	
  Geosci.	
  Model	
  Dev.	
  Disc.	
  6,	
  6279–6341	
  (2013).	
  
Rigon,	
  R,	
  et	
  al.	
  GEOtop:	
  a	
  distributed	
  hydrological	
  model	
  with	
  coupled	
  water	
  and	
  energy	
  budgets.	
  J.	
  Hydrometeorol.	
  7	
  (3),	
  371–388	
  (2006).	
  	
  
GEOtop	
  –	
  DVM	
  coupling	
  
GEOtop	
   VDM	
  
-­‐	
  Rad,Rh,PAR,T,	
  Wind	
  
-­‐  Ini=al	
  Condi=ons	
  
-­‐  Meteo	
  input	
  
-­‐  Soil	
  and	
  topography	
  	
  
Montaldo	
  et	
  al.,	
  	
  2005	
  
Endrizzi	
  et	
  al.,	
  2013	
  
Canopy	
  Frac=on	
  
Canopy	
  Height	
  
Leaf	
  Area	
  Index	
  
Senescence	
  
Respira=on	
  
Trasloca=on	
  
Biomass	
  	
  
Budget	
  
Photosynthesis	
  
Evapotranspira=on	
  
Intercep=on	
  
Energy	
  Balance	
  
Throughfall	
  
Infiltra=on	
  
Soil	
  	
  Water	
  	
  
Balance	
  
Runoff	
  
Drainage	
  
Rain/Snowfall	
  
Rigon	
  et	
  al.,	
  	
  2006	
  
Della	
  Chiesa	
  et	
  al.,	
  2014	
  
Data	
  recorded	
  with	
  high	
  frequency	
  (15´since	
  2009)	
  
Matsch	
  |	
  Mazia	
  
64	
  
precipitation (mm)
global radiation (W/m²)
soil temperature (°C) and soil moisture (Vol%)
logger
air temperature (°C)
and humidity (%)
Snow/Vegetation height (cm)
Photosynthetic active radiation (µmol s−1W*−1)
Radiation balance (W/m²)
Soil surface temperature (°C)
Soil heat flux (W/m²)
Latent and sensible fluxes (W/m²)
Soil water potential (hPa)
wind speed and direction (m/sec, °)
Coupled ecohydrological modelling
	
  
How	
  to	
  use	
  experimental	
  observa=ons	
  to	
  validate	
  a	
  
distributed	
  ecohydrological	
  models?	
  
	
  
How	
  to	
  use	
  model	
  results	
  to	
  improve	
  our	
  knowledge	
  of	
  
the	
  ecohydrological	
  behavior	
  of	
  mountain	
  catchments?	
  
	
  

Weitere ähnliche Inhalte

Was ist angesagt?

Research reproducibility - Code etc.
Research reproducibility - Code etc.Research reproducibility - Code etc.
Research reproducibility - Code etc.Riccardo Rigon
 
A travel time model for estimating the water budget of complex catchments
A travel time model for estimating the water budget of complex catchmentsA travel time model for estimating the water budget of complex catchments
A travel time model for estimating the water budget of complex catchmentsRiccardo Rigon
 
Benettin ph.d. days presentation
Benettin ph.d. days presentationBenettin ph.d. days presentation
Benettin ph.d. days presentationRiccardo Rigon
 
Implementing a travel time model for the Adige River: the case of Jgrass-NewAGE
Implementing a travel time model for the Adige River: the case of Jgrass-NewAGEImplementing a travel time model for the Adige River: the case of Jgrass-NewAGE
Implementing a travel time model for the Adige River: the case of Jgrass-NewAGERiccardo Rigon
 
Using Kriging Combined with Categorical Information of Soil Maps for Interpol...
Using Kriging Combined with Categorical Information of Soil Maps for Interpol...Using Kriging Combined with Categorical Information of Soil Maps for Interpol...
Using Kriging Combined with Categorical Information of Soil Maps for Interpol...FAO
 
radial flow pumping test
radial flow pumping testradial flow pumping test
radial flow pumping testFatonah Munsai
 
Atmospheric Chemistry Models
Atmospheric Chemistry ModelsAtmospheric Chemistry Models
Atmospheric Chemistry Modelsahmad bassiouny
 
Interpolation of meteodata using the method of regression-kriging
Interpolation of meteodata using the method of regression-krigingInterpolation of meteodata using the method of regression-kriging
Interpolation of meteodata using the method of regression-krigingAlexander Mkrtchian
 
Modelling variably saturated flow using cellular automata
Modelling variably saturated flow using cellular automataModelling variably saturated flow using cellular automata
Modelling variably saturated flow using cellular automataGrigoris Anagnostopoulos
 

Was ist angesagt? (20)

Research reproducibility - Code etc.
Research reproducibility - Code etc.Research reproducibility - Code etc.
Research reproducibility - Code etc.
 
A travel time model for estimating the water budget of complex catchments
A travel time model for estimating the water budget of complex catchmentsA travel time model for estimating the water budget of complex catchments
A travel time model for estimating the water budget of complex catchments
 
Alfonso Senatore
Alfonso SenatoreAlfonso Senatore
Alfonso Senatore
 
Adige modelling
Adige modellingAdige modelling
Adige modelling
 
Benettin ph.d. days presentation
Benettin ph.d. days presentationBenettin ph.d. days presentation
Benettin ph.d. days presentation
 
Alberto Bellin
Alberto BellinAlberto Bellin
Alberto Bellin
 
Damiano Pasetto
Damiano PasettoDamiano Pasetto
Damiano Pasetto
 
Implementing a travel time model for the Adige River: the case of Jgrass-NewAGE
Implementing a travel time model for the Adige River: the case of Jgrass-NewAGEImplementing a travel time model for the Adige River: the case of Jgrass-NewAGE
Implementing a travel time model for the Adige River: the case of Jgrass-NewAGE
 
Sylvain Weill
Sylvain WeillSylvain Weill
Sylvain Weill
 
Assessing Uncertainty of Time Lapse Seismic Response Due to Geomechanical Def...
Assessing Uncertainty of Time Lapse Seismic Response Due to Geomechanical Def...Assessing Uncertainty of Time Lapse Seismic Response Due to Geomechanical Def...
Assessing Uncertainty of Time Lapse Seismic Response Due to Geomechanical Def...
 
6 reservoirs&Graphs
6 reservoirs&Graphs6 reservoirs&Graphs
6 reservoirs&Graphs
 
Majid Gw Final Ppt
Majid Gw Final PptMajid Gw Final Ppt
Majid Gw Final Ppt
 
C04651725
C04651725C04651725
C04651725
 
Using Kriging Combined with Categorical Information of Soil Maps for Interpol...
Using Kriging Combined with Categorical Information of Soil Maps for Interpol...Using Kriging Combined with Categorical Information of Soil Maps for Interpol...
Using Kriging Combined with Categorical Information of Soil Maps for Interpol...
 
Espino et al. 1995
Espino et al. 1995Espino et al. 1995
Espino et al. 1995
 
radial flow pumping test
radial flow pumping testradial flow pumping test
radial flow pumping test
 
Atmospheric Chemistry Models
Atmospheric Chemistry ModelsAtmospheric Chemistry Models
Atmospheric Chemistry Models
 
Interpolation of meteodata using the method of regression-kriging
Interpolation of meteodata using the method of regression-krigingInterpolation of meteodata using the method of regression-kriging
Interpolation of meteodata using the method of regression-kriging
 
Modelling variably saturated flow using cellular automata
Modelling variably saturated flow using cellular automataModelling variably saturated flow using cellular automata
Modelling variably saturated flow using cellular automata
 
Carlotta Scudeler
Carlotta ScudelerCarlotta Scudeler
Carlotta Scudeler
 

Andere mochten auch

Sharing scores with Scorewave!
Sharing scores with Scorewave!Sharing scores with Scorewave!
Sharing scores with Scorewave!mmpenning
 
8 cach tri ran da sau sinh hieu qua bang phuong phap tu nhien
8 cach tri ran da sau sinh hieu qua bang phuong phap tu nhien8 cach tri ran da sau sinh hieu qua bang phuong phap tu nhien
8 cach tri ran da sau sinh hieu qua bang phuong phap tu nhienVu Thuan
 
V1v2v3v4 verb
V1v2v3v4 verbV1v2v3v4 verb
V1v2v3v4 verb8809899
 
MapR LucidWorks Joint Webinar 121211
MapR LucidWorks Joint Webinar 121211MapR LucidWorks Joint Webinar 121211
MapR LucidWorks Joint Webinar 121211MapR Technologies
 
Cach duoi ruoi hieu qua nhat - Tinhdautram.info
Cach duoi ruoi hieu qua nhat - Tinhdautram.infoCach duoi ruoi hieu qua nhat - Tinhdautram.info
Cach duoi ruoi hieu qua nhat - Tinhdautram.infoVu Thuan
 
lam the nao de sua van xa nuoc bon cau - Williamcuong.com
lam the nao de sua van xa nuoc bon cau - Williamcuong.comlam the nao de sua van xa nuoc bon cau - Williamcuong.com
lam the nao de sua van xa nuoc bon cau - Williamcuong.comVu Thuan
 
Cach tri nghet mũi cho tre so sinh hieu qua - tinhdautram.info
Cach tri nghet mũi cho tre so sinh hieu qua - tinhdautram.infoCach tri nghet mũi cho tre so sinh hieu qua - tinhdautram.info
Cach tri nghet mũi cho tre so sinh hieu qua - tinhdautram.infoVu Thuan
 
Cach su dung tinh dau đúng cách - Tinhdautram.info
Cach su dung tinh dau đúng cách - Tinhdautram.infoCach su dung tinh dau đúng cách - Tinhdautram.info
Cach su dung tinh dau đúng cách - Tinhdautram.infoVu Thuan
 
Cannabis y psoriasis
Cannabis y psoriasisCannabis y psoriasis
Cannabis y psoriasisLara Alijarde
 
chương 4 - TCP/IP - mạng máy tính
chương 4 - TCP/IP - mạng máy tínhchương 4 - TCP/IP - mạng máy tính
chương 4 - TCP/IP - mạng máy tínhQuyên Nguyễn Tố
 
P-BuyingaHomeSummer2016
P-BuyingaHomeSummer2016P-BuyingaHomeSummer2016
P-BuyingaHomeSummer2016Jean Venezia
 
P-SellingYourHouseSummer2016
P-SellingYourHouseSummer2016P-SellingYourHouseSummer2016
P-SellingYourHouseSummer2016Jean Venezia
 

Andere mochten auch (15)

Muralidhar
MuralidharMuralidhar
Muralidhar
 
Sharing scores with Scorewave!
Sharing scores with Scorewave!Sharing scores with Scorewave!
Sharing scores with Scorewave!
 
8 cach tri ran da sau sinh hieu qua bang phuong phap tu nhien
8 cach tri ran da sau sinh hieu qua bang phuong phap tu nhien8 cach tri ran da sau sinh hieu qua bang phuong phap tu nhien
8 cach tri ran da sau sinh hieu qua bang phuong phap tu nhien
 
V1v2v3v4 verb
V1v2v3v4 verbV1v2v3v4 verb
V1v2v3v4 verb
 
MapR LucidWorks Joint Webinar 121211
MapR LucidWorks Joint Webinar 121211MapR LucidWorks Joint Webinar 121211
MapR LucidWorks Joint Webinar 121211
 
Cach duoi ruoi hieu qua nhat - Tinhdautram.info
Cach duoi ruoi hieu qua nhat - Tinhdautram.infoCach duoi ruoi hieu qua nhat - Tinhdautram.info
Cach duoi ruoi hieu qua nhat - Tinhdautram.info
 
lam the nao de sua van xa nuoc bon cau - Williamcuong.com
lam the nao de sua van xa nuoc bon cau - Williamcuong.comlam the nao de sua van xa nuoc bon cau - Williamcuong.com
lam the nao de sua van xa nuoc bon cau - Williamcuong.com
 
Cach tri nghet mũi cho tre so sinh hieu qua - tinhdautram.info
Cach tri nghet mũi cho tre so sinh hieu qua - tinhdautram.infoCach tri nghet mũi cho tre so sinh hieu qua - tinhdautram.info
Cach tri nghet mũi cho tre so sinh hieu qua - tinhdautram.info
 
Cach su dung tinh dau đúng cách - Tinhdautram.info
Cach su dung tinh dau đúng cách - Tinhdautram.infoCach su dung tinh dau đúng cách - Tinhdautram.info
Cach su dung tinh dau đúng cách - Tinhdautram.info
 
Cannabis y psoriasis
Cannabis y psoriasisCannabis y psoriasis
Cannabis y psoriasis
 
Mô hình-osi
Mô hình-osiMô hình-osi
Mô hình-osi
 
chương 4 - TCP/IP - mạng máy tính
chương 4 - TCP/IP - mạng máy tínhchương 4 - TCP/IP - mạng máy tính
chương 4 - TCP/IP - mạng máy tính
 
Chap002
Chap002Chap002
Chap002
 
P-BuyingaHomeSummer2016
P-BuyingaHomeSummer2016P-BuyingaHomeSummer2016
P-BuyingaHomeSummer2016
 
P-SellingYourHouseSummer2016
P-SellingYourHouseSummer2016P-SellingYourHouseSummer2016
P-SellingYourHouseSummer2016
 

Ähnlich wie Giacomo bertoldi seminar_30_padova_08

Egu talk on EcoHydrology by Brenner et al.
Egu talk on EcoHydrology by Brenner et al.Egu talk on EcoHydrology by Brenner et al.
Egu talk on EcoHydrology by Brenner et al.Riccardo Rigon
 
GEOtop Sisef presentation
GEOtop Sisef presentationGEOtop Sisef presentation
GEOtop Sisef presentationRiccardo Rigon
 
SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...
SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...
SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...Luca Brocca
 
Spatial Patterns of Climate Change in India
Spatial Patterns of Climate Change in IndiaSpatial Patterns of Climate Change in India
Spatial Patterns of Climate Change in Indiakhalid_nitt
 
IGARSSoral_Zhang_July.ppt
IGARSSoral_Zhang_July.pptIGARSSoral_Zhang_July.ppt
IGARSSoral_Zhang_July.pptgrssieee
 
Mri suzhou 27052011
Mri suzhou 27052011Mri suzhou 27052011
Mri suzhou 27052011Lotje
 
Key messages from the AR5 WGI with focus on Saudi Arabia and the region
Key messages from the AR5 WGI with focus on Saudi Arabia and the regionKey messages from the AR5 WGI with focus on Saudi Arabia and the region
Key messages from the AR5 WGI with focus on Saudi Arabia and the regionJesbin Baidya
 
Lesson6 greeningarctic20110315(2)
Lesson6 greeningarctic20110315(2)Lesson6 greeningarctic20110315(2)
Lesson6 greeningarctic20110315(2)Edie Barbour
 
Nmsu seminartweedie 20110310
Nmsu seminartweedie 20110310Nmsu seminartweedie 20110310
Nmsu seminartweedie 20110310ctweedie
 
Data exploration and analysis of hydroclimatic variability in the data-rich era
Data exploration and analysis of hydroclimatic variability in the data-rich eraData exploration and analysis of hydroclimatic variability in the data-rich era
Data exploration and analysis of hydroclimatic variability in the data-rich eraYannis Markonis
 
DSD-INT 2017 Global modelling of hydrology and water resources: current state...
DSD-INT 2017 Global modelling of hydrology and water resources: current state...DSD-INT 2017 Global modelling of hydrology and water resources: current state...
DSD-INT 2017 Global modelling of hydrology and water resources: current state...Deltares
 
Evaluating and communicating Arctic climate change projection
Evaluating and communicating Arctic climate change projectionEvaluating and communicating Arctic climate change projection
Evaluating and communicating Arctic climate change projectionZachary Labe
 
A knowledge-based model for identifying and mapping tropical wetlands and pea...
A knowledge-based model for identifying and mapping tropical wetlands and pea...A knowledge-based model for identifying and mapping tropical wetlands and pea...
A knowledge-based model for identifying and mapping tropical wetlands and pea...ExternalEvents
 
DSD-INT 2019 Elbe Estuary Modelling Case Studies-Stanev
DSD-INT 2019 Elbe Estuary Modelling Case Studies-StanevDSD-INT 2019 Elbe Estuary Modelling Case Studies-Stanev
DSD-INT 2019 Elbe Estuary Modelling Case Studies-StanevDeltares
 
Forecasting monthly water resources conditions by using different indices
Forecasting monthly water resources conditions by using different indicesForecasting monthly water resources conditions by using different indices
Forecasting monthly water resources conditions by using different indicesAI Publications
 

Ähnlich wie Giacomo bertoldi seminar_30_padova_08 (20)

Egu talk on EcoHydrology by Brenner et al.
Egu talk on EcoHydrology by Brenner et al.Egu talk on EcoHydrology by Brenner et al.
Egu talk on EcoHydrology by Brenner et al.
 
GEOtop Sisef presentation
GEOtop Sisef presentationGEOtop Sisef presentation
GEOtop Sisef presentation
 
SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...
SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...
SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...
 
Spatial Patterns of Climate Change in India
Spatial Patterns of Climate Change in IndiaSpatial Patterns of Climate Change in India
Spatial Patterns of Climate Change in India
 
IGARSSoral_Zhang_July.ppt
IGARSSoral_Zhang_July.pptIGARSSoral_Zhang_July.ppt
IGARSSoral_Zhang_July.ppt
 
Mri suzhou 27052011
Mri suzhou 27052011Mri suzhou 27052011
Mri suzhou 27052011
 
Key messages from the AR5 WGI with focus on Saudi Arabia and the region
Key messages from the AR5 WGI with focus on Saudi Arabia and the regionKey messages from the AR5 WGI with focus on Saudi Arabia and the region
Key messages from the AR5 WGI with focus on Saudi Arabia and the region
 
Lesson6 greeningarctic20110315(2)
Lesson6 greeningarctic20110315(2)Lesson6 greeningarctic20110315(2)
Lesson6 greeningarctic20110315(2)
 
Nmsu seminartweedie 20110310
Nmsu seminartweedie 20110310Nmsu seminartweedie 20110310
Nmsu seminartweedie 20110310
 
Data exploration and analysis of hydroclimatic variability in the data-rich era
Data exploration and analysis of hydroclimatic variability in the data-rich eraData exploration and analysis of hydroclimatic variability in the data-rich era
Data exploration and analysis of hydroclimatic variability in the data-rich era
 
DSD-INT 2017 Global modelling of hydrology and water resources: current state...
DSD-INT 2017 Global modelling of hydrology and water resources: current state...DSD-INT 2017 Global modelling of hydrology and water resources: current state...
DSD-INT 2017 Global modelling of hydrology and water resources: current state...
 
Global change impacts roland barthel
Global change impacts roland barthelGlobal change impacts roland barthel
Global change impacts roland barthel
 
Msc 2023.pptx
Msc 2023.pptxMsc 2023.pptx
Msc 2023.pptx
 
Evaluating and communicating Arctic climate change projection
Evaluating and communicating Arctic climate change projectionEvaluating and communicating Arctic climate change projection
Evaluating and communicating Arctic climate change projection
 
A knowledge-based model for identifying and mapping tropical wetlands and pea...
A knowledge-based model for identifying and mapping tropical wetlands and pea...A knowledge-based model for identifying and mapping tropical wetlands and pea...
A knowledge-based model for identifying and mapping tropical wetlands and pea...
 
DSD-INT 2019 Elbe Estuary Modelling Case Studies-Stanev
DSD-INT 2019 Elbe Estuary Modelling Case Studies-StanevDSD-INT 2019 Elbe Estuary Modelling Case Studies-Stanev
DSD-INT 2019 Elbe Estuary Modelling Case Studies-Stanev
 
Long term variations of land management li
Long term variations of land management   liLong term variations of land management   li
Long term variations of land management li
 
CFD modeling
CFD modelingCFD modeling
CFD modeling
 
2190831_Poster
2190831_Poster2190831_Poster
2190831_Poster
 
Forecasting monthly water resources conditions by using different indices
Forecasting monthly water resources conditions by using different indicesForecasting monthly water resources conditions by using different indices
Forecasting monthly water resources conditions by using different indices
 

Kürzlich hochgeladen

Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxDr. Sarita Anand
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxJisc
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfSherif Taha
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...ZurliaSoop
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...Amil baba
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxEsquimalt MFRC
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxUmeshTimilsina1
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsKarakKing
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and ModificationsMJDuyan
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxPooja Bhuva
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxDr. Ravikiran H M Gowda
 

Kürzlich hochgeladen (20)

Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptx
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 

Giacomo bertoldi seminar_30_padova_08

  • 1. Eco-hydrological modeling in a mountain laboratory: the LTSER site Matsch/Mazia Bertoldi  G.,  Cordano  E.,  Brenner  J.,  Notarnicola.  C.,   Niedrist  G.,  Tappeiner  U.   Workshop  on  coupled  hydrological  modeling,     23-­‐24  September  2015,     University  of  Padova,  Italy.  
  • 2. Outline   Overview  of  the  research  area  and  of  the  collected  data       Modelling  approach:      the  GEOtop  2  -­‐  DV  model.     Applica=ons  :    1.  Plot  scale  experiment    Modelling  snow,  soil  moisture,  ET,  biomass    along  an  elevaOon  gradient.        2.  Catchment  scale  applica=on    Modelling  impacts  of  climate  change  on  snow,  evapotranspiraOon  and  soil   moisture  spaOal  paPerns.          3.  Comparison  with  remote  sensing  data      EsOmaOon  of  soil  moisture  paPerns  by  means  of  SAR  images.       Discussion:      Limita=ons  and  uncertain=es  of  the  results.                                                Opportuni=es  hydrological  modelling  in  mountain  areas.  
  • 3. Matsch/Mazia,  Vinschgau,  South  Tyrol,  Italy   3   Area:  ca.  100  km2.         AlOtudinal  range:   920–  3738  m  a.s.l.    Mean  annual   precipitaOon   (Mazia,  1580  m   a.s.l.):  525  mm  
  • 4. Matsch  |  Mazia   A  dry  inneralpine  valley     4   low  precipitaOon   human  land-­‐use   closed  catchment       alOtudinal  transect   Eco  hydrological  monitoring  since  2009,  LTSER  since  2015  
  • 5. Research  topics   5   climate change & elevation evapotranspiration soil moisture dynamics water and runoff agriculture productivity land use change ecosystem services biodiversity snow and ice grasslands and forest ecosystems
  • 6. Alps   Ecosystem   Plot   Global   Future  History   Present   Region                                                       5  research  sites   4.  Saldur/Saldura  river   3.  Saldur/Saldura   catchment  network                               5.  Glacierforefield  of   Weisskugel/Palla  Bianca   1.  Muntatschinig/   Monteschino     In  collabora=on  with:     University of Bolzano   Hydrographic  Office  (Province  BZ)   Biological  Laboratory  (Province  BZ)   Chemical  Laboratory  (Province  BZ)     In  collabora=on  with:     Hydrographic  Office  (Province  BZ)   University  of  Bolzano   University  of  Padova   University of Innsbruck (AT)   In  collabora=on  with:     University  of  Innsbruck  (AT)   BoKu  Vienna  (AT)   Duke  University  (USA)   In  collabora=on  with:     University of Innsbruck (AT) Forest  department  (Province  BZ)     LTER  Matsch/Mazia:  Major  research  sites   2.  Al=tudinal   transect  of   Matsch/Mazia   In  collabora=on  with:     University  of  Innsbruck  (AT)   IRSTEA  Grenoble  (FR)   2000m   1500m   1000m   ΔT~  3.5K   ΔT~  3.5K   T   P  
  • 7. Matsch  |  Mazia  7   -20 permanent micro-climate. stations, soil moisture. -2 eddy covariance stations. -3 gauge level/temp. measure points. -5 SAP flow measurements points. -5 weighting lysimeters Site  infrastructure   Micro-­‐climate  staOons  
  • 8. Data  recorded  intervalic   8   Soil determinations and analyses Water quality analyses Vegetation transplantation experiments Vegetation surveys and biomass estimation Diversity analyses
  • 9. Mapping  and  spaOal  data   Mapping of soil moisture: ground spatial campaigns, remote sensing (SAR, thermal, UAV). Mapping of vegetation/landuse: current and hystorical changes. Mapping of soil type / properties.
  • 10. ApplicaOon  1:  modelling  along  an  elevaOon  gradient   Mo=va=on     •  Mountains  Region  are  considered  parOcularly  vulnerable  to  CC  1,          esp.  considering  the  alteraOons  of  the  water  cycle  2     •  In  dry    inner-­‐alpine  regions,  managed  grasslands  are  irrigated.   Climate  change  raises  issues  about  future  water  availability.     Which  are  the  effects  of  the  eleva=on  gradient  on  water  budget?   (SWE,  SWC,  ET)  and  grassland  produc=vity  ?       Della  Chiesa  et  al.,  Modeling  changes  in  grassland    hydrological  cycling     along  an  eleva6onal  gradient  in  the  Alps,   Ecohydrology,  2014             .   1  Bruneb  et  al.  (2006).  Temperature  and  precipitaOon  variability  in  Italy  in  the  last  two  centuries  from  homogenised  instrumental  Ome  series.      InternaOonal  Journal  of  Climatology,  26(3),  345–381.     2  Bates  et  al.  (2008).  Climate  Change  and  water.  IPCC  Technical  Paper  VI  (p.  214).  Geneva,  Switzerland:  IPCC  Secretariat.  Retrieved  from  hPp://www.ipcc.ch        
  • 11. An  experimental  elevaOon  transect   Eleva=on  as  a  proxy  of  climate  change   Sta=on     B2000  m   Hs,  SWC,     Biomass,  GAI   Sta=on   B1500  m   Hs,  SWC,     Biomass,  GAI,ET   Sta=on   B1000  m   Hs,  SWC,     Biomass,  GAI   ΔT~  3.5K   ΔT~  3.5K  
  • 12. The  GEOtop  2.0    –  DV    model   € LWa tm ↓ V € D0V € I € LWs ur r ↓ 1−V( ) € SWs ur r ↓ 1−V( ) € εsσTs 4 Shortwave radiatio n(yell ow) Lo ngwave radiatio n (red ) € SW r ef l Complex  topography   Bertoldi  et  al.,  J  of  Hydromet,  2006.   s   Snow  module   Endrizzi  et  al.,  GMDD,  2014   Zanob  et  al.,  Hydrol  Proc,  2004   Water  budget   Rigon  et  al.,  J  of  Hydromet,  2006.   Figures  adapted  from    VIC  model  (Liang  et  al.,  1994)   Energy  budget   Bertoldi  al.,  Ecohydrol,  2010.   Vegeta=on  dynamics   Della  Chiesa  et  al.,  Ecohydrol.,  2014    From  SHE  model  (Abbot  et  al.,  1986)   TRIBS-­‐VEGGIE  FaOchi  et  al.,  2012   Montaldo  et  al.,  2005   Eagleson,  2002     Alpine3D,  Lenhing  et  al.,  2006   CROCUS,  Brun  et  al.,  1992   SNTHERM,  Jordan,  1991     CLM,  Dai  et  al.,  2003   SEWAB,  Megelkamp  et  al.,  1999   Noah  LSM,  Chen  et  al.,  1996,   LSM,  Bonan,  1996   BATS,  Dickinson  et  al.,  1986,     Corripio,  2010.   Erbs  et  al.,  1983.   Iqbal,  1981.     tRIBS,  Ivanov  et  al,  2004   Cailow,  Zehe  et  al.,  2001   InHM,  VanderKwaak,  and  Loague,  2001   WaSim-­‐ETH,  Shulla  1997   Hydrogeosphere,  Therrien  and  Sudicki,  1996   Parflow,  Asby  an  Falgout,  1996   Cathy,  Paniconi  and  Pub,  1994   DHSVM,  Wigmosta  et  al.,  1994   SHE,  Abbot  et  al.  1986   Freeze  and  Harlan,  1969    
  • 13. Coupling  GEOtop  2.0    with  a  DV    model   Rigon  et  al.,  JHM,  2006;     Endrizzi  et  al.  GMDD,  2014.   Processes   Dynamic vegetation model (for grasslands)   From  Montaldo  et  al.,    2005;   Della  Chiesa  et  al.,  2014  
  • 14. ElevaOon  gradient:  validaOon   MulOple  variables  validaOon:  SWE,  SWC,  above  ground  biomass  (Bag),  ET   Two  years  of  data:  calibra=on  in  B1500,  valida=on  in  B1000,  B2000   B2000  m  B1500  m  B1000  m   Snow  Height  [cm]   SWC  5cm  []   ET  [mm]   Not  Measured   Not  Measured   r2=0.66   RMSE=7.1   r2=0.57   RMSE=5.9   r2=0.55   RMSE=2.9   r2=0.80   r2=0.78   r2=0.82   Bag  [gDMm-­‐2]   RMSE=0.04   RMSE=0.05   RMSE=0.04   r2=0.93   RMSE=58.39  
  • 15. Simula=on  extension  to  20  year     Coupling  snow  –  veg  –  ET  -­‐  SWC   Water  limitaOon  below  1500  m   SWC  along  the  year   SWC  []   2000  m  1500  m  1000  m   SWC  along  the  year   Water  source   Water  sink   CriOcal  elevaOon   ElevaOon  gradient:  soil  moisture  and  ET  
  • 16. ElevaOon  gradient:  implicaOons  at  catchment  scale   It  exists  a  cri=cal  eleva=on  below  which  most  of  the  precipitaOon  is  used  for  ET.   Will  climate  change  move  this  cri=cal  eleva=on  upward?         2000  m  1500  m  1000  m   SWC  along  the  year  
  • 17. ApplicaOon  2:  modelling  impacts  of  CC  in    Venosta     Downscaling  of  RCMs   to    Venosta  Valley     Mapping  cri=cal  varia=ons  in   water  budget  (ET,    SMC,  snow)   Hydrological   experiment  along  an   elevaOon  gradient  as   proxy  of  CC   (Mazia,  Venosta)  
  • 18. ApplicaOon  2:  impacts  of  CC  on  sinw  ET  and  SWC   Research  ques=ons       Which  are  the  major  impacts  of  CC  on  snow,  evapotranspira=on,     soil  moisture  in  a  dry  alpine  valley?     How  to  iden=fy  the  most  vulnerable  areas  in  terms  of     topography/land  cover?     Which  are  the  major  uncertain=es?       Main  issues     Complex  topography  à  scale  vs.  computa=onal  effort     Model  parameteriza=on,  boundary  condi=ons     Brenner.,  Modeling  impacts  of  climate  change  on  evapotranspira6on     and  soil  moisture  spa6al  paTerns  in  an  alpine  catchment,  Thesis,  2014.             .  
  • 19.     ApplicaOon  2:  Study  Area   Venosta  Valley,  Upper  Adige  River  1000  km2  
  • 20.     •  RCM  ensemble  based  on  SRES  A1B  (ESEMBLES   project)1   •  Ctrl:  1990-­‐2010,  Scen2100:  2080-­‐2100   •  ∆  approach  (30  day  moving  average)     •  ∆  change  signals  at  daily  scale  for  air  temperature   and  precipitaOon   Downscaling   Technique   TopoSUB   Tool   GEOtop   Model   Simula=on   set-­‐up   1  Van  der  Linden,  P.,  &  Mitchell,  J.  (2009).  ENSEMBLES:  Climate  change  and  its  impacts  at  seasonal,  decadal  and  centennial  6mescales  (p.  160).  Exeter,  UK.      Retrieved  from  hPp://ensembles-­‐eu.metoffice.com/docs/Ensembles_final_report_Nov09.pdf       ApplicaOon  2:  Methods  
  • 21.     Downscale   Technique   TopoSUB   Tool   GEOtop   Model   Simula=on   set-­‐up   1  Fiddes,  J.,  &  Gruber,  S.  (2012).  TopoSUB:  a  tool  for  efficient  large  area  numerical  modelling  in  complex  topography  at  sub-­‐grid  scales.      Geoscien6fic  Model  Development  Discussions,  5(5),  1245–1257.     2  HarOgan,  J.  A.,  &  Wong,  M.  A.  (1979).  A  K-­‐Means  Clustering  Algorithm.  Journal  of  the  Royal  Sta6s6cal  Society.  Series  C  (Applied  Sta6s6cs),  28(1),  100–108.     Clustering   • sampling  of  most  important  aspects  of  land  surface   heterogeneiOes  and  land  cover   • K-­‐Means  clustering  algorithm  2   • based  on  20m  grids   GEOtop   • 1-­‐dimensional  simulaOons  for  cluster  centroids   Mapping   • Crisp  memberships   ApplicaOon  2:  Methods  
  • 22.     Downscale   Technique   TopoSUB   Tool   GEOtop   Model   Simula=on   set-­‐up   •  GEOtop  model   •  DistribuOng  meteorological  input   •  Energy  and  mass  conservaOon   •  Soil  volumetric  water  content   •  Actual  evapotranspiraOon   •  Snow  accumulaOon  &  melt     •  ApplicaOon  in  mountain  areas   1  Rigon  et  al.  (2006).  GEOtop:  A  Distributed  Hydrological  Model  with  Coupled  Water  and  Energy  Budgets.  Journal  of  Hydrometeorology,  7(3),  371–388.   2  Endrizzi  et  al.  (2014).  GEOtop  2.0:  simulaOng  the  combined  energy  and  water  balance  at  and  below  the  land  surface  accounOng  for  soil  freezing,      snow  cover  and  terrain  effects.  Geoscien6fic  Model  Development  6(4),  6279–6341.     ApplicaOon  2:  Methods  
  • 23.     Downscale   Technique   TopoSUB   Tool   GEOtop   Model   Simula=on   set-­‐up   •  SimulaOon  calibraOon/performance   •   2010/2011  (AlOtudinal  Transect)   •  MulOple  Point  SimulaOon  (300  cluster  centroids)   •  baseline  simulaOon  1990-­‐2010   •  7  scenario  simulaOon  2080-­‐2100   ApplicaOon  2:  Methods  
  • 24.     scen2100   DJF   MAM   JJA   SON   ∆P  (%)   +14   +1.7   -­‐13   +16   ∆T  (°C)   +3.1   +3.3   +4.2   +3.2   ApplicaOon  2:  Results   Climate  Change  Projec=ons  for  the  Venosta  Valley  
  • 25.            Baseline  SimulaOon                ∆%  (scen2100-­‐ctrl)   ApplicaOon  2:  Results   Climate  Change  Impact  –  Snow  Cover  Dura=on  
  • 26.            Baseline  SimulaOon                ∆abs  (scen2100-­‐ctrl)   ApplicaOon  2:  Results   Climate  Change  Impact  –  Actual  Evapotranspira=on  
  • 27.                                ∆abs  (scen2100-­‐ctrl)   Change  in  Mean  Annual  ETA  (mm)   Aspect   Forest:  South-­‐east   Major  impact   Pasture:  East   Bare  Soil:  South-­‐east   Grassland  &  Agriculture:   No  effect  of  aspect   ApplicaOon  2:  Results   Climate  Change  Impact  –  Actual  Evapotranspira=on  
  • 28.     ApplicaOon  2:  Results   Climate  Change  Impact  –  Actual  Evapotranspira=on   4      14   +  250%    48          69   +  43%   131          149   +  12%   53      62   +  17%  
  • 29.     ApplicaOon  2:  Results   Climate  Change  Impact  –  Soil  Mositure–  Severe  Water  Stress   CriOcal  soil  moisture  level  is  refered  to  plant  available  water   1 1  Jasper  et  al.  (2006).  Changes  in  summerOme  soil  water  paPerns  in  complex  terrain  due  to  climaOc  change.  Journal  of  Hydrology,  327(3-­‐4),  550–563.        
  • 30.     ApplicaOon  2:  Results   Climate  Change  Impact  –  Soil  Water  Content  –  Severe  Water  Stress  
  • 31.     ApplicaOon  2:  Conclusions   Conclusions     •  General  decrease  in  snow  cover  duraOon  (max  9  weeks),   which  drives  major  increase  in  evapotranspira=on  in  winter   and  spring  (+25%).   •  LiPle  decrease  of  catchment-­‐averaged  soil  moisture  (except   for  some  rainfall  scenarios).   •  Specific  sites,  which  are  already  characterized  by  water  stress,   show  an  increase  in  drought  days  (esp.  pastures  and  forests  ~   1500  m  a.s.l.).  
  • 32.     Major  uncertainOes  and  perspecOves   Clima=c  scenarios     •  Temperature  -­‐>  Depends  on  concentraOon  scenarios  (IPPC,  2013)*   •  PrecipitaOon  -­‐>  No  clear  trend.  RCMs  do  not  reproduce  local  climatology.   •  No  info  on  trends  of  air  humidity,  wind,  radiaOon  (clouds).   Hydrological  model  (GEOtop  2.0)     •  ComputaOonal  limitaOons  (full  3D    vs.  1D)  for  soil  water  distribu=on  and   runoff  simulaOon.   •  Full  dynamic  vegetaOon  and  glaciers.   •  Land  cover  scenarios.   Data  availability     •  PrecipitaOon  in  high  elevaOon  regions  (>  2000  m)  (Mair  et  al.,  2013)**   •  InformaOon  on  soil  properOes  (IRKIS).   *IPPC  (2013).  Climate  Change  2013:  The  Physical  Science  Basis.  IPCC  Working  Group  I  ContribuOon  to  AR5.   **    Mair,  et  al..  (2013).  ESOLIP;  esOmate  of  solid  and  liquid  precipitaOon  at  sub-­‐daily  Ome  resoluOon  by  combining  snow   height  and  rain  gauge  measurements.  Hydrology  and  Earth  System  Sciences  Discussions,  10(7),  8683–8714.      
  • 33.     Summer  2015   Courtesy  od  Andrea  Debiasi,  27  Luglio  2015  
  • 34. ApplicaOon  3:  remote  sensing  of  soil  moisture   Mo=va=on     Limited  availability  of  reliable  soil  moisture  high  resoluOon  products  on  mountain  areas.       Heterogeneity  in  soil  type,  land  cover,    topography  limits  distributed  models  parameteriza=on.     How  far  can  SAR  remote  sensing  help  for  improving  modelling  surface  soil  moisture     in  mountain  grassland  areas?               Bertoldi,  G.,  et  al.  Es6ma6on  of  soil  moisture  paTerns    in  mountain  grasslands  by  means  of   SAR  RADARSAT2  images  and     hydrological  modeling.  J.  Hydrol.  (2014)       RADASAT2  SAR     Distributed  models  are  “hungry”  of  spa=ally   distributed  informa=on1   1Grayson  et  al.,  1998  
  • 35. Soil  moisture:  observaOons   Fixed  Sta=ons   Field  surveys   Mazia,  South   Tyrol,  Italy  ~   100  km2   RADASAT2  SAR   images  20m  res   Surface  SWC   retrieval  (SVR  Pasolli   et  el.,  2011)  
  • 36. Ground  observaOons:  mobile  surveys   •  Monitoring  SMC  spa=al  paserns  at  hillslope  scale;   •  Survey  planned  to  map  land  cover/topographic  features;   •  Good  correspondence  with  staOon  values.   •  More  than  10  surveys  between  2010  and  2014;   •  More  than  1000  points  with  mobile  Delta-­‐T  wet  sensor  (TDR)  0  –  5  cm  depth;   10  %   50  %   SWC  
  • 37. Remote  sensing:  SAR  datasets   RADARSAT2  images:   •  Fully  polarimetric  images  (HH,  HV,  VH,  VV)  and  dual   pol  (HH-­‐HV)     •  5.5  cm  wavelength  (C-­‐band  radar)   •  Almost  all  images  with  45°nominal  incidence  angle   •  Final  spaOal  resoluOon  20x20  m2   (RADARSAT-­‐2  Data  and  Products©  MacDonald,  DeTwiler  and   Associates  Ltd.  (2010)  –  All  Rights  Reserved)   Data   Period   Number   RADARSAT2   2010-­‐2011,  2013-­‐2015   Un=l  now  20   ASAR  WS   2005-­‐2012   Un=l  now  analyzed   around  200  images   ASAR  WS:   •  Mainly  VV  pol.   •  5.5  cm  wavelength  (C-­‐band  radar)   •  Ascending  nd  descending   •  Final  spaOal  resoluOon  150x150  m2  
  • 38. Methodological approach GEOtop  Model   (Rigon  et  al.,  2006)   Support  Vector   Regression     (Pasolli  et  al.,  2011)     gsr QQQETP t SMC −−−−= ∂ ∂ ET Qr QrQs Qs Qg P Mass  and  enegy   budget   3D  Richard     3D   equa=ons   SMC   es=ma=on   @  5cm     HH HV NDVI Modis Elev.DEM Land use Radarsat polarizations Features SMC observations Target SVR Param. SVR Regression Analysis SVR Map Estimation Estimated SMC Estimation Training
  • 39. GEOtop  validaOon  in  staOons  locaOons   Model  validated  for  SMC  for  staOons  located  both  in  pastures  and  irrigated  meadows   Bias -0.047 m3/m3 RMSE 0.054 m3/m3 Bias -0.016 m3/m3 RMSE 0.041 m3/m3
  • 40. SAR  SMC  validaOon   Outcome:   1. The   proposed   es:ma:on   system   is   effec:ve   in   handling   the   challenging  soil  moisture  retrieval  problem  in  Alpine  areas.   2. Mul:ple   polariza:ons   and   ancillary   data   are   needed   to   disentangle   the  effects  of  local  scale  vegeta:on  and  roughness.   RADARSAT 2 ASAR WS R2=0.89   R2=0.88   ValidaOon  on  a  different  ground  observaOons  subset  
  • 41. Soil  moisture:  Radarsat  2  maps   Wettest locations are along the valley bottom and in irrigated areas. Driest locations are south-facing low elevation pastures.
  • 42. Soil  moisture:  spaOal  comparison  
  • 43. Results:  Radarsat  –  GEOtop  differences   •  Major  differences  in  in  irrigated  meadows;   •  Too  coarse  scale  model  soil  and  land  cover  parameterizaOon.   •  Radarsat  captures  the  small  scale  variability  related  to  land  cover/irrigaOon    
  • 44. What  controls  the  observed  SMC  paPerns?   Coupling  between  (surface)  soil  type  and  land  management.      Model  helps  to  understand  physical  reasons  of  observed  paserns.   Topography, soil type or land use?
  • 45. SAR  soil  moisture  esOmaOon:  conclusions   Modelling:  GEOtop   +  conOnuous  spaOal  and  temporal  coverage;   +  good  capability  to  capture  temporal  paPerns;   -  limitaOons  due  land  cover  /  soil  /  irrigaOon  parameterizaOon.   SAR:  RADARSAT  2   +  good  capability  to  capture  fine  scale  spaOal  paPerns;   +  strong  signature  of  land  cover  /  vegetaOon  /  irrigaOon  paPerns;   +  High  spaOal  resoluOon,  limited  temporal  coverage;   -  Possible  ambiguity  due  soil/land  cover  coupling;   -  limited  to  surface  layer  (~5  cm)  and  grassland  areas.  
  • 46. PerspecOves:  toward  an  integraOon  strategy  …  temporal   Possible  integra=on  strategy:     temporal  driving  from  the  model,  spaOal  paPerns  SAR  imaging   Average  and  std  ASAR  and  GEOtop  SMC  
  • 47. Toward  an  integraOon  strategy  …  spaOal   ASAR   GEOtop   Use  model-­‐derived  data  as  addiOonal  input  feature  for  a  SVR   approach  in  areas  where  limited  ground  truth  is  available.  
  • 48. Overall Conclusions Experimental   observa=ons   Experimental  design   Models  valida=on     parameteriza=on   Process   understanding   Eco-­‐hydrological   modelling   ET 2 W/m2 286 W/ m2
  • 49. Come  and  visit  us,     we  are  waiOng  for  you  J   Matsch  |  Mazia   49   Our data need modellers !
  • 50. Acknowledgments      This  study  is  supported  by  the  projects  “and  “HydroAlp”  and  “HiResAlp”  financed  by  Provincia   Autonoma  di  Bolzano,  Alto  Adige,  Ripar=zione  Diriso  allo  sudio,  Università  e  ricerca  scien=fica.     We  hereby  would  like  to  thank:     M.  Dall´Amico,  Mountaneering  s.r.l.   S.  Endrizzi,  University  of  Zurich.   R.  Rigon,  University  of  Trento.   G.  Wohlxart,  University  of  Innsbruck     Thank  you  for  your  aGen:on!  
  • 51.    
  • 52. Opportunites  and  challenges   Ø  Using  physically  models  in  real  contexts  is   someOmes  more  Ome-­‐consuming  than   doing  real  experiments.   Ø  A  deep  knowledge  of  the  system  is  needed   for  set-­‐up  proper  assumpOons  in  model   parameterizaOon  (a  lot  on  unknown   informaOon).   Ø   Great  tools  for  tesOng  hypotheses  and   generalize  results.  
  • 53. Opportunites  and  challenges   Ø  The  parOcularly  dry  area  represents  a  unique   chance  to  study  climate  change  allowing  predicOons   of  future  climate  on  mountain  ecosystems.   Ø  The  eleva=on  transect  allows  for  experimental  and   numerical  invesOgaOon  on  effects  of  elevaOon  on   eco-­‐hydrological  processes.     Ø  The  site  allows  interdisciplinary  observaOons  of   relevant  eco-­‐hydrological  processes  in    a  human-­‐ influenced  mountain  region.     Ø  The  climaOc  condiOons  of  Val  Mazia  may  allow   interesOng  comparisons  among  different  mountain   sites  of  the  MRI  /  LTER  network.     Ø  Chance  to  be  part  of  a  well  organized  and  good   structured  scien=fic  network.  
  • 54.    
  • 55. ElevaOon  gradient:  results  B2000  m  B1500  m  B1000  m   Coupling  snow  –  veg  –  ET  -­‐  SWC   SWC  along  the  year   IrrigaOon  below  1500  m  
  • 56. GEOtop validation in stations locations Model  validated  for  SMC  for  staOons  located  both  in  pastures  and  irrigated  meadows  
  • 57. Study  Area:  meadows   57 Mazia  Valley,  South  Tyrol,  Italy     Meadows   Up  to  ~  1700m  a.s.l.   Intensively  managed:    -­‐  cubng    -­‐  manuring    -­‐  irrigaOon   Homogenous  soil  surface   VegetaOon  dominated  by  grasses    
  • 58. Study  Area:  pastures   58 Mazia  Valley,  South  Tyrol,  Italy     Pastures   Located  at  1700  to  2400m  a.s.l.   Steep  terrain   Heterogeneous  soil  surface:    -­‐  bare  soil    -­‐  stones    -­‐  large  rocks   VegetaOon  dominated  by  grasses        
  • 59. Study  area:  soil  properOes   Kolmann and Tasser, 2012 •  Two  main  soil  types:       1.  Haplic  Leptosol    (ranker)  mainly  in  pastures;   2.  Dystric  Cambisol  (braunerde)  mainly  in  meadows  (Kollman,  M.  Th.,  2013).   •  Observed  soil  parameters  are  in  the  typical  range  of  loamy  sand  (Leptosoil)  and   sandy  loam  (Cambisoil).   Kollmann,  K..  Klima-­‐  und  landnutzungsbedingte  Bodenverteilung  im  Matschertal,  SüdOrol.  Ms.  Thesis,  Universität  Innsbruck.(2012).  
  • 60. Ground  observaOons:  fixed  staOons   Network  of  14  staOons  with:   •   Meteorological  data   •   SMC  5  and  20  cm  depth      (Decagon  capaciOve  sensors  10Hs)     Transect  sta=ons   Catchment  sta=ons   Run-­‐off  measurements   Area  ~100  km2   •  Monitoring  SMC  temporal  dynamic  at  catchment  scale.  
  • 61. Ground  observaOons:  mobile  surveys   •  Monitoring  SMC  spa=al  paserns  at  hillslope  scale;   •  Survey  planned  to  map  land  cover/topographic  features;   •  Good  correspondence  with  staOon  values.   •  More  than  10  surveys  between  2010  and  2014;   •  More  than  1000  points  with  mobile  Delta-­‐T  wet  sensor  (TDR)  0  –  5  cm  depth;   10  %   50  %   SWC  
  • 62. Hydrological  modeling:  GEOtop  SMC  simulaOon   GEOtop  model   Rigon  et  al.,  JHM,  2006.   Endrizzi  et  al.,  GMDD,  2013.   ∂SMC ∂t = P − ET −Qr −Qs −Qg ET   Qr   Qr  Qs   Qs   Qg   P   Plot  scale  water  budget   Catchment  scale  SMC   @  5cm     3D  Richard’s  eq.   Endrizzi,  S.,  et  al.  GEOtop  2.0:  simulaOng  the  combined  energy  and  water  balance  at  and  below  the  land  surface  accounOng  for  soil  freezing,   snow  cover  and  terrain  effects.  Geosci.  Model  Dev.  Disc.  6,  6279–6341  (2013).   Rigon,  R,  et  al.  GEOtop:  a  distributed  hydrological  model  with  coupled  water  and  energy  budgets.  J.  Hydrometeorol.  7  (3),  371–388  (2006).    
  • 63. GEOtop  –  DVM  coupling   GEOtop   VDM   -­‐  Rad,Rh,PAR,T,  Wind   -­‐  Ini=al  Condi=ons   -­‐  Meteo  input   -­‐  Soil  and  topography     Montaldo  et  al.,    2005   Endrizzi  et  al.,  2013   Canopy  Frac=on   Canopy  Height   Leaf  Area  Index   Senescence   Respira=on   Trasloca=on   Biomass     Budget   Photosynthesis   Evapotranspira=on   Intercep=on   Energy  Balance   Throughfall   Infiltra=on   Soil    Water     Balance   Runoff   Drainage   Rain/Snowfall   Rigon  et  al.,    2006   Della  Chiesa  et  al.,  2014  
  • 64. Data  recorded  with  high  frequency  (15´since  2009)   Matsch  |  Mazia   64   precipitation (mm) global radiation (W/m²) soil temperature (°C) and soil moisture (Vol%) logger air temperature (°C) and humidity (%) Snow/Vegetation height (cm) Photosynthetic active radiation (µmol s−1W*−1) Radiation balance (W/m²) Soil surface temperature (°C) Soil heat flux (W/m²) Latent and sensible fluxes (W/m²) Soil water potential (hPa) wind speed and direction (m/sec, °)
  • 65. Coupled ecohydrological modelling   How  to  use  experimental  observa=ons  to  validate  a   distributed  ecohydrological  models?     How  to  use  model  results  to  improve  our  knowledge  of   the  ecohydrological  behavior  of  mountain  catchments?