SlideShare ist ein Scribd-Unternehmen logo
1 von 17
Downloaden Sie, um offline zu lesen
CHAPTER I
PRECALCULUS REVIEW
I-Functions and their graphs
II-Trigonometry
III-Graphs of Second-degree equation
tany x=
2
2 2
2
1
y
a b
x + =
For Math 131
1
CONTENTS
I FUNCTIONS AND THEIR GRAPHS
1. Functions
i) Function definition
ii) The Vertical line test
iii) Absolute value of a number
iv) Symmetry
2. Essential functions
i) Linear function of x
ii) Polynomials
iii) Power function
iv) Rational function
v) Algebraic function
vi) Transcendental function
3. New functions from old functions
i) Transformation of functions
ii) Combination of function
iii) Composition of function
II TRIGONOMETRY
1. Trigonometric functions
2. Graphs of the trigonometric functions
3. Trigonometric identities
4. Solving trigonometric equations
III GRAPHS OF SECOND-DEGREE EQUATION
1. Circles
2. Parabolas
3. Ellipses
4. Hyperbolas
2
I FUNCTIONS AND THEIR GRAPHS
1. Functions
i) Function definition:
A function is a rule that assigns to each element in a set D exactly one
element, called in a set R.
f x
( )f x
D and R are sets of real numbers.
The set D is called the domain.
The range R of is the set of all possible values of as varies
through out the domain.
f ( )f x x
Example 1:
Sketch the graph and find the domain and range of each function
a) b)12)( −= xxf
2
)( xxg =
Solution:-
a) The graph of the equation 12 −= xy is a line
So we need any 2 points to sketch its graph.
1 1
2 2
0 1 :(
0 :
x y
y x
= ⇒ = − −
= ⇒ =
0, 1)
( ,0)
The domain of is the set of all real numbersf R
The range is also R
b) The graph of the equation is a parabola
2
)( xxg =
The domain of is Rg
The range of g is [ )0,∞
Example 2:
Find the domain of each function
a) 2)( += xxf b)
xx
xg
−
= 2
1
)(
Solution:-
a) Because the square root of negative numbers is not defined, the domain of
consists of all values of such that
f
x 2 0x+ ≥ . The domain is .)2,⎡
⎣− ∞
3
b) Since
)1(
11
)( 2
−
=
−
=
xxxx
xg and division by 0 is not allowed,
we see that is not defined when)(xg 10 == xorx
Thus, the domain of g is ( ) ( ) ( ),0 0,1 1,−∞ ∞∪ ∪
ii) The Vertical line test
A curve in the - plane is the graph of a function of if and only if no
vertical line intersect the curve more than once.
xy x
A function of x not a function of x
iii) Absolute value of a number
Definition: a is the distance from to 0 on the real number linea
⎩
⎨
⎧
<−
≥
=
0
0
aifa
aifa
a
Properties of absolute values:
For , then0>b
(i) ba < Iff bab <<−
(ii) ba > Iff baorba −<>
(iii) ba = Iff baorba −==
Example 3:
Sketch the graph of xxf =)(
Solution:-
⎩
⎨
⎧
<−
≥
=
0
0
xx
xifx
x
4
iv) Symmetry
Even function:
If a function satisfiesf )()( xfxf =− for every number in its domain,
then is called an even function.
x
f
e.g. xxfxxf cos)(,)( 2
==
2
)( xxf = An even function
Note: the graph is symmetric with respect to the y-axis
Odd function:
If a function satisfiesf )()( xfxf −=− for every number x in its domain,
then is called an odd function.f
e.g. xxfxxf sin)(,)( 3
==
3
)( xxf = , an odd function
The graph is symmetric about the origin.
Example 4:
Determine whether each of the following function is even, odd, or
neither even nor odd:
a) b) c)xxxf += 5
)(
4
1)( xxf −= 2
2)( xxxf −=
Solution:-
)()()( 55
xfxxxxxf −=+−=−−=−a) Odd function
b) Even function)(1)( 4
xfxxf =−=−
c) Neither even nor odd
2
2)( xxxf −−=−
5
2. Essential functions
i) Linear function of x:
we mean that the graph of the function is a line y mx c= +
Equation of a line where ( )1 1,x y , ( )2 2,x y are 2 given points
1 2
1 2
y y y y1
1x x x x
− −
=
− −
Equation of a line, where given point and is the slope( 11 , yx ) m
( )1
1 1
1
y y
m y y m x
x x
−
= ⇒ − = −
−
x
Special lines
Two lines 1 2&L L 2have slopes are:1 &m m
(i) Parallel if 21 mm =
(ii) Perpendicular 121 −=mm
Example 5:
Find an equation of the line passes through the points A(-1, 4) and B(3, 2)
Solution:-
2
1
4
2
31
24
1
4 −
=
−
=
−−
−
=
+
−
x
y
71
2 2
y x−= +
Example 6:
Find an equation of the line passes through the point (3, -4) and is parallel to
the line 952 =− yx
Solution:-
From the given line:
2 2
2 5 9 5 2 9 9
5 5
x y y x y x m− = ⇒ = − ⇒ = − ⇒ =
∴The required equation is
m
x
y
=
−
+
3
4
⇒
5
2
3
4
=
−
+
x
y
⇒
5
26
5
2
−= xy
6
ii) Polynomials
A function p is called a polynomial if 0
1
1 ........)( axaxaxp n
n
n
n +++= −
−
Where is a nonnegative integer and the numbers are
constant called the coefficients of the polynomial. The domain of a
polynomial is . the degree of the polynomial is .
n naaa ,...,, 10
R n
e.g.
6 4 3
( ) 2 25 2p x x x x= + + + is a polynomial of degree 6
A polynomial of degree 1 is of the form ( )p x mx c= + and so it is a
linear function.
A polynomial of degree 2 is of the form and is
called a quadratic function. Its graph is always a parabola obtained by shifting
the parabola , the parabola opens upward if , and downward
if
cbxaxxp ++= 2
)(
2
axy = 0>a
0<a
iii) Power function ( ) af x x=
, where is a positive integera n= n
7
1a
n
= , where is a positive integer:n n
xxf
1
)( = is a root function
The graph of the reciprocal function1a =− 1( )f x
x
=
iv) Rational function
A rational function is a ratio of two polynomialf
)(
)(
)(
xQ
xp
xf =
e.g.
4
12
)( 2
24
−
+−
=
x
xx
xf
v) Algebraic function
It can be constructed using algebraic operation (addition, subtraction,
multiplication, division, and taking roots)
e.g. 2( ) 1f x x= + ,
4 216( ) x xg x
x x
−=
+
vi) Transcendental function
Functions that are not algebraic. The set of transcendental function include the
trigonometric, inverse trigonometric, exponential and logarithmic function …
e.g. ( ) sinf x = x , ( ) 5xg x =
8
3. New functions from old functions
i) Transformation of functions:-
By applying certain transformations to the graph of a given function we can
obtain the graphs of certain related functions.
Vertical and horizontal shifts:- suppose .0>c
( )y f x c= + , shift the graph of )(xfy = a distance of units upward.c
( )y f x c= − , shift the graph of )(xfy = a distance of units downward.c
)( cxfy −= , shift the graph of )(xfy = a distance of units to the right.c
)( cxfy += , shift the graph of )(xfy = a distance of units to the left.c
Vertical & Horizontal stretching and reflecting:- suppose 1>c
( )y c f x= , stretch the graph of )(xfy = vertically by a factor of .c
1 ( )y f xc= , compress the graph of )(xfy = vertically by a factor of .c
( )y f cx= , compress the graph of )(xfy = horizontally by a factor of .c
( )xy f c= , stretch the graph of )(xfy = horizontally by a factor of .c
)(xfy −= , reflect the graph of )(xfy = about the x- axis.
)( xfy −= , reflect the graph of )(xfy = about the y- axis.
Example 7:
Given the graph of xy = , use transformation to graph
xyxyxy −=−=−= ,2,2
xyxy −== ,2
Solution:-
9
Example 8:
Sketch the graph of the function 106)( 2
++= xxxf
Solution:-
Completing the square
1)3(106 22
++=++= xxxy
ii) Combination of functions:-
Algebra of functions
domain)()())(( xgxfxgf +=+ gf DD ∩
domain)()())(( xgxfxgf −=− gf DD ∩
domain)()())(( xgxfxfg = gf DD ∩
)(
)(
)(
xg
xf
x
g
f
=⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
domain 0)(, ≠xfDD gf ∩
Example 9:
if
2
4)(,) xxgxx −=(f = , find the functions
g
fandfggfgf ,,, −+ .
Solution:-
( )f x x= : is [0,0x ≥ ⇒ fD ∞ )
2
( ) 4g x x= − :
22 2
4 0 4 4x x x x− ≥ ⇒ ≤ ⇒ ≤ ⇒ ≤ 2
22 ≤≤− x ⇒ gD is [-2,2]
[ ]: 0,2f gD D∩
2
4f g x x+ = + − D: 20 ≤≤ x
2
4f g x x−− = − D: 20 ≤≤ x
2 2
4 4fg x x x x= − = − D: 20 ≤≤ x
2 4
x
x
f
g −
= D: 20 <≤ x
10
iii) Composition of function
Suppose that uufy == )( and 1)( 2
+== xxgu
( ) 1)1()()( 22
+=+=== xxfxgfufy
Def.: Given two functions andf g , the composite function f g (also called
the composition of andf g ) is defined by ( ) ( )( ) ( )f g x f g x=
The domain of f g is the set of all is in the domain ofx g such that is in
the domain of .
)(xg
f
Example 10:
2
)( xxf =If , and 3)( −= xxg , find the composite function f g and fg
Solution:-
( ) 2
( )( ) ( ) ( 3) ( 3)
f g
f g x f g x f x x D is= = − = − R
( ) 2 2
( )( ) ( ) ( ) 3
g f
g f x g f x g x x D is= = = − R
In general f g g f≠
Example 11:
If ( )f x x= and , ( ) 2g x x= − , find each function and its domain
a) f g b) fg c) f d)f g g
Solution:-
( )a) ( ) 4
( )( ) ( ) 2 2 2f g x f g x f x x x= = − = − = −
( ]: 2 0 2 , 2f g
D x x− ≥ ⇒ ≤ ⇒ −∞ ,
b) ( )( )( ) ( ) ( ) 2g f x g f x g x x= = = −
0x tobedefined x ≥ & 2 2 0x tobedefined x x 4− − ≥ ⇒ ≤
0 4x∴ ≤ ≤ : 0,4g fD ⎡ ⎤
⎣ ⎦
c)
1/ 2 1/ 2 1/ 4 4
( )( ) ( ( )) ( ) ( )f f x f f x f x x x x x= = = = = =
)0,f fD ⎡
⎣
∴ = ∞
d) ( )( ) ( ( )) ( 2 ) 2 2g g x g g x g x x= = − = − −
2 2 0tobedefinedx x− − ≥ 2x⇒ ≤
2 2 2 2 0 2 2 2 4x x x xtobedefined− − − − ≥ ⇒ − ≤ ⇒ − ≤ ⇒ ≥ −2x
[ ]2,2g gD −∴ =
11
-2
2
II TRIGONOMETRY
1. Trigonometric functions
Trigonometric function of any angle :x
c
b
a
x
sin cos tan
csc sec cot
, ,
, ,
a bx xc c b
c cx xa ab
= =
= =
ax
bx
=
=
Positive functions :
Values of basic Trigonometric functions:
3
2 2
3
2 2
sin(0) 0 , sin( ) 1 , sin( ) 0 , sin( ) 1 , sin(2 ) 0
cos(0) 1 , cos( ) 0 , cos( ) 1 , cos( ) 0 , cos(2 ) 1
π π
π π
π π
π π
= = = = −
= = = − =
=
=
Example 1:
Find the values of the trigonometric functions for 3
4
πθ =
Solution:-
3 3) )
4 4
3 3) 2 ) 2 )
4 4
1 1sin( cos( tan( 1
2 2
csc( sec( cot( 1
, ,
, ,
π π
π π
3 )
4
3
4
π
π
−= =
= − = = −
= −
12
2. Graphs of the trigonometric functions
i) Y=sin(x):
(1) Odd Functions
(2) Domain is R
(3) Range [-1, 1]
(4) Period is 2π
ii) Y=cos(x):
(1) Even Functions
(2) Domain is R
(3) Range [-1, 1]
(4) Period is 2π
i) Y=tan(x):
(1) Odd Functions
(2) Domain is R-{±π /2, ±3π /2, ±5π /2........}
(3) Range R
(4) Period is π
y=csc x y=secx y=cotx
13
Example 2:
Sketch the graphs of the following functions
(i) Y = 2 sin (x) (ii) Y = Sin (2x)
Solution:-
i-
ii-
Note: In general if y = sin (n Ө) its Period is 2π /n
14
3. Trigonometric identities
1- Sin2
x + Cos2
x =1
2- Tan2
x +1 = Sec2
x.
3- Cot2
x +1 = Cosec2
x
4- Sin (a ± b) = Sin (a) Cos (b) ± Cos (a) Sin (b)
5- Cos (a ± b) = Cos (a) Cos (b) ∓ Sin (a) Sin (b)
6- Sin (2a) = 2 Sin (a) Cos (a)
7- Sin2
(a) = (1/2)(1-Cos(2a))
8- Cos2
(a) = (1/2)(1+Cos(2a))
9- Cos (2a) = Cos2
(a)-Sin2
(a) = 1-2Sin2
(a) = 2Cos2
(a) -1
10- Tan (a ± b) = [(Tan (a) ± Tan (b)] /[1 Tan(a) Tan(b)]∓
4. Solving trigonometric equations
Example 3:
1
2sin( )θ = if
i = [0,2 ]θ π∈
ii = θ ∈R
Solution:-
[0,2 ]i- θ π∈
)6/5(,6/ πθπθ ==
ii- θ ∈ R
.....2,1,0,26/ ±±=+= nnππθ
,.....2,1,0,2)6/5( ±±=+= nnππθ
Example 4:
Solve 2
(1 3) ( 3 1) 0, [0,2 ]Sec Tanθ θ θ π− + + − = ∈
Solution:-
2
2
(1 ) (1 3) ( 3 1) 0
(1 3) 3 0
)( 3) 0
1, 3
/ 4, /3
Tan Tan
Tan Tan
Tan Tan
Tan Tan
θ θ
θ θ
θ θ
θ θ
θ π π
+ − + + − =
− + + =
− − =
= =
=
( 1
Example 5:
Solve Co ( ) (2 ) 0s x Cos x+ = [0,2 ]x π∈
Solution:-
=
2
2 ( ) ( ) 1 0
(2 ( ) 1)( ( ) 1) 0
( ) 1/ 2, 1
/3, ,5 /3
Cos x Cos x
Cos x Cos x
Cos x
x π π π
+ − =
− +
= −
=
15
Note 1:
[ ]
2 2
2 2 2
2 2 2
cos sin 1 (1)
1 tan sec (1) / cos
cot 1 csc (1)/sin
sin( ) sin cos cos sin (2)
sin( ) sin cos cos sin (3)
1
(3) (2): sin cos sin( ) sin( )
2
(2) : sin 2 2sin cos
cos( ) cos cos
x x
x x x
x x x
x y x y x y
x y x y x y
x y x y x y
In put y x x x x
x y x y
+ =
+ = ⇐
+ = ⇐
+ = +
− = −
+ = − + +
= =
+ =
[ ]
[ ]
2 2
2 2 2
sin sin (4)
cos( ) cos cos sin sin (5)
1
(5) (4): cos cos cos( ) cos( )
2
1
(5) (4): sin sin cos( ) cos( )
2
(4) : cos2 cos sin
(1) sin 1 cos cos2 2cos 1 co
x y
x y x y x y
x y x y x y
x y x y x y
In put y x x x x
From x x x x
−
− = +
+ = − + +
− = − − +
= = −
= − = − ⇒ 2
2 2 2 2
2
1
s (1 cos
2
1
(1) cos 1 sin cos2 1 2sin sin (1 cos2 )
2
tan tan tan tan
tan( ) (6) tan( )
1 tan tan 1 tan tan
2tan
(6) : tan 2
1 tan
2 )x x
From x x x x x x
x y x y
x y x y
x y x y
x
In put y x x
x
= +
= − = − ⇒ = −
+ −
+ = − =
− +
= =
−
:2Note
2 2 2
2
2
2
) cos( ) cos cos sin sin sin
sin( ) cos
tan( ) cot
cos( ) sin
I x x x
x x
x
x x
x x
π π π
π
π
π
+ = − = −
+
+ = = = −
+ −
11 1
2 2
1
2
1
2
2 , )
[ 2 ]
2
) sin sin ( )
sin 4 & 3 . (
2 sin 0,
sin
x
II x usecalculator to find
x is ve for x in th rd quad x
There isonly valuesof x suchthat x for x
But in general thereisinfinitenumber of xvaluesthat makes x
x
6
:
π
π θ π θ
π
π
θ −− +
−
−
− = +
= ⇒ = =
− =
= ∈
=
= − 11
6 6
7
6 6
23 35
6 611
6 13
6 6
19 31
6 67
6 5 17
6 6
2
0, 1, 2,....
2
2 2 ....
2 2 ....
2 2 ....
2 2 ....
n
where n or indetails
x n
x x
x
x x
x x
x
x x
π π
π π
π π
π
π π
π π
π
π π
π
π π
π π
π π
π π
π π
− −
− −
+
+
= ± ±
= = +
+ = + =
=
− = − =
+ = + =
=
− = − =
=
16
III GRAPHS OF SECOND-DEGREE EQUATION
1. Circles
Equation of a circle with centre (h, k) and radius r is
222
)()( rkyhx =−+−
2. Parabolas
Equation of a Parabola is 2
y ax bx c= + +
e.g:
If we interchange x and y in the equation , the result is2
axy = 2
ayx =
3. Ellipses
The curve with equation:
12
2
2
2
=+
b
y
a
x
is called an ellipse.
4. Hyperbolas
The curve with equation:
12
2
2
2
=−
b
y
a
x
is called a hyperbola.
17

Weitere ähnliche Inhalte

Was ist angesagt?

Natural and Clamped Cubic Splines
Natural and Clamped Cubic SplinesNatural and Clamped Cubic Splines
Natural and Clamped Cubic Splines
Mark Brandao
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
Krishna Gali
 
Spm Add Maths Formula List Form4
Spm Add Maths Formula List Form4Spm Add Maths Formula List Form4
Spm Add Maths Formula List Form4
guest76f49d
 

Was ist angesagt? (14)

MA8353 TPDE
MA8353 TPDEMA8353 TPDE
MA8353 TPDE
 
Chapter 5 assignment
Chapter 5 assignmentChapter 5 assignment
Chapter 5 assignment
 
Integration
IntegrationIntegration
Integration
 
Ma8353 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS
Ma8353 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONSMa8353 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS
Ma8353 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS
 
Lesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential FunctionsLesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential Functions
 
IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's Classes
IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's ClassesIIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's Classes
IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's Classes
 
Unit1
Unit1Unit1
Unit1
 
Natural and Clamped Cubic Splines
Natural and Clamped Cubic SplinesNatural and Clamped Cubic Splines
Natural and Clamped Cubic Splines
 
Mathematics and History of Complex Variables
Mathematics and History of Complex VariablesMathematics and History of Complex Variables
Mathematics and History of Complex Variables
 
Complex analysis notes
Complex analysis notesComplex analysis notes
Complex analysis notes
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
 
Spm Add Maths Formula List Form4
Spm Add Maths Formula List Form4Spm Add Maths Formula List Form4
Spm Add Maths Formula List Form4
 
Integration SPM
Integration SPMIntegration SPM
Integration SPM
 
Transformations (complex variable & numerical method)
Transformations (complex variable & numerical method)Transformations (complex variable & numerical method)
Transformations (complex variable & numerical method)
 

Ähnlich wie Chapter 1 (math 1)

Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01
Asad Bukhari
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01
Nur Kamila
 
April 9, 2015
April 9, 2015April 9, 2015
April 9, 2015
khyps13
 

Ähnlich wie Chapter 1 (math 1) (20)

Functions
FunctionsFunctions
Functions
 
Functions limits and continuity
Functions limits and continuityFunctions limits and continuity
Functions limits and continuity
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuity
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01
 
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)
 
Function
FunctionFunction
Function
 
chap 2 Ex#1.1
chap 2 Ex#1.1chap 2 Ex#1.1
chap 2 Ex#1.1
 
Functions
FunctionsFunctions
Functions
 
Graph of functions
Graph of functionsGraph of functions
Graph of functions
 
Modul 3 quadratic function
Modul 3 quadratic functionModul 3 quadratic function
Modul 3 quadratic function
 
Lesson 2_Eval Functions.pptx
Lesson 2_Eval Functions.pptxLesson 2_Eval Functions.pptx
Lesson 2_Eval Functions.pptx
 
Class XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solutionClass XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solution
 
DOUBLE INTEGRALS PPT GTU CALCULUS (2110014)
DOUBLE INTEGRALS PPT GTU CALCULUS (2110014) DOUBLE INTEGRALS PPT GTU CALCULUS (2110014)
DOUBLE INTEGRALS PPT GTU CALCULUS (2110014)
 
April 9, 2015
April 9, 2015April 9, 2015
April 9, 2015
 
Calculo integral - Larson
Calculo integral - LarsonCalculo integral - Larson
Calculo integral - Larson
 
Module 1 quadratic functions
Module 1   quadratic functionsModule 1   quadratic functions
Module 1 quadratic functions
 
ISI MSQE Entrance Question Paper (2008)
ISI MSQE Entrance Question Paper (2008)ISI MSQE Entrance Question Paper (2008)
ISI MSQE Entrance Question Paper (2008)
 
Module 3 quadratic functions
Module 3   quadratic functionsModule 3   quadratic functions
Module 3 quadratic functions
 
Function evaluation, termination, vertical line test etc
Function evaluation, termination, vertical line test etcFunction evaluation, termination, vertical line test etc
Function evaluation, termination, vertical line test etc
 

Kürzlich hochgeladen

Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Silpa
 
Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.
Silpa
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
Scintica Instrumentation
 
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptxTHE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
ANSARKHAN96
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
Silpa
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.
Silpa
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
NazaninKarimi6
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
levieagacer
 

Kürzlich hochgeladen (20)

Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
 
Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
 
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptxTHE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
 
300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.
 
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxClimate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdf
 
Genetics and epigenetics of ADHD and comorbid conditions
Genetics and epigenetics of ADHD and comorbid conditionsGenetics and epigenetics of ADHD and comorbid conditions
Genetics and epigenetics of ADHD and comorbid conditions
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
 
Role of AI in seed science Predictive modelling and Beyond.pptx
Role of AI in seed science  Predictive modelling and  Beyond.pptxRole of AI in seed science  Predictive modelling and  Beyond.pptx
Role of AI in seed science Predictive modelling and Beyond.pptx
 
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRingsTransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
 

Chapter 1 (math 1)

  • 1. CHAPTER I PRECALCULUS REVIEW I-Functions and their graphs II-Trigonometry III-Graphs of Second-degree equation tany x= 2 2 2 2 1 y a b x + = For Math 131 1
  • 2. CONTENTS I FUNCTIONS AND THEIR GRAPHS 1. Functions i) Function definition ii) The Vertical line test iii) Absolute value of a number iv) Symmetry 2. Essential functions i) Linear function of x ii) Polynomials iii) Power function iv) Rational function v) Algebraic function vi) Transcendental function 3. New functions from old functions i) Transformation of functions ii) Combination of function iii) Composition of function II TRIGONOMETRY 1. Trigonometric functions 2. Graphs of the trigonometric functions 3. Trigonometric identities 4. Solving trigonometric equations III GRAPHS OF SECOND-DEGREE EQUATION 1. Circles 2. Parabolas 3. Ellipses 4. Hyperbolas 2
  • 3. I FUNCTIONS AND THEIR GRAPHS 1. Functions i) Function definition: A function is a rule that assigns to each element in a set D exactly one element, called in a set R. f x ( )f x D and R are sets of real numbers. The set D is called the domain. The range R of is the set of all possible values of as varies through out the domain. f ( )f x x Example 1: Sketch the graph and find the domain and range of each function a) b)12)( −= xxf 2 )( xxg = Solution:- a) The graph of the equation 12 −= xy is a line So we need any 2 points to sketch its graph. 1 1 2 2 0 1 :( 0 : x y y x = ⇒ = − − = ⇒ = 0, 1) ( ,0) The domain of is the set of all real numbersf R The range is also R b) The graph of the equation is a parabola 2 )( xxg = The domain of is Rg The range of g is [ )0,∞ Example 2: Find the domain of each function a) 2)( += xxf b) xx xg − = 2 1 )( Solution:- a) Because the square root of negative numbers is not defined, the domain of consists of all values of such that f x 2 0x+ ≥ . The domain is .)2,⎡ ⎣− ∞ 3
  • 4. b) Since )1( 11 )( 2 − = − = xxxx xg and division by 0 is not allowed, we see that is not defined when)(xg 10 == xorx Thus, the domain of g is ( ) ( ) ( ),0 0,1 1,−∞ ∞∪ ∪ ii) The Vertical line test A curve in the - plane is the graph of a function of if and only if no vertical line intersect the curve more than once. xy x A function of x not a function of x iii) Absolute value of a number Definition: a is the distance from to 0 on the real number linea ⎩ ⎨ ⎧ <− ≥ = 0 0 aifa aifa a Properties of absolute values: For , then0>b (i) ba < Iff bab <<− (ii) ba > Iff baorba −<> (iii) ba = Iff baorba −== Example 3: Sketch the graph of xxf =)( Solution:- ⎩ ⎨ ⎧ <− ≥ = 0 0 xx xifx x 4
  • 5. iv) Symmetry Even function: If a function satisfiesf )()( xfxf =− for every number in its domain, then is called an even function. x f e.g. xxfxxf cos)(,)( 2 == 2 )( xxf = An even function Note: the graph is symmetric with respect to the y-axis Odd function: If a function satisfiesf )()( xfxf −=− for every number x in its domain, then is called an odd function.f e.g. xxfxxf sin)(,)( 3 == 3 )( xxf = , an odd function The graph is symmetric about the origin. Example 4: Determine whether each of the following function is even, odd, or neither even nor odd: a) b) c)xxxf += 5 )( 4 1)( xxf −= 2 2)( xxxf −= Solution:- )()()( 55 xfxxxxxf −=+−=−−=−a) Odd function b) Even function)(1)( 4 xfxxf =−=− c) Neither even nor odd 2 2)( xxxf −−=− 5
  • 6. 2. Essential functions i) Linear function of x: we mean that the graph of the function is a line y mx c= + Equation of a line where ( )1 1,x y , ( )2 2,x y are 2 given points 1 2 1 2 y y y y1 1x x x x − − = − − Equation of a line, where given point and is the slope( 11 , yx ) m ( )1 1 1 1 y y m y y m x x x − = ⇒ − = − − x Special lines Two lines 1 2&L L 2have slopes are:1 &m m (i) Parallel if 21 mm = (ii) Perpendicular 121 −=mm Example 5: Find an equation of the line passes through the points A(-1, 4) and B(3, 2) Solution:- 2 1 4 2 31 24 1 4 − = − = −− − = + − x y 71 2 2 y x−= + Example 6: Find an equation of the line passes through the point (3, -4) and is parallel to the line 952 =− yx Solution:- From the given line: 2 2 2 5 9 5 2 9 9 5 5 x y y x y x m− = ⇒ = − ⇒ = − ⇒ = ∴The required equation is m x y = − + 3 4 ⇒ 5 2 3 4 = − + x y ⇒ 5 26 5 2 −= xy 6
  • 7. ii) Polynomials A function p is called a polynomial if 0 1 1 ........)( axaxaxp n n n n +++= − − Where is a nonnegative integer and the numbers are constant called the coefficients of the polynomial. The domain of a polynomial is . the degree of the polynomial is . n naaa ,...,, 10 R n e.g. 6 4 3 ( ) 2 25 2p x x x x= + + + is a polynomial of degree 6 A polynomial of degree 1 is of the form ( )p x mx c= + and so it is a linear function. A polynomial of degree 2 is of the form and is called a quadratic function. Its graph is always a parabola obtained by shifting the parabola , the parabola opens upward if , and downward if cbxaxxp ++= 2 )( 2 axy = 0>a 0<a iii) Power function ( ) af x x= , where is a positive integera n= n 7
  • 8. 1a n = , where is a positive integer:n n xxf 1 )( = is a root function The graph of the reciprocal function1a =− 1( )f x x = iv) Rational function A rational function is a ratio of two polynomialf )( )( )( xQ xp xf = e.g. 4 12 )( 2 24 − +− = x xx xf v) Algebraic function It can be constructed using algebraic operation (addition, subtraction, multiplication, division, and taking roots) e.g. 2( ) 1f x x= + , 4 216( ) x xg x x x −= + vi) Transcendental function Functions that are not algebraic. The set of transcendental function include the trigonometric, inverse trigonometric, exponential and logarithmic function … e.g. ( ) sinf x = x , ( ) 5xg x = 8
  • 9. 3. New functions from old functions i) Transformation of functions:- By applying certain transformations to the graph of a given function we can obtain the graphs of certain related functions. Vertical and horizontal shifts:- suppose .0>c ( )y f x c= + , shift the graph of )(xfy = a distance of units upward.c ( )y f x c= − , shift the graph of )(xfy = a distance of units downward.c )( cxfy −= , shift the graph of )(xfy = a distance of units to the right.c )( cxfy += , shift the graph of )(xfy = a distance of units to the left.c Vertical & Horizontal stretching and reflecting:- suppose 1>c ( )y c f x= , stretch the graph of )(xfy = vertically by a factor of .c 1 ( )y f xc= , compress the graph of )(xfy = vertically by a factor of .c ( )y f cx= , compress the graph of )(xfy = horizontally by a factor of .c ( )xy f c= , stretch the graph of )(xfy = horizontally by a factor of .c )(xfy −= , reflect the graph of )(xfy = about the x- axis. )( xfy −= , reflect the graph of )(xfy = about the y- axis. Example 7: Given the graph of xy = , use transformation to graph xyxyxy −=−=−= ,2,2 xyxy −== ,2 Solution:- 9
  • 10. Example 8: Sketch the graph of the function 106)( 2 ++= xxxf Solution:- Completing the square 1)3(106 22 ++=++= xxxy ii) Combination of functions:- Algebra of functions domain)()())(( xgxfxgf +=+ gf DD ∩ domain)()())(( xgxfxgf −=− gf DD ∩ domain)()())(( xgxfxfg = gf DD ∩ )( )( )( xg xf x g f =⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ domain 0)(, ≠xfDD gf ∩ Example 9: if 2 4)(,) xxgxx −=(f = , find the functions g fandfggfgf ,,, −+ . Solution:- ( )f x x= : is [0,0x ≥ ⇒ fD ∞ ) 2 ( ) 4g x x= − : 22 2 4 0 4 4x x x x− ≥ ⇒ ≤ ⇒ ≤ ⇒ ≤ 2 22 ≤≤− x ⇒ gD is [-2,2] [ ]: 0,2f gD D∩ 2 4f g x x+ = + − D: 20 ≤≤ x 2 4f g x x−− = − D: 20 ≤≤ x 2 2 4 4fg x x x x= − = − D: 20 ≤≤ x 2 4 x x f g − = D: 20 <≤ x 10
  • 11. iii) Composition of function Suppose that uufy == )( and 1)( 2 +== xxgu ( ) 1)1()()( 22 +=+=== xxfxgfufy Def.: Given two functions andf g , the composite function f g (also called the composition of andf g ) is defined by ( ) ( )( ) ( )f g x f g x= The domain of f g is the set of all is in the domain ofx g such that is in the domain of . )(xg f Example 10: 2 )( xxf =If , and 3)( −= xxg , find the composite function f g and fg Solution:- ( ) 2 ( )( ) ( ) ( 3) ( 3) f g f g x f g x f x x D is= = − = − R ( ) 2 2 ( )( ) ( ) ( ) 3 g f g f x g f x g x x D is= = = − R In general f g g f≠ Example 11: If ( )f x x= and , ( ) 2g x x= − , find each function and its domain a) f g b) fg c) f d)f g g Solution:- ( )a) ( ) 4 ( )( ) ( ) 2 2 2f g x f g x f x x x= = − = − = − ( ]: 2 0 2 , 2f g D x x− ≥ ⇒ ≤ ⇒ −∞ , b) ( )( )( ) ( ) ( ) 2g f x g f x g x x= = = − 0x tobedefined x ≥ & 2 2 0x tobedefined x x 4− − ≥ ⇒ ≤ 0 4x∴ ≤ ≤ : 0,4g fD ⎡ ⎤ ⎣ ⎦ c) 1/ 2 1/ 2 1/ 4 4 ( )( ) ( ( )) ( ) ( )f f x f f x f x x x x x= = = = = = )0,f fD ⎡ ⎣ ∴ = ∞ d) ( )( ) ( ( )) ( 2 ) 2 2g g x g g x g x x= = − = − − 2 2 0tobedefinedx x− − ≥ 2x⇒ ≤ 2 2 2 2 0 2 2 2 4x x x xtobedefined− − − − ≥ ⇒ − ≤ ⇒ − ≤ ⇒ ≥ −2x [ ]2,2g gD −∴ = 11 -2 2
  • 12. II TRIGONOMETRY 1. Trigonometric functions Trigonometric function of any angle :x c b a x sin cos tan csc sec cot , , , , a bx xc c b c cx xa ab = = = = ax bx = = Positive functions : Values of basic Trigonometric functions: 3 2 2 3 2 2 sin(0) 0 , sin( ) 1 , sin( ) 0 , sin( ) 1 , sin(2 ) 0 cos(0) 1 , cos( ) 0 , cos( ) 1 , cos( ) 0 , cos(2 ) 1 π π π π π π π π = = = = − = = = − = = = Example 1: Find the values of the trigonometric functions for 3 4 πθ = Solution:- 3 3) ) 4 4 3 3) 2 ) 2 ) 4 4 1 1sin( cos( tan( 1 2 2 csc( sec( cot( 1 , , , , π π π π 3 ) 4 3 4 π π −= = = − = = − = − 12
  • 13. 2. Graphs of the trigonometric functions i) Y=sin(x): (1) Odd Functions (2) Domain is R (3) Range [-1, 1] (4) Period is 2π ii) Y=cos(x): (1) Even Functions (2) Domain is R (3) Range [-1, 1] (4) Period is 2π i) Y=tan(x): (1) Odd Functions (2) Domain is R-{±π /2, ±3π /2, ±5π /2........} (3) Range R (4) Period is π y=csc x y=secx y=cotx 13
  • 14. Example 2: Sketch the graphs of the following functions (i) Y = 2 sin (x) (ii) Y = Sin (2x) Solution:- i- ii- Note: In general if y = sin (n Ө) its Period is 2π /n 14
  • 15. 3. Trigonometric identities 1- Sin2 x + Cos2 x =1 2- Tan2 x +1 = Sec2 x. 3- Cot2 x +1 = Cosec2 x 4- Sin (a ± b) = Sin (a) Cos (b) ± Cos (a) Sin (b) 5- Cos (a ± b) = Cos (a) Cos (b) ∓ Sin (a) Sin (b) 6- Sin (2a) = 2 Sin (a) Cos (a) 7- Sin2 (a) = (1/2)(1-Cos(2a)) 8- Cos2 (a) = (1/2)(1+Cos(2a)) 9- Cos (2a) = Cos2 (a)-Sin2 (a) = 1-2Sin2 (a) = 2Cos2 (a) -1 10- Tan (a ± b) = [(Tan (a) ± Tan (b)] /[1 Tan(a) Tan(b)]∓ 4. Solving trigonometric equations Example 3: 1 2sin( )θ = if i = [0,2 ]θ π∈ ii = θ ∈R Solution:- [0,2 ]i- θ π∈ )6/5(,6/ πθπθ == ii- θ ∈ R .....2,1,0,26/ ±±=+= nnππθ ,.....2,1,0,2)6/5( ±±=+= nnππθ Example 4: Solve 2 (1 3) ( 3 1) 0, [0,2 ]Sec Tanθ θ θ π− + + − = ∈ Solution:- 2 2 (1 ) (1 3) ( 3 1) 0 (1 3) 3 0 )( 3) 0 1, 3 / 4, /3 Tan Tan Tan Tan Tan Tan Tan Tan θ θ θ θ θ θ θ θ θ π π + − + + − = − + + = − − = = = = ( 1 Example 5: Solve Co ( ) (2 ) 0s x Cos x+ = [0,2 ]x π∈ Solution:- = 2 2 ( ) ( ) 1 0 (2 ( ) 1)( ( ) 1) 0 ( ) 1/ 2, 1 /3, ,5 /3 Cos x Cos x Cos x Cos x Cos x x π π π + − = − + = − = 15
  • 16. Note 1: [ ] 2 2 2 2 2 2 2 2 cos sin 1 (1) 1 tan sec (1) / cos cot 1 csc (1)/sin sin( ) sin cos cos sin (2) sin( ) sin cos cos sin (3) 1 (3) (2): sin cos sin( ) sin( ) 2 (2) : sin 2 2sin cos cos( ) cos cos x x x x x x x x x y x y x y x y x y x y x y x y x y In put y x x x x x y x y + = + = ⇐ + = ⇐ + = + − = − + = − + + = = + = [ ] [ ] 2 2 2 2 2 sin sin (4) cos( ) cos cos sin sin (5) 1 (5) (4): cos cos cos( ) cos( ) 2 1 (5) (4): sin sin cos( ) cos( ) 2 (4) : cos2 cos sin (1) sin 1 cos cos2 2cos 1 co x y x y x y x y x y x y x y x y x y x y In put y x x x x From x x x x − − = + + = − + + − = − − + = = − = − = − ⇒ 2 2 2 2 2 2 1 s (1 cos 2 1 (1) cos 1 sin cos2 1 2sin sin (1 cos2 ) 2 tan tan tan tan tan( ) (6) tan( ) 1 tan tan 1 tan tan 2tan (6) : tan 2 1 tan 2 )x x From x x x x x x x y x y x y x y x y x y x In put y x x x = + = − = − ⇒ = − + − + = − = − + = = − :2Note 2 2 2 2 2 2 ) cos( ) cos cos sin sin sin sin( ) cos tan( ) cot cos( ) sin I x x x x x x x x x x π π π π π π + = − = − + + = = = − + − 11 1 2 2 1 2 1 2 2 , ) [ 2 ] 2 ) sin sin ( ) sin 4 & 3 . ( 2 sin 0, sin x II x usecalculator to find x is ve for x in th rd quad x There isonly valuesof x suchthat x for x But in general thereisinfinitenumber of xvaluesthat makes x x 6 : π π θ π θ π π θ −− + − − − = + = ⇒ = = − = = ∈ = = − 11 6 6 7 6 6 23 35 6 611 6 13 6 6 19 31 6 67 6 5 17 6 6 2 0, 1, 2,.... 2 2 2 .... 2 2 .... 2 2 .... 2 2 .... n where n or indetails x n x x x x x x x x x x π π π π π π π π π π π π π π π π π π π π π π π π π − − − − + + = ± ± = = + + = + = = − = − = + = + = = − = − = = 16
  • 17. III GRAPHS OF SECOND-DEGREE EQUATION 1. Circles Equation of a circle with centre (h, k) and radius r is 222 )()( rkyhx =−+− 2. Parabolas Equation of a Parabola is 2 y ax bx c= + + e.g: If we interchange x and y in the equation , the result is2 axy = 2 ayx = 3. Ellipses The curve with equation: 12 2 2 2 =+ b y a x is called an ellipse. 4. Hyperbolas The curve with equation: 12 2 2 2 =− b y a x is called a hyperbola. 17